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Abstract
Templated Statistical Relational Learning lan-
guages, such as Markov Logic Networks (MLNs)
and Probabilistic Soft Logic (PSL), offer much
of the expressivity of probabilistic graphical mod-
els in a compact form that is intuitive to both
experienced modelers and domain experts. How-
ever, these languages have historically suffered
from tractability issues stemming from the large
size of the instantiated models and the complex
joint inference performed over these models. Al-
though much research has gone into improving
the tractability of these languages using approxi-
mate or lifted inference, a relatively small amount
of research has gone into improving tractability
through efficient instantiation of these large mod-
els. In this position paper, we will draw attention
to open research areas around efficiently instanti-
ating templated probabilistic models.

1. Introduction
Templated Statistical Relational Learning languages, such
as Markov Logic Networks (MLNs) (Richardson & Domin-
gos, 2006) and Probabilistic Soft Logic (PSL) (Bach et al.,
2017), offer much of the expressivity of probabilistic graph-
ical models in a compact form that is intuitive to both ex-
perienced modelers and domain experts. However, these
languages have historically suffered from tractability issues.
These tractability issues stem from two causes: the large
size of the fully instantiated model when compared to the
compact template representation, and the complex joint in-
ference performed over these models.

Efforts to make these languages tractable fall into three
general categories. The first category of efforts is approx-
imation. This involves either approximating the logical
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problem with a continuous relaxation as is done in PSL,
or using approximate inference as is done in MLNs (Poon
& Domingos, 2006; Geier & Biundo, 2011; Sarkhel et al.,
2016). The second category of efforts is lifted inference
(Nath & Domingos, 2010; Broeck et al., 2011; Kersting,
2012; Kimmig et al., 2015; Kazemi & Poole, 2016; Srini-
vasan et al., 2019). Lifted inference detects symmetries and
common substructures in the data and then uses those struc-
tures to avoid redundant computations. Finally, the third
category of efforts into tractable templated SRL languages
move away from inference and instead focus on efficient
ground model instantiation. The process of full instantiat-
ing a ground graphical model from its compact template
representation is called grounding.

In this position paper, we will draw attention to the
least researched of the three tractability efforts, ground-
ing. Throughout this paper, we will use PSL as a context
in which to discuss grounding. However, all strategies and
research areas discussed will be applicable to any templated
SRL language. Section 2 will cover some background on
templated SRL languages, PSL, and grounding. Section
3 will then look into specific opportunities for research in
efficient grounding for templated SRL languages. Lastly,
Section 4 will end with some concluding remarks.

2. Background
2.1. SRL Templating Languages

SRL techniques combine the power of statistical inference
with relational data to produce rich models with intricate
constraints and dependencies (Getoor & Taskar, 2007).
Modeling relational data is inherently complicated by the
large number of interconnected and overlapping structural
dependencies that are typically present. To make modeling
relational data easier, many SRL frameworks use familiar
first order logic as a compact representation of the model
(Raedt et al., 2007; Riedel, 2008; Kok et al., 2009; Niu et al.,
2011; Noessner et al., 2013; Magliacane et al., 2015; Poole
& Mackworth, 2017; Bach et al., 2017; Alberti et al., 2017).
For example, the following logical clause can be used to
express the concept of transitive similarity:

Similar(A,B) ∧ Similar(B,C)→ Similar(A,C)
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We refer to the logical clauses that define models in these
languages as rules. A rule is composed of a collection
of atoms joined by logical operators. An atom consists
of a predicate with constants or variables as arguments.
A ground atom is an atom where all the arguments are
constants. Ground atoms with a fixed value act as observed
variables, while ground atoms with an unknown value are
random variables. A ground rule is a rule instance that
only consists of ground atoms. These ground rules act as
cliques in a graphical model, typically a Markov random
field (MRF). During inference these cliques are transformed
into functions that assign a numeric value to the variable
assignment, i.e. a potential function, the exact form of this
function is chosen by the specific SRL language. Each rule
is also assigned a weight that affects the penalty for not
satisfying the rule. Most templated SRL languages come
with the ability to either set weights manually, or learn them
from data (Kok & Domingos, 2005; Singla & Domingos,
2005; Lowd & Domingos, 2007; Huynh & Mooney, 2009;
2010; Bach et al., 2013; Chou et al., 2016; Sarkhel et al.,
2016; Das et al., 2016).

2.2. Probabilistic Soft Logic

Probabilistic Soft Logic (PSL) is one of the aforementioned
templating SRL languages. As its underlying graphical
model, PSL uses hinge-loss Markov random fields (HL-
MRF), a special class of the undirected graphical model
given by Definition 1. HL-MRFs are conditional distribu-
tions over real-valued atom assignments in [0, 1]. Unlike dis-
crete MRFs where ground logical clauses are either satisfied
or violated, a potential in HL-MRFs returns a continuous
value that represents the potential’s distance to satisfaction.
More formally:

Definition 1. Let x = (x1, ..., xm) be a vector of known
variables, y = (y1, ..., yn) be a vector of unknown ran-
dom variables, R = (R1, ..., Rl) be a set of rules, w =
(w1, ..., wl) be a set of real-valued weights each correspond-
ing to a rule, and φ = (φ1, ..., φl) be a set of potentials
where each potential corresponds to a rule and φR(xr,yr)
assigns the variables of this ground instance r of rule R a
real-valued score. Then, a templated Markov Random Field
is a probability distribution of the form:

P (y|x) = 1

Z
exp

(
−
∑
R∈R

∑
r∈R

wR · φR(xr,yr)
)

where

Z =
∑
x

exp
(
−
∑
R∈R

∑
r∈R

wR · φR(xr,yr)
)

Given this definition, MAP inference is achieved by maxi-

mizing the sum of weighted potentials in the model:

argmax
y

∑
R∈R

∑
r∈R

wR · φR(xr,yr)

Furthermore, in an HL-MRF the potential function, φ, is
always a linear combination of the variables involved in the
potential. This means that each potential is not just continu-
ous, but also convex. These convex potentials makes MAP
inference on an HL-MRF a convex optimization problem.
Framing inference as a convex optimization problem allows
PSL to provide an exact solution to continuous problems and
an approximate answer to discrete (MAX SAT) problems
with rounding guarantees (Bach et al., 2015).

The continuous nature of the HL-MRF allows PSL to scale
beyond what was previously feasible for SRL frameworks.
Solving MAP inference as a convex optimization problem
makes inference in PSL linear time with respect to the num-
ber of ground rules. This fast inference has allowed PSL
to solve problems with tens of millions of ground rules in
minutes (Kouki et al., 2018). PSL has also been shown to
outperform industrial interior point methods (Bach et al.,
2017) as well as existing MLN implementations (Pujara
et al., 2013; Augustine & Getoor, 2018).

The expressive modeling and tractability of PSL has lead it
to be used in many types of problems such as image classi-
fication (Gridach et al., 2017; Aditya et al., 2018a), scene
understanding (Aditya et al., 2018b), activity recognition
(London et al., 2013), natural language processing (Beltagy
et al., 2014; Deng & Wiebe, 2015; Ebrahimi et al., 2016;
Wang & Ku, 2016), bioinformatics (Sridhar et al., 2016),
recommender systems (Kouki et al., 2015; Lalithsena et al.,
2017), diagnosis of physical systems (Chen et al., 2014),
knowledge bases (Pujara et al., 2015; Pujara & Getoor, 2016;
Embar et al., 2018), and information retrieval (Alshukaili
et al., 2016; Platanios et al., 2017).

2.3. Grounding

Grounding is the process of instantiating each ground rule
given a rule template and the data. Grounding is gener-
ally approached in one of two ways: top-down or bottom-
up. Top-down grounding starts with the rules and employs
nested loops to perform replacements over all the variables
(Kok et al., 2009). It is simple and easy to implement, but
slow. Alternatively, bottom-up grounding works in two
phases (Niu et al., 2011). First, a database query is issued
that finds all the assignments of constants to variables for a
specific rule. As an example, variable assignments for the
transitive similarity rule from Section 2.1 can be computed
by the following SQL query:
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SELECT
S1 . a rgument1 AS A,
S1 . a rgument2 AS B ,
S2 . a rgument2 AS C

FROM
S i m i l a r S1 ,
S i m i l a r S2 ,
S i m i l a r S3

WHERE
S1 . a rgument1 = S3 . a rgument1
AND S1 . a rgument2 = S2 . a rgument1
AND S2 . a rgument2 = S3 . a rgument2

We will refer to these queries for variable assignment as
grounding queries. After executing a grounding query,
bottom-up grounding instantiates each returned variable
assignment into a ground rule. As a result of finding vari-
able assignments using a relational database, grounding
leverages the huge amount of work done by the RDBMS
community in query optimization, fast relational joins, and
memory management. Bottom-up grounding has shown sig-
nificant improvements over top-down grounding, but comes
at the cost of more complex systems (Niu et al., 2011; Au-
gustine & Getoor, 2018). For the remainder of this paper,
we will only be discussing bottom-up grounding.

3. Opportunities for Improving Grounding
All of the templated SRL frameworks discussed thus far are
severely impacted by grounding time. Grounding is difficult
because the number of ground rules can quickly become
intractable. Seemingly innocuous rule templates can hide a
polynomial number of instantiations. Once again, consider
the case of transitive similarity:

Similar(A,B) ∧ Similar(B,C)→ Similar(A,C)

This pattern is simple and is seen in many practical problem
domains. However, the number of ground rules instantiated
by this rule is cubic in the size of the input data. When
applying this rule in a social networking context where each
variable represents a user, even a modest social network of
1,000 users generates a ground model of a billion ground
rules. Rules like these allow for expressive and interdepen-
dent models, but present a significant systems challenge to
efficiently ground.

To illustrate the impact of different grounding decisions, we
have rerun the “End-to-End Performance” experiment from
(Augustine & Getoor, 2018). The experiment is a simple
SRL model implemented in Tuffy and PSL on increasingly
larger instances of a synthetic dataset. In addition to Tuffy
and the same version of PSL, we have included a version of
PSL with naive implementations of the containing query dis-
cussed in Section 3.3 and grounding query sharing discussed
in Section 3.4. Figure 3 shows the result of this experiment.
Grounding in Tuffy quickly becomes intractable for this

Number of Groundings

Ru
nt

im
e 

(s
ec

)

0

10

20

30

40

50

2M 4M 6M 8M 10M

Tuffy PSL - SysML 2018 PSL - Experimental

Grounding Time

Figure 1. Runtime time across different grounding implementa-
tions: Tuffy, PSL, and PSL with experimental grounding additions.

model once the number of ground rules exceeds one million.
Both versions of PSL scale with the number of ground rules
approximately linearly. However, the version of PSL with
the grounding improvements runs about twice as fast as the
unmodified PSL. As illustrated by this experiment, there is
significant room for improvement in the space of grounding.
In the rest of this section, we will cover several different
opportunities for improving grounding for templated SRL
languages.

3.1. Exposing Sparse Structure in Data

As previously discussed, the number of ground rules gener-
ated from grounding can quickly become prohibitively large.
Blocking (Papadakis et al., 2016) can be used to limit the
size of the ground model. Blocks work by using problem
specific heuristics to eliminate infeasible ground rules. In
templated SRL languages, these blocks can be included in
the model by incorporating them as data and including them
in the rules as predicates. Then during grounding, potentials
with components outside of the block will not be included
in the ground model. Injecting these sparse structures into
the data can limit the overall size of the model.

For example, consider the transitive similarity pattern ap-
plied to friendship prediction in a social network. We can
include a block in this rule which enforces the requirement
that for people to be friends they must have been members
of the same social group:

InGroup(A,G) ∧ InGroup(B,G) ∧ InGroup(C,G)
∧ Friends(A,B) ∧ Friends(B,C)
→ Friends(A,C)

Augustine & Getoor (2018) have shown large reductions
in grounding time by having the modeler explicitly mark
blocks in the data. However, there are two obvious places
for improvement here. The first is to achieve the grounding
performance of explicitly marking blocks without requiring
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the modeler to actually mark them. The second, and more
interesting, would be to discover sparse components in the
data without the user needing to introduce them. Automati-
cally discovering sparse components would allow the user
to focus on modeling tasks without needing to worry about
performance tweaks.

3.2. Improving the Performance of Ground Rule
Validation Functions

In the grounding process, each configuration of variables
returned from the database is checked to see if it constitutes a
valid ground rule. A ground rule is valid if it is not trivial and
it conforms to the semantics of the specific SRL framework.
Where a trivial ground rule is one whose potential value is
fixed and unchangeable regardless of the value assigned to
any random variables:

∀yr
φR(xr, yr) = c

Removing trivial ground rules at the grounding phase im-
proves performance in the later inference phase by not wast-
ing resources on potentials with a fixed value.

The function that validates a ground rule may be as simple
as just checking if the ground rule is trivial, as is the case
in the Alchemy framework (Kok et al., 2009). Tuffy, which
performs partial groundings of the MRF, has a more sophis-
ticated validation function that checks to make sure only the
appropriate portions of the MRF are grounded (Domingos &
Lowd, 2009). PSL enforces more language semantics in the
validation function; such as requiring that every generated
inference target has been explicitly defined in the input data
and ensuring that legal values are returned from user-defined
functional predicates (predicates where the user can write
custom code to evaluate ground atoms) (Bach et al., 2017).
Extensions to the different frameworks’ validation functions
have been proposed to improve performance by reducing
the size of the set of ground rules which pass validation.
Glass & Barker (2012) and Beltagy et al. (2014) modified
the Alchemy and PSL validation functions, respectively, by
introducing a “relevance” score for each ground rule and
only validating the ground rules with the highest score. Belt-
agy & Mooney (2014) used a custom validation function to
enforce a stricter closed-world assumption.

These validation functions have been shown to be criti-
cal to scaling (Singla & Domingos, 2006), but there has
been little research in how to evaluate them most effectively.
Augustine & Getoor (2018) showed that there was a sub-
stantial trade-off between validating ground rules in the
database (via additions to the WHERE clause in the ground-
ing query) or in the application layer (via iteration through
the results returned from the grounding query). In Augus-
tine & Getoor’s experiments, datasets with less than 85%
trivial ground rules benefited from executing these valida-

tion functions in the application layer rather than in the
database. This threshold raised to 95% when execution of
the validation functions was parallelized over more than one
core. Potential areas for research around effective use of
these validation queries include: hybrid validation functions
that are split between the database and application layers,
domain-independent relevance scores (generalizations of
(Glass & Barker, 2012) and (Beltagy et al., 2014)), and
parallel execution of validation functions.

3.3. Exploring the Database-Memory Trade-off

Early grounding techniques for SRL were primarily centered
around top-down grounding. These techniques were simple
and fully resided in memory. As the need for more perfor-
mant grounding rose, bottom-up grounding came into favor.
More and more computation was pushed into the database.
However, there is more room for research in the trade-off
between grounding time spent in the database and ground-
ing time spent in memory. Tuffy has already achieved much
success through a hybrid memory/database inference infras-
tructure (Niu et al., 2011). A similar approach to grounding
could prove beneficial.

One way to exploit this trade-off would be to use simpler
grounding queries that may return larger result sets in ex-
change for faster query execution. As previously discussed,
the results of the grounding query are filtered through a
validation function which removes spurious variable config-
urations. Because of this validation function, it is possible
to substitute the grounding query with one that returns a su-
perset of results. As long as the optimized query is safe (i.e.,
every variable appears in a positive atom) (Garcia-Molina
et al., 2008), then the validation function will invalidate any
spurious variable configurations returned by the grounding
query. So instead of executing the base query, any contain-
ing query can be invoked. A query q1 contains another query
q2 if q2 produces only answers that q1 also produces (Garcia-
Molina et al., 2008). Because the validation functions make
it possible to use queries that return larger result sets than
the base grounding query, we can explore the trade-off be-
tween query size and total grounding time. More query
results means more variable configurations that need to be
validated, however the executed query can be simpler and
contain fewer joins.

3.4. Reuse of Grounding Results

For large and/or complex models, the grounding query itself
can take much more time than instantiating the results into
ground rules. In addition, models often have rules that share
many atoms. Once again, consider the transitive similarity
example:

Similar(A,B) ∧ Similar(B,C)→ Similar(A,C)
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A natural complement to this rule would be to negate several
of the atoms:

Similar(A,B)∧!Similar(B,C)→!Similar(A,C)

These rules are semantically quite different, but almost iden-
tical in the eyes of the first phase in bottom-up grounding
where the task it to collect the combinations of constants
that map to the variables in the rule. These rules share all
the same variables and atoms. In cases like these, it could be
possible to reuse the results of a grounding query to ground
multiple rules.

When explored together with the modified grounding
queries discussed in Section 3.3, the opportunities to expand
grounding queries becomes much more available. Each rule
can have multiple possible grounding queries (any query
that contains the original query). When the collection of
all rules in a model are considered together, it is possible
to choose a combination of grounding queries where each
individual query is not the fastest available, but the collec-
tion of queries maximize the number of rules grounded per
query. For example, consider the following two rules from
our social networking example:

InGroup(A,G) ∧ InGroup(B,G) ∧ InGroup(C,G)
∧ Friends(A,B) ∧ Friends(B,C)
→ Friends(A,C)

InGroup(A,G) ∧ InGroup(B,G) ∧ InGroup(C,G)
∧ Similar(A,B) ∧ Similar(B,C)
→ Similar(A,C)

Both rules could be grounding by using a grounding query
that covers these atoms:

InGroup(A,G) ∧ InGroup(B,G) ∧ InGroup(C,G)

4. Conclusion
Templated SRL languages have proven to be expressive and
powerful tools for creating complex probabilistic models.
To improve tractability, much research has gone into infer-
ence and lifting, but there are many research opportunities
left in the area of grounding. In this paper, we discussed sev-
eral potential areas of research pertaining to grounding for
templated SRL languages. We have also illustrated through
a simple experiment the performance gains a more intelli-
gent grounding strategy can offer. Although our examples
have been made concrete using PSL, the grounding tactics
discussed here are general and applicable to any templated
SRL language. Addressing the bottleneck of grounding
breaks one of the barriers keeping templated SRL languages
from being tractable.
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