
– 1 –

The published version is found in the ASCE Library here: https://ascelibrary.org/

doi/10.1061/9780784482438.010

Zhang, R., and El-Gohary, N. (2019). “Unsupervised Machine Learning for Augmented Data

Analytics of Building Codes.” Proc., 2019 ASCE International Conference on Computing in

Civil Engineering, ASCE, Reston, VA, 74-81.

Unsupervised Machine Learning for Augmented Data Analytics of Building

Codes

Ruichuan Zhang, M.S., S.ASCE1 and Nora El-Gohary, Ph.D., M.ASCE2

1Department of Civil and Environmental Engineering, University of Illinois at Urbana-
Champaign, 205 North Mathews Avenue, Urbana, IL, 61801; e-mail: rzhang65@illinois.edu
2 Department of Civil and Environmental Engineering, University of Illinois at Urbana-

Champaign, 205 North Mathews Avenue, Urbana, IL, 61801; e-mail: gohary@illinois.edu

ABSTRACT

Existing automated code checking methods/tools are unable to automatically analyze and

represent all types of requirements (e.g., requirements that are too complex or that require human

judgement). Recent efforts in the area of augmented data analytics have proposed the use of

templates to facilitate the analysis of text. However, most of these efforts have constructed such

templates manually, which is labor-intensive. More importantly, it is difficult for manually-

developed templates to capture the linguistic variations in building codes. More research is, thus,

needed to automate the generation of templates to support the tagging and extraction of

information from building codes. To address this need, this paper proposes an unsupervised

machine-learning based method to extract sentence templates that describe syntactic and

semantic features and patterns from building codes. The proposed method is composed of four

main steps: (1) data preprocessing; (2) identifying the different groups of sentence fragments

using clustering; (3) identifying the fixed parts and the slots in the templates based on the

syntactic and semantic patterns of the sentence fragment groups; and (4) evaluating the extracted

templates. The proposed method was implemented and tested on a corpus of text from the

International Building Code. An accuracy of 0.76 was achieved.

INTRODUCTION

Various automatic and semi-automatic code checking methods have been developed, including

methods for automated text analysis (to capture the requirements in the textual codes) and

automated rule formalization (to formalize these requirements in the form of computable rules).

Although these methods have achieved different levels of automation and accuracy, they have

one common limitation, which is the inability to represent all types of building code

requirements, especially those requirements that have complex syntactic and semantic structures,

such as nested clauses and multiple proposition (verb-argument) units. Therefore, efforts must be

made to enhance the analysis of building code requirement sentences before any automatic or

semi-automatic compliance checking can be improved.

Recent efforts in the area of augmented data analytics have proposed the use of document

and sentence templates to facilitate the analysis of natural language data. A template is usually

composed of several fixed parts and slots. The fixed parts consist of words and/or phrases

mailto:rzhang65@illinois.edu
mailto:gohary@illinois.edu

– 2 –

frequently appearing in the corpus, and the slots are labeled by the syntactic and/or semantic

roles that the corresponding sentence fragments play in the sentence. Templates have been used

to facilitate semantic annotation and information extraction for various applications such as

document management (Arantes and Falbo 2010) and intelligent contracting (Clack et al. 2016).

A limited number of template-based approaches have also been used in the construction domain

for the analysis of contract specifications. For example, Ryoo et al. (2010) used premade

templates to facilitate the writing and editing of construction specifications in a web-based

system (Ryoo et al. 2010). Commercial software, such as e-Specs (Avitru 2018) and BIMdrive

(Digicon 2018), also used templates based on the National Master Specifications for developing

BIM-compatible specifications.

However, the template-based approach usually assumes that the templates are pre-defined

or manually constructed by domain experts, which is labor-intensive. Such manually-developed

templates are also typically rigid and static, lacking the flexibility and dynamism to capture the

linguistic variations across different types of chapters/documents. Manually-developed templates

are, thus, difficult to adapt from on chapter/document to another, especially when dealing with

complex, technical, and/or domain-specific documents like specifications and building codes.

Existing research to automate the generation of templates from text data includes automatic

template extraction from human-written weather reports for summarization (Das et al. 2008),

from news reports for information extraction (Chambers and Jurafsky 2011), and from emails for

email auto-reply (Proskurnia et al. 2017). Generally, automatic or semi-automatic template

generation approaches are composed of two primary steps: text/sentence clustering and template

induction from the clusters of textual data, with the latter step consisting of two substeps to deal

with the fixed parts and the slots, respectively. The objects to be clustered and the similarity

measures for clustering vary from one effort to another [e.g., verbs and WordNet similarity (Das

et al. 2008, Chambers and Jurafsky 2011), sentences and ROUGH similarity (Das et al. 2008),

and term frequencies and Euclidean distance (Proskurnia et al. 2017)] depending on the type of

text, domain/application characteristics and requirements, and template generation approach

taken. Thus, there is a need to develop a domain-specific automatic template generation method

to support the tagging and extraction of information from building codes.

To address this need, this paper proposes an unsupervised learning-based approach for

automatic generation of templates from building code sentences. The proposed approach consists

of four steps: data preparation and preprocessing; clustering of sentence fragments; induction of

templates from the clusters; and evaluation of the generated templates.

BACKGROUND

Constituency parsing and shallow semantic labeling. Constituency parsing aims to organize

words in a sentence into nested constituents based on phrase structures (Jurafsky 2000). The

result of constituency parsing is often represented in the form of a tree, where the nodes are

phrase structure categories, and the leaves are part-of-speech (POS) tags and words. Shallow

sematic role labeling aims to extract the proposition units, which consist of target verbs and other

constituents, where each fills a specific semantic role of the verb (Carreras and Màrquez 2005).

The semantic roles include agent, patient, and also adjuncts such as location, manner, etc. The

results of both techniques are usually used to gain a better understanding of the syntactic and

semantic structure of a sentence, which can function as features in machine learning problems

such as clustering to further analyze the natural language data.

– 3 –

Agglomerative hierarchical clustering. Clustering is an unsupervised learning problem that

aims to find groups of similar objects in the data (Aggarwal and Zhai 2012). Clustering

algorithms can be classified into several categories: agglomerative, partitioning, and probabilistic

model-based algorithms. Agglomerative hierarchical clustering aims to successively merge

groups of data in a pairwise manner based on the pairwise distance/similarity, until all the data

are within one single group (Aggarwal and Zhai 2012).

PROPOSED UNSUPERVISED APPROACH FOR AUGMENTED DATA ANALYTICS

OF BUILDING CODES

The proposed unsupervised machine learning-based approach for automatic generation of

templates for supporting building code analytics consists of four main steps, as per Figure 1.

Figure 1. Proposed unsupervised learning-based approach for augmented data analytics of

building codes.

Step 1: Data Preparation and Preprocessing. Around 1,000 sentences were collected from

Chapters 11 to 16 of the International Building Code (IBC) 2009 (ICC 2009). Three steps of data

preprocessing were conducted: tokenization, lowercasing, and stemming. All sentences were

then tagged and parsed using the Stanford CoreNLP constituency parser (Manning et al. 2014).

The results of constituency parsing were used for slot interpretation when inducing the templates

(Step 3.2). The sentences were also labeled using a shallow semantic role labeler, which

segments a sentence into several proposition units. Each proposition unit has a verb-argument

structure that is composed of: (1) one verb (V); (2) arguments (A): arguments are usually noun

phrases that define the verb-specific semantic roles [e.g., the agent (A0), the patient or theme

(A1), and a general argument with no specific semantic meaning (A2)]; (3) adjuncts (AM):

adjuncts are adverbs, adverb phrases, and preposition phrases that describe and/or modify the

verb [e.g., location (LOC), modal verb (MOD)]; and (4) references (R). The results of shallow

semantic role labeling were used as features for sentence fragment clustering (Step 2) and slot

interpretation (Step 3.2). Figure 2 shows an example of the semantic role labeling results.

Step 2: Sentence Fragment Clustering.

Pairwise distance calculation. Edit distance was used to describe the dissimilarity between each

pair of proposition units generated by shallow semantic role labeling. In edit distance, three types

of edit operations are defined: removal, insertion, and substitution (Jurafsky 2000). Each

– 4 –

operation adds one to the distance between the two sentences. For example, the edit distance

between proposition units “A0 A1 V” and “A0 A1 LOC V” is 1 because the first unit can be

converted into the second unit after one insertion operation of the tag “LOC”.

Agglomerative hierarchical clustering. Different agglomerative hierarchical clustering methods

were tested and evaluated based their average silhouette coefficients (Rousseeuw 1987): single,

complete, average, centroid, McQuitty, median, and Ward’s. The centroid method achieved the

highest performance, with an average silhouette coefficient of 0.5, and was therefore selected.

The centroid method defines the pairwise similarity as the cosine similarity between the

centroids of two groups (Steinbach et al. 2000). The average silhouette coefficient is the average

of the silhouette coefficients of all the data. The silhouette coefficient of a datum is computed as

per the following equation, where 𝑎(𝑖) is the average difference between datum i and the other

data in the same cluster, and 𝑏(𝑖) is the lowest average difference between i and the other

clusters. The silhouette coefficient ranges from -1 to 1. A value near 1 indicates that the datum is

far from the neighboring clusters; and a negative value indicates that the datum might be

assigned to a wrong cluster. A higher average silhouette coefficient indicates better clustering

result, which is essential for the following steps of template induction. If the size of a cluster is

too small compared to the average size of all the clusters, the sentence fragments corresponding

to the cluster are treated as outliers and are neglected in the following template generation steps.

Figure 2 shows an example of the clustering results.

𝑏(𝑖) − 𝑎(𝑖)
silhouette(i) =

max{𝑎(𝑖), 𝑏(𝑖)}

Step 3: Template Generation.

Defining the fixed parts. A template was generated for each type of sentence or sentence

fragment. The fixed parts in the templates were identified based on the frequent words. First, the

frequent words are identified. Then, for each sentence fragment template, the frequent words

form the fixed parts of the template. Term frequency was used to find the frequent words in each

cluster. The term frequency of every word in all sentence fragments was calculated for each

cluster. Articles such as “a”, “an”, and “the”, symbols, and punctuations were neglected when

calculating the term frequency. A threshold n was set to define the frequent words. The top n

percent of words in terms of frequency (or words with the highest frequency if the size of the

vocabulary is too small) were treated as frequent words.

Interpreting and annotating the slots. A slot in a template is the non-fixed (or blank) part

between two consecutive fixed parts. The complete template is, thus, a mixed sequence of both

frequent words and slot labels. The slots were annotated using two sets of labels: syntactic and

semantic labels. The syntactic labels are the phrasal tags at the first level below the root of the

constituency parsing tree. The slots were labeled with the phrasal tags of the fragments

corresponding to the slots. For example, the slot in the sentence fragment “an airspace of not less

than 1 inch” corresponding to “an airspace” was labeled as NP. The semantic labels are the

semantic roles based on the semantic information elements by Zhang and El-Gohary (2015) (e.g.,

subject, compliance checking attribute, and quantity value) and the proposition units. For

example, a slot was labeled as “subject” if the corresponding fragment represents a thing (e.g.,

building element) that is subject to a requirement; and a slot was labeled as “location” if the slot

– 5 –

is in the “LOC” in a proposition unit, and follows a preposition such as “in”, “above”, or

“below”. Figure 2 shows an example of the template generation results.

Figure 2. An example of the clustering-based template generation.

Step 4: Template Evaluation. Five metrics were used to evaluate the templates: the total

number and the average length of templates, coverage, entropy, and accuracy. The total number

of templates and the average length of templates are two basic indicators of the complexity of a

template system. The larger the total number of templates and the average length of templates,

the more complex the template system is. In addition, coverage and entropy were computed to

evaluate the templates (Proskurnia et al. 2017). The coverage is how much of the training

sentences can be represented using the template system. The entropy indicates how

rigid/inflexible the templates are; the higher the probability of the word occurrence in the fixed

parts, the higher the entropy. One important step of template generation is to find the optimal

frequent-word threshold to maximize the coverage and minimize the entropy simultaneously.

Coverage was computed as per the following equation, where 𝑙(𝑡𝑖) is the number of

words in the fixed parts of the ith template, T is the number of templates, 𝑙(𝑠𝑖) is total number of

words in the jth sentence, and S is the number of sentences.
∑𝑇 𝑙(𝑡𝑖)

coverage = 𝑖=1
𝑆
𝑗=1 𝑙(𝑠𝑗)

Entropy was computed as per the following equation, where 𝑃(𝑤𝑖) is the probability of

𝑤𝑖 occurring in the fixed parts of the templates and is computed by dividing the word frequency

of 𝑤𝑖 by the total length of all templates, and N is the total number of frequent words.
𝑁

entropy = − ∑ 𝑃(𝑤𝑖) log2 𝑃(𝑤𝑖)
𝑖=1

Accuracy was computed as the portion of the testing sentence fragments that are matched

to at least one of the templates to the total of testing sentence fragments. To develop the testing

dataset, a total of 160 sentence fragments were randomly selected from the rest of the chapters of

IBC 2009 (i.e., from Chapters 1 to 10 and Chapters 17 to 35).

PRELIMINARY EXPERIMENT RESULTS AND DISCUSSION

Sentence Fragment Clustering. A total of 3,000 sentence fragments were generated from

Chapter 11 to 16 of the IBC 2009 (ICC 2009). The corresponding proposition units were

clustered using the agglomerative hierarchical clustering method. The resulting average

silhouette coefficient is 0.5, which indicates good clustering performance. The clusters with size

∑

– 6 –

lower than 30 were neglected, resulting in a total of eight clusters that were used for template

induction. Table 1 shows the proposition unit structures corresponding to the eight clusters and

the size of each cluster. The proposition unit roles that exist in the majority of data in the cluster

are bolded.

Table 1. Proposition Unit Structures of the Clusters.

Cluster Proposition unit structure Cluster size

1 A1 AM (PNC/MNR/LOC/MOD) V 243

2 A1 A0 V AM (MOD) 220

3 A1 A0 A2 R V 109

4 A1 A2 AM (LOC/MOD) V 389
5 A1 A2 V 305

6 A1 A0 V 414

7 A1 AM (MNR/ LOC) V 985
8 A1 A2 AM (PNC/MNR/LOC/ADV/MOD) V 111

Note: A0=Agent; A1=Patient; A2=General argument with no specific semantic meaning; AM=Adjunct

LOC=Location; MNR=Manner; MOD=Modal verb; PNC=Purpose; R=Reference argument; V=Verb

Template Development. Four example templates and the corresponding example sentences or

sentence fragments that were used to generate the templates are shown in Table 2. The left side

of each template is the proposition unit element and the right side includes the slots, slot labels,

and the fixed parts. The sentence parts corresponding to the template slots are underlined.

Table 2. Example Templates.
Example templates Example sentence or fragment

A1 Slot Subject [NP]
“a drainage system installed in accordance

with Sections 1805.4.2 and 1805.4.3”

V Fixed part installed

MNR
Fixed part in accordance with

Slot Reference [NP]

A1 Slot Subject [NP]

“freestanding press boxes that are elevated

above grade 12 feet minimum”

R Fixed part that are

V Slot Quantitative relation [V]
 Fixed part above grade

A2 Slot Quantity value [CD]
 Fixed part feet minimum

LOC
Fixed part in

“In multilevel parking structures, van-

accessible parking spaces are permitted on

one level.”

Slot Location [NP]

A1 Slot Subject [NP]

V Fixed part permitted

A2
Fixed part on

Slot Location [NP]

A0 Slot Subject [NP]

“A building, room or space used for

assembly purposes with fixed seating shall

comply with Sections 1108.2.1 through

1108.2.5.”

MOD Fixed part shall

V Fixed part comply

A1
Fixed part with

Slot Reference [NP]

MNR
Fixed part through

Slot Reference [CD]
Note: A0=Agent; A1=Patient; A2=General argument with no specific semantic meaning; CD=Cardinal number;

LOC=Location; MNR=Manner; MOD=Modal verb; NP=Noun phrase; R=Reference argument; V=Verb

– 7 –

Template Evaluation. A sequence of frequent-word thresholds ranging from 0.01 to 0.2 with a

step of 0.01 were tested. Based on the empirical analysis of the coverage and entropy results, a

threshold value of 0.05 was found optimal. The coverage and entropy results are illustrated in

Figure 3(a) and (b), respectively. As shown, the coverage and entropy of the templates increase

as the threshold increases. The coverage increases because more words in the training sentences

are used in the fixed parts of the templates; and the entropy increases because the rigidity of the

templates increases. Similarly, the average length of the templates and the total number of

templates both increase as the threshold increases. Using the testing dataset, the accuracy of the

final templates is 0.76.

(a) (b)

Figure 3. (a) Plot of coverage; (b) Plot of entropy.

CONCLUSIONS AND FUTURE WORK

This paper proposed an unsupervised learning-based template extraction approach for analyzing

building code requirement sentences. The training building code sentences were first parsed by a

constituency parser and labeled by a shallow semantic role labeler. The proposition units

generated in the process of shallow semantic role labeling were clustered using an agglomerative

hierarchical clustering method based on pairwise edit distance. The sentence fragments

corresponding to the resulted clusters were then used to induce the templates: first, frequent

words were found and assembled into the fixed parts of the templates; second, the slots were

interpreted using syntactic and semantic labels. A number of building code requirement sentence

templates were generated and evaluated using five metrics: total number of templates, average

size of templates, coverage, entropy, and accuracy. An accuracy of 0.76 was achieved for the

final set of templates, at a 0.05 frequent-word threshold value.

This paper contributes to the body of knowledge in two primary ways. First, these

preliminary results show that the clusters learned from the syntactic and semantic features are

potentially effective for template generation. Second, the results also indicate that sentence

templates could help improve building code analytics by enabling the analysis of text and the

extraction of information using these templates.

In their future work, the authors plan to refine the semantic annotation of the template

slots using more compliance checking-related semantic roles; integrate the templates with

ontologies to enhance the quality of semantic annotation for improving coverage and decreasing

entropy; and leverage the templates to improve the tagging and extraction of information from

building codes and thus the performance of automated/semi-automated compliance checking.

– 8 –

REFERENCES

Aggarwal, C.C., and Zhai, C. (2012). “A survey of text classification algorithms.” Mining Text

Data, Springer, US, 163-222.

Arantes, L.O., and Falbo, R.A. (2010). “An infrastructure for managing semantic document.”

Proc., 14th Int. Enterprise Distributed Object Computing Conf. Workshops EDOCW,
235-244.

Avitru. (2018). “E-Specs.” http://e-specs.com/products/e-specs-master-specification-support.

(Oct 15, 2018)

Carreras, X., and Màrquez, L. (2005). “Introduction to the CoNLL-2005 shared task: semantic

role labeling.” Proc., 9th Computational Natural Language Learning Conf., 152-164.

Chambers, N., and Jurafsky, D. (2011). “Template-based information extraction without the

templates.” Proc., 49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies -Volume 1, 976-986.

Clack, C.D., Bakshi, V.A., and Braine, L. (2016). “Smart contract templates: foundations, design

landscape and research directions.” arXiv preprint arXiv:1608.00771.

Das, D., Kumar, M., and Rudnicky, A.I. (2008). “Automatic extraction of briefing templates.”

Proc., 3rd Int. Joint Conf. on Natural Language Processing: Volume-I.

Digicon. (2018). “BIMdrive Specification Management Software.”

http://www.digicon.ab.ca/services.aspx. (Oct 15, 2018)

ICC (International Code Council). (2009). International Building Code 2009. US.

Jurafsky, D. (2000). Speech & language processing. Pearson Education India, India.

Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J.R., Bethard, S., and McClosky, D. (2014).

“The Stanford CoreNLP natural language processing toolkit.” In ACL (System

Demonstrations), 55-60.

Proskurnia, J., Cartright, M. A., Garcia-Pueyo, L., Krka, I., Wendt, J. B., Kaufmann, T., and

Miklos, B. (2017). “Template induction over unstructured email corpora.” Proc., 26th

Int. Conf. on World Wide Web, 1521-1530.

Rousseeuw, P.J. (1987). “Silhouettes: a graphical aid to the interpretation and validation of

cluster analysis.” J. Comput. Appl. Math, 20, 53-65.

Ryoo, B.Y., Skibniewski, M.J., and Kwak, Y.H. (2010). “Web-based construction project

specification system.” J. Comput. Civ. Eng., 24(2), 212-221.

Steinbach, M., Karypis, G., and Kumar, V. (2000). “A comparison of document clustering

techniques.” KDD workshop on text mining, 400(1), 525-526.

Zhang, J., and El-Gohary, N.M. (2015). “Automated information transformation for automated

regulatory compliance checking in construction.” J. Comput. Civ. Eng., 29(4),

B4015001.

http://e-specs.com/products/e-specs-master-specification-support
http://www.digicon.ab.ca/services.aspx

