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a b s t r a c t 

During the last decade, many approaches for resolved-particle simulation (RPS) have been developed for 

numerical studies of finite-size particle-laden turbulent flows. In this paper, three RPS approaches are 

compared for a particle-laden decaying turbulence case. These methods are, the Volume-of-Fluid La- 

grangian method, based on the viscosity penalty method (VoF-Lag); a direct forcing Immersed Bound- 

ary Method, based on a regularized delta function approach for the fluid/solid coupling (IBM); and the 

Bounce Back scheme developed for Lattice Boltzmann method (LBM-BB). The physics and the numerical 

performances of the methods are analyzed. Modulation of turbulence is observed for all the methods, 

with a faster decay of turbulent kinetic energy compared to the single-phase case. Lagrangian particle 

statistics, such as the velocity probability density function and the velocity autocorrelation function, show 

minor differences among the three methods. However, major differences between the codes are observed 

in the evolution of the particle kinetic energy. These differences are related to the treatment of the ini- 

tial condition when the particles are inserted in an initially single-phase turbulence. The averaged par- 

ticle/fluid slip velocity is also analyzed, showing similar behavior as compared to the results referred in 

the literature. The computational performances of the different methods differ significantly. The VoF-Lag 

method appears to be computationally most expensive. Indeed, this method is not adapted to turbulent 

cases. The IBM and LBM-BB implementations show very good scaling. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

Particle-laden flows are ubiquitous in many applications, rang-

ng for example from sediment transport in rivers to droplet gen-

ration in clouds. Moreover, the understanding of the interaction

etween particles and the fluid flow is crucial for many industrial

pplications such as fluidized beds or droplet distribution in com-

ustion chambers. 
∗ Corresponding author. 
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Particle-laden flows have been studied numerically with differ-

nt point-wise and Eulerian approaches during the last 5 decades

1–3] . These approaches are based on different models describing

he force exerted on the particles by the fluid. Such models de-

end on parameters such as the slip velocity between the particles

nd the fluid in the immediate surroundings and the solid mass

raction. These approaches have been applied to many applications

4] . 

However, depending on the flow regime and physical param-

ters, the applicability of these models may be compromised. In-

eed, the main assumption of such models is that the flow length

cales are much larger than the particles size. The solution is to de-

elop approaches treating the solid-fluid interface explicitly. These

https://doi.org/10.1016/j.compfluid.2018.10.016
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2018.10.016&domain=pdf
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resolved particle simulations (RPS) do not involve any model as-

sumptions concerning the size and shape of the particles [5] . 

In recent years many, methods have been proposed to carry

out RPS. The first one is the so-called body-fitted approach. In

the body-fitted approach, the mesh is adapted to deal with the

changing fluid domain at each time step. This approach has been

given up for 3D simulations because of the remeshing computa-

tional cost; see for example [6] for a discussion of the numerical

effort s needed for this kind of simulations. In order to avoid this

cost, different approaches have been proposed, where the flow is

solved on a fixed Eulerian grid or lattice. These methods have be-

come appealing because they are more efficient and easier to im-

plement in existing parallel codes. 

During the last decade, these fully resolved simulations have

been used to treat: 

• turbulent flows where Kolmogorov length scale of the turbulent

carrier fluid is smaller than the particle radius, with homoge-

neous isotropic turbulence [7–11] or channel flow turbulence

[12,13] , 
• turbulence enhancement by settling particles [14] , 
• fluidized beds [15] , and 
• sediment transport on bed load [16,17] . 

Each method has been validated against several academic cases,

and therefore its accuracy has been addressed. Still, the applica-

tions are more complex than these academic cases where the fluid

flow is more or less canonical. While these methods have a very

high degree of maturity and are used in several studies, the au-

thors typically use one particular method, and do not compare

their results directly against other approaches for a 4-way cou-

pling case with many particles. The differences between the RPS

approaches can have an impact on the solution obtained in this

complex cases. In order to ensure that the RPS approaches repro-

duce the same physical solutions, it is important to build a well-

defined benchmark case closer to the applications and to compare

different codes. The purpose of this paper is to analyze a bench-

mark test case comparing different RPS approaches in order to en-

sure the reliability of the solution for complex cases. 

To the authors’ knowledge, benchmarks for numerical simu-

lations of particle-laden flows are scarce. For the point-wise ap-

proaches, a collaborative benchmarking was performed in the

case of a wall-bounded turbulence [18] . In this benchmark, non-

negligible differences on the statistics obtained from the differ-

ent codes have been observed. For the RPS approaches, a sys-

tematic comparison was performed recently between the Lattice-

Boltzmann bounce-back and the Direct forcing-fictitious domain

method for turbulent channel flow laden with finite-size particles

by Wang and co-workers [19,20] . They concluded that all results

are the same qualitatively, but there are noticeable quantitative dif-

ferences. The present paper goes further in this direction studying

a specific turbulent case and comparing 3 different approaches. 

In addition to the physical analysis, this paper will discuss the

numerical performance of these methods. 

Indeed, the RPS simulations consume millions of CPU hours.

Thus, it is imperative to develop more efficient approaches to re-

duce the computational cost. Even if many papers present the

speed-up of each method, the CPU time consumption have to be

compared with other codes. Potentially, it is possible to develop a

very slow code that scales linearly in parallel. A second purpose of

this paper is to provide a reliable dataset of the CPU consumption

of a given case. 

The present paper is the result of a collaboration initially be-

tween the supercomputer center CALMIP and the IMFT labora-

tory. The primary objective was to benchmark different numerical

methods for fully resolved particle-laden turbulent flows by run-

ning simulations for the very same flow case on the very same

I

upercomputer. The intercomparison pertained both to the simula-

ion results and the computational efficiency of the methods. Other

aboratories joined the initial collaboration in order to benchmark

heir own in-house codes. The list of methods used are: 

• The VoF-Lag method developed by IMFT and MSME laboratories

[21] . 
• The Immersed Boundary Method (IBM) developed at the Labo-

ratory for Hydro and Aerodynamics, TU Delft [22] . 
• The lattice-Boltzmann method based on an improved interpo-

lated bounce-back scheme (LBM-BB), developed at the Univer-

sity of Delaware (UD) [10] . 

A similar code has also been included during this benchmark.

he Lattice Boltzmann method-immersed boundary method (LBM-

BM), developed at the Alberta University and now at the Univer-

ity of Aberdeen [16] . Here, only a subset of results will be pre-

ented for this method. 

The benchmark consists of many particles seeded in a homoge-

eous turbulent flow. As cited before, many groups have worked

n particle-turbulence interactions with different codes [7–13] .

evertheless, the differences on the configurations, such as the

article size of the turbulent parameters, do not permit a rigorous

omparison between the codes. Here the initial turbulent flow and

he position of the particles were shared among all the groups par-

icipating in the benchmark study. These conditions can be shared

gain upon request by contacting the corresponding author. 

This paper is organized as follows. Section 2 presents the the

overning equations for particle-laden flows and the RPS meth-

ds implemented. In Section 3 the benchmark case is presented

nd the single-phase turbulent flow is analyzed comparing the dif-

erent codes. In Section 4 the comparisons between the different

ethods for the particle-laden flow are given. Finally, a compari-

on of numerical performance is provided in Section 5 . 

. Numerical approaches 

.1. Governing equations 

The fluid flow simulation in this work is based on the incom-

ressible Navier–Stokes equations. The discretized physical vari-

bles are the pressure, p , and the velocity field, u . The mass conser-

ation and momentum equations in the fluid domain �f , is given

s 

 · u = 0 (1)

∂u 

∂t 
+ ∇ · ( u � u ) = 

1 

ρ
∇ · σ + g (2)

re solved, where ρ is the fluid density and σ is the stress tensor

ased on the constant dynamic viscosity μ: 

= −pI + ∇ ·
(
μ

(∇u + ∇ 
t u 

))
(3)

The solid particles are considered as rigid, i.e., no deformation

s taken into account. Thus, we can write the velocity at any point

 of the i th particle domain, �i 
s as: 

 i (M) = U i + ω i × ( M − O i ) (4)

here U i and ω i are the velocity and angular velocity vectors of

he i th particle and O i the mass center position. 

The time evolution of each particle is given by the Newton-

uler equations: 

 i 
dU i 
dt 

= F i + m i g + F coll 
 i 
d ω i = T i + T coll 

(5)

dt 
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Fig. 1. Density and viscosity of the VoF-Lag approach applied to a staggered grid. 

Nodes are represented with: circles (pressure), triangles (velocity) and squares 

(transverse viscosity nodes). 
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ere, m i and I i are the mass and the moment of inertia of the i th

article, F i = 

∫ 
�i 

σ · n dA is the force exerted by the fluid on the par-

icle, and T i = 

∫ 
�i 

r × ( σ · n ) dA is the hydrodynamic torque, where

 is the vector connecting the center of mass to the surface in-

nitesimally small area, dA . The forces F coll and T coll are the colli-

ion forces and torques among particles. In this benchmark study,

he collision torque is not taken into account. The particles are

onsidered as spherical. 

In order to couple both phases, a no-slip and no-penetration

elocity condition is considered. On any point M at the surface of

he i th particle, �i 
s ∩ � f , the fluid velocity is considered to be 

 (M) = u i (M) (6)

here u i ( M ) is given by Eq. (4) . 

The different methods for solving these coupled equations are

iven in the following section. 

.2. Methods for fully resolved particle simulations 

Many methods exist for fully resolved simulation of particles;

ee [5] for a recent review. 

The body-fitted methods, also known as Arbitrary Lagrangian

ulerian method (ALE) have been developed for this application

23] . The main benefit of this method is that the accuracy of the

oundary layer can be controlled. In this method, an unstructured

rid is adapted to the fluid domain. At each time step, the forces

re computed on the particle surface, then each particle is ad-

ected and the grid is updated. This method generates some prob-

ems such as the interpolation of the variables in the updated

esh, the meshing of the inter-particulate gap, and the dynamic

volution of the connectivity on the unstructured mesh. Neverthe-

ess, the main reason why this method is not often used is that,

ven with the recent effort s, remeshing is still very expensive and

ften complex. 

Another solution to maintain a body-fitted resolution of the

article boundary layer is the overset grid approach, also known

s chimera approach [24,25] . This method has been recently ex-

ended to moving particles [26] . In this method, two meshes are

onsidered: a fixed mesh covering all the physical domain and a

esh of the spherical domain around the particle. At each time

tep both meshes exchange information in order to converge the

uid solution. When the solution is found, the forces on the par-

icle are computed and the grid associated to each particle moves.

n this method, solvers for structured meshes can be used. This

ethod becomes more complex when many particles have to be

onsidered. Thus, the main limitation is the distance between the

articles. In the method presented in [26] at least ten grid points

re required in the particles gap. 

Finally, the majority of methods used in today’s applications are

ased on fixed Cartesian Eulerian grids. In these methods, a struc-

ured mesh covers the domain and the particles are implemented

ith different approaches. In some of them, the so-called fictitious

omain approaches, the Navier–Stokes equations are solved in the

ntire domain, including the solid region. Among these methods

he Physalis method considers the analytical solution near the par-

icle interface in order to impose the no-slip condition [27,28] . This

ethod has an original treatment of the particle boundary con-

ition and is currently used for many applications. Other popular

ethods, which have been used in the present work, are described

n the next subsections. 

.3. VoF-lag method 

The VoF-Lag method is a viscosity penalty method based on the

ssumption that the Navier-Stokes equation ( Eq. (2) ) converges to
he solid body dynamics ( Eq. (4 )), when the viscosity tends to in-

nity [21] . The basic idea is to use a large viscosity for the solid re-

ion in order to ensure the solid behavior, typically, in the present

ork, the solid viscosity is 300 times larger than the fluid viscosity.

n interesting feature is that the VoF-Lag method solves simulta-

eously the solid and fluid velocity fields. 

For this approach, three major problems have to be addressed.

irst of all, the physical fields such as the viscosity and density

ave to be accurately computed. Secondly, the Navier–Stokes solver

eeds to be robust and deal with high viscosity ratios. Finally, the

article transport and collision have to be treated. 

.3.1. Physical parameters 

The density and the equivalent viscosity have to be computed.

o do so, the solid fraction is computed at each time step, after the

pdate of the position of the particles. 

In order to obtain the solid volume fraction, C , on the volume

ells containing both solid and fluid, a straightforward method is

sed: 25 3 points are regularly distributed in the cell. Knowing the

article’s centroid position and radius, the number of points inside

he particle is counted. An accurate value of the solid fraction is

hus computed by averaging the number of points inside the par-

icle divided by the total number of points, see Fig. 1 . This method

as been shown to be too expensive; see Section 5 . 

The density of the particle is directly obtained by an arithmetic

verage using the solid volume fraction: 

˜ = Cρp + (1 −C) ρ (7) 

For the viscosity some additional computations are needed. In

he method, two viscosity nodes are considered in order to en-

ance the spatial discretization order [21,29] . The phase indicator

unction is updated on the corresponding volume cell and a geo-

etric average is used: 

˜ = 

μμs 

Cμ + (1 −C) μs 
(8) 

here, μs is the fictitious solid viscosity. This value is discussed in

21] and set to μs = 300 μ. 

.3.2. Augmented Lagrangian solver 

The Navier–Stokes equations are solved with iterative aug-

ented Lagrangian approach [30] . This algorithm considers an it-

rative solution for the velocity and pressure fields, at each time
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Fig. 2. Illustration of the IBM discretization in 2D. A regular Eulerian grid dis- 

cretizes the fluid phase in the entire domain (triangles denote the collocation of 

the two velocity components). The particle surface is discretized with a distribu- 

tion of Lagrangian grid points (solid black circles). A discrete regularized Dirac delta 

function with support of three cells (highlighted in red) is used to perform interpo- 

lation/spreading operations. 
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step ( u ∗, m , p ∗, m ). The iterations start with the velocity and pres-

sure field of the previous time step n : 
(
u ∗, 0 , p ∗, 0 

)
= ( u n , p n ) and

make the following iterative steps until the divergence-free condi-

tion is ensured ‖∇ ·u ∗, m ‖ � ε: 

˜ ρ
(
u ∗,m −u n 

�t 
+ u 

∗,m −1 · ∇u 
∗,m 

)
= −r∇(∇ · u 

∗,m ) (a ) 

−∇p ∗,m −1 + ˜ ρg + ∇ 

(
˜ μ
(∇u 

∗,m + ∇ 
t u 

∗,m 

))
p ∗,m = p ∗,m −1 − r∇ · u 

∗,m (b) 

: (9)

where, r is the augmented Lagrangian parameter and m the itera-

tion number. The converged velocity provides the velocity field at

the next time step u n +1 = u ∗,m . 

BiCGStab II solver, coupled with a Modified and Incomplete LU

(MILU) preconditioner, is implemented to solve the linear system

for u ∗, m . At the end, the Augmented Lagrangian solver is very

efficient in solving finite-size particle flows with various density

and viscosity ratios while simultaneously satisfying time the in-

compressibility constraint. No pressure Poisson equation need to

be solved. The main disadvantage of the approach is that it hardly

scales under MPI parallel computations beyond several thousands

of processors. Full details of the method are given in [30] and [21] .

2.3.3. Lagrangian tracking 

In order to update the positions of the particles the VoF-Lag

method uses the velocity field obtained from the Navier–Stokes so-

lution. In total, six points are used at the interior of each parti-

cle, 2 in each direction on either side of the center of the particle,

after which the solid velocity field is interpolated. Then, the ve-

locity and angular velocity are computed, U 
n +1 
i 

and ω 
n +1 
i 

. Using a

second-order time integration scheme, the position of each particle

is updated. 

Before each time step, and with the new position and veloc-

ities, a parallel algorithm is used in order to detect collisions be-

tween particles. The particles are tracked in parallel with a master-

slave algorithm where each processor only tracks the particles in

its computational subdomain. A collision force is then computed

and distributed over all the solid domain. This force is computed

with the solid-solid interaction model [31] . Each collision is treated

with a spring and damping coefficient in order to ensure that the

numerical collision time takes 8 Navier–Stokes solver time steps.

During these 8 time steps the particles overlap. Lubrication correc-

tions are not included in order to ensure compatibility with the

other codes used in the present benchmark study. The computed

collision force becomes a source term in Eq. (9) (a). 

This method has been validated for simple academic cases (sed-

imentation, rotation, shear) and has been used to study particle-

turbulence interactions [11] and fluidized bed [15] . 

2.4. Immersed-boundary method 

2.4.1. Numerical method 

The method combines a standard second-order finite-volume

pressure-correction scheme with a direct forcing IBM, as described

in [22] . The IBM uses two grids, a 3D Eulerian grid, and a quasi-

2D Lagrangian grid. The Eulerian grid discretizes the fluid phase,

in a regular, Cartesian, marker-and-cell collocation of velocity and

pressure nodes; the Lagrangian grid discretizes the surface of the

spherical particles. 

The idea of the direct forcing IBM can be briefly described as

follows. First, the fluid prediction velocity is interpolated from the

Eulerian to a Lagrangian grid. There the force required in each La-

grangian node for satisfying no-slip and no-penetration condition

is computed. Subsequently, the force is spread back to the Eulerian

grid. A regularized Dirac delta function with support of 3 grid cells

is used to perform interpolation and spreading operations [32,33] ;

see Fig. 2 . These forces on Lagrangian nodes for each particle are
ntegrated in order to obtain the force F i and torque M i needed to

pdate the particle velocity and angular velocity, see Eq. (5) . 

Regularization of the particle-fluid interface can result in a loss

f spatial accuracy to first-order. In [22] it is shown that slight in-

ard retraction of the Lagrangian grid by a factor ≈�x /3 (while

he particle governing equations are still solved considering its

hysical radius) circumvents this issue and allows for second-order

patial accuracy. 

The support of the interpolation kernel is such that the same

ulerian grid point can be forced due to neighboring Lagrangian

rid points, reducing the accuracy of the velocity forcing. Errors in

enetration velocity arising from this are mitigated with a multi-

irect forcing scheme [34] , which improves the calculation of the

orce distribution by iterating the forcing scheme. 

Finally, the method developed in [35] is used to compute colli-

ion forces between particles at contact. The forces are modeled by

 soft-sphere collision model, which stretches the collision time to

(10) time steps of the Navier–Stokes solver. This choice is com-

utationally attractive and physically realistic, as long as the pre-

cribed collision time is much smaller than the characteristic time

cale of particle motion. 

.4.2. Computational implementation 

The algorithm is implemented in a distributed-memory paral-

elization framework. The three-dimensional regular Eulerian grid

s divided into several computational subdomains. In most steps

f the numerical algorithm, these share the total length of the

omain in one direction, being of equal or smaller size than the

omain length in the other directions. This configuration is com-

only denoted as two-dimensional pencil -like decomposition. Fol-

owing common practice, halo cells are used to store a copy of data

ertaining to the boundary of an adjacent subdomain, in order to

omply to the 2-cell width of the finite-difference stencil. 

The numerical algorithm takes advantage of a direct, FFT-based

olver for the finite-difference Poisson equation for the correction

ressure [36] . To perform the Fourier transforms, the data distribu-

ion is transposed, such that it is shared in the direction of interest.

ata transpose routines from the highly-scalable 2DECOMP&FFT
ibrary [37] are used to achieve this. 

The particles are parallelized with a master-slave technique,

onceptually similar to the one in [38] . The load due to particle-

elated computations is spread to the computational subdomains

tasks) containing the Eulerian data required for interpolation and

preading operations, which is – like the fluid velocity data – dis-

ributed in a 2D pencil configuration. The master process of a cer-

ain particle corresponds to the computational subdomain con-

aining its centroid, and slaves to other subdomains crossing the
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Fig. 3. Sketch to illustrate the key ideas for treating the fluid-solid interface in 

LBM-BB. The interpolated bounce-back scheme constructs an unknown distribution 

at a boundary node f 1, at time t , in terms of known distributions at f 1 and other 

nearby fluid nodes (say f 2 and f 3) as needed. The refilling would create distribution 

functions at the new fluid node. The momentum exchange algorithm then sums up 

the net momentum exchange at the all boundary nodes with links cutting through 

the surface of a solid particle. 
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article-fluid interface (also accounting for the support of the IBM

nterpolation kernel). 

Of all the operations required when including particles in

he computation, the IBM forcing scheme is the most inten-

ive. Implementing it in a distributed-memory parallelization re-

uires some communication, as data required to perform interpola-

ion/spreading operations can be distributed over different compu-

ational subdomains. In the present simulations, the data is com-

unicated in a Lagrangian framework, in five-steps: (I) for the in-

erpolation step, each task computes the partial sum for the in-

erpolated velocity pertaining to Eulerian grid points in its subdo-

ain; (II) the partial sums are communicated to the master pro-

ess; (III) the master process then accumulates the sums, thereby

omputing the interpolated velocity and computes the resulting

iscrete IBM force at each Lagrangian grid point; (IV) the master

rocess communicates the total force to the different slave pro-

esses; and (V) each process spreads the force back onto the Eule-

ian grid; see [39] . 

Recent improvements in the parallelization of the forcing

cheme have been performed, see [39] . The underlying idea is to

over the support of the stencil of the IBM kernel through a 2-cell

alo region. This way, interpolation and spreading operations can

e performed solely by the computational subdomain containing a

ertain Lagrangian grid point. The advantage of this Eulerian par-

llelization of the IBM forcing scheme is that the communication

oad is known a priori, and decreases monotonically with increas-

ng number of subdomains. This approach resulted in a very large

peedup of the particle treatment (e.g. a speedup of more than a

actor 2 of the particle treatment for simulations of suspensions at

0% solid volume fraction), but was not yet implemented during

he course of this work. 

.5. LBM-BB method 

The LBM-BB approach is based on the studies reported in [9,10] .

or the fluid flow evolution, the multiple-relaxation-time (MRT)

attice Boltzmann method [40] is implemented in order to re-

olve the Navier–Stokes equations. The LBM solves the evolution

f lattice-particle distribution functions at fixed nodes in the fluid

egion only. While the MRT collision model is computationally

ore expensive than the single-relaxation-time or BGK collision

odel, due to the calculation of the moments, MRT LBM provides

reater control over relaxation parameters leading to a better nu-

erical stability. The lattice velocity model is the standard D3Q19,

rom which 19 independent moments can be constructed at each

ode [40] . Compared to the conventional Navier–Stokes solvers,

ertainly more variables at each node location are solved, but the

enefits include a much simpler ( i.e. , quasi-linear) governing equa-

ion for the lattice-particle distribution functions when compared

o the Navier–Stokes equations, more flexible handling of complex

eometry, and local data communication suitable for massive scal-

ble implementation. 

When applying the LBM-BB to turbulent flow simulations, sev-

ral additional considerations are necessary. First, since the LBM is

ormulated based on weakly compressible flow equations, caution

s taken to make sure that the local flow Mach number is small

typically less than 0.3). In the present simulations, the local max-

mum Ma at the initial time is about 0.25. This amounts to speci-

cation of hydrodynamic velocity scale in the lattice units. Second,

revious experience has shown that roughly twice the grid resolu-

ion is needed when compared to the pseudo-spectral method [10] .

his in fact is a rather fortunate outcome due to the fact that

BM has very low numerical dissipation since the advection in the

oltzmann equation is linear and can be handled essentially ex-

ctly. The grid resolution also must resolve the viscous boundary

ayers on the solid particles. 
Solid particles overlap with and move relative to the fixed fluid

attice nodes. In LBM-BB, no lattice-particle distributions functions

re solved for any node inside a solid particle at any given time.

hen a solid particle moves relative to the fixed lattice grid dur-

ng a time step, some lattice fluid nodes may be covered, and some

odes inside the solid may be uncovered. The distribution func-

ions at the covered nodes are discarded, while the distribution

unctions at the uncovered nodes (or fresh fluid nodes) need to

e constructed ( Fig. 3 ). The no-slip boundary condition and hydro-

ynamic force F i / torque M i acting on i th solid particle have to be

onsidered, see Eqs. (5) and (6) . 

.5.1. Implementation 

When solid particles are inserted into the flow and interact

ith the flow field, three issues have to be considered care-

ully [41] . The first aspect is how to realize the no-slip bound-

ry condition on a moving curved wall. The current LBM-BB ap-

roach uses an interpolated bounce-back scheme presented in [42] ,

hich is a sharp solid-fluid interface treatment. Compared to the

mmersed boundary method (IBM) which can be viewed as a

moothed solid-fluid interface treatment, the LBM-BB is found to

e more accurate [43] but at the same time the LBM-BB tends to

e numerically less stable. It is found that part of the reasons for

umerical instability with the LBM-BB is associated with the refill-

ng scheme, which is the second aspect for moving solid-particle

imulation. The refilling step constructs the lattice-particle distri-

utions at new fluid nodes. The LBM-BB approach utilizes a con-

trained extrapolation scheme for refilling [41] which was found to

e numerically more stable for turbulent particle-laden flow simu-

ation. 

The third aspect concerns the computation of hydrodynamic

orce and torque acting on the moving solid particle. The desired

ethod here is the momentum-exchange method which simply

ums up exchanges of momentum of fluid-lattice particles when

ouncing back from the solid particle surface. There have been

arious implementations of the momentum-exchange method in

he literature [41] , some of them do not satisfy the property of

alilean invariance. The LBM-BB adopts the specific version of the

omentum-exchange method introduced in [44] which is shown

o be suitable for accurate representation of moving solid particles.

Finally, when performing direct simulation of turbulent

article-laden flow with the moving fluid-solid interfaces directly

esolved, an efficient scalable code implementation is necessary.

he LBM-BB code uses two-dimensional domain decomposition to

artition the field data for scalable implementation using MPI. In

he last few years, the team developing LBM-BB method has op-

imized their code by incorporating the following code optimiza-
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Table 1 

Carrier flow parameters. 

ρ ν λ η τ k u 0 r.m.s T 0 e Re λ
[kg/m 

3 ] [m 
2 /s] [m] [m] [s] [m/s] [s] [-] 

1.0 1 . 0 10 −3 13 . 7 10 −2 74 . 4 10 −4 55 . 2 10 −3 64 . 0 10 −2 0.8 87.6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Particle conditions for the benchmark. 

case αv N p ρp ρp / ρ D D / η D / λ St k 
[%] [-] [kg/m 

3 ] [-] [m] [-] [-] [-] 

512 3.0 4450 4.0 4.0 14 . 7 10 −2 19.8 1.08 87.2 

1024 3.0 35602 4.0 4.0 73 . 6 10 −3 9.90 0.54 21.8 
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tion techniques [45] . First, the collision substep and the stream-

ing substep are fused together using the two-array method, as dis-

cussed in [45] along with other fusing algorithms. Another key

optimization concerns data communication for fluid-solid lattice

links when a solid particle occupies more than one sub-domain.

A novel direct-request data communication is designed to trans-

fer the minimum data set for fluid-solid interactions between sub-

domains [45] . It is found that the above optimizations reduced

the CPU time by a factor of 4 to 8.5, when compared to the pre-

optimization code, in the direct simulation of a turbulent particle-

laden flow [45] . Further details of the LBM-BB approach can be

found in [9,10,41,45] . 

3. Benchmark description 

3.1. Physical parameters 

Particle-laden flows in a homogeneous isotropic turbulence

(HIT) have been studied both experimentally and numerically. On

the one hand, the relative simplicity of this case in comparison to

the industrial applications provides a perfect framework to under-

stand many phenomena such as the preferential concentration, the

particle distribution, and the turbulence modification by the dis-

persed phase. On the other hand, these issues have not been com-

pletely understood because of the large number of parameters con-

cerned (turbulence level, density ratio, size of particles, solid vol-

ume fraction) and the different ways of analyzing the results. In

particular, the effect of the size of the particles is a relatively re-

cent topic and has only been studied during the last two decades,

to some limited extent, starting with the work of ten Cate et al.

[7] . Many of theses studies were carried out using RPS approaches.

Due to these reasons, we decided to use an HIT flow to compare

the different approaches. 

Turbulence shows chaotic behavior, thus, the solution could dif-

fer from one code to another. In order to reduce the degrees of

freedom associated to the modeling, some choices have been ad-

dressed. 

The initial turbulent flow field was generated using a spectral

code with 1024 3 modes. The forcing scheme proposed by Eswaran

and Pope [46] , was used to obtain a statistically stationary flow

by adding a stochastic force on the spectral modes. After the flow

reaches statistical stationary conditions, the forcing is shut down

in order to study decaying turbulence. A short transient phase

was computed in order to finally obtain a solution independent

of the forcing scheme. This velocity field was used as the initial

condition of the present benchmark study. The spectral solution

had a Reynolds number based on the Taylor scale of Re λ = 87 . 6 ,

which is large enough to obtain an inertial range in the spectrum.

The largest wave number treated is compared to the Kolmogorov

length scale in order to ensure that the full spectrum is solved,

[47] , here κmax η = 3 . 81 > 1 . 5 . The initial eddy turnover time is

T 0 e = 0 . 8 s . Table 1 summarizes the parameters of this initial flow

field. 

In each code, the spectral solution was interpolated at the lo-

cation of the velocity nodes. To allow better comparison the con-

sidered simulation is a decaying turbulence simulation, since the

implementation of a forcing method increases the differences be-

tween the codes. 
For the dispersed phase, we consider two cases depending on

he mesh resolution. The first case is simulated with 512 3 grid

odes and the second with 1024 3 nodes. In both cases, the solid

olume fraction is set to 3 %. This value was chosen as a compro-

ise between the two extremes: it is dense enough to ensure a

onvergence in the statistics and at the same time the case is suf-

ciently dilute in order to be not dominated by collisions. In ad-

ition, in order to reduce the effect of collisions, only elastic colli-

ions were implemented without taking into account any lubrica-

ion corrections when particles are very near to each other. 

The initial positions of the particles are chosen randomly with-

ut any particle-particle spatial overlap, and these same positions

ere shared among the codes. At the beginning of the simulation,

he i th particle velocity U i was fixed as the fluid velocity at its

enter O i . The velocity was interpolated from the spectral solution.

he initial angular velocity was set to zero for IBM, LBM-BB and

BM-IBM methods, ω i (t = 0) = 0 . 

The initial velocity and angular velocity are treated differently

or the VoF-Lag method. Indeed, the particle momentum equations

5) are not solved. The solid region is solidified and yields the lin-

ar velocity and angular velocity of the particles. The initial veloc-

ty is only used for the Lagrangian tracking that needs the velocity

t the previous time step. 

For both cases, the ratio of the particle diameter to grid length

as fixed to 12 in order to ensure a good resolution of the particle-

uid interfaces. Table 2 provides the particle parameters. Because

he ratio between the particle diameter and the Kolmogorov length

cale is 19.7 for the first case and 9.86 for the second case, one

an expect finite-size effects. This ratio decreases with time as the

olmogorov scale increases when the turbulent kinetic energy de-

reases. The finite size effect will be studied later in this paper.

ven if for this case the Stokes number based on the Kolmogorov

ime scale, St k = 

ρp 
ρ

D 2 

18 ν
τk 

, could be considered not very meaningful

48] , we provide it only as a reference. 

The density ratio between the particles and the fluid has been

et to 4 due to our intention to have particles with moderate iner-

ia. In addition, even if the codes considered here could take into

ccount neutrally buoyant particles, some methods presented in

he literature are not stable for density ratios below 1.2 [33] . 

A snapshot of the 1024 3 IBM simulation with the turbulent

tructures and particles positions is provided in Fig. 4 . In this fig-

re, one can observe a high degree of flow field details and con-

rm that the particle size is of the same order of magnitude as

he turbulent structures as suggested by the D / λ ratio, see Table 2 .

his ratio decreases with time as the turbulent kinetic energy de-

reases. 

.2. Single-phase flow 

The generated turbulent field is averaged in each code to ob-

ain the turbulent statistics. The first comparison between different

odes is done for the single-phase (i.e. unladen) case. 
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Fig. 4. Visualization of particle-laden decaying HIT. Particles are colored by their 

linear velocity (green-high and blue-low). Red denotes iso-surfaces of constant Q- 

criterion, while translucent yellow represents iso-surfaces of low pressure regions. 

Case 1024 simulated with IBM code, at time 1 . 25 T 0 e = 1 s . (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version 

of this article.) 

Fig. 5. Decaying fluid kinetic energy of single-phase flow. E 0 and T 
e 
0 denote the 

values of kinetic energy and eddy turnover time at T = 0 , respectively. 
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Fig. 6. Spectra for single-phase case for two given times. Top: t = 1 . 25 T 0 e (1 s ); Bot- 

tom: t = 3 . 75 T 0 e (3 s ). 
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In Fig. 5 the time-dependent total turbulent kinetic energy is

hown for each code. The total simulated time amounts nearly

0 s = 12 . 5 T 0 e , and has been chosen in order to ensure that the to-

al energy is still significant. In the present simulations the total

nergy at the end of the simulation is 2% of its initial value. 

The dashed black line is the energy decay of turbulence ob-

ained from the single-phase spectral code. It could be considered

s the reference case. As expected, the energy decay is proportional

o t −10 / 7 [49] . All the codes reach this slope but there are some

mall differences. The VoF-Lag method seems to shift the initial

nergy level downwards, which explains the shift observed up to

/T e 
0 

= 1 in comparison to the other methods. This effect could be

aused by the initial interpolation. Other difference could be seen

or the LBM-IBM simulation. which is the slope is reached later

han for the other methods. That is because for LBM approaches
he initial condition has to be carefully computed. For simulation

ith the LBM-BB code authors took the necessary precautions in

rder to obtain the appropriate initial distribution functions that

re fully consistent with the macroscopic initial conditions [50] .

or IBM and LBM-BB, both 512 and 1024 cases are presented. In

he figure no difference can be seen. This result shows that even

or the coarse mesh the turbulence decay is adequately resolved. 

The spectra are now analyzed for the coarse mesh. These are

omputed from 

(κ) = 

1 

2 

∑ 

| k −k 0 / 2 | < | χ | ≤| k + k 0 / 2 | 
˜ u (χ ) · ˜ u (χ ) ∗, (10)

here ˜ u is the Fourier transform of the velocity field, and κ0 =
/ �x is the largest wave number. 

The spectra are given in Fig. 6 for two given times, with those

omputed from the spectral code given as reference. 

The main differences appear for large wave numbers. Where

he IBM solution collapses with the spectral solution, LBM-BB and

oF-Lag solutions slightly differ. The LBM-BB turbulent kinetic en-

rgy is below the energy provided by the spectral and IBM meth-

ds for both times. However, the authors have checked that the

pectral solution is recovered for the LBM-BB finer mesh resolu-

ion. The finer results are not shown in the figure. Concerning the

oF-Lag method, it overpredicts turbulent kinetic energy at large

ave numbers for t = 1 . 25 T 0 e . At t = 3 . 75 T 0 e , the result is in bet-

er agreement with the spectral method. Due to computational
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Fig. 7. Vorticity field for the x − y plane and z = 0 obtained with each method for the 512 3 case. The vorticity magnitude is divided by the averaged value for t = 1 . 25 T 0 e = 1 s . 
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Fig. 8. Decaying fluid kinetic energy of two-phase flow. E 0 and T 
e 
0 denote the values 

of kinetic energy and eddy turnover time at T = 0 , respectively. 
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cost, the finer mesh simulation (1024 3 ) has not been considered

with the VoF-Lag method to check improvement of the solution at

 = 1 . 25 T 0 e . 

4. Comparisons of particle-laden flow results 

4.1. Carrier flow analysis 

In Fig. 7 the vorticity is shown for each approach at two given

times for the 512 3 resolution. It is clear that not only the vorticity

levels decrease but also the structures become larger with time. If

we compare carefully the turbulent structures for t = 1 . 25 T 0 e (top

panels of Fig. 7 ) they remain similar among the different codes.

Nevertheless, the results from different codes diverge for the later

time presented in the figure (bottom panels). This quantitative

code-to-code comparison is completed in this paragraph by ana-

lyzing the carrier fluid statistics. 

It has been shown in many finite-size particle studies that the

fluid kinetic energy decreases faster when particles are present;

see for example [8,9,51] . In the present simulations this phe-

nomenon is confirmed. Fig. 8 shows the evolution of the particle-

laden case. The spectral solution for single-phase flow is given for

comparison. On comparing Figs. 5 and 8 , it can be observed that

the fluid kinetic energy decreases faster in the two-phase flow

case. In the case of single-phase flow, the fluid kinetic energy ob-

tained with the VoF-Lag, IBM and LBM-BB methods follows the ref-

erence solution (spectral code) when in the two-phase flow the

kinetic energy of these methods is below the spectral code solu-

tion. The LBM-IBM solution also decreases faster than its equiv-

alent single-phase simulation. Turbulent modulation is weaker as

compared to the cases cited above; in these papers [8,9,51] , the

solid volume fraction is 10%, whereas in the current study it is cho-

sen to be 3%. It is to be noted that the 512 3 and 1024 3 cases have

the same volume fraction. It can be seen in Fig. 8 that for IBM

and LBM-BB methods the turbulence modulation is equivalent for

both cases. It could be concluded that the main factor for the en-

ergy dissipation is not the ratio of particle diameter to Kolmogorov

length ratio but the solid volume fraction. In the extensive study

Lucci et al. [8] a similar conclusion is drawn. The volume fraction is

highlighted as an important factor for the turbulence modulation.

In [8] the effect of the diameter is also pointed out. The percentage

of reduction of the turbulent kinetic energy decreases when the
iameter increases. The present results are in contradiction with

hose presented in [8] because for the 512 3 and 1024 3 cases simi-

ar reduction is observed even though the diameter is different. In

rder to clarify this discrepancy, it is important to highlight that

he diameter increases at constant Eulerian mesh resolution in [8] .

n their study D / �x increases with D from 8 to 17. Here, we keep

/ �x = 12 constant and we double the mesh resolution. This re-

ults point out that resolution of particles could have an impor-

ant impact on the turbulent kinetic energy modulation. This is a

umerical effect since physically the particle size effect should de-

end on D / η rather than D / �x . The only way to confirm the effect

f particle diameter on turbulence modulation is to do a mesh con-

ergence study. With the increase of the computer resources this

ind of study will be affordable in the near future. 

The analysis of the turbulent spectra, Fig. 9 , provides addi-

ional information on the turbulence modulation. The discrepan-

ies among codes on single-phase spectra have been discussed in

ection 3.2 . Here, we focus on the turbulence modulation by parti-

les. In all the codes the spectra increase for wave numbers larger

han the wave number corresponding to the particles’ diameter,
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Fig. 9. Spectra for two-phase case for two given times. Top: t = 1 . 25 T 0 e (1 s ); Bot- 

tom: t = 3 . 75 T 0 e (3 s ). The single-phase spectral solution is given for reference. The 

vertical line corresponds to particle diameter. 
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Fig. 10. P.D.F. of article velocity averaged over 3 velocity components. 

Fig. 11. Lagrangian velocity autocorrelation autocorrelation function starting at t 0 = 

1 . 25 T 0 e = 1 s . 
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= 2 π/D . The energy increase level is of the same order of mag-

itude for all the methods used. 

It is important to recall that the spectra are computed for the

ntire domain, including the volume occupied by the particles. For

arger volume fractions some oscillations can appear on the spectra

9–11] . That is because of the computation of the spectra inside the

olid region, as explained in [8] . Here, these oscillations are clearly

isible for the IBM and LBM-BB approaches at t = 1 . 25 T 0 e . 

.2. Dispersed phase statistics 

Many classical results on particle-laden flow are of particle

tatistics. These results are shown here for the present methods. 

First of all, the particle positions given by different codes are

ompared in Fig. 7 . The particle positions remain similar between

ifferent codes at t = 1 . 25 T 0 e but are different at t = 3 . 75 T 0 e . Nev-

rtheless, even at t = 1 . 25 T 0 e the position of the VoF-Lag parti-

les is significantly different, com pared to the positions provided

y LBM and IBM codes. This discrepancy is an effect of the initial

ondition that is treated differently in the VoF-lag code. This point

ill be discussed later in this section. 

At t = 1 . 25 T 0 e the probability density function (p.d.f.) of the par-

icle velocity reaches the classical Gaussian distribution, see Fig. 10 .

o significant discrepancy is observed among different codes. This

gure allows us to consider that the number of particles for the

oarse case N p = 4450 is large enough to converge our statistics. 
In order to study the particle dispersion the velocity autocorre-

ation function given by, 

 
l 
ii (t) = 

∑ N p 
n =0 

U i (t 0 ) · U i (t 0 + t) √ ∑ N p 
n =0 

U i ( t 0 ) · U i (t 0 ) 

√ ∑ N p 
n =0 

U i ( t 0 + t ) · U i (t 0 + t ) 

(11) 

s analyzed. Fig. 11 shows this function for the different codes. Two

ajor differences can be highlighted. First of all, the autocorrela-

ion function with VoF-Lag is larger than the two other ones at

arly times. This difference is an effect of the initial slope of this

unction observed with the VoF-Lag method that is smaller com-

ared to the other codes. This result is common for inertial parti-

les and means that the particles are strongly correlated for small

imes. The second difference is that the R l 
ii 
function is smaller for

arger times for the VoF-Lag simulations and larger for the LBM-

B simulations. In all the cases, the slope of the autocorrelation

unction recovers the same slope for larger times, see inset plot in

ig. 11 . 

In order to go further on the analysis of the dispersion a trun-

ated particle autocorrelation time T l is computed by 

 
l = 

∫ 3 
0 

R l ii (t ) dt . (12)

t cannot be directly called the autocorrelation time for two rea-

ons: the integration is not done until infinity and we consider
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Fig. 12. Particles translational kinetic energy < U 2 
i 

> (solid line) and angular kinetic 

energy < ω 
2 
i 

> (dashed line). 
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a decaying turbulence. The three methods provides similar T l :

2 . 23 T 0 e for VoF-Lag and 2 . 26 T 0 e for IBM and LBM-BB. The differ-

ences obtained here on the dispersion of particles are relatively

small. 

Based on these results, we can conclude that the dispersion is

not affected by the different methods used to take into account the

finite-size particles. 

In order to continue the analysis of the particle statistics the

particle kinetic energy is now analyzed. 

The translational and angular kinetic energy ( < U 
2 
i 

> = 

∑ N p 
n =1 

U i ·U i 
3 N p 

and < ω 
2 
i 

> = 

∑ N p 
n =1 

ω i ·ω i 
3 N p 

respectively) is given in Fig. 12 . As the tur-

bulence is not sustained the particle kinetic energy decreases ex-

ponentially. The exponential factor of the particle decaying energy

is near the −10 / 7 given for the turbulent decaying energy (see the

inset plot). This global behavior is reproduced by all the methods. 

The main differences observed come from the initial condi-

tion. The initial translational kinetic energy drops about 10% of the

initial value for the VoF-Lag method in the first time steps. For

this method, the Newton–Euler Eq. (5) are not solved explicitly.

The Navier–Stokes equations ensure this fluid-solid interaction. For

this reason, as soon as the initial carrier fluid region is replaced

by a solid region, the equivalent-fluid inside the particle is solidi-

fied . That affects all the region around through the Augmented La-

grangian iteration. The velocities are then reduced inside the par-

ticles, thus the translational energy of the particles is affected. For

the LBM-BB a reduction of 5% of the initial translational kinetic

energy is also seen for the first iterations. This drop can be due

to fact that the particles have zero angular velocity in the begin-

ning, so there are discontinuities on the fluid-particle interfaces

that induce large dissipation to the translational particle kinetic

energy. The treatment of initial condition is different among dif-

ferent methods. The evidence is that given zero particle rotation

at t = 0 , at the very short time t = 0 . 02 s = 0 . 025 T 0 e the angular

kinetic energy recovered by the IBM method is 12 times larger

than the one obtained by the LBM-BB method. The hydrodynamic

torque is large for the IBM method for small times. The IBM forc-

ing scheme achieves a more smooth velocity on the interfaces at

the first iteration, thus the IBM shows no initial drop of transla-

tional kinetic energy. This could explain the discrepancies between

IBM and LBM-BB. 

If we compare the average velocity of particles, < | U i | > =∑ N p 
n =1 

√ 

U i ·U i 
N p 

, at 1 . 25 T 0 e and 3 . 75 T 
0 
e , the mean velocity remains the
ame for all the codes, see Table 3 . Indeed, we can conclude that

ven this initial effect does not modify the final translational ki-

etic energy. 

The solidification has a strong effect on the angular kinetic en-

rgy. Contrary to the other methods, in the VoF-Lag method the

articles recover angular velocity directly. This angular velocity is

btained inside the particle after the solidification and could be

een as an integration of the angular velocity inside the particle

egion. The angular velocity is at its maximum at the initial time

tep. This angular kinetic energy decreases fast at the beginning

f the simulation reaching the exponential decay observed for the

arge times. The IBM and LBM-BB methods do not have this solidi-

cation effect. The angular kinetic energy starts from zero since the

articles are initialized without rotation. Because of the moment of

nertia, the particles take 0 . 53 T 0 e and 0 . 72 T 0 e to reach their maxi-

um for IBM and LBM-BB respectively. The angular kinetic energy

ontained in rotation is 10% larger for the IBM method than for the

BM-BB method. This difference is also an effect of the initializa-

ion. Indeed, the IBM particles have a stronger angular acceleration

uring the first iterations. If we compare the angular kinetic en-

rgy without dividing by its maximum we observe than it is larger

or the IBM than for LBM-BB until t = 1 . 25 T 0 e . The averaged angu-

ar velocity, < | ω i | > = 

∑ N p 
n =1 

√ 
ω i ·ω i 

N p 
, at 1 . 25 T 0 e and 3 . 75 T 0 e are pro-

ided in Table 3 . Nevertheless, for all the methods, we reach the

ame exponential decay for the angular kinetic energy. That con-

rms the assumption that discrepancies on this quantity are the

esult of the initial condition treatment. 

To go into more detail, we will now analyze the local slip ve-

ocity around the particles. 

.3. Local slip velocity 

In order to compare the behavior of each code close to the par-

icles, the average slip velocity is computed. This kind of analysis

as been presented in previous papers [11,52,53] . The algorithm

sed by the different authors makes use of different ways to av-

rage the velocity around the particles. The main difference is how

he particle frame of reference is considered for each particle. Here

 different algorithm is used. The algorithm is described below. 

• Loop through particles: 

– interpolate fluid velocity to a spherical surface with radius

R a v = 4 R p , and determine the intrinsic velocity of the p th

particle: U 

f 
p = 

∑ 

l �l U 

f 

l 
/ 
∑ 

l �l , where l denotes a Lagrangian

grid in the spherical surface, and � a phase-indicator func-

tion; 

– compute the particle-to-fluid (apparent) slip velocity U 
s 
p =

U 

f 
p − U 

p ; 

– define a spherical averaging volume, with axis of symmetry

aligned with U 
s 
p , and interpolate the fluid velocity to this

grid, obtaining U 

f 

p,r,θ ,φ
, with indexes ( r, θ , φ) denoting the

radial, polar and azimuthal directions, respectively; 
• compute intrinsic average of fluid slip velocity in the spherical

volumes U 
s (r, θ ) = 

∑ 

p,φ �p,r,θ ,φ (U 

f 

p,r,θ ,φ
− U 

p ) / 
∑ 

p,φ �p,r,θ ,φ .

Note that the sum is performed over all the particles and over

the (statistically homogeneous) azimuthal direction. 

Fig. 13 provides the averaged slip velocity, U 
s ( r, θ ), for t =

 s . This slip velocity is divided by the averaged particle velocity

 | U i | > , given in Table 3 . Even though the slip velocities are rela-

ively small, it can be seen that for all the codes there is no fore-

ft symmetry as in Stokes flow around a sphere. This asymmetry

s even present for tracers [52] and is an effect of the conditional

veraging of the flow in a moving frame of reference. 
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Table 3 

Dimensionless particle averaged statistics. 

Method Case Time 
√ 

< U 2 
i 

> /u 0 r.m.s. < | U i | > /u 0 r.m.s. 

√ 

< ω 
2 
i 

> D/u 0 r.m.s. < | ω i | > D/u 0 r.m.s. 

VoF-Lag 512 1 . 25 T 0 e 0.64 1.03 0.29 0.45 

IBM 512 1 . 25 T 0 e 0.64 1.05 0.20 0.31 

LBM-BB 512 1 . 25 T 0 e 0.63 1.02 0.20 0.30 

VoF-Lag 512 3 . 75 T 0 e 0.38 0.61 0.15 0.23 

IBM 512 3 . 75 T 0 e 0.36 0.60 0.13 0.20 

LBM-BB 512 3 . 75 T 0 e 0.36 0.58 0.14 0.21 

Fig. 13. Dimensionless conditionally-averaged fluid velocity for t = 1 . 25 T 0 e (1s). 
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The differences between the codes are more evident in Fig. 14

here the slip velocity is reported on the axial direction, θ = 0 and

= π . The dimensionless slip velocity is smaller than the unity

or r = 2 D . That means that the particle velocities are correlated to

he surrounding fluid. That could be also linked to the two-point

orrelation for turbulent cases. 

For the VoF-Lag method, the slip velocity for r = 2 D is smaller

han for the other codes that could be seen as a stronger correla-

ion between the particles and the fluid. 

The averaging approach does not ensure that the slip velocity

s zero at the particle’s surface for the VoF-Lag method. As soon

s we use an interpolation of the fluid to a spherical shell we take

nformation inside the particle when r is small. This difference is

urely an effect of the post-treatment that has been adapted to

he IBM approach. Indeed, in [11] a different averaging approach is

roposed where only external points are encountered. The velocity

s then closer to zero. 
. Computational performance 

The Vof-Lag, IBM and LBM-IBM simulations of the present work

ave been made on the Supercomputer EOS of the Toulouse Uni-

ersity Computing Center. This Supercomputer is a Bullx Cluster

ade of 612 compute nodes interconnected thanks to Infiniband

echnology (FDR 56Gb/s) in a full fat-tree topology. Each nodes is

ade of two 10-cores socket intelÂ®Ivybridge (2680v2) with 64

b of Shared memory (namely a ratio of 3.2 GB per core). With

2240 cores, EOS reaches #183 rank at TOP500 in June 2014 with

3% of efficiency at the High Performance Linpack (i.e: 255 TF

max 274 TF Rpeak) [54] . 

We have taken the opportunity of the installation of EOS sys-

em, and the pre-production operation associated with, to allow

he system to be used in a more dedicated way. In operation, a

ystem with a large amount of users, may not be properly suited

or benchmarking. Though this is not required in terms of appli-

ation performance, at least it can be in the amount of resources

vailable and/or waiting time to use these resources. 

More precisely, for this benchmarking process, up to 128 nodes

2560 physical cores) had been dedicated for each run with a max-

mum of elapsed time of 3 days, again per run. We would like to

oint out that computing resources have been granted for each run

n an exclusive manner. That is important to minimize possible in-

eractions due to others jobs running on the system. Moreover the

nterconnection topology, so-called full fat-tree, has the property to

inimize the worst latency and keep the maximum bandwidth for

ny given set of compute nodes. Hence locality effect should not

lay a significant role in the application performance (i.e. the per-

ormance should remain the same, irrespective of in which part of

he system the codes run). Eventually, even if I/O is a very big is-

ue in nowadays high-performance computing, it was not relevant

o the present work. So it had been reduced to a minimum and not



12 J.C. Brändle de Motta et al. / Computers and Fluids 179 (2019) 1–14 

Fig. 15. Total consumption on EOS supercomputer for the different cases. (For in- 

terpretation of the references to color in this figure legend, the reader is referred to 

the web version of this article.) 
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taken into account in performance analysis. As a whole, in a period

of three months, around 2 millions of cpu hour on Supercomputer

EOS had been consumed. 

During this benchmark the researchers and the CALMIP admin-

istrators worked together in order to enhance the implementation

of the codes on this machine. In particular, for this benchmark,

the LBM-IBM method was also parallelized. Some experience was

obtained thanks to this collaboration. Some test were done in or-

der to ensure that the distribution of the cores on the cluster, the

choice of the compiler and the compiler options were the best

choice for each code. 

The LBM-BB team joined the consortium later and did not run

on CALMIP computer. The University of Delaware team used the

National Center for Atmospheric Research’s (NCAR) supercomputer

Yellowstone equipped with 2.6-GHz Intel Xeon E5-2670 (Sandy

Bridge) processors [45] . This computer has similar performances as

the EOS supercomputer. For this reason we decided to include the

performance of this code for comparison. 

Fig. 15 gives the CPU time, T sim 
, needed to simulate a physi-

cal fluid initial turnover time T 0 e for each code and simulations. In

order to provide both weak and strong scaling this time is made

dimensionless with the number of CPU cores and mesh nodes. 

The VoF-Lag simulations were only run on the 512 case and

were too expensive to reach the other codes on the 1024 test case.

As we can see in Fig. 15 the CPU time was too high compared

to other codes. In this case the single-phase case takes more than

50 thousand CPU hours while the two-phase flow more than 300

thousand CPU hours per T e . The high computational cost for this

method could be explained by different reasons. First of all, the

semi-implicit iterative solver used to solve the mass and momen-

tum equations is more expensive than the time splitting used in

classical Navier–Stokes solvers or the LBM methods. The advantage

of this solver is that we can utilize larger time steps for two-phase

flows and we are not limited by the viscous CFL number. Neverthe-

less, in this case we do not take profit of this solver because the

turbulent flow requires a small advective time step. In addition,

when the particle-laden case is considered, the CPU time is one

order of magnitude higher. This increase is explained by two fac-

tors. First of all, for stability reasons the time step was divided by a

factor of two (from 0 . 0125 T 0 e to 0 . 00625 T 
0 
e ) increasing the compu-

tational time. The time spent on the Navier–Stokes solver, which is

the part in common with single-phase simulation, is multiplied by

2.3 ∼2. The second reason is that the update of the physical char-
cteristics takes 67% of the simulation. That includes the transport

f the particles and the update of solid volume fraction, density

nd viscosity fields. Later studies explain that the algorithm used

o update the solid volume fraction was the weakest link. After the

imulations presented here this algorithm was improved by limit-

ng the search of solid grid cells for particles’ neighbors and re-

ucing the number of points used to compute the solid fraction in

ntermediate grid cells. These modifications reduce the CPU time

f this part of the code by 60%. In the VoF-Lag implementation the

ime spent to treat collisions takes 3%. 

The IBM and LBM-IBM methods provide a better implementa-

ion compared to VoF-Lag method. The time of the particle-laden

ase is one order of magnitude larger than VoF-Lag for the 512

ase: 26 thousand CPU hours per turnover time. Even if the paral-

el implementation was developed for the benchmark purposes it

hows a remarkable speed-up. Indeed, in Fig. 15 , if we compare the

reen filled squares we can see that the CPU time remain in the

ame order of magnitude and is even reduced for the simulation

ith 2024 CPU cores. That shows that the LBM-IBM implementa-

ion provides an adequate weak scaling factor. In the same figure,

f we compare the filled and open circles at 512 CPU cores we can

bserve that they are similar, showing that the strong scaling is

lso respected. This result confirms the idea that LBM-IBM Navier-

tokes solvers could be easily parallelized and provide a good scal-

ng. The particle-laden case increases the CPU time by 19% with 64

PU cores and 37% with 512 cores. This overhead is slightly large

ompared to other LBM methods. Indeed, [9] found a computa-

ional overhead between 20% and 26% for a test case with more

articles and volume fraction than the present one. 

The TU Delft IBM implementation provides the best perfor-

ances compared with the other two codes. The CPU time is one

rder of magnitude smaller than the LBM-IBM approach and two

rders of magnitude smaller than the VoF-Lag method even for the

ingle-phase flow. In Fig. 15 , one can also verify that the strong and

eak scaling of this implementation are really good for single and

wo-phase case: for the strong scaling compare the same red sym-

ols and for weak scaling compare fill with open symbols. 

Nevertheless, the particle-laden cases are much more expensive

han their equivalent in single-phase. The CPU time increases, for

he best case, 87% compared to same case in single-phase flow.

or the worst case, the increasing of CPU consumption reach 188%.

hat is explained by the time taken by the IBM algorithms of in-

erpolation and spreading that takes from 39% to 55% of the CPU

onsumption for the particle-laden flows simulations. In these sim-

lations 10% of the CPU were spent in short-range interactions

collisions), integration of the Newton–Euler equations, Eq. (5) ,

nd re-initialization of particle-related arrays needed for the par-

llel implementation. TU Delft group has continued to improve

heir parallel implementation, as described in the last paragraph

f Section 2.4.2 and in more detail in Section 2.5 of [39] . 

The time data from LBM-BB code have been added even though

he processor’s used was not exactly the same. We can see that

he performances are similar to these of the IBM approach. The

eak scaling is well recovered for the 512 3 case (compare no-fill

quares in Fig. 15 ). Nevertheless, the strong scaling is not well re-

overed. The computational cost of the particles case seems co-

erent with other codes. The large overhead for the particle-laden

ase in 1024 3 is mainly because at the time when the simulation

as run, the particles information (position, velocity, angular ve-

ocity, forces, ...) were shared by all the processors. Since 1024 3 

ase has 8 times more particles compared to 512 3 , this implemen-

ation slows down the simulation. Some improvements of the LBM

mplementation for finite-size particles was proposed recently by

he developers of the LBM-BB method [45] . 

The computational performance study shows that the IBM im-

lementation is much better than the other implementation, see
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ig. 15 . Nevertheless, these results have to be taken in perspec-

ive and should be considered as a snapshot. The evolution of each

ode and the evolution of supercomputers and compilers could

hange this picture in a short term. In addition, the physical pa-

ameters, as the solid volume fraction, the number of particles or

he Reynolds numbers, could modify the balance between codes. 

. Discussion and conclusion 

Many recent studies based on RPS approaches are used to treat

article-laden flows. The present paper provides an extensive com-

arison of different RPS approaches for a turbulent carrier flow

ase. Since they yield qualitatively similar physical results, this

omparison adds confidence in the approaches. 

The turbulent carrier flow is modulated by the particles. The

nergy decays faster in the particle-laden flow and the energy

pectra increase for large wave numbers. Here an open question

emains when we study the effect of the diameter on the turbu-

ent modulation. Indeed, IBM and LBM-BB provide the same result

uantitatively: the diameter has no major effect on the modulation

hen the volume fraction remains constant. This result is different

rom the conclusion provided by Lucci et al. [8] where the diame-

er has an effect on the modulation. A future study could provide

n answer to this discrepancy. 

The statistics of the dispersed phase show classical results. The

.d.f. of particle velocity follows the Gaussian distribution. The au-

ocorrelation function is slightly different for different codes. Nev-

rtheless, these differences are minor. Finally, the particle kinetic

nergy follows the trend of the decaying turbulence. The differ-

nces between the codes are sometimes significant but they are

ostly related to the different initial treatments of the interior vol-

mes of the particles. The non-physical adjustment of the solution

t the first time steps is the main reason for the discrepancies. 

Averaging the fluid velocity around the particles provides in-

ormation about the slip velocity. The results obtained are similar

o those proposed by previous authors. The main differences are

ear the solid-liquid interface where the VoF-Lag method does not

end to zero. That is because the averaging method is not adapted

o the VoF-Lag method: it interpolates with points inside the par-

icle. For future works, it is important to ensure the consistency

etween the averaging post-treatment approach and the numeri-

al approach. Here, the same post-treatment algorithm is used for

ll the codes in order to have equivalent data. 

The physical study was completed by an analysis of the compu-

ational performances. The methods implemented were completely

ifferent. When the simulations were performed the IBM method

as the fastest method, followed by the LBM-IBM and then the

of-Lag method. The LBM-BB approach has not run on the same

upercomputer, but shows very good computational performances.

ne of the main results here was that the Augmented Lagrangian

ethod was not adapted to this kind of simulations. For the tur-

ulence simulation the time step �t is similar for semi-implicit or

xplicit time integration scheme. The semi-implicit time step used

y the VoF-Lag method is more expensive than an explicit scheme.

Thanks to the benchmark each group has continued its devel-

pments and many improvements have been done after the simu-

ations. The results obtained from the benchmark were very useful

ut should be considered as a snapshot done at a given time. 

The present paper provides an extensive comparison for a given

urbulent flow. The main purpose was to point out the numerical

nd physical differences between the approaches. Unfortunately,

he comparisons were limited to the benchmark participants. For

uture comparisons, the initial condition and the algorithms done

or the post-treatments could be shared upon request, by contact-

ng the corresponding author. 
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