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During the last decade, many approaches for resolved-particle simulation (RPS) have been developed for
numerical studies of finite-size particle-laden turbulent flows. In this paper, three RPS approaches are
compared for a particle-laden decaying turbulence case. These methods are, the Volume-of-Fluid La-
grangian method, based on the viscosity penalty method (VoF-Lag); a direct forcing Immersed Bound-
ary Method, based on a regularized delta function approach for the fluid/solid coupling (IBM); and the
Bounce Back scheme developed for Lattice Boltzmann method (LBM-BB). The physics and the numerical
performances of the methods are analyzed. Modulation of turbulence is observed for all the methods,
with a faster decay of turbulent kinetic energy compared to the single-phase case. Lagrangian particle
statistics, such as the velocity probability density function and the velocity autocorrelation function, show
minor differences among the three methods. However, major differences between the codes are observed
in the evolution of the particle kinetic energy. These differences are related to the treatment of the ini-
tial condition when the particles are inserted in an initially single-phase turbulence. The averaged par-
ticle/fluid slip velocity is also analyzed, showing similar behavior as compared to the results referred in
the literature. The computational performances of the different methods differ significantly. The VoF-Lag
method appears to be computationally most expensive. Indeed, this method is not adapted to turbulent
cases. The IBM and LBM-BB implementations show very good scaling.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Particle-laden flows have been studied numerically with differ-
ent point-wise and Eulerian approaches during the last 5 decades

Particle-laden flows are ubiquitous in many applications, rang-
ing for example from sediment transport in rivers to droplet gen-
eration in clouds. Moreover, the understanding of the interaction
between particles and the fluid flow is crucial for many industrial
applications such as fluidized beds or droplet distribution in com-
bustion chambers.
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[1-3]. These approaches are based on different models describing
the force exerted on the particles by the fluid. Such models de-
pend on parameters such as the slip velocity between the particles
and the fluid in the immediate surroundings and the solid mass
fraction. These approaches have been applied to many applications
[4].

However, depending on the flow regime and physical param-
eters, the applicability of these models may be compromised. In-
deed, the main assumption of such models is that the flow length
scales are much larger than the particles size. The solution is to de-
velop approaches treating the solid-fluid interface explicitly. These
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resolved particle simulations (RPS) do not involve any model as-
sumptions concerning the size and shape of the particles [5].

In recent years many, methods have been proposed to carry
out RPS. The first one is the so-called body-fitted approach. In
the body-fitted approach, the mesh is adapted to deal with the
changing fluid domain at each time step. This approach has been
given up for 3D simulations because of the remeshing computa-
tional cost; see for example [6] for a discussion of the numerical
efforts needed for this kind of simulations. In order to avoid this
cost, different approaches have been proposed, where the flow is
solved on a fixed Eulerian grid or lattice. These methods have be-
come appealing because they are more efficient and easier to im-
plement in existing parallel codes.

During the last decade, these fully resolved simulations have
been used to treat:

turbulent flows where Kolmogorov length scale of the turbulent
carrier fluid is smaller than the particle radius, with homoge-
neous isotropic turbulence [7-11] or channel flow turbulence
[12,13],

turbulence enhancement by settling particles [14],

fluidized beds [15], and

sediment transport on bed load [16,17].

Each method has been validated against several academic cases,
and therefore its accuracy has been addressed. Still, the applica-
tions are more complex than these academic cases where the fluid
flow is more or less canonical. While these methods have a very
high degree of maturity and are used in several studies, the au-
thors typically use one particular method, and do not compare
their results directly against other approaches for a 4-way cou-
pling case with many particles. The differences between the RPS
approaches can have an impact on the solution obtained in this
complex cases. In order to ensure that the RPS approaches repro-
duce the same physical solutions, it is important to build a well-
defined benchmark case closer to the applications and to compare
different codes. The purpose of this paper is to analyze a bench-
mark test case comparing different RPS approaches in order to en-
sure the reliability of the solution for complex cases.

To the authors’ knowledge, benchmarks for numerical simu-
lations of particle-laden flows are scarce. For the point-wise ap-
proaches, a collaborative benchmarking was performed in the
case of a wall-bounded turbulence [18]. In this benchmark, non-
negligible differences on the statistics obtained from the differ-
ent codes have been observed. For the RPS approaches, a sys-
tematic comparison was performed recently between the Lattice-
Boltzmann bounce-back and the Direct forcing-fictitious domain
method for turbulent channel flow laden with finite-size particles
by Wang and co-workers [19,20]. They concluded that all results
are the same qualitatively, but there are noticeable quantitative dif-
ferences. The present paper goes further in this direction studying
a specific turbulent case and comparing 3 different approaches.

In addition to the physical analysis, this paper will discuss the
numerical performance of these methods.

Indeed, the RPS simulations consume millions of CPU hours.
Thus, it is imperative to develop more efficient approaches to re-
duce the computational cost. Even if many papers present the
speed-up of each method, the CPU time consumption have to be
compared with other codes. Potentially, it is possible to develop a
very slow code that scales linearly in parallel. A second purpose of
this paper is to provide a reliable dataset of the CPU consumption
of a given case.

The present paper is the result of a collaboration initially be-
tween the supercomputer center CALMIP and the IMFT labora-
tory. The primary objective was to benchmark different numerical
methods for fully resolved particle-laden turbulent flows by run-
ning simulations for the very same flow case on the very same

supercomputer. The intercomparison pertained both to the simula-
tion results and the computational efficiency of the methods. Other
laboratories joined the initial collaboration in order to benchmark
their own in-house codes. The list of methods used are:

o The VoF-Lag method developed by IMFT and MSME laboratories
[21].

o The Immersed Boundary Method (IBM) developed at the Labo-
ratory for Hydro and Aerodynamics, TU Delft [22].

o The lattice-Boltzmann method based on an improved interpo-
lated bounce-back scheme (LBM-BB), developed at the Univer-
sity of Delaware (UD) [10].

A similar code has also been included during this benchmark.
The Lattice Boltzmann method-immersed boundary method (LBM-
IBM), developed at the Alberta University and now at the Univer-
sity of Aberdeen [16]. Here, only a subset of results will be pre-
sented for this method.

The benchmark consists of many particles seeded in a homoge-
neous turbulent flow. As cited before, many groups have worked
on particle-turbulence interactions with different codes [7-13].
Nevertheless, the differences on the configurations, such as the
particle size of the turbulent parameters, do not permit a rigorous
comparison between the codes. Here the initial turbulent flow and
the position of the particles were shared among all the groups par-
ticipating in the benchmark study. These conditions can be shared
again upon request by contacting the corresponding author.

This paper is organized as follows. Section 2 presents the the
governing equations for particle-laden flows and the RPS meth-
ods implemented. In Section 3 the benchmark case is presented
and the single-phase turbulent flow is analyzed comparing the dif-
ferent codes. In Section 4 the comparisons between the different
methods for the particle-laden flow are given. Finally, a compari-
son of numerical performance is provided in Section 5.

2. Numerical approaches
2.1. Governing equations

The fluid flow simulation in this work is based on the incom-
pressible Navier-Stokes equations. The discretized physical vari-
ables are the pressure, p, and the velocity field, u. The mass conser-
vation and momentum equations in the fluid domain €, is given
as

V-u=0 (1)
Ju 1
stV wew=_Voig (2)

are solved, where p is the fluid density and o is the stress tensor
based on the constant dynamic viscosity p:

0=-pl+ V. (u(Vu+V'u)) (3)

The solid particles are considered as rigid, i.e.,, no deformation
is taken into account. Thus, we can write the velocity at any point
M of the ith particle domain, ! as:

u;(M) =U; + w; x (M- 0y) (4)

where U; and w; are the velocity and angular velocity vectors of
the ith particle and O; the mass center position.

The time evolution of each particle is given by the Newton-
Euler equations:

du,
mi = Fi+ mig + Feyy

dw;
IE =T+ Ty

(5)
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Here, m; and [; are the mass and the moment of inertia of the ith
particle, F; = fI‘,- o -ndA is the force exerted by the fluid on the par-
ticle, and T; = fr,- r x (o -n)dA is the hydrodynamic torque, where
r is the vector connecting the center of mass to the surface in-
finitesimally small area, dA. The forces F.,; and T, are the colli-
sion forces and torques among particles. In this benchmark study,
the collision torque is not taken into account. The particles are
considered as spherical.

In order to couple both phases, a no-slip and no-penetration
velocity condition is considered. On any point M at the surface of
the ith particle, Qi n 2y, the fluid velocity is considered to be

u(M) = u;(M) (6)

where u;(M) is given by Eq. (4).
The different methods for solving these coupled equations are
given in the following section.

2.2. Methods for fully resolved particle simulations

Many methods exist for fully resolved simulation of particles;
see [5] for a recent review.

The body-fitted methods, also known as Arbitrary Lagrangian
Eulerian method (ALE) have been developed for this application
[23]. The main benefit of this method is that the accuracy of the
boundary layer can be controlled. In this method, an unstructured
grid is adapted to the fluid domain. At each time step, the forces
are computed on the particle surface, then each particle is ad-
vected and the grid is updated. This method generates some prob-
lems such as the interpolation of the variables in the updated
mesh, the meshing of the inter-particulate gap, and the dynamic
evolution of the connectivity on the unstructured mesh. Neverthe-
less, the main reason why this method is not often used is that,
even with the recent efforts, remeshing is still very expensive and
often complex.

Another solution to maintain a body-fitted resolution of the
particle boundary layer is the overset grid approach, also known
as chimera approach [24,25]. This method has been recently ex-
tended to moving particles [26]. In this method, two meshes are
considered: a fixed mesh covering all the physical domain and a
mesh of the spherical domain around the particle. At each time
step both meshes exchange information in order to converge the
fluid solution. When the solution is found, the forces on the par-
ticle are computed and the grid associated to each particle moves.
In this method, solvers for structured meshes can be used. This
method becomes more complex when many particles have to be
considered. Thus, the main limitation is the distance between the
particles. In the method presented in [26] at least ten grid points
are required in the particles gap.

Finally, the majority of methods used in today’s applications are
based on fixed Cartesian Eulerian grids. In these methods, a struc-
tured mesh covers the domain and the particles are implemented
with different approaches. In some of them, the so-called fictitious
domain approaches, the Navier-Stokes equations are solved in the
entire domain, including the solid region. Among these methods
the Physalis method considers the analytical solution near the par-
ticle interface in order to impose the no-slip condition [27,28]. This
method has an original treatment of the particle boundary con-
dition and is currently used for many applications. Other popular
methods, which have been used in the present work, are described
in the next subsections.

2.3. VoF-lag method

The VoF-Lag method is a viscosity penalty method based on the
assumption that the Navier-Stokes equation (Eq. (2)) converges to

Fig. 1. Density and viscosity of the VoF-Lag approach applied to a staggered grid.
Nodes are represented with: circles (pressure), triangles (velocity) and squares
(transverse viscosity nodes).

the solid body dynamics (Eq. (4)), when the viscosity tends to in-
finity [21]. The basic idea is to use a large viscosity for the solid re-
gion in order to ensure the solid behavior, typically, in the present
work, the solid viscosity is 300 times larger than the fluid viscosity.
An interesting feature is that the VoF-Lag method solves simulta-
neously the solid and fluid velocity fields.

For this approach, three major problems have to be addressed.
First of all, the physical fields such as the viscosity and density
have to be accurately computed. Secondly, the Navier-Stokes solver
needs to be robust and deal with high viscosity ratios. Finally, the
particle transport and collision have to be treated.

2.3.1. Physical parameters

The density and the equivalent viscosity have to be computed.
To do so, the solid fraction is computed at each time step, after the
update of the position of the particles.

In order to obtain the solid volume fraction, C, on the volume
cells containing both solid and fluid, a straightforward method is
used: 253 points are regularly distributed in the cell. Knowing the
particle’s centroid position and radius, the number of points inside
the particle is counted. An accurate value of the solid fraction is
thus computed by averaging the number of points inside the par-
ticle divided by the total number of points, see Fig. 1. This method
has been shown to be too expensive; see Section 5.

The density of the particle is directly obtained by an arithmetic
average using the solid volume fraction:

Pp=Cop+(1-0)p (7)

For the viscosity some additional computations are needed. In
the method, two viscosity nodes are considered in order to en-
hance the spatial discretization order [21,29]. The phase indicator
function is updated on the corresponding volume cell and a geo-
metric average is used:

- M s
S s 8
# Cu+ (1 -0Cpus ®

where, us is the fictitious solid viscosity. This value is discussed in
[21] and set to us = 3004.

2.3.2. Augmented Lagrangian solver

The Navier-Stokes equations are solved with iterative aug-
mented Lagrangian approach [30]. This algorithm considers an it-
erative solution for the velocity and pressure fields, at each time
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step (u* ™, p* ™M), The iterations start with the velocity and pres-
sure field of the previous time step n: (u*?, p~%) = (u", p") and
make the following iterative steps until the divergence-free condi-
tion is ensured ||V -u* M| «e€:

'5(“”2;“” + utm-1. Vu*’m) — _rv(v Suem) (a)
_vp*,m—l +pg + V(’a(vu*.m + vtu*.m)) : (9)
p*,m — p*,m—l _ rv Luem (b)

where, r is the augmented Lagrangian parameter and m the itera-
tion number. The converged velocity provides the velocity field at
the next time step u™*! = u*™m,

BiCGStab II solver, coupled with a Modified and Incomplete LU
(MILU) preconditioner, is implemented to solve the linear system
for u* ™, At the end, the Augmented Lagrangian solver is very
efficient in solving finite-size particle flows with various density
and viscosity ratios while simultaneously satisfying time the in-
compressibility constraint. No pressure Poisson equation need to
be solved. The main disadvantage of the approach is that it hardly
scales under MPI parallel computations beyond several thousands
of processors. Full details of the method are given in [30] and [21].

2.3.3. Lagrangian tracking

In order to update the positions of the particles the VoF-Lag
method uses the velocity field obtained from the Navier-Stokes so-
lution. In total, six points are used at the interior of each parti-
cle, 2 in each direction on either side of the center of the particle,
after which the solid velocity field is interpolated. Then, the ve-
locity and angular velocity are computed, U?“ and w?“. Using a
second-order time integration scheme, the position of each particle
is updated.

Before each time step, and with the new position and veloc-
ities, a parallel algorithm is used in order to detect collisions be-
tween particles. The particles are tracked in parallel with a master-
slave algorithm where each processor only tracks the particles in
its computational subdomain. A collision force is then computed
and distributed over all the solid domain. This force is computed
with the solid-solid interaction model [31]. Each collision is treated
with a spring and damping coefficient in order to ensure that the
numerical collision time takes 8 Navier-Stokes solver time steps.
During these 8 time steps the particles overlap. Lubrication correc-
tions are not included in order to ensure compatibility with the
other codes used in the present benchmark study. The computed
collision force becomes a source term in Eq. (9) (a).

This method has been validated for simple academic cases (sed-
imentation, rotation, shear) and has been used to study particle-
turbulence interactions [11] and fluidized bed [15].

2.4. Immersed-boundary method

2.4.1. Numerical method

The method combines a standard second-order finite-volume
pressure-correction scheme with a direct forcing IBM, as described
in [22]. The IBM uses two grids, a 3D Eulerian grid, and a quasi-
2D Lagrangian grid. The Eulerian grid discretizes the fluid phase,
in a regular, Cartesian, marker-and-cell collocation of velocity and
pressure nodes; the Lagrangian grid discretizes the surface of the
spherical particles.

The idea of the direct forcing IBM can be briefly described as
follows. First, the fluid prediction velocity is interpolated from the
Eulerian to a Lagrangian grid. There the force required in each La-
grangian node for satisfying no-slip and no-penetration condition
is computed. Subsequently, the force is spread back to the Eulerian
grid. A regularized Dirac delta function with support of 3 grid cells
is used to perform interpolation and spreading operations [32,33];
see Fig. 2. These forces on Lagrangian nodes for each particle are

Fig. 2. Illustration of the IBM discretization in 2D. A regular Eulerian grid dis-
cretizes the fluid phase in the entire domain (triangles denote the collocation of
the two velocity components). The particle surface is discretized with a distribu-
tion of Lagrangian grid points (solid black circles). A discrete regularized Dirac delta
function with support of three cells (highlighted in red) is used to perform interpo-
lation/spreading operations.

integrated in order to obtain the force F; and torque M; needed to
update the particle velocity and angular velocity, see Eq. (5).

Regularization of the particle-fluid interface can result in a loss
of spatial accuracy to first-order. In [22] it is shown that slight in-
ward retraction of the Lagrangian grid by a factor ~ Ax/3 (while
the particle governing equations are still solved considering its
physical radius) circumvents this issue and allows for second-order
spatial accuracy.

The support of the interpolation kernel is such that the same
Eulerian grid point can be forced due to neighboring Lagrangian
grid points, reducing the accuracy of the velocity forcing. Errors in
penetration velocity arising from this are mitigated with a multi-
direct forcing scheme [34], which improves the calculation of the
force distribution by iterating the forcing scheme.

Finally, the method developed in [35] is used to compute colli-
sion forces between particles at contact. The forces are modeled by
a soft-sphere collision model, which stretches the collision time to
O(10) time steps of the Navier-Stokes solver. This choice is com-
putationally attractive and physically realistic, as long as the pre-
scribed collision time is much smaller than the characteristic time
scale of particle motion.

2.4.2. Computational implementation

The algorithm is implemented in a distributed-memory paral-
lelization framework. The three-dimensional regular Eulerian grid
is divided into several computational subdomains. In most steps
of the numerical algorithm, these share the total length of the
domain in one direction, being of equal or smaller size than the
domain length in the other directions. This configuration is com-
monly denoted as two-dimensional pencil-like decomposition. Fol-
lowing common practice, halo cells are used to store a copy of data
pertaining to the boundary of an adjacent subdomain, in order to
comply to the 2-cell width of the finite-difference stencil.

The numerical algorithm takes advantage of a direct, FFT-based
solver for the finite-difference Poisson equation for the correction
pressure [36]. To perform the Fourier transforms, the data distribu-
tion is transposed, such that it is shared in the direction of interest.
Data transpose routines from the highly-scalable 2DECOMP&FFT
library [37] are used to achieve this.

The particles are parallelized with a master-slave technique,
conceptually similar to the one in [38]. The load due to particle-
related computations is spread to the computational subdomains
(tasks) containing the Eulerian data required for interpolation and
spreading operations, which is - like the fluid velocity data - dis-
tributed in a 2D pencil configuration. The master process of a cer-
tain particle corresponds to the computational subdomain con-
taining its centroid, and slaves to other subdomains crossing the
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particle-fluid interface (also accounting for the support of the IBM
interpolation kernel).

Of all the operations required when including particles in
the computation, the IBM forcing scheme is the most inten-
sive. Implementing it in a distributed-memory parallelization re-
quires some communication, as data required to perform interpola-
tion/spreading operations can be distributed over different compu-
tational subdomains. In the present simulations, the data is com-
municated in a Lagrangian framework, in five-steps: (I) for the in-
terpolation step, each task computes the partial sum for the in-
terpolated velocity pertaining to Eulerian grid points in its subdo-
main; (II) the partial sums are communicated to the master pro-
cess; (III) the master process then accumulates the sums, thereby
computing the interpolated velocity and computes the resulting
discrete IBM force at each Lagrangian grid point; (IV) the master
process communicates the total force to the different slave pro-
cesses; and (V) each process spreads the force back onto the Eule-
rian grid; see [39].

Recent improvements in the parallelization of the forcing
scheme have been performed, see [39]. The underlying idea is to
cover the support of the stencil of the IBM kernel through a 2-cell
halo region. This way, interpolation and spreading operations can
be performed solely by the computational subdomain containing a
certain Lagrangian grid point. The advantage of this Eulerian par-
allelization of the IBM forcing scheme is that the communication
load is known a priori, and decreases monotonically with increas-
ing number of subdomains. This approach resulted in a very large
speedup of the particle treatment (e.g. a speedup of more than a
factor 2 of the particle treatment for simulations of suspensions at
20% solid volume fraction), but was not yet implemented during
the course of this work.

2.5. LBM-BB method

The LBM-BB approach is based on the studies reported in [9,10].
For the fluid flow evolution, the multiple-relaxation-time (MRT)
lattice Boltzmann method [40] is implemented in order to re-
solve the Navier-Stokes equations. The LBM solves the evolution
of lattice-particle distribution functions at fixed nodes in the fluid
region only. While the MRT collision model is computationally
more expensive than the single-relaxation-time or BGK collision
model, due to the calculation of the moments, MRT LBM provides
greater control over relaxation parameters leading to a better nu-
merical stability. The lattice velocity model is the standard D3Q19,
from which 19 independent moments can be constructed at each
node [40]. Compared to the conventional Navier-Stokes solvers,
certainly more variables at each node location are solved, but the
benefits include a much simpler (i.e., quasi-linear) governing equa-
tion for the lattice-particle distribution functions when compared
to the Navier-Stokes equations, more flexible handling of complex
geometry, and local data communication suitable for massive scal-
able implementation.

When applying the LBM-BB to turbulent flow simulations, sev-
eral additional considerations are necessary. First, since the LBM is
formulated based on weakly compressible flow equations, caution
is taken to make sure that the local flow Mach number is small
(typically less than 0.3). In the present simulations, the local max-
imum Ma at the initial time is about 0.25. This amounts to speci-
fication of hydrodynamic velocity scale in the lattice units. Second,
previous experience has shown that roughly twice the grid resolu-
tion is needed when compared to the pseudo-spectral method [10].
This in fact is a rather fortunate outcome due to the fact that
LBM has very low numerical dissipation since the advection in the
Boltzmann equation is linear and can be handled essentially ex-
actly. The grid resolution also must resolve the viscous boundary
layers on the solid particles.

Fluid lattice-

particle / Particle surface at t
velocities af K

] I s Covered fluid node
2 lali | e | B
Qoo. o

Particle surface at t + dt

——
w

New fluid node

Fig. 3. Sketch to illustrate the key ideas for treating the fluid-solid interface in
LBM-BB. The interpolated bounce-back scheme constructs an unknown distribution
at a boundary node f1, at time ¢, in terms of known distributions at f1 and other
nearby fluid nodes (say f2 and f3) as needed. The refilling would create distribution
functions at the new fluid node. The momentum exchange algorithm then sums up
the net momentum exchange at the all boundary nodes with links cutting through
the surface of a solid particle.

Solid particles overlap with and move relative to the fixed fluid
lattice nodes. In LBM-BB, no lattice-particle distributions functions
are solved for any node inside a solid particle at any given time.
When a solid particle moves relative to the fixed lattice grid dur-
ing a time step, some lattice fluid nodes may be covered, and some
nodes inside the solid may be uncovered. The distribution func-
tions at the covered nodes are discarded, while the distribution
functions at the uncovered nodes (or fresh fluid nodes) need to
be constructed (Fig. 3). The no-slip boundary condition and hydro-
dynamic force F; [ torque M; acting on ith solid particle have to be
considered, see Egs. (5) and (6).

2.5.1. Implementation

When solid particles are inserted into the flow and interact
with the flow field, three issues have to be considered care-
fully [41]. The first aspect is how to realize the no-slip bound-
ary condition on a moving curved wall. The current LBM-BB ap-
proach uses an interpolated bounce-back scheme presented in [42],
which is a sharp solid-fluid interface treatment. Compared to the
immersed boundary method (IBM) which can be viewed as a
smoothed solid-fluid interface treatment, the LBM-BB is found to
be more accurate [43] but at the same time the LBM-BB tends to
be numerically less stable. It is found that part of the reasons for
numerical instability with the LBM-BB is associated with the refill-
ing scheme, which is the second aspect for moving solid-particle
simulation. The refilling step constructs the lattice-particle distri-
butions at new fluid nodes. The LBM-BB approach utilizes a con-
strained extrapolation scheme for refilling [41] which was found to
be numerically more stable for turbulent particle-laden flow simu-
lation.

The third aspect concerns the computation of hydrodynamic
force and torque acting on the moving solid particle. The desired
method here is the momentum-exchange method which simply
sums up exchanges of momentum of fluid-lattice particles when
bouncing back from the solid particle surface. There have been
various implementations of the momentum-exchange method in
the literature [41], some of them do not satisfy the property of
Galilean invariance. The LBM-BB adopts the specific version of the
momentum-exchange method introduced in [44] which is shown
to be suitable for accurate representation of moving solid particles.

Finally, when performing direct simulation of turbulent
particle-laden flow with the moving fluid-solid interfaces directly
resolved, an efficient scalable code implementation is necessary.
The LBM-BB code uses two-dimensional domain decomposition to
partition the field data for scalable implementation using MPI. In
the last few years, the team developing LBM-BB method has op-
timized their code by incorporating the following code optimiza-
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Table 1
Carrier flow parameters.
o v A " T U Y Re
[kg/m3]  [m?/s] [m] (m] [s] [m/s] sl [
1.0 1.0103 137102 74410 552103 640102 08 876
tion techniques [45]. First, the collision substep and the stream- ~ Table2
ing substep are fused together using the two-array method, as dis-  Farticle conditions for the benchmark.
cussed in [45] along with other fusing algorithms. Another key case  ay N Op pplp D Dln  DIA St
optimization concerns data communication for fluid-solid lattice %] [ [kg/m?]  [-] [m] [-] [-] [-]
links when a solid particle occupies more than one sub-domain. 512 30 4450 4.0 4.0 147102 198 108 872

A novel direct-request data communication is designed to trans-
fer the minimum data set for fluid-solid interactions between sub-
domains [45]. It is found that the above optimizations reduced
the CPU time by a factor of 4 to 8.5, when compared to the pre-
optimization code, in the direct simulation of a turbulent particle-
laden flow [45]. Further details of the LBM-BB approach can be
found in [9,10,41,45].

3. Benchmark description
3.1. Physical parameters

Particle-laden flows in a homogeneous isotropic turbulence
(HIT) have been studied both experimentally and numerically. On
the one hand, the relative simplicity of this case in comparison to
the industrial applications provides a perfect framework to under-
stand many phenomena such as the preferential concentration, the
particle distribution, and the turbulence modification by the dis-
persed phase. On the other hand, these issues have not been com-
pletely understood because of the large number of parameters con-
cerned (turbulence level, density ratio, size of particles, solid vol-
ume fraction) and the different ways of analyzing the results. In
particular, the effect of the size of the particles is a relatively re-
cent topic and has only been studied during the last two decades,
to some limited extent, starting with the work of ten Cate et al.
[7]. Many of theses studies were carried out using RPS approaches.
Due to these reasons, we decided to use an HIT flow to compare
the different approaches.

Turbulence shows chaotic behavior, thus, the solution could dif-
fer from one code to another. In order to reduce the degrees of
freedom associated to the modeling, some choices have been ad-
dressed.

The initial turbulent flow field was generated using a spectral
code with 1024> modes. The forcing scheme proposed by Eswaran
and Pope [46], was used to obtain a statistically stationary flow
by adding a stochastic force on the spectral modes. After the flow
reaches statistical stationary conditions, the forcing is shut down
in order to study decaying turbulence. A short transient phase
was computed in order to finally obtain a solution independent
of the forcing scheme. This velocity field was used as the initial
condition of the present benchmark study. The spectral solution
had a Reynolds number based on the Taylor scale of Re; = 87.6,
which is large enough to obtain an inertial range in the spectrum.
The largest wave number treated is compared to the Kolmogorov
length scale in order to ensure that the full spectrum is solved,
[47], here kmaxn = 3.81 > 1.5. The initial eddy turnover time is
T = 0.8s. Table 1 summarizes the parameters of this initial flow
field.

In each code, the spectral solution was interpolated at the lo-
cation of the velocity nodes. To allow better comparison the con-
sidered simulation is a decaying turbulence simulation, since the
implementation of a forcing method increases the differences be-
tween the codes.

1024 3.0 35602 4.0 4.0 73.6103 990 054 218

For the dispersed phase, we consider two cases depending on
the mesh resolution. The first case is simulated with 5123 grid
nodes and the second with 1024® nodes. In both cases, the solid
volume fraction is set to 3%. This value was chosen as a compro-
mise between the two extremes: it is dense enough to ensure a
convergence in the statistics and at the same time the case is suf-
ficiently dilute in order to be not dominated by collisions. In ad-
dition, in order to reduce the effect of collisions, only elastic colli-
sions were implemented without taking into account any lubrica-
tion corrections when particles are very near to each other.

The initial positions of the particles are chosen randomly with-
out any particle-particle spatial overlap, and these same positions
were shared among the codes. At the beginning of the simulation,
the ith particle velocity U; was fixed as the fluid velocity at its
center 0;. The velocity was interpolated from the spectral solution.
The initial angular velocity was set to zero for IBM, LBM-BB and
LBM-IBM methods, w;(t =0) = 0.

The initial velocity and angular velocity are treated differently
for the VoF-Lag method. Indeed, the particle momentum equations
(5) are not solved. The solid region is solidified and yields the lin-
ear velocity and angular velocity of the particles. The initial veloc-
ity is only used for the Lagrangian tracking that needs the velocity
at the previous time step.

For both cases, the ratio of the particle diameter to grid length
was fixed to 12 in order to ensure a good resolution of the particle-
fluid interfaces. Table 2 provides the particle parameters. Because
the ratio between the particle diameter and the Kolmogorov length
scale is 19.7 for the first case and 9.86 for the second case, one
can expect finite-size effects. This ratio decreases with time as the
Kolmogorov scale increases when the turbulent kinetic energy de-
creases. The finite size effect will be studied later in this paper.

Even if for this case tzhe Stokes number based on the Kolmogorov
Pp D

time scale, St = Tpr;ﬁ, could be considered not very meaningful

[48], we provide it only as a reference.

The density ratio between the particles and the fluid has been
set to 4 due to our intention to have particles with moderate iner-
tia. In addition, even if the codes considered here could take into
account neutrally buoyant particles, some methods presented in
the literature are not stable for density ratios below 1.2 [33].

A snapshot of the 10243 IBM simulation with the turbulent
structures and particles positions is provided in Fig. 4. In this fig-
ure, one can observe a high degree of flow field details and con-
firm that the particle size is of the same order of magnitude as
the turbulent structures as suggested by the D/A ratio, see Table 2.
This ratio decreases with time as the turbulent kinetic energy de-
creases.

3.2. Single-phase flow

The generated turbulent field is averaged in each code to ob-
tain the turbulent statistics. The first comparison between different
codes is done for the single-phase (i.e. unladen) case.
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Fig. 4. Visualization of particle-laden decaying HIT. Particles are colored by their
linear velocity (green-high and blue-low). Red denotes iso-surfaces of constant Q-
criterion, while translucent yellow represents iso-surfaces of low pressure regions.
Case 1024 simulated with IBM code, at time 1.25T2 = 1s. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)
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Fig. 5. Decaying fluid kinetic energy of single-phase flow. Eq and T§ denote the
values of kinetic energy and eddy turnover time at T = 0, respectively.

In Fig. 5 the time-dependent total turbulent kinetic energy is
shown for each code. The total simulated time amounts nearly
10s = 12.5T2, and has been chosen in order to ensure that the to-
tal energy is still significant. In the present simulations the total
energy at the end of the simulation is 2% of its initial value.

The dashed black line is the energy decay of turbulence ob-
tained from the single-phase spectral code. It could be considered
as the reference case. As expected, the energy decay is proportional
to t710/7 [49]. All the codes reach this slope but there are some
small differences. The VoF-Lag method seems to shift the initial
energy level downwards, which explains the shift observed up to
t/T¢ =1 in comparison to the other methods. This effect could be
caused by the initial interpolation. Other difference could be seen
for the LBM-IBM simulation. which is the slope is reached later
than for the other methods. That is because for LBM approaches

100
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= 10764
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Fig. 6. Spectra for single-phase case for two given times. Top: t = 1.25T? (1s); Bot-
tom: t = 3.75T2 (3s).

the initial condition has to be carefully computed. For simulation
with the LBM-BB code authors took the necessary precautions in
order to obtain the appropriate initial distribution functions that
are fully consistent with the macroscopic initial conditions [50].
For IBM and LBM-BB, both 512 and 1024 cases are presented. In
the figure no difference can be seen. This result shows that even
for the coarse mesh the turbulence decay is adequately resolved.

The spectra are now analyzed for the coarse mesh. These are
computed from

E(K):% >

[k=ko/2|<|x|=|k+ko/2]

() -alx)”, (10)

where i is the Fourier transform of the velocity field, and «g =
7 /AX is the largest wave number.

The spectra are given in Fig. 6 for two given times, with those
computed from the spectral code given as reference.

The main differences appear for large wave numbers. Where
the IBM solution collapses with the spectral solution, LBM-BB and
VoF-Lag solutions slightly differ. The LBM-BB turbulent kinetic en-
ergy is below the energy provided by the spectral and IBM meth-
ods for both times. However, the authors have checked that the
spectral solution is recovered for the LBM-BB finer mesh resolu-
tion. The finer results are not shown in the figure. Concerning the
VoF-Lag method, it overpredicts turbulent kinetic energy at large
wave numbers for t = 1.25T0. At t = 3.75T2, the result is in bet-
ter agreement with the spectral method. Due to computational
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VoF-Lag

12570 =15

37570 =3

Fig. 7. Vorticity field for the x — y plane and z = 0 obtained with each method for the 5123 case. The vorticity magnitude is divided by the averaged value for t = 1.25T? = 1s.

cost, the finer mesh simulation (10243) has not been considered
with the VoF-Lag method to check improvement of the solution at
t=125T0.

4. Comparisons of particle-laden flow results
4.1. Carrier flow analysis

In Fig. 7 the vorticity is shown for each approach at two given
times for the 5123 resolution. It is clear that not only the vorticity
levels decrease but also the structures become larger with time. If
we compare carefully the turbulent structures for t = 1.25 T2 (top
panels of Fig. 7) they remain similar among the different codes.
Nevertheless, the results from different codes diverge for the later
time presented in the figure (bottom panels). This quantitative
code-to-code comparison is completed in this paragraph by ana-
lyzing the carrier fluid statistics.

It has been shown in many finite-size particle studies that the
fluid kinetic energy decreases faster when particles are present;
see for example [8,9,51]. In the present simulations this phe-
nomenon is confirmed. Fig. 8 shows the evolution of the particle-
laden case. The spectral solution for single-phase flow is given for
comparison. On comparing Figs. 5 and 8, it can be observed that
the fluid kinetic energy decreases faster in the two-phase flow
case. In the case of single-phase flow, the fluid kinetic energy ob-
tained with the VoF-Lag, IBM and LBM-BB methods follows the ref-
erence solution (spectral code) when in the two-phase flow the
kinetic energy of these methods is below the spectral code solu-
tion. The LBM-IBM solution also decreases faster than its equiv-
alent single-phase simulation. Turbulent modulation is weaker as
compared to the cases cited above; in these papers [8,9,51], the
solid volume fraction is 10%, whereas in the current study it is cho-
sen to be 3%. It is to be noted that the 5123 and 10243 cases have
the same volume fraction. It can be seen in Fig. 8 that for IBM
and LBM-BB methods the turbulence modulation is equivalent for
both cases. It could be concluded that the main factor for the en-
ergy dissipation is not the ratio of particle diameter to Kolmogorov
length ratio but the solid volume fraction. In the extensive study
Lucci et al. [8] a similar conclusion is drawn. The volume fraction is
highlighted as an important factor for the turbulence modulation.
In [8] the effect of the diameter is also pointed out. The percentage
of reduction of the turbulent kinetic energy decreases when the

10° e

E/E,

—-= VoF-Lag - 512
—-:= IBM - 512
1| === 1BM- 1024
1079 LBM-IBM - 1024
LBM-BB - 512
LBM-BB - 1024
——=- Spectral single-phase - 1024
— E/E0~ 717
T
107! 100 10!

T/T?

Fig. 8. Decaying fluid kinetic energy of two-phase flow. Eq and T§ denote the values
of kinetic energy and eddy turnover time at T = 0, respectively.

diameter increases. The present results are in contradiction with
those presented in [8] because for the 5123 and 10243 cases simi-
lar reduction is observed even though the diameter is different. In
order to clarify this discrepancy, it is important to highlight that
the diameter increases at constant Eulerian mesh resolution in [8].
In their study D/Ax increases with D from 8 to 17. Here, we keep
D/Ax = 12 constant and we double the mesh resolution. This re-
sults point out that resolution of particles could have an impor-
tant impact on the turbulent kinetic energy modulation. This is a
numerical effect since physically the particle size effect should de-
pend on D/n rather than D/Ax. The only way to confirm the effect
of particle diameter on turbulence modulation is to do a mesh con-
vergence study. With the increase of the computer resources this
kind of study will be affordable in the near future.

The analysis of the turbulent spectra, Fig. 9, provides addi-
tional information on the turbulence modulation. The discrepan-
cies among codes on single-phase spectra have been discussed in
Section 3.2. Here, we focus on the turbulence modulation by parti-
cles. In all the codes the spectra increase for wave numbers larger
than the wave number corresponding to the particles’ diameter,
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Fig. 9. Spectra for two-phase case for two given times. Top: t = 1.25T2 (1s); Bot-
tom: t = 3.75T2 (3s). The single-phase spectral solution is given for reference. The
vertical line corresponds to particle diameter.

k = 2m/D. The energy increase level is of the same order of mag-
nitude for all the methods used.

It is important to recall that the spectra are computed for the
entire domain, including the volume occupied by the particles. For
larger volume fractions some oscillations can appear on the spectra
[9-11]. That is because of the computation of the spectra inside the
solid region, as explained in [8]. Here, these oscillations are clearly
visible for the IBM and LBM-BB approaches at t = 1.25T0.

4.2. Dispersed phase statistics

Many classical results on particle-laden flow are of particle
statistics. These results are shown here for the present methods.

First of all, the particle positions given by different codes are
compared in Fig. 7. The particle positions remain similar between
different codes at t = 1.25T2 but are different at t = 3.75T2. Nev-
ertheless, even at t =1.25T? the position of the VoF-Lag parti-
cles is significantly different, compared to the positions provided
by LBM and IBM codes. This discrepancy is an effect of the initial
condition that is treated differently in the VoF-lag code. This point
will be discussed later in this section.

At t = 1.25T2 the probability density function (p.d.f.) of the par-
ticle velocity reaches the classical Gaussian distribution, see Fig. 10.
No significant discrepancy is observed among different codes. This
figure allows us to consider that the number of particles for the
coarse case Np = 4450 is large enough to converge our statistics.
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\ia\
Dashed: 1.257, = 1s, \
Dotted: 3.757, =3s
L
: i
102 T T . § I - .
-1 0 1 2 3 4

0.9

0 J
10" F—__

3 1
0.8 6 x 10

4% 107!

3x 107!

!
i

0.6 1

0.4
—— VoF-Lag - 512
—— IBM - 512

0.3 LBM-BB - 512

T T T T T T

0.0 0.5 1.0 1.5 2.0 3.0 3.5

T/T9

o
38

Fig. 11. Lagrangian velocity autocorrelation autocorrelation function starting at ty =
12572 = 1s.

In order to study the particle dispersion the velocity autocorre-
lation function given by,

Y Ui(to) - U(to +1)

0 Uit0) - Uitt) S0 Uit +0) - Uyt + )

is analyzed. Fig. 11 shows this function for the different codes. Two
major differences can be highlighted. First of all, the autocorrela-
tion function with VoF-Lag is larger than the two other ones at
early times. This difference is an effect of the initial slope of this
function observed with the VoF-Lag method that is smaller com-
pared to the other codes. This result is common for inertial parti-
cles and means that the particles are strongly correlated for small
times. The second difference is that the Rﬁi function is smaller for
larger times for the VoF-Lag simulations and larger for the LBM-
BB simulations. In all the cases, the slope of the autocorrelation
function recovers the same slope for larger times, see inset plot in
Fig. 11.

In order to go further on the analysis of the dispersion a trun-
cated particle autocorrelation time T' is computed by

T = /BRfi(t)dt. (12)
0

It cannot be directly called the autocorrelation time for two rea-
sons: the integration is not done until infinity and we consider

Ry(t) = (11)
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Fig. 12. Particles translational kinetic energy < U? > (solid line) and angular kinetic
energy < w? > (dashed line).

a decaying turbulence. The three methods provides similar T':
2.23TQ for VoF-Lag and 2.26T? for IBM and LBM-BB. The differ-
ences obtained here on the dispersion of particles are relatively
small.

Based on these results, we can conclude that the dispersion is
not affected by the different methods used to take into account the
finite-size particles.

In order to continue the analysis of the particle statistics the
particle kinetic energy is now analyzed.

. . . 2 ZNP U. U:
The translational and angular kinetic energy (< U; >= %}7"

ZN" ®;-0; . . -
%}j" respectively) is given in Fig. 12. As the tur-

bulence is not sustained the particle kinetic energy decreases ex-
ponentially. The exponential factor of the particle decaying energy
is near the —10/7 given for the turbulent decaying energy (see the
inset plot). This global behavior is reproduced by all the methods.

The main differences observed come from the initial condi-
tion. The initial translational kinetic energy drops about 10% of the
initial value for the VoF-Lag method in the first time steps. For
this method, the Newton-Euler Eq. (5) are not solved explicitly.
The Navier-Stokes equations ensure this fluid-solid interaction. For
this reason, as soon as the initial carrier fluid region is replaced
by a solid region, the equivalent-fluid inside the particle is solidi-
fied. That affects all the region around through the Augmented La-
grangian iteration. The velocities are then reduced inside the par-
ticles, thus the translational energy of the particles is affected. For
the LBM-BB a reduction of 5% of the initial translational kinetic
energy is also seen for the first iterations. This drop can be due
to fact that the particles have zero angular velocity in the begin-
ning, so there are discontinuities on the fluid-particle interfaces
that induce large dissipation to the translational particle kinetic
energy. The treatment of initial condition is different among dif-
ferent methods. The evidence is that given zero particle rotation
at t =0, at the very short time t = 0.02s = 0.025T? the angular
kinetic energy recovered by the IBM method is 12 times larger
than the one obtained by the LBM-BB method. The hydrodynamic
torque is large for the IBM method for small times. The IBM forc-
ing scheme achieves a more smooth velocity on the interfaces at
the first iteration, thus the IBM shows no initial drop of transla-
tional kinetic energy. This could explain the discrepancies between
IBM and LBM-BB.

If we compare the average velocity of particles, < |U;| >=

No O
Z”:lNipU’U’, at 1.25T2 and 3.75T2, the mean velocity remains the

and < w? >=

same for all the codes, see Table 3. Indeed, we can conclude that
even this initial effect does not modify the final translational ki-
netic energy.

The solidification has a strong effect on the angular kinetic en-
ergy. Contrary to the other methods, in the VoF-Lag method the
particles recover angular velocity directly. This angular velocity is
obtained inside the particle after the solidification and could be
seen as an integration of the angular velocity inside the particle
region. The angular velocity is at its maximum at the initial time
step. This angular kinetic energy decreases fast at the beginning
of the simulation reaching the exponential decay observed for the
large times. The IBM and LBM-BB methods do not have this solidi-
fication effect. The angular kinetic energy starts from zero since the
particles are initialized without rotation. Because of the moment of
inertia, the particles take 0.53T9 and 0.72T? to reach their maxi-
mum for IBM and LBM-BB respectively. The angular kinetic energy
contained in rotation is 10% larger for the IBM method than for the
LBM-BB method. This difference is also an effect of the initializa-
tion. Indeed, the IBM particles have a stronger angular acceleration
during the first iterations. If we compare the angular kinetic en-
ergy without dividing by its maximum we observe than it is larger
for the IBM than for LBM-BB until ¢t = 1.25T2. The averaged angu-

No o
lar velocity, < |@;| >= Z”=‘N7pw’w’ at 1.25T2 and 3.75T2 are pro-

vided in Table 3. Nevertheless, for all the methods, we reach the
same exponential decay for the angular kinetic energy. That con-
firms the assumption that discrepancies on this quantity are the
result of the initial condition treatment.

To go into more detail, we will now analyze the local slip ve-
locity around the particles.

4.3. Local slip velocity

In order to compare the behavior of each code close to the par-
ticles, the average slip velocity is computed. This kind of analysis
has been presented in previous papers [11,52,53]. The algorithm
used by the different authors makes use of different ways to av-
erage the velocity around the particles. The main difference is how
the particle frame of reference is considered for each particle. Here
a different algorithm is used. The algorithm is described below.

e Loop through particles:

- interpolate fluid velocity to a spherical surface with radius
Ray = 4Rp, and determine the intrinsic velocity of the pth
particle: Ul = > d>lUlf/ > ®,, where [ denotes a Lagrangian
grid in the spherical surface, and ® a phase-indicator func-
tion;

- compute the particle-to-fluid (apparent) slip velocity US =
U/ —up;

- define a spherical averaging volume, with axis of symmetry
aligned with U$, and interpolate the fluid velocity to this
grid, obtaining Uﬁ.r.0,¢’ with indexes (1, 6, ¢) denoting the
radial, polar and azimuthal directions, respectively;

o compute intrinsic average of fluid slip velocity in the spherical
volumes US(r.0) =Y, cpp,rﬁ‘,,j(ug_rﬁvq& —UP)/ Y06 Pproge
Note that the sum is performed over all the particles and over
the (statistically homogeneous) azimuthal direction.

Fig. 13 provides the averaged slip velocity, U(r, ), for t =
1s. This slip velocity is divided by the averaged particle velocity
<|U;| >, given in Table 3. Even though the slip velocities are rela-
tively small, it can be seen that for all the codes there is no fore-
aft symmetry as in Stokes flow around a sphere. This asymmetry
is even present for tracers [52] and is an effect of the conditional
averaging of the flow in a moving frame of reference.
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Table 3
Dimensionless particle averaged statistics.
Method  Case  Time V<l o < |Gl >l J<w?sDul, <l =Dl
VoF-lag 512 125T9 0.64 1.03 0.29 0.45
IBM 512 125T9 0.64 1.05 0.20 0.31
LBM-BB 512  125T° 063 1.02 0.20 0.30
VoF-lag 512 3.75T% 038 0.61 0.15 0.23
IBM 512 375T9 036 0.60 0.13 0.20
LBM-BB 512  3.75T° 036 0.58 0.14 0.21
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Fig. 14. Dimensionless conditionally-averaged fluid velocity for t =1.25T2 (1s)
among the axis.
Lo.4
5. Computational performance
The Vof-Lag, IBM and LBM-IBM simulations of the present work
have been made on the Supercomputer EOS of the Toulouse Uni-
02 versity Computing Center. This Supercomputer is a Bullx Cluster
made of 612 compute nodes interconnected thanks to Infiniband
technology (FDR 56Gb/s) in a full fat-tree topology. Each nodes is
made of two 10-cores socket intelA®Ivybridge (2680v2) with 64
Gb of Shared memory (namely a ratio of 3.2 GB per core). With
12240 cores, EOS reaches #183 rank at TOP500 in June 2014 with
93% of efficiency at the High Performance Linpack (i.e: 255 TF
0.0 Rmax 274 TF Rpeak) [54].

Fig. 13. Dimensionless conditionally-averaged fluid velocity for t = 1.25T2 (1s).

The differences between the codes are more evident in Fig. 14
where the slip velocity is reported on the axial direction, & = 0 and
6 = . The dimensionless slip velocity is smaller than the unity
for r = 2D. That means that the particle velocities are correlated to
the surrounding fluid. That could be also linked to the two-point
correlation for turbulent cases.

For the VoF-Lag method, the slip velocity for r = 2D is smaller
than for the other codes that could be seen as a stronger correla-
tion between the particles and the fluid.

The averaging approach does not ensure that the slip velocity
is zero at the particle’s surface for the VoF-Lag method. As soon
as we use an interpolation of the fluid to a spherical shell we take
information inside the particle when r is small. This difference is
purely an effect of the post-treatment that has been adapted to
the IBM approach. Indeed, in [11] a different averaging approach is
proposed where only external points are encountered. The velocity
is then closer to zero.

We have taken the opportunity of the installation of EOS sys-
tem, and the pre-production operation associated with, to allow
the system to be used in a more dedicated way. In operation, a
system with a large amount of users, may not be properly suited
for benchmarking. Though this is not required in terms of appli-
cation performance, at least it can be in the amount of resources
available and/or waiting time to use these resources.

More precisely, for this benchmarking process, up to 128 nodes
(2560 physical cores) had been dedicated for each run with a max-
imum of elapsed time of 3 days, again per run. We would like to
point out that computing resources have been granted for each run
in an exclusive manner. That is important to minimize possible in-
teractions due to others jobs running on the system. Moreover the
interconnection topology, so-called full fat-tree, has the property to
minimize the worst latency and keep the maximum bandwidth for
any given set of compute nodes. Hence locality effect should not
play a significant role in the application performance (i.e. the per-
formance should remain the same, irrespective of in which part of
the system the codes run). Eventually, even if I/O is a very big is-
sue in nowadays high-performance computing, it was not relevant
to the present work. So it had been reduced to a minimum and not
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Fig. 15. Total consumption on EOS supercomputer for the different cases. (For in-

terpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

taken into account in performance analysis. As a whole, in a period
of three months, around 2 millions of cpu hour on Supercomputer
EOS had been consumed.

During this benchmark the researchers and the CALMIP admin-
istrators worked together in order to enhance the implementation
of the codes on this machine. In particular, for this benchmark,
the LBM-IBM method was also parallelized. Some experience was
obtained thanks to this collaboration. Some test were done in or-
der to ensure that the distribution of the cores on the cluster, the
choice of the compiler and the compiler options were the best
choice for each code.

The LBM-BB team joined the consortium later and did not run
on CALMIP computer. The University of Delaware team used the
National Center for Atmospheric Research’s (NCAR) supercomputer
Yellowstone equipped with 2.6-GHz Intel Xeon E5-2670 (Sandy
Bridge) processors [45]. This computer has similar performances as
the EOS supercomputer. For this reason we decided to include the
performance of this code for comparison.

Fig. 15 gives the CPU time, T;;,, needed to simulate a physi-
cal fluid initial turnover time T? for each code and simulations. In
order to provide both weak and strong scaling this time is made
dimensionless with the number of CPU cores and mesh nodes.

The VoF-Lag simulations were only run on the 512 case and
were too expensive to reach the other codes on the 1024 test case.
As we can see in Fig. 15 the CPU time was too high compared
to other codes. In this case the single-phase case takes more than
50 thousand CPU hours while the two-phase flow more than 300
thousand CPU hours per T.. The high computational cost for this
method could be explained by different reasons. First of all, the
semi-implicit iterative solver used to solve the mass and momen-
tum equations is more expensive than the time splitting used in
classical Navier-Stokes solvers or the LBM methods. The advantage
of this solver is that we can utilize larger time steps for two-phase
flows and we are not limited by the viscous CFL number. Neverthe-
less, in this case we do not take profit of this solver because the
turbulent flow requires a small advective time step. In addition,
when the particle-laden case is considered, the CPU time is one
order of magnitude higher. This increase is explained by two fac-
tors. First of all, for stability reasons the time step was divided by a
factor of two (from 0.0125 T2 to 0.00625 T?) increasing the compu-
tational time. The time spent on the Navier-Stokes solver, which is
the part in common with single-phase simulation, is multiplied by
2.3 ~2. The second reason is that the update of the physical char-

acteristics takes 67% of the simulation. That includes the transport
of the particles and the update of solid volume fraction, density
and viscosity fields. Later studies explain that the algorithm used
to update the solid volume fraction was the weakest link. After the
simulations presented here this algorithm was improved by limit-
ing the search of solid grid cells for particles’ neighbors and re-
ducing the number of points used to compute the solid fraction in
intermediate grid cells. These modifications reduce the CPU time
of this part of the code by 60%. In the VoF-Lag implementation the
time spent to treat collisions takes 3%.

The IBM and LBM-IBM methods provide a better implementa-
tion compared to VoF-Lag method. The time of the particle-laden
case is one order of magnitude larger than VoF-Lag for the 512
case: 26 thousand CPU hours per turnover time. Even if the paral-
lel implementation was developed for the benchmark purposes it
shows a remarkable speed-up. Indeed, in Fig. 15, if we compare the
green filled squares we can see that the CPU time remain in the
same order of magnitude and is even reduced for the simulation
with 2024 CPU cores. That shows that the LBM-IBM implementa-
tion provides an adequate weak scaling factor. In the same figure,
if we compare the filled and open circles at 512 CPU cores we can
observe that they are similar, showing that the strong scaling is
also respected. This result confirms the idea that LBM-IBM Navier-
Stokes solvers could be easily parallelized and provide a good scal-
ing. The particle-laden case increases the CPU time by 19% with 64
CPU cores and 37% with 512 cores. This overhead is slightly large
compared to other LBM methods. Indeed, [9] found a computa-
tional overhead between 20% and 26% for a test case with more
particles and volume fraction than the present one.

The TU Delft IBM implementation provides the best perfor-
mances compared with the other two codes. The CPU time is one
order of magnitude smaller than the LBM-IBM approach and two
orders of magnitude smaller than the VoF-Lag method even for the
single-phase flow. In Fig. 15, one can also verify that the strong and
weak scaling of this implementation are really good for single and
two-phase case: for the strong scaling compare the same red sym-
bols and for weak scaling compare fill with open symbols.

Nevertheless, the particle-laden cases are much more expensive
than their equivalent in single-phase. The CPU time increases, for
the best case, 87% compared to same case in single-phase flow.
For the worst case, the increasing of CPU consumption reach 188%.
That is explained by the time taken by the IBM algorithms of in-
terpolation and spreading that takes from 39% to 55% of the CPU
consumption for the particle-laden flows simulations. In these sim-
ulations 10% of the CPU were spent in short-range interactions
(collisions), integration of the Newton-Euler equations, Eq. (5),
and re-initialization of particle-related arrays needed for the par-
allel implementation. TU Delft group has continued to improve
their parallel implementation, as described in the last paragraph
of Section 2.4.2 and in more detail in Section 2.5 of [39].

The time data from LBM-BB code have been added even though
the processor’s used was not exactly the same. We can see that
the performances are similar to these of the IBM approach. The
weak scaling is well recovered for the 5123 case (compare no-fill
squares in Fig. 15). Nevertheless, the strong scaling is not well re-
covered. The computational cost of the particles case seems co-
herent with other codes. The large overhead for the particle-laden
case in 10243 is mainly because at the time when the simulation
was run, the particles information (position, velocity, angular ve-
locity, forces, ..) were shared by all the processors. Since 10243
case has 8 times more particles compared to 5123, this implemen-
tation slows down the simulation. Some improvements of the LBM
implementation for finite-size particles was proposed recently by
the developers of the LBM-BB method [45].

The computational performance study shows that the IBM im-
plementation is much better than the other implementation, see
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Fig. 15. Nevertheless, these results have to be taken in perspec-
tive and should be considered as a snapshot. The evolution of each
code and the evolution of supercomputers and compilers could
change this picture in a short term. In addition, the physical pa-
rameters, as the solid volume fraction, the number of particles or
the Reynolds numbers, could modify the balance between codes.

6. Discussion and conclusion

Many recent studies based on RPS approaches are used to treat
particle-laden flows. The present paper provides an extensive com-
parison of different RPS approaches for a turbulent carrier flow
case. Since they yield qualitatively similar physical results, this
comparison adds confidence in the approaches.

The turbulent carrier flow is modulated by the particles. The
energy decays faster in the particle-laden flow and the energy
spectra increase for large wave numbers. Here an open question
remains when we study the effect of the diameter on the turbu-
lent modulation. Indeed, IBM and LBM-BB provide the same result
quantitatively: the diameter has no major effect on the modulation
when the volume fraction remains constant. This result is different
from the conclusion provided by Lucci et al. [8] where the diame-
ter has an effect on the modulation. A future study could provide
an answer to this discrepancy.

The statistics of the dispersed phase show classical results. The
p.d.f. of particle velocity follows the Gaussian distribution. The au-
tocorrelation function is slightly different for different codes. Nev-
ertheless, these differences are minor. Finally, the particle kinetic
energy follows the trend of the decaying turbulence. The differ-
ences between the codes are sometimes significant but they are
mostly related to the different initial treatments of the interior vol-
umes of the particles. The non-physical adjustment of the solution
at the first time steps is the main reason for the discrepancies.

Averaging the fluid velocity around the particles provides in-
formation about the slip velocity. The results obtained are similar
to those proposed by previous authors. The main differences are
near the solid-liquid interface where the VoF-Lag method does not
tend to zero. That is because the averaging method is not adapted
to the VoF-Lag method: it interpolates with points inside the par-
ticle. For future works, it is important to ensure the consistency
between the averaging post-treatment approach and the numeri-
cal approach. Here, the same post-treatment algorithm is used for
all the codes in order to have equivalent data.

The physical study was completed by an analysis of the compu-
tational performances. The methods implemented were completely
different. When the simulations were performed the IBM method
was the fastest method, followed by the LBM-IBM and then the
Vof-Lag method. The LBM-BB approach has not run on the same
supercomputer, but shows very good computational performances.
One of the main results here was that the Augmented Lagrangian
Method was not adapted to this kind of simulations. For the tur-
bulence simulation the time step At is similar for semi-implicit or
explicit time integration scheme. The semi-implicit time step used
by the VoF-Lag method is more expensive than an explicit scheme.

Thanks to the benchmark each group has continued its devel-
opments and many improvements have been done after the simu-
lations. The results obtained from the benchmark were very useful
but should be considered as a snapshot done at a given time.

The present paper provides an extensive comparison for a given
turbulent flow. The main purpose was to point out the numerical
and physical differences between the approaches. Unfortunately,
the comparisons were limited to the benchmark participants. For
future comparisons, the initial condition and the algorithms done
for the post-treatments could be shared upon request, by contact-
ing the corresponding author.
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