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ABSTRACT
Despite their impressive success when these hyper-parameters
are suitably fine-tuned, the design of good network architectures
remains an art-form rather than a science: while various search
techniques, such as grid-search, have been proposed to find effec-
tive hyper-parameter configurations, often these parameters are
hand-crafted (or the bounds of the search space are provided by a
user). In this paper, we argue, and experimentally show, that we
can minimize the need for hand-crafting, by relying on the dataset
itself. In particular, we show that the dimensions, distributions,
and complexities of localized features extracted from the data can
inform the structure of the neural networks and help better allo-
cate limited resources (such as kernels) to the various layers of
the network. To achieve this, we first present several hypotheses
that link the properties of the localized image features to the CNN
and RCNN architectures and then, relying on these hypotheses,
present a RACKNet framework which aims to learn multiple hyper-
parameters by extracting information encoded in the input datasets.
Experimental evaluations of RACKNet against major benchmark
datasets, such as MNIST, SVHN, CIFAR10, COIL20 and ImageNet,
show that RACKNet provides significant improvements in the net-
work design and robustness to change in the network.
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Figure 1: Outline of a CNN (in this paper we term the set of
convolutional layers between pooling layers as “Racks”)

1 INTRODUCTION
Deep neural networks, including convolutional neural networks
(CNNs, Figure 1) have seen successful application in face recogni-
tion [26] as early as 1997, and more recently in various multimedia
domains, such as time series analysis [45, 49], speech recognition
[16], object recognition [29, 36, 38], and video classification [22, 41].

More recently, CNNs’ successful application in a variety of mul-
timedia domains has lead to a shift away from feature driven al-
gorithms, such as SURF [3], HOG [11], and SIFT [31], into the
design of well-crafted CNN architectures for specific datasets and
application domains. Unfortunately, deep neural networks, includ-
ing CNNs, tend to be complex with a large number of hyper-
parameters. As [4] points out, the ultimate objective of finding
a high performing architecture configuration to minimize the ex-
pected loss, L(x ; lf ), over i.i.d x samples of the learning function, lf ,
representing the network, NN . Often the success of the learning
function, lf , depends on the choice of hyper-parameters, λ. There-
fore, L is a function of hyper-parameters as well, where L(x , λ; lf ).
Despite their impressive success when these hyper-parameters
are suitably fine-tuned, design of good network architectures still
remains an art-form rather than a science, while various tech-
niques, such as random search [4, 5], grid-search [25], and oth-
ers [20, 21, 37, 43, 44, 50], have been proposed to help locate an
effective (optimal or close-to-optimal) hyper-parameter configura-
tion, λo . Due to high-dimensionality of the hyper-parameter space
and the complexity and non-linearity of the CNN architectures,
searching for an effective hyper-parameter configuration, λo , is
a computationally-expensive process, which has led to an inter-
est in specialized and targeted approaches [20, 21, 32, 44, 46] that
introduce refinements on-top of existing network configurations.
Yet, today these parameters need to be hand-crafted (or at least the
bounds of the search space are provided by a user).

As further discussed in Section 2, a common shortcoming of the
existing approaches to hyper-parameter search is that they “work on
the data, not with the data”, i.e. they aim to find a hyper-parameter
configuration that minimizes L, but in the process they ignore
the available data and the key insights that the data can provide
in honing in on effective configurations of hyper-parameters. In
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Figure 2: Overview of the RACKNet framework: sizes, complexities, and distributions of the local features extracted from the
image dataset during pre-processing are used to inform the structure of the CNN and allocate convolution kernels within the
neural network architecture
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Figure 3: Impact of kernel budget allocation on accuracy and
training time (more details in Section 4)

contrast, we argue, and experimentally show, that we can minimize
the need for hand crafting of the search space, by relying on a
pre-training analysis of the data itself. To this end, we present a
RACKNet framework which aims to learn key hyper-parameters
by extracting information encoded in the input datasets (Figure 2).

1.1 Key Contributions: Kernel Budget
Allocation through Local Feature Analysis

RACKNet focuses on hyper-parameters that impact kernel budget
allocation, which (as we see in Figure 3) can have significant impacts
on model accuracies and training times. In particular, we show that
the sizes, complexities, and distributions of localized features, such
as SIFT features [31], extracted from the dataset can provide insights
that can inform the structure of the neural networks and help better
allocate limited resources (such as kernels) within the network.

In other words, we argue that, even when the SIFT
featuresmay not be sufficiently informative to achieve
high accuracies inmedia analysis tasks alone, they can
provide reliable insights that can inform the design
of effective CNN and RCNN architectures.

More specifically, unlike purely feature-based approaches, which
leverage features extracted from the data to implement the analysis

task, RACKNet uses these features only to inform the structure of
the CNN (or RCNN) to be used for analysis. To achieve this, we
first present four key observations that link the properties of the
localized features to the CNN and RCNN architectures:

• Observation 1: Sizes of the localized features in the dataset
can inform the kernel sizes and the numbers of sub-sampling
racks of the CNN.
• Observation 2: Complexities of the features (measured through
the entropies of their descriptors) at different scales can be
used to discover the number of layers per rack.
• Observation 3: Overall complexities of convolutional layers,
defined through corresponding image features, can be used
to inform the arrangement of layers within a rack.
• Observation 4: Distribution of the features for a given com-
plexity component can be used to discover the number of
kernels per convolution layer.

It is important to note that, while RACKNet uses both localized
and CNN features, they are used for entirely different purposes:

• cheaper-to-obtain, but rough, localized features are used to
bootstrap the hyper-parameter of the CNN; whereas
• expensive-to-obtain, but finer-grain, CNN features are, then,
used to obtain the classifier.

RACKNet is designed as an unsupervised general purpose single-
shot architecture search framework that takes pre-computed local-
ized image features for hyper-parameter extraction (as described
in Section 3). As we argue, and experimentally show, these feature
can provide insights on the dataset that can inform the architecture
of the network. To present RACKNet, we use common benchmark
datasets, such as MNIST, SVHN, CIFAR10, COIL20, and ImageNet,
and a commonly used localized image feature, known as SIFT [31].
Experiments on these datasets show that RACKNet indeed provides
significant improvements in the network performance.
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Symbol Convolutional Neural Network (CNN) Symbol Scale Invariant Feature Transform (SIFT)
r # of racks of conv. layers o # of Octaves
ci # of conv. layers in the given rack,Ri дi # of Gaussian comp. in entropy histogram an octave, oi
ki, j # of kernels in a given conv. layer,Ci, j ni, j # of feature-similarity clusters in a given Gauss. comp., дi, j
ei, j Kernel size for a given conv. layer,Ci, j σi, j Feature scope in a given Gauss. comp., дi, j

Table 1: Notations used in this paper

2 RELATEDWORK
Successful application of convolutional neural networks (CNN)
dates back to the 90s where it was applied to face recognition
[26]. More recently CNNs have shown promising results in various
multimedia applications such as image enhancement [8], speech
recognition [16], video classification [22, 41], object recognition [29,
36, 38], and time series analysis [45, 49] have generated significant
interest in CNN deisgn and configuration.

[4, 5, 25] proposed hyper-parameter configuration search tech-
niques that evaluate performances of different configurations on
training data. [4], for example, implemented a random search over
a bounded 32-dimensional parameter space. [50] proposed a re-
inforcement learning based technique to incrementally improve
hyper-parameter configurations. [37] proposed an evolutionary
search algorithm that generates a large population of CNNs to con-
verge on a good configuration through mutations. [19] designed a
greedy search through multi-attribute learning.

The main difficulty with these search-based techniques is that
the process can be very costly as the possible parameter space can
be very large. The prohibitive cost of search-based approaches led
to approaches that target specific network components; these in-
clude maxout [20], batch normalization [21], rectified-lu [14, 24, 32],
and dropout [44], techniques: [20] proposed a maxout strategy that
introduces a max-pooling layer that provides spatial invariance
to the network. [21] proposed a batch normalization layer aim-
ing to minimize the covariate shift in the network, allowing for
higher learning rates. The dropout layer proposed in [44] aims to
prevent overfitting of the network by randomly engaging and dis-
engaging the convolutional kernels during training. [24] proposed
Rectified Linear Units (ReLUs) aiming to minimize the loss of gra-
dients during the training phase of the network. [32] proposed a
non-linear rectifier that reduced the sparsity in the network. [14]
proposed Probabilistic-ReLU, advancing the conventional ReLUs,
to adaptively learn the ReLU parameters. Fusion networks have
been proposed that combine shallow and deep features [7, 48].

In this paper, we note that a major weakness of the various
techniques discussed above is that they ignore the input data itself.
In particular, we argue that it may be possible to use the training
dataset itself to help search for appropriate CNN hyper-parameter
configurations. While this data-driven approach has not been used
in CNN design, we see that it found successful use in several other
application domains. For example, [47] demonstrated that spatio-
temporal features extracted from time series data can reduce the
computational cost of determining warping paths between multi-
variate time series. [30, 40] leveraged spatio-temporal features ex-
tracted from multi-variate time series to improve on time series
classification. [12, 13] leveraged metadata extracted from datasets
to improve classification accuracies. In this paper, we note that,
even when the local image features alone may not be able to pro-
vide high accuracies in media analysis, they can provide insights
that can inform the design of effective CNNs.

3 ROBUST ALLOCATION OF CONVOLUTION
KERNELS FOR CNNs (RACKNET )

As discussed above, while well designed CNNs can be very effective
in image classification, their effectiveness is often hampered by the
need for hand-crafted hyper-parameter design, especially for new
datasets that have not been seen in the past. In this section, we pro-
pose the RACKNet framework that bootstraps the hyper-parameter
configuration for CNNs based on a pre-analysis of the image dataset,
D, (Figure 2). In particular, in order to better distribute the given
budget, B, of convolutional kernels across CNN layers, we pro-
pose to leverage SIFT features that capture local image patterns.
RACKNet translates the sizes, complexities, and distribution of the
high-level feature patterns in the given dataset to hyper-parameters
of CNN structures that best utilize the given kernel budget.

3.1 Hyper-Parameters of a CNN
A convolutional neural network (CNN [27]) is a type of neural
network that works by leveraging the local spatial arrangements by
establishing local connections among small spatial regions across
the adjacent layers. A CNN consists of several complementary
components organized into layers (Figure 1):
• Each convolution layer links local-spatial data (i.e., pixels
at the lowest layer) through a set of filters or kernels that
represent the local spatial features identified in the data.
• Since each convolution layer operates on the output of the
previous convolution layer, higher layers correspond to in-
creasingly complex features obtained by combining lower-
complexity features.
• Since relevant features of interest can be of different sizes,
pooling/subsampling layers are introduced among convolu-
tion layers: these pooling layers carry out down-sampling of
the output of a convolution layer, thereby (given a fixed ker-
nel size) effectively doubling the size of the feature extracted
by the corresponding filter.

Therefore, intuitively, a CNN searches for increasingly complex
local features that can be used for understanding (and interpreting)
the content of a dataset. Given a dataset, and labeled data, this is
achieved by a process known as back-propagation that uses gradient-
search to identify the filters that best fit the labeled data.

Before the back-propagation can be implemented, however, one
needs to pick hyper-parameters, such as the number of convolution
layers, type of pooling operations, and number of kernels. In this
paper, we follow the following convention (see also Table 1):
• We divide the sequence of convolution layers into r racks,
each corresponding to a different feature size: to enable this,
the two consecutive racks of convolution layers are separated
by a pooling/subsampling layer.
• For each rack, Ri , of convolutional layers, we associate ci
many convolution layers, each resulting in more and more
complex features of the size corresponding to the rack, Ri .
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• Each convolution layer, Ci, j ∈ Ri , has ki, j kernels, each of
size ei, j × ei, j , where ei, j is the edge length of the kernel.

Therefore, the search for the hyper-parameters of the CNN can be
posed as searching for the appropriate r , c , ki, j , and ei, j parameter
values that best describes the data.

3.2 Background: Local Image Features
As we have seen in the introduction, a common shortcoming of the
existing approaches to hyper-parameter search is that they “work
on the data, not with the data”, i.e. they ignore the available data and
key insights that the data can provide in honing in on effective con-
figurations of hyper-parameters. In contrast, we argue that we can
minimize the need for hand crafting of the search space, by relying
on a pre-training analysis of the data itself. More specifically, we
observe that if we could cheaply extract localized features of a given
dataset (independent of the labeled data) – even if these features
may not be sufficiently effective in achieving high accuracies in
media analysis – the sizes, complexities, and distributions of these
localized features can provide reliable insights that can inform the
design of effective CNN architectures.

There are several localized feature extraction algorithms for
images: these include SURF [3], HOG [11], and SIFT [31]. Scale In-
variant Feature Transform [31], in particular, has been the de facto
image representation strategy for content-based image retrieval
as these features have shown robustness against rotation, scaling,
and various distortions. SIFT[31] extracts stable and scale invariant
patterns contained in a given image through a multi-step approach.
SIFT supports multi-scale feature extraction: intuitively, SIFT fea-
tures correspond to regions in a given image that are different from
their neighborhoods, also in different image scales. Consequently,
starting from the smallest feature size (provided by the user), fea-
tures are organized into octaves corresponding to doubling of the
feature diameter. In the rest of this section, we show that sizes and
complexities of the localized features in a given dataset can be used
to inform the design of CNNs that will operate on that dataset.

3.3 Observation #1: Number of Racks
As described earlier, we organize the layers of a CNN in the form
of racks of convolution layers, where each rack corresponds to fea-
tures of a different size: in particular, the down-sampling (through
average pooling) operation between two consecutive racks reduces
the number of rows and columns by half. Therefore, it is easy to see
that there is a correspondence between the number of racks, r , of a
CNN and the number of octaves, o, of localized features extracted
from images in a given dataset.

Note that, while in general the number of octaves is a user pro-
vided input parameter to the SIFT algorithm, in general the number
of features the algorithm identifies drops with increasing octaves.
This is because, while an image may contain many small size fea-
tures, the number of large yet stable features declines with the
feature size. Therefore, our first hypothesis is that

r = oD ,

where oD is the number of octaves where one is able to detect
sufficiently many features in a given dataset, D.
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Figure 4: (Sample) Feature entropy distribution for the
MNIST dataset [28]: here, different colors correspond to four
differentGaussian components identified in this complexity
histogram (figure best viewed in color).

3.4 Observation #2: Number of Convolution
Layers in a Rack

As discussed in Section 1, each convolution layer corresponds to a
set of features (represented by kernels) of a different complexity[39].

In other words, the more diverse the complexities of
image features of a given size, the more convolution
layers the corresponding rack needs to have.

Therefore, our next observation is that we can determine the num-
ber of convolution layers in a given rack, by analyzing the distribu-
tion of the complexities of the SIFT features in the corresponding
octave, extracted from the dataset.

3.4.1 Feature Complexity and Dsitribution. In this paper, we
propose to measure the complexity of a SIFT feature, F , in terms of
the entropy of the pixels within the corresponding scope as

E (F ) = −
∑

a∈pixel_amplitudes

Pscope (F ) (a)loдPscope (F ) (a),

where, pixel_amplitudes is the set of possible pixel values and
Pscope (F ) (a) is the distribution of the amplitude value a within
the scope of the feature F . Note that each SIFT feature, F , has a
center ⟨xF ,yF ⟩ and a scale σF represent the amount of Gaussian
smoothing corresponding to the feature. Since under Gaussian
smoothing, 3 standard deviations would cover ∼99.73% of the pixels
that have contributed to the identified feature, we define the radius
of a feature F as 3σF . To compute Pscope (F ) (a), we consider all
pixels that are ±3σF from ⟨xF ,yF ⟩ in either of the two directions.
We next compute a complexity histogram, H (D,Oi ), describing
the entropy distribution of the features extracted from the dataset
D, corresponding to octave Oi .

3.4.2 Number of Convolution Layers. As we see in Figure 4, the
entropy distribution is rarely uniform and shows a certain degree of
clustering.We therefore argue that we can leverage this distribution
to determine the number of convolution layers in a given rack. In
particular, we argue that we can treat the complexity histogram
as a mixture of k (possibly overlapping) Gaussians, where each
Gaussian component corresponds to a distinct feature’s complexity.
Thus, given the entropy histogram, H (D,Oi ), corresponding to
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octave, Oi , we use a non-parametric Gaussian mixture separation
algorithm1 to (a) identify the number, дi , of Gaussian components
and (b) to associate each distinct entropy instance to one of these
components. We set the number of convolutional layers as

∀i=1...r ci = дi .

where, ci is the number of convolution layers corresponding to
the ith rack using the number of Gaussian components„ дi of the
corresponding octave, Oi .

3.5 Observation #3: Organization of
Convolution Layers within a Rack

As discussed in Section 3.1, during the feed forward phase of CNN,
the complexities of the patterns learned increases as the training
process moves from one convolutional layer to another.

Therefore, the local image features extracted from the
image dataset should be mapped to the convolution
layers in the order implied by the Gaussian compo-
nents to which they belong.

More specifically,

∀i=1...r∀j,h=1...ci (j > h) ↔
(
µi, j > µi,h

)
,

where µi, j is themean of the jth Gaussian component of the ith rack.
As described next, this order of complexities is used in distributing
the kernel budget to the convolution layers in a rack.

3.6 Observation #4: Number of Kernels in a
Convolution Layer

Our next key observation is that:
the number of kernels corresponding to jth convolu-
tion layer of the ith rack should reflect the number of
relevant distinct patterns of the corresponding feature
size and complexity.

Unfortunately, without access to the labeled data, we do not have
any information about the number of relevant distinct patterns.
However, as we will see, we can replace this constraint with a more
relaxed constraint which we can readily compute.

3.6.1 Convolution Layers with Non-Uniform Kernel Counts. Let
Gi, j be one of the дi Gaussian components obtained in the previous
step through the analysis of the complexity histogram at octaveOi .
Let Fi, j be the corresponding set of SIFT features, again identified
as a by-product of the non-parametric Gaussian separation process.
We argue that the number, ki, j , of kernels corresponding to the jth

convolution layer of the ith rack should be inversely proportional
to the number of similarity clusters2 for the features in Fi, j :

∀i=1...r∀j=1...дi ki, j
inv
∼num_clusters (Fi, j ).

While this initially sounds surprising, there is a simple explana-
tion for this relationship between the number of feature similarity
clusters and the number of kernels:
1In our implementation, we use the Gaussian mixture model available through the
Python library, scikit-learn[35].
2In our implementation, we use the non-parametric density-based spatial clustering
algorithm DBSCAN [10] with cosine distance to identify the number of similarity
clusters, ni, j , of the descriptors of the features in Fi, j .

!" #$

!" #$%&

(a) Conventional Weight Sharing

!" #$

!" #$%&

(b) Proposed Weight Sharing

Figure 5: Weight sharing: in conventional strategy, weight
sharing is on one-to-one basis; in the proposed approach, 1-
M/N-1 sharing is possible based on kernel similarities.

the higher the number of clusters of Fi, j we can iden-
tify, the more distinguishable the underlying feature
patterns are and thus, the fewer the number of kernels
are needed to distinguish these patterns.

We experimentally validate this observation in Section 4 (Table 6).
Note that given this observation and given a total budget of B ker-
nels for the entire CNN, the number, ki, j , of kernels corresponding
to the jth convolution layer of the ith rack is computed as

∀i=1...r∀j=1...ci ki, j = βi, j × B,

and

βi, j = 1 −
(

ci∑
p=1...r cp

×
ni, j∑

l=1...ci ni,l

)
where, ni, j = num_clusters (Fi, j ) is the number of descriptor simi-
larity clusters for octave Oi and Gaussian component, Gi, j .

3.6.2 Weight Sharing with non-Uniform Kernel Counts. An im-
portant decision in network design is the connectivity among ker-
nels across consecutive layers. This has two aspects to consider: (a)
how convolutions at a down-stream layer are related to the convo-
lution results of the up-stream layer and (b) how, during training,
weights can be shared across kernels in these two layers (or how
weights learned for kernels in one layer are used to bootstrap the
weight for the another consecutive layer). For instance,
• in terms convolution connections, [44] (a CNN implementa-
tion) and [29] (an RCNN implementation) both rely on full
connectivity across consecutive convolution layers.
• in terms of weight sharing, however, [44] assumes no weight
sharing across layers, whereas [29] assumes that weight
sharing occurs on a one-to-one basis between corresponding
kernels in two layers: i.e., during the feed-forward stage
of each iteration, the weight for a downstream kernel is
initialized with the weight of the corresponding kernel in
the up-stream layer.

Note that weight sharing described above is possible because the
number of kernels across two consecutive layers are the same.
As we have seen in the Section 3.6.1, in RACKNet, we may have
different number of kernels across consecutive layers; this means
that, when we implement weight sharing, a one-to-one strategy will
not work. This difficulty can be overcome by mapping each Ki, j,l
(in the jth convolution layer of the ith rack) to the most similar
kernel, Ki, j−1,h , s.t. ∀i=1...r ,∀j=2...дi , and ∀l=1...ki, j , we have

µ (Ki, j,l ) = Ki, j−1,h s.t. h = arдmax
h′=1...Ki, j−1

{
cos (K⃗i, j−1,h′ , K⃗i, j,l )

}
.
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Here µ () corresponds to the mapping function and K⃗∗ corresponds
to the vector representations of the convolution patterns learned
during the training of the network. Note that, since the discovered
patterns change at each iteration, the mapping µ () needs to be
revised accordingly. Note also that the kernel alignments learned
during the feed-forward stage are preserved and leveraged during
the back-propagation of the gradients as well. In particular, during
back-propagation, gradients are redirected to the corresponding
kernel mappings, µ (), for synchronous error correction.

4 EXPERIMENTS
In this section, we evaluate the proposed RACKNet framework for
data-driven CNN design and compare its classification accuracy
performance against alternative schemes.

4.1 Experimental Setup
We implemented RACKNet in Python environment using Tensor-
Flow framework [1] and Keras [9]. During the training of CNN,
10% of the training data was reserved for validation to evaluate
model quality. Root Mean Square Error (RMSE) is used as the model
optimizer. We use rectified-linear unit (ReLU) [32] and softmax [6]
as the hidden and output activation function, and for pooling we
use average ormaxout [20]. We use 400 as the default kernel budget
and 0.25 as the default dropout rate . We used MatLab to extract
SIFT features [31], and scikit-learn [35] both to search for Gaussian
components of entropy histograms, and for feature similarity clus-
tering using DBSCAN. All experiments were executed on an Intel
Xeon E5-2670 2.3 GHz Quad-Core Processor with 32GB RAM3.

4.2 Competitors
We have compared the proposed approach against several com-
petitors: wide net [2], maxout [20], dropout [44], and RCNN [29].
Furthermore, to assess the usefulness of the four key observations
that form the core of RACKNet, we also considered several alterna-
tive kernel allocation strategies:
• Random budget allocation distributes the kernel budget, B, to
the conv. layers at random, s .t .

∑
∀i=1. . .r

∑
∀j=1. . .ci

βi j × B = B.
• Uniform rack budget allocation allocates the same number
of kernels for each rack in the CNN and then uniformly allocates
kernels for each layer in the rack; ∀i=1...r∀j=1...ci βi j =

1
ci ×

1
r .

• Uniform layer budget allocation allocates the same number
of kernels for each convolutional layer irrespective of the convolu-
tion layer to which it belongs; i.e., ∀i=1...r∀j=1...ci βi j =

1∑r
p=1 cp

.
• In Section 3.6, we have seen that RACKNet allocates kernels
to convolution layers in a rack inversely proportional to the
feature complexities. C-Proportional allocation strategy uses
the opposite strategy and allocates kernels to convolution lay-
ers in a rack directly proportional to the feature complexities:
∀i=1...r∀j=1...ci βi j =

ci∑r
p=1 cp

×
ni, j∑ci
p=1 ni,p

.

• In noted in Section 3.5, RACKNet orders convolution layers ibased
on the feature complexities. Inverse-order allocation uses the
opposite allocation strategy, and places convolution layers with
higher feature complexities later in the feed-forward sequence.

3Results presented in this paper were obtained using “Chameleon: A Large-Scale Re-
configurable Experimental Environment for Cloud Research” (NSF Award No. 1743354)

(a) MNIST[28] (b) SVHN[34] (c) CIFAR[23] (d) COIL[33]

Figure 6: Samples from the benchmark datasets

Datasets Convolution Layers ⟨Kernels⟩
MNIST 4-4-4 ⟨35,36,32,32-30,36,30,40-35,31,35,35⟩
SVHN 3-4-3 ⟨39,30,53-35,39,37,40-40,40,41⟩
CIFAR 5-3-3 ⟨39,29,38,39,39-33,39,39-37,37,37⟩
COIL 2-4-4 ⟨8,77-44,29,44,44-46,25,46,46⟩

ImageNet 10-12-6 ⟨10,16,12,13,16,21,19,15,10,11-14,11,16,15,
17,12,15, 19,12,15,14,12-14,18,10,13,16,14⟩

Table 2: Convolutional layers and numbers of kernels ( ‘-’
denotes downsampling layer by 2) with kernel budget 400.

Bin Size MNIST SVHN CIFAR COIL
0.001 98.93 90.12 85.36 99.54
0.01 99.48 97.85 95.74 99.86
0.02 99.04 90.05 84.79 99.37
0.05 95.20 87.02 81.88 98.68

Table 3: Entropy histogram bin size vs model accuracy
RACKNet (RCNN Implementation)

In all scenarios, the number of racks and the numbers of convolution
layers per rack are selected per Observations #1 and #2.

4.3 Benchmark Datasets
For evaluation, we considered various commonly used benchmark
datasets; including digit datasets, MNIST and SVHN, and real-world
image datasets, CIFAR10, COIL20, and ImageNet (Figure 6).MNIST
is a dataset containing 60k and 10k training and testing images,
respectively of 28 × 28 handwritten digit captures (Figure 6(a)).
SVHN dataset consists of 32 × 32 house numbers extracted from
Google Street View images. The dataset consists of 73k and 26k
images for training and testing (Figure 6(b)).CIFAR10 contains 50k
training and 10k testing images, respectively, with 32×32 resolution
and the dataset contains 10 labels (Figure 6(c)). COIL20 contains
images of 20 real-world objects. For each object, the dataset includes
72 images, captured at 5-degree intervals by rotating a turntable
360 degrees (Figure 6(d)). ImageNet contains ∼1.23 million images
for 1000 real-world entities, with ∼1000 images per entity [24].

Table 2 shows the hyper-parameters extracted using the RACK-
Net. In particular, each feature octave corresponds to a “rack", and
the number of layers per rack is determined using the data - not
by user input. Entropy histogram bin size of 0.01 is used as default:
as we see in Table 3, RACKNet performs well with this bin size,
independent of the dataset.

4.4 Results
4.4.1 RACKNet vs. Competitors. In Table 4 and 5, we compare

the RCNN-based implementation of RACKNet against various state
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MNIST SVHN CIFAR COIL
Maxout[20] 99.55 97.53 88.32 –
Dropout[44] 99.21 97.45 87.39 –
Deep Net[2] 99.07 – – 99.23
Wide Net[2] 97.66 – – 99.36
RCNN[29] 98.12 93.67 75.28 90.02
RACKNet 99.48 97.85 95.74 99.86
RACKNet-maxout 99.72 98.54 97.62 100

Table 4: Reported accuracies for the competitors vs RACK-
Net (RCNN implementation) accuracy.

Approaches Parameters Accuracy
Dropout[44] – 61.90
VGG-16 [42] 134M 72.7
PReLU [14] – 78.41
Batch Normalization [21] – 78.01
DenseNet-126 [18] 7M 74.98
RESNet-34 B [15] 0.46M 78.16
RESNet-34 C [15] 0.46M 78.47
SENet [17] 26.9M 81.32
Random 0.39M 69.12
Uniform-Layer (CNN-Plain) 71.74
RACKNet-CNN

0.39M
76.82

RACKNet-RCNN 79.14
RACKNet-RCNN-Maxout 81.02
Table 5: Top-1 classification accuracy for ImageNet

Strategies Observation MNIST SVHN CIFAR COIL
Random ⟨o1, o2⟩ 98.98 90.34 69.69 99.53
Uni. Rack ⟨o1, o2⟩ 98.97 90.90 70.18 99.55
Uni. Layer ⟨o1, o2⟩ 98.97 91.04 69.50 94.57
C-Prop. ⟨o1, o2, o3⟩ 98.9 90.77 68.50 99.16
Inv.-Order ⟨o1, o2, o4⟩ 98.99 91.11 69.88 99.38
RACKNet ⟨o1, o2, o3, o4⟩ 99.25 94.57 71.65 99.94
Table 6: Accuracy for various kernel allocation strategies.

MNIST SVHN CIFAR COIL
Rack–2 99.56 98.51 97.31 100
Rack–3 99.72 98.54 97.62 100
Rack–4 98.78 97.21 96.83 99.63

Table 7: Accuracy vs Number of Racks, RACKNet-RCNN

of the art CNN and RCNN techniques. As the tables show, the
network design based on the RACKNet framework provide the
best overall accuracies, indicating that RACKNet allocates kernel
resources more effectively than the handtuned competing architec-
tures, with the exception of SENet[17] which has a similar accuracy
to RACKNet. It is important to note that SENet which is signifi-
cantly deeper than RACKNet, with 154 layers against only 28 layers
wheras RACKNet achieves similar accuracies with as low as 390k
hyperparameters as opposed to 26.9 million in SENet.

4.4.2 RACKNet vs. Alternative Allocation Strategies. Table 6 com-
pares RACKNet-based kernel allocation to alternative kernel alloca-
tion strategies. Results in this table confirm that the four key obser-
vations that form the core of the RACKNet framework are highly

MNIST SVHN CIFAR COIL ImageNet
(60K) (73K) (50K) (1.3K) (1.23M)

Feature 340.34 449.35 302.10 110.59 8439.32
Entropy Hist. 81.04 119.47 60.41 26.56 4110.04
Mixture Sep. 1.79 1.71 2.17 1.93 3.76
Clustering 75.76 97.45 62.13 30.21 1529.67
Training 929.33 1396.79 1189.61 187.01 31952.12

Table 8: Execution time (in seconds)

effective and that RACKNet is the only strategy that consistently
outperforms the random allocation strategy. It is especially impor-
tant to note that while naiïve allocation strategies, such as random,
show reasonable performance on simple datasets, like MNIST and
CIFAR10, they show very poor performance for complex ones, such
as ImageNet, In contrast, RACKNet provides consistently superior
performance for both simple and complex data sets.

4.4.3 Kernel Budget, Dropout Rates, and Racks. In Figures 7
and 8, we investigate the robustness of RACKNet (CNN and RCNN)
against varying kernel budgets and dropout rates. As we see in
the figures, RACKNet is robust against varying kernel budgets and
dropout rates and can help provide significant protection against
introduction of noisy kernels that degrade the network accuracy. In
Table 7, we see that RACKNet works well with 3 racks, as predicted
by the number of feature octaves of localized SIFT features. Provid-
ing a higher number of racks does not contribute to performance
as the number of SIFT features drop significantly for larger octaves,
limiting any discernible insights from the corresponding features.

4.4.4 Execution Time. RACKNet requires extraction and analy-
sis of local image features for their sizes and complexities before the
CNN is trained. Table 8 presents the time cost of this process along
with the CNN training time. As this table shows, the pre-processing
overhead of RACKNet is not high. Since the pre-processing cost
does not grow as fast as the CNN training cost, RACKNet becomes
cost efficient especially for large training sets, such as SVHN. A key
advantage of advantage of RACKNet over other hyper-parameter
search approaches is that, while they have to trainmultiple net-
work configurations during the hyper-parameter search, RACKNet
trains only a single network configuration; instead, it pre-processes
the data to determine the best performing configuration Since the
pre-processing cost grows much slower that the network training
cost, this provides large cost savings.

5 CONCLUSION
In this paper, we proposed RACKNet, a framework for allocating
convolution kernels for different layers of a CNN. In particular,
noting that local image features pre-extracted from the training
data can provide reliable insights that can inform the design of
the CNN architectures, we presented four key observations that
link sizes, complexities, and distributions of these local features
to CNN hyper-parameters. Experiments using several benchmark
datasets have shown that the proposed approach leads to highly
accurate classifiers without requiring hand-crafting of the hyper-
parameters. Experiments have further shown that the proposed
framework leads to more-accurate CNNs that are robust against
kernel budget availabilities, dropout rates, and Racks.
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Figure 7: Accuracy vs. kernel budget and dropout rates (RCNN implementation), for clarity, we only showRCNNwith uniform-
layer budget allocation strategy.
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Figure 8: Accuracy vs. kernel budget and dropout rates (CNN implementation), for clarity, we only show CNN with uniform-
layer budget allocation strategy.
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