Incremental Maintenance of Maximal Bicliques
in a Dynamic Bipartite Graph

Apurba Das, Srikanta Tirthapura, Senior Member, IEEE,

Abstract—We consider incremental maintenance of maximal bicliques from a dynamic bipartite graph that changes over time due to
the addition of edges. When new edges are added to the graph, we seek to enumerate the change in the set of maximal bicliques,
without enumerating the set of maximal bicliques that remain unaffected. The challenge in an efficient algorithm is to enumerate the
change without explicitly enumerating the set of all maximal bicliques. In this work, we present (1) Near-tight bounds on the magnitude
of change in the set of maximal bicliques of a graph, due to a change in the edge set, and an (2) Incremental algorithm for enumerating
the change in the set of maximal bicliques. For the case when a constant number of edges are added to the graph, our algorithm is
“change-sensitive”, i.e., its time complexity is proportional to the magnitude of change in the set of maximal bicliques. To our
knowledge, this is the first incremental algorithm for enumerating maximal bicliques in a dynamic graph, with a provable performance
guarantee. Our algorithm is easy to implement, and experimental results show that its performance exceeds that of baseline

implementations by orders of magnitude.

Index Terms—Graph Mining, Maximal Biclique Maintenance, Incremental Algorithm, Bipartite Graph

1 INTRODUCTION

Graphs are a natural abstraction in representing linked data
in many domains such as in social network analysis, compu-
tational biology, and web search. Often, these networks are
dynamic, where new connections are added and old connec-
tions are removed. The area of dynamic graph mining focuses
on efficient methods for finding and maintaining significant
patterns in a dynamic graph. Our work is motivated by
applications that require the maintenance of dense substruc-
tures from a dynamic graph. Angel et al. [6], propose an
algorithm for identifying breaking news stories in real-time
through dense subgraph mining from an evolving graph,
defined on the co-occurrence of entities within messages in
an online social network. Java et al. [17] present methods
for detecting communities among users in a microblog-
ging platform through identifying dense structures in an
evolving network representing connections among users. A
sample of other applications of dense subgraph mining in
networks include identification of communities in a social
network [15], [23], identification of web communities [14],
[34], [18], phylogenetic tree construction [11], [35], [44], com-
munities in bipartite networks [19], genome analysis [30],
and closed itemset mining [41], [20].

We focus on bipartite networks that can be used to
model interactions between two distinct types of entities.
For example, a relation between users and news articles
in a feed can be modeled as a bipartite network where
the users and the news articles are two sets of vertices,
and there is an edge between a user and a news article if
the user has viewed the article. We consider the problem

o Das and Tirthapura are with the Department of Electrical and Computer
Engineering, Iowa State University, Ames, IA 50011.
E-mail: {adas, snt}@iastate.edu.
The authors were partially supported through NSF grants 1527541,
1725702, and 1632116.

of maximal biclique enumeration (MBE) within an evolving
bipartite graph. MBE is a fundamental problem that has
been used in detecting communities within large bipartite
networks. For instance, the works of Kumar et al. [18]
on detecting cyber-communities from the web graph, Mu-
rata [29] on identifying user communities from web log
data, and Lehmann et al. [19] on community detection
in collaboration networks are all based on MBE from an
appropriately defined bipartite graph. Another application
of MBE is in mining closed itemsets in association rule
mining from transactional databases [31]. One approach to
closed item-sets is to enumerate maximal bicliques from a
bipartite graph representing the transaction database where
the different transactions are in one partition and the set
of items are in the other partition, with edges connecting
a transaction to an item if the item was included in that
transaction [20].

The majority of prior work on MBE has focused on
a static graph that is assumed to be given in its entirety,
and that does not change henceforth. Such methods are not
efficient and often are inapplicable for the case when the
graph is changing often, such as when more transactions
are being added to the database, or when there is more
user activity within a network. For example, in community
detection, if edges are added to the graph, then it is not
clear how to efficiently (re)compute the new communities
that emerge, and those communities that are subsumed. In
the case of itemset mining, it is a challenge to (re)generate
closed itemsets when transactions are added to the database
incrementally [41]. Many, if not most, of today’s data sources
are dynamic and generate data constantly, and it is impor-
tant to have methods that can handle such dynamic data in
an efficient manner.

We consider the incremental MBE problem, of main-
taining the set of maximal bicliques in a bipartite graph
that is evolving continuously over time due to the addition

T X

b Yy

c . c .
G, G,

New maximal
bicliques:<{a,b,c},{x,v}>
Subsumed bicliques:
<{ablL{x}> <{bcLiy}>
~<{bLixy}>

Maximal bicliques:
<fabL{x}>, <{bchiv}>
<{bl{xy}>

Fig. 1: Change in maximal bicliques when the graph changes
from G to G2 due to the addition of edge set H =
{{a,y},{c,z}}. Each maximal biclique in G; is subsumed
by a larger maximal biclique in G2, and there is one new
maximal biclique in G».

of stream of new edges. Let G = (L, R, E) be a simple
undirected bipartite graph with its vertex set partitioned
into L, R, and edge set E C L x R. A biclique in G is a
bipartition B = (X,Y), X C L, Y C R such that each
vertex in X is connected to each vertex in Y. A biclique B
is called a maximal biclique if there is no other biclique B’
such that B is a proper subgraph of B’. Let BC(G) denote
the set of all maximal bicliques in G.

Suppose that starting from bipartite graph G; =
(L, R, E), the state of the graph changes to Gy = (L, R, EU
H) due to the addition of a set of new edges H. Let
T (Gh,Ge) = BC(G2) \ BC(G1) denote the set of new
maximal bicliques that arise in G that were not present
in Gy and Y9 (G,Gy) = BC(G4) \ BC(G2) denote the
set of maximal bicliques in G; that are no longer maximal
bicliques in G (henceforth called subsumed bicliques). See
Fig. 1 for an example. Let Y(G1,G2) = T (G1,G2) U
T (G, Gy) denote the symmetric difference of BC(G)
and BC(G2). We consider the following questions:

(1) How large can be the size of T(G1, G2)? In particular,
can a small change in the set of edges cause a large change
in the set of maximal bicliques in the graph?

(2) How can we compute Y(G1,Gs) efficiently? Can
we quickly compute Y(G1,G2) when [T (G, G2)| is small?
In short, can we design change-sensitive algorithms for enu-
merating elements of Y(G1, G2), whose time complexity is
proportional to the size of change, | Y(G1, G2)|?

1.1 Contributions

Magnitude of Change: Let g(n) denote the maximum
number of maximal bicliques possible in an n vertex
bipartite graph. A result due to Prisner [33] shows that
g(n) < 22, where equality occurs when n is even. We
show that the change in the number of maximal bicliques
when a single edge is added to the graph can be as large as
3g(n —2) = 1.5 x 2"/2, which is exponential in the number
of vertices in the graph. This shows that the addition of
even a single edge to the graph can lead to a large change
in the set of maximal bicliques in the graph. We further
show that this bound is tight for the case of the addition

2

of a single edge — the largest possible change in the set of
maximal bicliques upon adding a single edge is 3g(n — 2).
For the case when more edges can be added to the graph,
it is easy to see that the maximum possible change is no
larger than 2g(n).

Enumeration Algorithm: From our analysis, it is clear that
the magnitude of change in the set of maximal bicliques in
the graph can be exponential in n in the worst case. On the
flip side, the magnitude of change can be as small as 1 —
for example, consider the case when a newly arriving edge
connects two isolated vertices in the graph. Thus, there is
a wide range of values the magnitude of change can take.
When the magnitude of change is very large, an algorithm
that enumerates the change must inevitably pay a large
cost, if only to enumerate the change. On the other hand,
when the magnitude of change is small, it will ideally pay
a smaller cost. This motivates our search for an algorithm
whose computational cost for enumerating the change is
proportional to the magnitude of the change in the set of
maximal bicliques.

We present an incremental algorithm, DynamicBC, for
enumerating the change in the set of maximal bicliques
when a set of edges H are added to the bipartite graph
G. DynamicBC has two parts, NewBC, for enumerating new
maximal bicliques, and SubBC, for enumerating subsumed
maximal bicliques. When a batch of new edges H of size
p is added to the graph, the time complexity of NewBC
for enumerating T"°*, the set of new maximal bicliques,
is O(A2%p|Y™*|) where A is the maximum degree of
the graph after update. The time complexity of SubBC
for enumerating Ydel the set of subsumed bicliques, is
O(2°|T™e*|). Note that when p is a constant, the time com-
plexity of enumerating the change is O(A?%|T"¢"|), which
is linear in the number of bicliques that are output, times
a factor related to the size of the graph. To the best of our
knowledge, these are the first change-sensitive algorithms
for maintaining maximal bicliques in a dynamic graph.

Experimental Evaluation: We present an empirical eval-
uation of DynamicBC on real bipartite graphs with million of
nodes and compare our algorithm with baseline approaches.
Our results show that the performance of DynamicBC is
many orders of magnitude faster than directly applying a
static algorithm (BaselineBC) and many times faster than
an improved baseline we devised (BaselineBC*). For ex-
ample, on the last fm-song-init graph, DynamicBC took
about 93 sec. for computing the change due to addition
of 625 batches each of size 100, whereas BaselineBC took
about 7,920 sec. and BaselineBC* about 1, 740 sec.

1.2 Related Work

Our algorithm belongs to the class of dynamic graph algo-
rithms since it stores the entire graph, and treats changes
to the graph in an efficient manner. A graph algorithm is
said to be incremental if it can (efficiently) handle addition of
edges to the graph and decremental if it can handle deletions
of edges from the graph. For example, the work of Simsiri
et al. [37] is an incremental parallel algorithm for graph con-
nectivity that allows addition of edges, and of Thorup [39] is
a decremental algorithm for graph connectivity that allows

deletion of edges. A graph algorithm is called fully dynamic
if it can handle both addition and deletion of edges, such
as the work of Wulff-Nilsen [42] on fully dynamic graph
connectivity. Our work thus belongs to the class of incre-
mental graph algorithms, since we consider the addition
of edges. Our algorithms also extend to the decremental
case in a straightforward manner, since they are able to
compute the new as well as subsumed maximal cliques.
Our work is also related to the analysis of temporal graphs
where edges have timestamps, and arrive (approximately)
ordered according to timestamps [25]. Our work cannot
however be called a streaming graph algorithm [32], since
a streaming graph algorithm typically does not store the
entire edge set of the graph. For a problem such as MBE,
each edge is important for future structures that may arise,
hence, not storing the set of all edges can lead to missing
out on enumerating new structures. Hence, the description
“dynamic algorithms” better characterizes our work than
the description “streaming algorithms”.

MBE on a static graph: There has been substantial prior
work on enumerating maximal bicliques from a static graph.
Alexe et al. [5] present an algorithm for MBE from a static
graph based on the consensus method, whose time complex-
ity is proportional to the size of the output (number of max-
imal bicliques in the graph) - termed as an output-sensitive
algorithm. Liu et al. [22] present an algorithm for MBE
based on depth-first-search (DFS). Damaschke [7] present
an algorithm for bipartite graphs with a skewed degree
distribution. Gély et al. [13] present an algorithm for MBE
through a reduction to maximal clique enumeration (MCE).
However, in their work, the number of edges in the graph
used for enumeration increases significantly compared to
the original graph. Makino & Uno [24] present an algorithm
for MBE based on matrix multiplication, which provides the
current best time complexity for dense graphs. Eppstein [12]
presented a linear time algorithm for MBE when the input
graph has bounded arboricity. Other works on sequential
algorithms for MBE and MCE on a static graph include [9],
[10], [40], [28], and on parallel algorithms include [26], [27],
[43], [38]. Li et al. [20] show a correspondence between
closed itemsets in a transactional database and maximal
bicliques in an appropriately defined graph.

Dense Structures from Dynamic Graphs: There have
been some prior works related to maintenance of dense
structures similar to maximal bicliques in dynamic graphs.
Kumar et al. [18] define an (4, j)-core which is a biclique
with 4 vertices in one partition and j vertices in another
partition, and present a dynamic algorithm for extracting
non-overlapping sets of (i, j)-cores for interesting commu-
nities. Some other works on maintaining dense structures
in dynamic graph include maintenance of k-cores [36], [21],
k-truss [16], maximal clique [8] etc.

Roadmap: The remaining sections are organized as fol-
lows. We present definitions and preliminaries in Section 2.
Then we describe our algorithms in Section 3, results on the
size of change in the set of maximal bicliques in Section 4,
and experimental results in Section 5.

f?j 1}3

Fig. 2: Cocktail-party graph on 6 vertices C'P(3)

2 PRELIMINARIES

Let V(G) denote the set of vertices of G and E(G) the set
of edges in G. Let n and m denote the number of vertices
and number of edges in G respectively. Let I'¢(u) denote
the set of vertices adjacent to vertex v in G. If the graph G
is clear from the context, we use I'(u) to mean I'¢(u). For
an edge e = (u,v) € E(G), let G — e denote the graph after
deleting e € E(G) from G and G + e denote the graph after
adding e ¢ E(G) to G. For a set of edges H, let G + H
(G — H) denote the graph obtained after adding (deleting)
H to (from) E(G). Similarly, for a vertex v ¢ V(G), let G+v
denote the graph after adding v to G and for a vertex v €
V(G), let G — v denote the graph after deleting v and all its
adjacent edges from E(G). Let A(G) denote the maximum
degree of a vertex in G and 0(G) the minimum degree of a
vertex in G.

Definition 1 (Change-Sensitive Algorithm). An algorithm for
a property P on a dynamic graph is said to be change-sensitive if
the time complexity of enumerating the change in P is linear in
the magnitude of change (in P), and polynomial in the size of the
input graph and the size of change in the set of edges.

We note that this usage of “change-sensitive” is
consistent with prior usage of the term “output-sensitive”
in the literature. Algorithms for enumerating maximal
bicliques from a static graph are called “output-sensitive”
if their runtime is linear in the size of the output (the total
number of maximal bicliques), times a factor polynomial
in the number of vertices and the number of edges in the
graph. For instance, the output-sensitive algorithm for MBE
due to Alexe et al. [5] takes time O(n®83), where n is the
number of vertices in the graph and (3 is the number of
maximal bicliques, which is the relevant output.

Results for a static graph. In [33], Prisner presented the
following result on the number of maximal bicliques in a bi-
partite graph with n vertices. Let C P(k) denotes the cocktail-
party graph which is a bipartite graph with & vertices in each
partition where V(CP(k)) = {a1,a2,...,ak,b1,b2,...,br}
and E(CP(k)) = {(a;,bp) : i # p} [33]. See Figure 2 for an
example.

Theorem 1 (Theorem 2.1 [33]). Every bipartite graph with n
vertices contains at most 22 =~ 1.41™ maximal bicliques, and the
only extremal (maximal) bipartite graphs are the graphs C P (k).

As a subroutine, we use an algorithm for enumerating
maximal bicliques from a static undirected graph, whose
runtime is proportional to the number of maximal bicliques.
There are a few such algorithms [5], [22], [45]. We use the
following result due to Liu et al. [22] as it provides the
current best time complexity.

Theorem 2 (Liu et al., [22]). For a graph G with n vertices,
m edges, maximum degree A, and number of maximal bicliques
1, there is an algorithm MineLMBC for enumerating maximal bi-
cligues in G with time complexity O(nAp) and space complexity
O(m + A?).

MineLMBC is an algorithm for enumerating maximal
bicliques of a static graph G = (V, E) that is based on
depth-first-search. It takes as input the graph G and the size
threshold s. The algorithm enumerates all maximal bicliques
of G with size of each partition at least s. Clearly, by setting
s = 1, the algorithm enumerates all maximal bicliques of G.

3 ALGORITHMS FOR MAXIMAL BICLIQUES

For graph G and set of edges H, we use T"°* to mean
T (G, G + H), and Y% to mean Y9 (G, G + H). Before
presenting our change-sensitive algorithm for maximal bi-
cliques, we first consider two baseline approaches for the
problem.

3.1 Baseline Algorithms for Maximal Bicliques

First we consider a straightforward approach for main-
taining maximal bicliques using a current state-of-the-art
algorithm for static graphs. This algorithm, which we call
as BaselineBC, works by enumerating BC(G + H), the set
of all maximal bicliques in (G+H) once G is updated with a
set of new edges H. It then outputs the symmetric difference
between BC(G) (maintained in memory) and BC(G + H).

We next present another baseline BaselineBC*, which
is better than BaselineBC. The idea in BaselineBC* is
to focus on the portion of the graph where changes oc-
cur. Let Vg denote the set of all vertices in G that are
incident to at least one edge in H. For enumerating new
maximal bicliques, we note that it is sufficient to consider
the subgraph Gy of G + H that is induced by Vg and
the vertices in Uyev,, D'y i (v). BaselineBC* enumerates all
maximal bicliques in Gy using a state-of-the-art algorithm
for static graphs. Each biclique b thus generated is a new
maximal biclique if b contains at least an edge from H. For
enumerating subsumed bicliques, we note each subsumed
maximal biclique b’ in G is a subgraph of at least one new
maximal biclique b, and must also be contained in b — H.
Thus, subsumed maximal bicliques are enumerated by con-
sidering each new maximal b, and enumerating maximal
bicliques in b — H. If a biclique thus enumerated is present
in BC(G), it is output as a subsumed biclique.

We can expect BaselineBC* to do much better than
BaselineBC. Still BaselineBC* it is not change-sensitive,
because it may, in the process of enumerating new maximal
bicliques, generate bicliques of G that remain maximal in
G + H. For example, see Fig. 3. We next present algorithms
that carefully avoid enumerating any maximal biclique of G
that remains maximal in G + H.

3.2 Change-Sensitive Algorithm DynamicBC

Our change-sensitive algorithm, DynamicBC, has two parts:
(1) Algorithm NewBC for enumerating new maximal bi-
cliques, described in Section 3.3 and (2) Algorithm SubBC for
enumerating subsumed bicliques, described in Section 3.4.
The main result on the time complexity of DynamicBC is

Algorithm 1: DynamicBC(G, H, BC(G))
Input: G - Input bipartite graph, H - Edges being
added to G, BC(G) - set of maximal bicliques
of G
Output: T : the union of set of new maximal bicliques
and subsumed bicliques
1 Y7 + NewBC(G, H)
2 T« subBC(G, H, BC(G), T™)
3 T Yrew y ydel

summarized in the following theorem.

Theorem 3. DynamicBC enumerates the change in the set
of maximal bicliques, with time complexity O(A?p| Y| +
20| |) where A is the maximum degree of a vertex in G + H
and p is the size of H, the set of newly added edges.

We note that if p is constant, the time complexity of
enumerating the change is O(AZ%|Y"¢%|). Thus we have the
following observation.

Observation 1. DynamicBC is a change-sensitive algorithm for
MBE, when the number of edges added, p is a constant.

3.3 Enumerating New Maximal Bicliques

fy el
G

Fig. 3: The original graph G has 4 maximal bicliques. When
new edges in H (in dotted line) are added to G, all maximal
bicliques in G remain maximal in G + H and only one
maximal biclique is newly formed (< {as, a4}, {bs, bs} >).

In our algorithm, we require that each maximal biclique
enumerated by NewBC to contain at least one edge from H,
thus forcing it to be a new maximal biclique. Let G’ denote
the graph G + H. For each new edge e € H, let BC'(e)
denote the set of maximal bicliques in G’ containing edge e.

Lemma 1. Y% = U,y BC’ (e).

Proof. Each biclique in T"* must contain at least one edge
from H. To see this, consider a biclique b € T"*". If b did not
contain an edge from H, then b is also a maximal biclique
in G, and hence cannot belong to Y"**. Hence, b € BC'(e)
for some edge ¢ € H, and b € U.c g BC’(€). This shows that
YW C Uee g BC' (e).

w

X v

G G+H; H = {e,h} G’

Fig. 4: Construction of G/, from G’ = G + H when a set of
new edges H = {e,h} isadded to G. A = T'¢/(v) = {u,z}
and B =T/ (u) = {v,y}.

Next consider a biclique b € U.cnBC'(e). It must be
the case that b € BC'(h) for some h in H. Thus b is a
maximal biclique in G + H. Since b contains edge h € H, b
cannot be a biclique in G. Thus b € T"*". This shows that
UeenBC' (e) C Tew, O

Next, for each edge e = (u, v) € H, we present an
efficient way to enumerate all bicliques in BC'(e) through
enumerating maximal bicliques in a specific subgraph G, of
G’, constructed as follows. Let A = '/ (u) and B = T' (v).
Then G, = (A,B,FE’) is a subgraph of G’ induced by
vertices in A and B, and all edges between these sets of
vertices. See Fig. 4 for an example of the construction of G~.

Lemma 2. For each e € H, BC'(e) = BC(G")

Proof. First we show that BC'(e) C BC(G.). Consider a
biclique b = (X,Y) in BC'(e). Let e = (u, v). Here b contains
both u and v. Suppose that v € X and v € Y. According
to the construction G/, contains all the vertices adjacent to u
and all the vertices adjacent to v. And in b, all the vertices
in X are connected to all the vertices in Y. Hence, b is a
biclique in G.. Also, b is a maximal biclique in G/, and G,
is an induced subgraph of G’ which contains all the vertices
of b. Hence, b is a maximal biclique in GL.

Next we show that BC(G’) C BC'(e). Consider a bi-
clique ¥ = (X', Y’) in BC(G.,). Clearly, b’ contains e as it
contains both v and v and ¥’ is a maximal biclique in G,.
Hence, V' is also a biclique in G’ that contains e. Now we
prove that 0’ is also maximal in G’. Suppose not, that there
is a vertex w € V(G') such that b’ can be extended with
w. Then, as per the construction of G, w € V(GY,) since w
must be adjacent to either v or v. Then, V' is not maximal in
G.. This is a contradiction. Hence, b’ is also maximal in G'.
Therefore, b' € BC'(e). O

Based on the above observation, we present our change-
sensitive algorithm NewBC (Algorithm 2). We use an output-
sensitive algorithm for a static graph MineLMBC for enumer-
ating maximal bicliques from G.. Note that typically, G, is
much smaller than G’ since it is localized to edge e, and
hence enumerating all maximal bicliques from G, should
be relatively inexpensive.

Theorem 4. NewBC enumerates the set of all new bicliques
arising from the addition of H in time O(A?p|Y"|) where
A is the maximum degree of a vertex in G' and p is the size of H.
The space complexity is O(|E(G')| + A?).

Proof. First we consider correctness of the algorithm. From
Lemma 1 and Lemma 2, we know that T"¢% is enumerated
by enumerating BC(G.) for every e € H. Our algorithm

Algorithm 2: NewBC(G, H)
Input: G - Input bipartite graph, I - Edges being
added to G
Output: bicliques in T™*", each biclique output once
1 Consider edges of H in an arbitrary order
€1,€2,...,€p
G+~ G+H
fortr=1...pdo
e+ e; = (u,v)
G/, + a subgraph of G’ induced by
Ler(u) UTer (v)
6 Generate bicliques of G, using MineLMBC. Let B
denote the set of the generated bicliques.
7 | forbe Bdo
8 if b does not contain an edge e; for j < i then
| Add b to Y7

gl = W N

10 return Y%

does this exactly, and uses the MineLMBC algorithm for
enumerating BC(G,). For the runtime, consider that the
algorithm iterates over each edge e in H. In each iteration,
it constructs a graph G/, and runs MineLMBC(GY). Note that
the number of vertices in G, is no more than 2A, since it is
the size of the union of the edge neighborhoods of one of
the p edges in G’. The set of maximal bicliques generated in
each iteration is a subset of Y"¢%, therefore the number of
maximal bicliques generated from each iteration is no more
than |Y™°"|. From Theorem 2, we have that the runtime of
each iteration is O(A2|Y"¢%|). Since there are p edges in
H, the result on runtime follows. For the space complexity,
we note that the algorithm does not store the set of new
bicliques in memory at any point. The space required to
construct G, is linear in the size of G’. From Theorem 2, the
total space requirement is O(|E(G")| + A?). O

3.4 Enumerating Subsumed Maximal Bicliques

We now consider enumerating BC(G) \ BC(G') where G’ =
G + H. Suppose a new maximal biclique b of G’ subsumed
a maximal biclique b’ of G. Note that b’ is also a maximal
biclique in b— H. One approach is to enumerate all maximal
bicliques in b — H and then check which among them is
maximal in G. However, checking maximality of a biclique
is a costly operation in itself, since we need to consider the
neighborhood of every vertex in the biclique. Another idea
is to store the bicliques of the graph explicitly and see which
among the generated bicliques are contained in the set of
maximal bicliques of G. This is not desirable either, since
large amount of memory is required to store the set of all
maximal bicliques of G.

We consider a more efficient approach, of storing the
signatures of the maximal bicliques instead of storing the
bicliques themselves. We then enumerate all maximal bi-
cliques in b — H and for each biclique thus generated, we
compare the signature of the generated biclique with the
signatures of the bicliques stored. An algorithm following
this idea is presented in Algorithm 3. This reduces the
memory requirement. We use a standard hash function (the

64 bit murmur hash !). For computing the signature of
a biclique, first we represent the biclique in a canonical
form (vertices in first partition represented in lexicographic
order followed by vertices in another partition represented
in lexicographic order). Then we convert the string into
bytes, and apply the hash function to derive the signature.
By storing hash signatures instead of maximal bicliques, we
are able to quickly check whether a maximal biclique from
b — H is contained in the set of maximal bicliques of G by
comparing their hash values. We also pay a lower memory
cost, when compared with storing all bicliques.

With the approach of storing hash signatures of bi-
cliques, there is a small probability of a hash collision, i.e. the
case when two bicliques A and B are unequal, but their hash
values are equal. The effect of a collision is a false positive —
our algorithm may incorrectly conclude that a biclique is a
subsumed biclique where as it is not. However, this is a very
unlikely event with the use of 64 bit signatures, where the
chances of two unequal strings having the same hash value
is extremely small. In our experiments, the set of bicliques
that were enumerated by our algorithm always matches the
set of subsumed bicliques. Note that we can always double
check each such biclique by explicitly checking if this is
maximal in G, to avoid a chance of a false positive. We did
not do this in our implementation since the chance of a false
positive is so small.

Now we prove that Algorithm 3 enumerates all maximal
bicliques of b — H.

Lemma 3. In Algorithm 3, for each b € Y™, S after Line 14
contains all maximal bicliques in b — H.

Proof. First observe that, removing H from b is equivalent
to removing those edges in H which are present in b. Hence,
computing maximal bicliques in b— H reduces to computing
maximal bicliques in b — H; where H; is the set of all
edges in H which are present in b. We use induction on
the number of edges k in H;. Consider the base case, when
k = 1. H contains a single edge e; = {u, v}. Clearly, b— Hy
has two maximal bicliques b \ {u} and b\ {v}. Suppose,
that the set H; is of size k. Our inductive hypothesis is that
all maximal bicliques in b — H; are enumerated. Consider
H{ = {e1,ez,...,ek,ext1} with & + 1 edges. Now each
maximal biclique b’ in b— H; either remains maximal within
b — Hj (if at least one endpoint of ey is not in ') or
generates two maximal bicliques in b— H{ (if both endpoints
of ep11 are in). Thus, for each b € T, S after Line 14
contains all maximal bicliques within b — H. O

We now show that the above algorithm is a change-
sensitive algorithm for enumerating all elements of Y%
when the number of edges p in H is constant.

Theorem 5. Algorithm 3 enumerates all bicliques in Y9! =
BC(G) — BC(G + H) using time O(2°|Y™"|) where p is the
number of edges in H. The space complexity of the algorithm is
O(IE(G)] + [V(G")] + A% + |BC(G))).

Proof. We first show that every biclique b’ enumerated by
the algorithm is indeed a biclique in Y%. Note that ' is a
maximal biclique in G, due to explicitly checking the condi-
tion. Further, b’ is not a maximal biclique in G+ H, since it is

1. https:/ /sites.google.com/site/murmurhash/

Algorithm 3: SubBC(G, H, BC, T"%)
Input: G - Input bipartite graph
H - Edge set being added to G
BC - Set of maximal bicliques in G

Y7 - set of new maximal bicliques in G + H
Output: All bicliques in Y% = BC(G) \ BC(G + H)

1 Yl ()

2 forb € T do

3 S« {b}

4 fore = (u,v) € E(b)N H do

5 S+ ¢

6 ford € S do

7 ife € E(V) then

8 by =0 \{u};by=0"\{v}

9 S/%S/U{bl,bg}

10 else

11 L S+ S'uY

12 /+ S8’ contains all the maximal
bicliques in b—{ej,ea,...,e;} where
{e1,€2,..,ex} CEMD)NH are
considered so far. */

13

14 S« 9

15 ford € S do

16 if b’ € BC then

17 Add b to Tdel

18 BC «+ BC\V

19 return Y%!

a proper subgraph of b, a maximal biclique in G' + H. Next,
we show that all bicliques in Y% are enumerated. Consider
any subsumed biclique b’ € Y%l It must be contained
within b \ H, where b is a maximal biclique within Y"¢%.
Moreover, b’ will be a maximal biclique within b \ H, and
will be enumerated by the algorithm according to Lemma 3.

For the time complexity we show that for any b € T"°%,
the maximum number of maximal bicliques in b — H is
2¢ using induction on p. Suppose p = 1 so that H con-
tains a single edge, say e; = (u,v). Then, b — H has
two maximal bicliques, b \ {u} and b\ {v}, proving the
base case. Suppose that for any set H of size k, it was
true that b — H has no more than 2¥ maximal bicliques.
Consider a set H" = {e1,e2,...,ex41} with k + 1 edges.
Let H = {e1,ea,...,er}. Subgraph b — H" is obtained
from b — H' by deleting a single edge ex1. By induction,
we have that b — H' has no more than 2¥ maximal bicliques.
Each maximal biclique &’ in b— H' either remains a maximal
biclique within b — H” (if at least one endpoint of ey is
not in '), or leads to two maximal bicliques in b — H" (if
endpoints of ey, are in different bipartition of b"). Hence,
the number of maximal bicliques in b — H” is no more
than 2¥+1, completing the inductive step. Following this, for
each biclique b € T"*", we need to check for maximality
for no more than 2” bicliques in G. This checking can
be performed by checking whether each such generated
biclique in contained in the set BC(G) and for each biclique,

this can be done in constant time.

For the space bound, we first note that in Algorithm 3,
enumerating maximal bicliques within b — H consumes
space O(|E(G")| + A?), and checking for maximality can be
done in space linear in size of G. However, for storing the
maximal bicliques in G takes O(|BC(G)|) space. Hence, for
these operations, the overall space-cost for each b € Y™ is
O(|E(G")| + |[V(G")| + A? + |BC(G)|). The only remaining
space cost is the size of T"*", which can be large. Note that,
the algorithm only iterates through T in a single pass. If
elements of Y"* are provided as a stream from the output
of an algorithm such as NewBC, then they do not need to
be stored within a container, so that the memory cost of
receiving Y™ is reduced to the cost of storing a single
maximal biclique within Y™ at a time. O

4 MAGNITUDE OF CHANGE IN BICLIQUES

We consider the maximum change in the set of maximal
bicliques when a set of edges is added to the bipartite graph.
Let A(n) denote the maximum size of Y(G,G + H) taken
over all n vertex bipartite graphs G and edge sets H. We
derive the following upper bound on the maximum size of
T(G,G + H) in the following Lemma:

Lemma 4. A\(n) < 2g(n).

Proof. Note that, for any bipartite graph G with n vertices
and for any new edge set H it must be true that |[BC(G)| <
g(n) and |BC(G + H)| < g(n). Since |T"*(G,G + H)| <
|BC(G + H)| and |G, G + H)| < |BC(G)], it follows
that |Y(G,G+ H)| < |BC(G+ H)| + |BC(G)| < 2g(n). O

Next we analyze the upper bound of |T(G, G +e¢)| in the
following when an edge e¢ ¢ E(G) is added to G.

Theorem 6. For an integer n > 2, a bipartite graph G =
(L, R, E) with n vertices, and any edge e = (u,v) ¢ E(G),u €
L,v € R, the maximum size of Y(G,G + e) is 3g(n — 2), and
for each even n, there exists a bipartite graph that achieves this
bound.

We prove this theorem in the following two lemmas. In
Lemma 5 we prove that the size of Y(G,G + e) can be as
large as 3g(n — 2) and in Lemma 7 we prove that the size of
T(G,G + e) is at most 3g(n — 2).

Lemma 5. For any even integer n > 2 there exists a bipartite
graph G on n vertices and an edge e = (u,v) ¢ E(G) such that
(G, G +e)| = 3g(n - 2).

Proof. We use proof by construction. Consider bipartite
graph G = (L, R, E) constructed on vertex set L U R with
n vertices such that |L| = |R| = n/2.Letu € Landv € R
be two vertices and let L’ = L\ {u} and R’ = R\ {v}.
Let G” denote the induced subgraph of G on vertex sets L’
and R'. In our construction, G" is CP(% — 1). In graph G,
in addition to the edges in G”, we add an edge from each
vertex in R’ to u and an edge from each vertex in L’ to v.
We add edge e = (u,v) to G to get graph G’ = G + e (see
Fig. 5 for construction). We claim that the size of T(G,G’)
is 3g(n — 2).

First, we note that the total number of maximal bicliques
in G is 2g(n—2). Each maximal biclique in G contains either

Fig. 5: Construction showing the changes in the set of
maximal bicliques when a new edge is added. G is in the
left on n = 6 vertices. G” consists of vertices in L' and R’
and edges among them to make it a cocktail-party graph. G’
in the right is obtained by adding edge ¢ = (u,v) to G.

vertex u or v, but not both. The number of maximal bicliques
that contain vertex u is g(n—2), since each maximal biclique
in G” leads to a maximal biclique in G by adding w. Simi-
larly, the number of maximal bicliques in G that contains v
is g(n — 2), leading to a total of 2¢g(n — 2) maximal bicliques
in G.

Next, we note that the total number of maximal bicliques
in G’ is g(n —2). To see this, note that each maximal biclique
in G’ contains both vertices u and v. Further, for each
maximal biclique in G”, we get a corresponding maximal
biclique in G’ by adding vertices u and v. Hence the number
of maximal bicliques in G’ equals the number of maximal
bicliques in G”, which is g(n — 2).

No maximal biclique in BC(G) contains both v and
v, while every maximal biclique in G’ contains both u
and v. Hence, BC(G) and BC(G') are disjoint sets, and
(G, &) = [BC(G)| + |BC(G)| = 3g(n — 2). -

Now we will prove a few results that we will use in
proving Lemma 7.

Lemma 6. If e = (u,v) is added to G, each bicliqgue b €
BC(G) — BC(G + e) contains either u or v.

Proof. Proof by contradiction. Suppose there is maximal
biclique b = (b1,b2) in BC(G) — BC(G + e) that contain
neither u nor v. Then, b must be maximal biclique in G.
Since b is not a maximal biclique in G + e, b is contained in
another maximal biclique b’ = (b}, b}) in G+ e. Note that &/
must contain edge e = (u,v), and hence, both vertices v and
v. Since b’ is a biclique, every vertex in b5 is connected to u
in G'. Hence, every vertex in by is connected to u even in G.
Therefore, bU {u} is a biclique in G, and b is not maximal in
G, contradicting our assumption. O

Observation 2. For a bipartite graph G = (L, R, E) and a
vertex u € V(G), the number of maximal bicliques that contains
w is at most g(n — 1).

Proof. Suppose, u € L. Then each maximal biclique b in G
that contains u, corresponds to a unique maximal biclique
in G — {u}. Such maximal bicliques can be derived from b
by deleting u from b. As the maximum number of maximal
bicliques in G — {u} is g(n — 1), the maximum number of
maximal bicliques in G can be no more than g(n —1). O

Observation 3. The number of maximal bicliques containing a
specific edge (u,v) is at most g(n — 2).

Proof. Consider an edge (u,v) € E(G). Let vertex set
V' = (Tg(u)Ul'g(v))—{u, v}, and let G’ be the subgraph of
G induced by V’. Each maximal biclique b in G that contains
edge (u,v) corresponds to a unique maximal biclique in
G’ by simply deleting vertices © and v from b. Also, each
maximal biclique b’ in G’ corresponds to a unique maximal
biclique in G that contains (u,v) by adding vertices u and
v to b'. Thus, there is a bijection between the maximal
bicliques in G’ and the set of maximal bicliques in G that
contains edge (u,v). The number of maximal bicliques in
G’ can be at most g(n — 2) since G’ has no more than (n—2)
vertices, completing the proof. O

Lemma 7. For a bipartite graph G = (L, R, E) on n vertices
and edge e = (u,v) ¢ E(G), the size of T(G, G +) can be no
larger than 3g(n — 2).

Proof. Proof by contradiction. Suppose there exists a bipar-
tite graph G = (L, R, E) and edge e ¢ E(G) such that
IT(G,G+e)| > 3g(n—2). Then either |BC(G+e)—BC(G)| >
g(n—2) or |BC(G) — BC(G +€)| > 2g(n — 2).

Case 1: |BC(G + e) — BC(G)| > g(n — 2): This means
that total number of new maximal bicliques formed due to
addition of edge e is larger than g(n — 2). Note that each
new maximal biclique formed due to addition of e must
contain e. From Observation 3, the total number of maximal
bicliques in an n vertex bipartite graph containing a specific
edge can be at most g(n — 2). Thus, the number of new
maximal bicliques after adding edge e is at most g(n — 2),
contradicting our assumption.

Case 2: |BC(G)—BC(G+e)| > 2g(n—2): Using Lemma 6,
each maximal biclique b € BC(G) — BC(G + e) must contain
either u or v, but not both. Suppose that b contains u but
not v. Then, b must be a maximal biclique in G — v. Using
Observation 2, we see that the number of maximal bicliques
in G — v that contains a specific vertex u is no more than
g(n — 2). In a similar way, the number of possible maximal
bicliques that contain v is at most g(n — 2). Therefore, the
total number of maximal bicliques in BC(G) — BC(G + e) is
at most 2g(n — 2), contradicting our assumption. O

Combining Lemma 4, Theorem 6 and using the fact that
3g(n — 2) = 1.5g(n) for even n, we obtain the following
when n is even:

Theorem 7. 1.5g(n) < A(n) < 2g(n)

5 EXPERIMENTAL EVALUATION

In this section, we present results of an experimental evalu-
ation of our algorithms.

5.1 Data

We consider the following real-world bipartite graphs
in our experiments. A summary of the datasets is pre-
sented in Table 1. We collect all the datasets from
KONECT - The Koblenz Network Collection 2. In the
epinions-rating [1] graph, vertices consist of users in

2. http:/ /konect.uni-koblenz.de/

8

one partition and products in another partition. There is an
edge between a user and a product if the user rated that
product. In the last fm-song [2] graph, vertices consist of
users in one partition and the songs in another partition.
When a user listens to a song an edge connect the user with
that song. In the movielens-10M [3] graph, vertices consist
of users in one partition and movies in another partition.
There is an edge between a user and a movie if the user
rated that movie. In the wiktionary [4] graph, vertices
consist of users and pages from English Wiktionary. There
is an edge between a user and a page if that user edited the
page. Each bipartite graph has timestamps on their edges.
We converted each bipartite graph into a simple undirected
bipartite graph by ignoring edge directions, and considered
the earliest creation time of an edge as the timestamp, if
there are multiple edges in the original graph.

We create the initial graphs (epinions-rating-init,
lastfm-song-init, movielens-10M-init, and
wiktionary-init) by removing all the edges from
the original graphs and present the edge stream in the
increasing order of their time-stamps. In Table 1, column
Edges (start) represents the number of edges in the
initial graph and column Edges (stop) represents the
total number of edges inserted until we stop the experiment.
For each input graph we run each algorithm upto 2 hours.

5.2 Experimental Setup and Implementation Details

We implemented all algorithms in Java on a 64-bit Intel(R)
Xeon(R) CPU clocked at 3.10 Ghz and 8G DDR3 RAM
with 6G heap memory space. Unless otherwise specified,
each batch consists of 100 edges and size threshold s = 1,
where the size threshold refers to the minimum size of each
partition of a maximal biclique. We report the median of 3
runs for each input graph.

Metrics: We evaluate our algorithms using the following
metrics: (1) computation time for new maximal bicliques
and subsumed bicliques when a set of edges are added,
(2) memory consumption, that is the main memory used
by the algorithm for storing the graph, and other data
structures used by the algorithm, (3) cumulative time, that is
the total computation time from the initial graph till we stop
the experiment with different batch sizes, and (4) change-
sensitiveness, the relation of the total computation time to
the size of change. We measure the size of change as the sum
of the total number of edges in the new maximal bicliques
and the subsumed bicliques (change-in-edges) as well as the
sum of the total number of nodes (change-in-nodes) and

5.3 Discussion of Results

Comparison with Baseline Algorithms: We compare
the performance of DynamicBC with baseline algorithms
BaselineBC and BaselineBC*. We use MineLMBC [22] for
enumerating bicliques from a static graph. Table 2 shows a
comparison of the runtimes of DynamicBC with BaselineBC
and BaselineBC*. From the table, it is clear that DynamicBC
is orders of magnitude faster than BaselineBC and many
times faster than BaselineBC*. For instance, for adding
625 batches of edges starting from lastfm-song-init,
DynamicBC takes about 93 sec., BaselineBC about 7,920
sec., and BaselineBC* about 1, 740 sec.

107 . . 10! 108
7L
& 108 L W 100 ~ g 10 ~
) I o) 2
2 : 2 £ 100k 8
S 10° L) A 41071 % 3} [}
3 il E 5100k £
) =1 o T =]
& 10t ;dli{r;e“in'ed €S {1072 2 5 104 ange—in—ed es 10t 2
change-in-nodes ichange-in-nodes
time time
103 ! : 1073 103 : 1072
4000 8000 12000 1200 2400 3600
Iteration number Iteration number
(a) epinions-rating—-init (b) lastfm-song—init

109 . . . — 10% 107 : : g 102

108 L i1 103 k
) ’ — o) 6 Aot 1~
%o 107 [102 8 zéo 10° F 1 10 8
£ 100 F ot 2 £ 2
3] _ [3] 105 L /W /2 d 100 o]
&5 105 L 100 g ‘8 7 / ? g
) 4 -1 = o) #) =]
= 10 nge-in-edges 10 2 = 10% ¢hange-iti-edges E 10-1 2

103 Eghange-in-nodes 1102 change-in-nodes E

time . . | time g
102 1 1 1 1 107\5 103 1 1 1 1072
20 40 60 80 500 1500 2300

Iteration number Iteration number

(c) movielens-10M-init (d) wiktionary-init

Fig. 6: Computation time (in sec.) for total change vs. size of total change. The left y-axis shows the change and the
right y-axis shows the computation time.

TABLE 1: Summary of the input graphs.

| Dataset | Nodes | Edges (start) | Edges (stop) | Edges (original graph) |
epinions-rating—-init 876,252 0 1,210,000 13,668, 320
lastfm-song-init 1,085,612 0 361, 500 4,413,834
movielens—-10M—-init 80, 555 0 8,500 10,000, 054
wiktionary—-init 2,123,868 0 235,000 5,573,038

TABLE 2: For each algorithm, the number shows the cumulative computation time for the number (in the parenthesis)
of batch additions incrementally.

\ Initial-graph | DynamicBC | BaselineBC | BaselineBC" |
epinions-rating-init (424) 2 sec. 7,200 sec. 17 sec.
lastfm—song-init (625) 93 sec. 7,920 sec. 1,740 sec.
movielens-10M-init (58) 7 min. out of memory after 23 min. 10.8 min.
wiktionary-init (494) 8 min. out of memory after 96 min. | 149.15 min.

TABLE 3: Total computation time in hours for different batch sizes. The total time is split into two numbers. The first
number is the time for new maximal bicliques and the second number is the time for subsumed maximal bicliques.

Initial-graph | Dbatch-size-1 | batch-size-10 | batch-size-100 |

epinions-rating-init 1(0.9+0.1) 1(0.8+0.2) 2(0.841.2)
lastfm-song-init 1.5(1.454+0.09) | 1.8 (1.5+0.3) | 1.9(1.5+0.4)
movielens-10M—-init 0.4 (0.36+0.04) | 0.6 (0.5+0.1) | 2.1 (1.6+0.5)
wiktionary-init 1.8 (1.7+0.1) 1.8 (1.7+0.1) 2(1.740.3)

TABLE 4: Total computation time in hour by varying the threshold size s.

Initial-graph

| s=2|s=4]|5s=6]s=8]|s=10] s=12 |

epinions-rating-init 1.2 0.9 0.7 0.4 0.3 0.3
lastfm-song—-init 1.6 1.3 0.7 0.4 0.3 0.3
movielens—-10M-init 2.1 1.9 1.6 0.9 0.3 0.1
wiktionary-init 1.5 1 0.7 0.5 0.4 0.4

1.6
1.4
1.2

0.8
0.6

0.2

Avg. comp. time in range

300
250
200
150
100

50

Avg. comp. time in range

s
aQ
N

400
350
300
250
200
150
100
50
0

memory consumption (MB)

700
600
500
400
300
200
100

memory consumption (MB)

NewB(C =0
SubBC ¢rzzzzzm

Y
WS e

Iteration range
(a) epinions-rating-init

NewBC == P
I~ SubBC sz R T

A

I | |
NP NI N
,\”L {LQ, b‘gf 66/

Iteration range

(c) movielens—-10M-init

" with hash
without hash

- - L -
T
- - -

—
i 1 1

4000 8000 12000

Iteration number

(a) epinions-rating-init

) with hash
- without hash 1

-

L

| 1 ! =l L o il | 1

0 10 20 30 40 50 60 70 80 90
Iteration number

(c) movielens—10M-init

350
300
250
200
150
100
50
0

memory consumption (MB)

memory consumption (MB)
—
S
)

gb 6 1 | 1 1

=

@ NewBC === fom

=51 SubBC sz =

o4 i

Est i

% 2+) 4
o]

s 1r O A

© 0 £2=9 F::ﬂ

y T T T ‘\t, T $

z AN of”%‘l\@%ﬂ\&’%b
AT Y BT
Iteration range
(b) lastfm-song—init
g;o 8 1 | 1 I7
g7 | NewBC —=—=m o
o SubBC srzozzz a2
g6 F i
v 5L i
£
il g - .
H % b
o 1 | - % i
4 [

P 1 I I NI (\)
a0 QO A LoD
> Q AP N QT

Q - NSO
< \,,Q) 6@0 \q,Q \/%Q

Iteration range

(d) wiktionary-init

: Computation time (in sec.) broken down into time for new and subsumed bicliques.

u without hash A

with hash

—

1200 2400 3600

Iteration number

(b) lastfm-song-init

L .]

with hash —]
without hash "]

1 | |

500 1500 2300
Iteration number

(d) wiktionary-init

Fig. 8: Memory consumption (in MB) with and without using hash function.

Computation Time per Batch of Edges: Fig. 6 shows
the computation time (per batch) versus iteration number
where one batch is added in each iteration. From the plots,

10

we observe an increasing trend in computation time with
the iteration number. There are two reasons for this. One
is that with more iterations, the graph becomes denser, and

the average degree increases. This contributes to the runtime
of computing new maximal bicliques, as is predicted by
theory (Theorem 3). Another reason is that the size of change
in the maximal bicliques typically increases as more edges
are added to the graph, as can be seen from the figure.
Whenever the size of change in maximal bicliques drops,
the computation time also drops. Fig. 7 shows the break-
down of computation time of DynamicBC into time taken
for enumerating new bicliques (NewBC) and time taken for
enumerating subsumed bicliques (SubBC). Observe that the
average computation time (where the average is taken over
a range of iterations) increases for both new maximal bi-
cliques and subsumed bicliques as more batches are added,
for the same reasons as above.

Change-Sensitiveness: Fig. 6 shows the computation
time and the size of change, as measured in terms of the
number of nodes as well as number of edges. We observe
that the computation time increases as the size of change
increases and decreases as the size of change decreases. But
the relationship is not exactly linear. This is because the
computation time depends also on the degree of vertices
of the graph, which increases as more edges are inserted.

Memory Consumption: Fig. 8 shows the memory con-
sumption of DynamicBC. Since SubBC needs to maintain
the maximal bicliques in memory for computing subsumed
bicliques, we report the memory consumption in two cases:
(1) when the maximal bicliques are stored in memory,
(2) when hash signatures of maximal bicliques are stored
in memory. Storing signatures consumes less memory than
storing actual bicliques (by storing the node sets) as the
signatures have fixed size (64 bits) no matter the size of the
bicliques. This difference in memory is also clear in the plots.
The difference in memory consumption is not prominent
during the initial iterations because the sizes of maximal
bicliques are much smaller during initial iterations.

Effect of Batch Size on Cumulative Computation
Time: Table 3 shows the cumulative computation time for
different graphs when we use different batch sizes. We
observe that overall the total computation time increases
when the batch size increases. The reason is the compu-
tation time for subsumed bicliques, which increases with
increasing batch size, while the computation time for the
new maximal bicliques remains almost the same across
different batch sizes except movielens-10M-init. In case
of movielens—-10M—-init, we observed that the time for
computing new maximal bicliques also increased with the
batch size. The reason is that the algorithm for new maximal
bicliques can enumerate the same (new) maximal biclique
multiple times, for considering new edges. Such duplicates
are suppressed before emitting, but contribute to additional
runtime. For this graph, the number of duplicates increased
considerably for a batch size of say, 100.

The time complexity for SubBC has (in the worst case)
an exponential dependence on the batch size. Therefore, the
computation time for subsumed bicliques tends to increase
with an increase in the batch size. However, with a very
small batch size (such as 1 or 10), the cost of enumerating
subsumed bicliques was mostly dominated by the cost of
enumerating new maximal bicliques.

Effect of Size Threshold on Computation Time: We also
consider maintaining maximal bicliques with specified size

11

threshold s, where it is required that each bipartition has
size at least s. Table 4 shows the cumulative computation
time by varying the threshold s. As expected, the cumu-
lative computation time decreases as the size threshold s
increases, since there is more pruning possible during the
depth-first-search performed by Algorithm MineLMBC.

6 CONCLUSION

In this work, we presented a change-sensitive algorithm
for enumerating changes in the set of maximal bicliques in
dynamic graph. The performance of this algorithm is pro-
portional to the magnitude of change in the set of maximal
bicliques — when the change is small, the algorithm runs
faster, and when the change is large, it takes a proportionally
longer time. We present near-tight bounds on the maximum
possible change in the set of maximal bicliques, due to a
change in the set of edges in the graph. Our experimental
evaluation shows that the algorithm is efficient in practice,
and scales to graphs with millions of edges. This work leads
to natural open questions (1) Can we design more efficient
algorithms for enumerating the change, especially for enu-
merating subsumed bicliques? (2) Can we parallelize the
algorithm for enumerating the change in maximal bicliques?

REFERENCES

[1] Epinions product ratings network dataset - KONECT. http://
konect.uni-koblenz.de/networks/epinions-rating, Apr. 2017.

[2] Lastfm song network dataset — KONECT. http://konect.
uni-koblenz.de/networks/lastfm_song, Apr. 2017.

[3] Movielens 10m network dataset — KONECT. http://konect.
uni-koblenz.de/networks/movielens-10m_rating, Apr. 2017.

[4] Wiktionary (en) network dataset — KONECT. http://konect.
uni-koblenz.de/networks/edit-enwiktionary, Apr. 2017.

[5] G. Alexe, S. Alexe, Y. Crama, S. Foldes, P. L. Hammer, and B. Sime-
one. Consensus algorithms for the generation of all maximal
bicliques. Discrete Applied Mathematics, 145(1):11-21, 2004.

[6] A. Angel, N. Koudas, N. Sarkas, D. Srivastava, M. Svendsen,
and S. Tirthapura. Dense subgraph maintenance under streaming
edge weight updates for real-time story identification. The VLDB
Journal, 23(2):175-199, 2014.

[7] P. Damaschke. Enumerating maximal bicliques in bipartite graphs
with favorable degree sequences. Information Processing Letters,
114(6):317-321, 2014.

[8] A. Das, M. Svendsen, and S. Tirthapura. Change-sensitive al-
gorithms for maintaining maximal cliques in a dynamic graph.
CoRR, abs/1601.06311, 2016.

[9] V.M. Dias, C. M. De Figueiredo, and J. L. Szwarcfiter. Generating
bicliques of a graph in lexicographic order. Theoretical Computer
Science, 337(1):240-248, 2005.

[10] V. M. Dias, C. M. de Figueiredo, and J. L. Szwarcfiter. On the
generation of bicliques of a graph. Discrete Applied Mathematics,
155(14):1826-1832, 2007.

[11] A. C. Driskell, C. An, J. G. Burleigh, M. M. McMahon, B. C.
O’'Meara, and M. J. Sanderson. Prospects for building the tree of
life from large sequence databases. Science, 306(5699):1172-1174,
2004.

[12] D. Eppstein. Arboricity and bipartite subgraph listing algorithms.
Information processing letters, 51(4):207-211, 1994.

[13] A. Gély, L. Nourine, and B. Sadi. Enumeration aspects of maximal
cliques and bicliques. Discrete applied mathematics, 157(7):1447—
1459, 2009.

[14] D. Gibson, R. Kumar, and A. Tomkins. Discovering large dense
subgraphs in massive graphs. In VLDB, pages 721-732, 2005.

[15] R. A. Hanneman and M. Riddle. Introduction to social network
methods, 2005.

[16] X. Huang, H. Cheng, L. Qin, W. Tian, and J. X. Yu. Querying k-
truss community in large and dynamic graphs. In SIGMOD, pages
1311-1322, 2014.

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]
[25]

[26]

[27]

[28]

[29]

[30]

(31]

(32]

(33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

A. Java, X. Song, T. Finin, and B. L. Tseng. Why we twitter: An
analysis of a microblogging community. In WebKDD/SNA-KDD,
pages 118-138, 2007.

R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. Trawling
the Web for emerging cyber-communities. Computer networks,
31(11):1481-1493, 1999.

S. Lehmann, M. Schwartz, and L. K. Hansen. Biclique communi-
ties. Physical Review E, 78(1):016108, 2008.

J. Li, H. Li, D. Soh, and L. Wong. A correspondence between
maximal complete bipartite subgraphs and closed patterns. In
European Conference on Principles of Data Mining and Knowledge
Discovery, pages 146-156. Springer, 2005.

R. Li, J. X. Yu, and R. Mao. Efficient core maintenance in large
dynamic graphs. TKDE, 26(10):2453-2465, 2014.

G. Liu, K. Sim, and J. Li. Efficient mining of large maximal
bicliques. In Data warehousing and knowledge discovery, pages 437—
448. Springer, 2006.

D. Lo, D. Surian, K. Zhang, and E.-P. Lim. Mining direct antag-
onistic communities in explicit trust networks. In CIKM, pages
1013-1018, 2011.

K. Makino and T. Uno. New algorithms for enumerating all
maximal cliques. In SWAT, pages 260-272. 2004.

O. Michail. An introduction to temporal graphs: An algorithmic
perspective. Internet Mathematics, 12(4):239-280, 2016.

A. P. Mukherjee and S. Tirthapura. Enumerating maximal bi-
cliques from a large graph using mapreduce. In IEEE BigData
Congress, pages 707-716, 2014.

A. P. Mukherjee and S. Tirthapura. Enumerating maximal bi-
cliques from a large graph using mapreduce. IEEE Transactions
on Services Computing, 10(5):771-784, 2017.

A. P. Mukherjee, P. Xu, and S. Tirthapura. Enumeration of maximal
cliques from an uncertain graph. IEEE transactions on knowledge and
data engineering, 29(3):543-555, 2017.

T. Murata. Discovery of user communities from web audience
measurement data. In Web Intelligence, 2004. WI 2004. Proceedings.
IEEE/WIC/ACM International Conference on, pages 673-676. IEEE,
2004.

N. Nagarajan and C. Kingsford. Uncovering genomic reassort-
ments among influenza strains by enumerating maximal bicliques.
In Bioinformatics and Biomedicine, 2008. BIBM'08. IEEE International
Conference on, pages 223-230. IEEE, 2008.

N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Efficient mining
of association rules using closed itemset lattices. Information
systems, 24(1):25-46, 1999.

A. Pavan, K. Tangwongsan, S. Tirthapura, and K.-L. Wu. Counting
and sampling triangles from a graph stream. Proceedings of the
VLDB Endowment, 6(14):1870-1881, 2013.

E. Prisner. Bicliques in graphs i: Bounds on their number. Combi-
natorica, 20(1):109-117, 2000.

J. E. Rome and R. M. Haralick. Towards a formal concept analysis
approach to exploring communities on the world wide web. In
Formal Concept Analysis, volume 3403 of LNCS, pages 33—48. 2005.
M. J. Sanderson, A. C. Driskell, R. H. Ree, O. Eulenstein, and
S. Langley. Obtaining maximal concatenated phylogenetic data
sets from large sequence databases. Mol. Biol. Evol., 20(7):1036—
1042, 2003.

A. E. Sariyiice, B. Gedik, G. Jacques-Silva, K. Wu, and U. V.
Catalytirek. Streaming algorithms for k-core decomposition.
PVLDB, 6(6):433-444, 2013.

N. Simsiri, K. Tangwongsan, S. Tirthapura, and K.-L. Wu. Work-
efficient parallel union-find with applications to incremental
graph connectivity. In European Conference on Parallel Processing,
pages 561-573. Springer, 2016.

M. Svendsen, A. P. Mukherjee, and S. Tirthapura. Mining maximal
cliques from a large graph using mapreduce: Tackling highly
uneven subproblem sizes. |. Parallel Distrib. Comput., 79-80:104—
114, 2015.

M. Thorup. Decremental dynamic connectivity. Journal of Algo-
rithms, 33(2):229-243, 1999.

E. Tomita, A. Tanaka, and H. Takahashi. The worst-case time
complexity for generating all maximal cliques and computational
experiments. Theoretical Computer Science, 363(1):28-42, 2006.

P. Valtchev, R. Missaoui, and R. Godin. A framework for incre-
mental generation of closed itemsets. Discrete Applied Mathematics,
156(6):924-949, 2008.

[42]

[43]

[44]

[45]

12

C. Wulff-Nilsen. Faster deterministic fully-dynamic graph con-
nectivity. In Proceedings of the twenty-fourth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 1757-1769. SIAM, 2013.
Y. Xu, J. Cheng, A. W.-C. Fu, and Y. Bu. Distributed maximal clique
computation. In IEEE BigData Congress, pages 160-167, 2014.

C. Yan, J. G. Burleigh, and O. Eulenstein. Identifying optimal
incomplete phylogenetic data sets from sequence databases. Mol.
Phylogenet. Evol., 35(3):528-535, 2005.

Y. Zhang, C. A. Phillips, G. L. Rogers, E.]J. Baker, E. J. Chesler,
and M. A. Langston. On finding bicliques in bipartite graphs: a
novel algorithm and its application to the integration of diverse
biological data types. BMC bioinformatics, 15(1):1, 2014.

Apurba Das is a Ph.D. student in Computer En-
gineering at lowa State University. He received
his Masters in Computer Science from Indian
Statistical Institute, Kolkata and has worked as
a software developer at Ixia. His research inter-
ests are in the area of graph mining, dynamic
and streaming graph algorithms, and large scale
data analysis.

Dr. Srikanta Tirthapura received his Ph.D. in
Computer Science from Brown University in
2002, and his B.Tech. in Computer Science and
Engineering from |IT Madras in 1996. He is the
Kingland Professor of Data Analytics in the de-
partment of Electrical and Computer Engineer-
ing at lowa State University. He has worked at
Oracle Corporation, and is a recipient of the
IBM Faculty Award, and the Warren Boast Award
for excellence in Undergraduate Teaching. His
research interests include algorithms for large-

scale data analysis, stream computing, and cybersecurity.

