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ABSTRACT 

 

Existing automated code checking methods/tools are unable to automatically analyze and 

represent all types of requirements (e.g., requirements that are too complex or that require human 

judgement). Recent efforts in the area of augmented data analytics have proposed the use of 

templates to facilitate the analysis of text. However, most of these efforts have constructed such 

templates manually, which is labor-intensive. More importantly, it is difficult for manually- 

developed templates to capture the linguistic variations in building codes. More research is, thus, 

needed to automate the generation of templates to support the tagging and extraction of 

information from building codes. To address this need, this paper proposes an unsupervised 

machine-learning based method to extract sentence templates that describe syntactic and 

semantic features and patterns from building codes. The proposed method is composed of four 

main steps: (1) data preprocessing; (2) identifying the different groups of sentence fragments 

using clustering; (3) identifying the fixed parts and the slots in the templates based on the 

syntactic and semantic patterns of the sentence fragment groups; and (4) evaluating the extracted 

templates. The proposed method was implemented and tested on a corpus of text from the 

International Building Code. An accuracy of 0.76 was achieved. 

 

INTRODUCTION 

 

Various automatic and semi-automatic code checking methods have been developed, including 

methods for automated text analysis (to capture the requirements in the textual codes) and 

automated rule formalization (to formalize these requirements in the form of computable rules). 

Although these methods have achieved different levels of automation and accuracy, they have 

one common limitation, which is the inability to represent all types of building code 

requirements, especially those requirements that have complex syntactic and semantic structures, 

such as nested clauses and multiple proposition (verb-argument) units. Therefore, efforts must be 

made to enhance the analysis of building code requirement sentences before any automatic or 

semi-automatic compliance checking can be improved. 

Recent efforts in the area of augmented data analytics have proposed the use of document 

and sentence templates to facilitate the analysis of natural language data. A template is usually 

composed of several fixed parts and slots. The fixed parts consist of words and/or phrases 
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frequently appearing in the corpus, and the slots are labeled by the syntactic and/or semantic 

roles that the corresponding sentence fragments play in the sentence. Templates have been used 

to facilitate semantic annotation and information extraction for various applications such as 

document management (Arantes and Falbo 2010) and intelligent contracting (Clack et al. 2016). 

A limited number of template-based approaches have also been used in the construction domain 

for the analysis of contract specifications. For example, Ryoo et al. (2010) used premade 

templates to facilitate the writing and editing of construction specifications in a web-based 

system (Ryoo et al. 2010). Commercial software, such as e-Specs (Avitru 2018) and BIMdrive 

(Digicon 2018), also used templates based on the National Master Specifications for developing 

BIM-compatible specifications. 

However, the template-based approach usually assumes that the templates are pre-defined 

or manually constructed by domain experts, which is labor-intensive. Such manually-developed 

templates are also typically rigid and static, lacking the flexibility and dynamism to capture the 

linguistic variations across different types of chapters/documents. Manually-developed templates 

are, thus, difficult to adapt from on chapter/document to another, especially when dealing with 

complex, technical, and/or domain-specific documents like specifications and building codes. 

Existing research to automate the generation of templates from text data includes automatic 

template extraction from human-written weather reports for summarization (Das et al. 2008), 

from news reports for information extraction (Chambers and Jurafsky 2011), and from emails for 

email auto-reply (Proskurnia et al. 2017). Generally, automatic or semi-automatic template 

generation approaches are composed of two primary steps: text/sentence clustering and template 

induction from the clusters of textual data, with the latter step consisting of two substeps to deal 

with the fixed parts and the slots, respectively. The objects to be clustered and the similarity 

measures for clustering vary from one effort to another [e.g., verbs and WordNet similarity (Das 

et al. 2008, Chambers and Jurafsky 2011), sentences and ROUGH similarity (Das et al. 2008), 

and term frequencies and Euclidean distance (Proskurnia et al. 2017)] depending on the type of 

text, domain/application characteristics and requirements, and template generation approach 

taken. Thus, there is a need to develop a domain-specific automatic template generation method 

to support the tagging and extraction of information from building codes. 

To address this need, this paper proposes an unsupervised learning-based approach for 

automatic generation of templates from building code sentences. The proposed approach consists 

of four steps: data preparation and preprocessing; clustering of sentence fragments; induction of 

templates from the clusters; and evaluation of the generated templates. 

 

BACKGROUND 

 
Constituency parsing and shallow semantic labeling. Constituency parsing aims to organize 

words in a sentence into nested constituents based on phrase structures (Jurafsky 2000). The 

result of constituency parsing is often represented in the form of a tree, where the nodes are 

phrase structure categories, and the leaves are part-of-speech (POS) tags and words. Shallow 

sematic role labeling aims to extract the proposition units, which consist of target verbs and other 

constituents, where each fills a specific semantic role of the verb (Carreras and Màrquez 2005). 

The semantic roles include agent, patient, and also adjuncts such as location, manner, etc. The 

results of both techniques are usually used to gain a better understanding of the syntactic and 

semantic structure of a sentence, which can function as features in machine learning problems 

such as clustering to further analyze the natural language data. 
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Agglomerative hierarchical clustering. Clustering is an unsupervised learning problem that 

aims to find groups of similar objects in the data (Aggarwal and Zhai 2012). Clustering 

algorithms can be classified into several categories: agglomerative, partitioning, and probabilistic 

model-based algorithms. Agglomerative hierarchical clustering aims to successively merge 

groups of data in a pairwise manner based on the pairwise distance/similarity, until all the data 

are within one single group (Aggarwal and Zhai 2012). 

 

PROPOSED UNSUPERVISED APPROACH FOR AUGMENTED DATA ANALYTICS 

OF BUILDING CODES 

 

The proposed unsupervised machine learning-based approach for automatic generation of 

templates for supporting building code analytics consists of four main steps, as per Figure 1. 
 

Figure 1. Proposed unsupervised learning-based approach for augmented data analytics of 

building codes. 

 

Step 1: Data Preparation and Preprocessing. Around 1,000 sentences were collected from 

Chapters 11 to 16 of the International Building Code (IBC) 2009 (ICC 2009). Three steps of data 

preprocessing were conducted: tokenization, lowercasing, and stemming. All sentences were 

then tagged and parsed using the Stanford CoreNLP constituency parser (Manning et al. 2014). 

The results of constituency parsing were used for slot interpretation when inducing the templates 

(Step 3.2). The sentences were also labeled using a shallow semantic role labeler, which 

segments a sentence into several proposition units. Each proposition unit has a verb-argument 

structure that is composed of: (1) one verb (V); (2) arguments (A): arguments are usually noun 

phrases that define the verb-specific semantic roles [e.g., the agent (A0), the patient or theme 

(A1), and a general argument with no specific semantic meaning (A2)]; (3) adjuncts (AM): 

adjuncts are adverbs, adverb phrases, and preposition phrases that describe and/or modify the 

verb [e.g., location (LOC), modal verb (MOD)]; and (4) references (R). The results of shallow 

semantic role labeling were used as features for sentence fragment clustering (Step 2) and slot 

interpretation (Step 3.2). Figure 2 shows an example of the semantic role labeling results. 

 

Step 2: Sentence Fragment Clustering. 

Pairwise distance calculation. Edit distance was used to describe the dissimilarity between each 

pair of proposition units generated by shallow semantic role labeling. In edit distance, three types 

of edit operations are defined: removal, insertion, and substitution (Jurafsky 2000). Each 
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operation adds one to the distance between the two sentences. For example, the edit distance 

between proposition units “A0 A1 V” and “A0 A1 LOC V” is 1 because the first unit can be 

converted into the second unit after one insertion operation of the tag “LOC”. 

 

Agglomerative hierarchical clustering. Different agglomerative hierarchical clustering methods 

were tested and evaluated based their average silhouette coefficients (Rousseeuw 1987): single, 

complete, average, centroid, McQuitty, median, and Ward’s. The centroid method achieved the 

highest performance, with an average silhouette coefficient of 0.5, and was therefore selected. 

The centroid method defines the pairwise similarity as the cosine similarity between the 

centroids of two groups (Steinbach et al. 2000). The average silhouette coefficient is the average 

of the silhouette coefficients of all the data. The silhouette coefficient of a datum is computed as 

per the following equation, where 𝑎(𝑖) is the average difference between datum i and the other 

data in the same cluster, and 𝑏(𝑖) is the lowest average difference between i and the other 

clusters. The silhouette coefficient ranges from -1 to 1. A value near 1 indicates that the datum is 

far from the neighboring clusters; and a negative value indicates that the datum might be 

assigned to a wrong cluster. A higher average silhouette coefficient indicates better clustering 

result, which is essential for the following steps of template induction. If the size of a cluster is 

too small compared to the average size of all the clusters, the sentence fragments corresponding 

to the cluster are treated as outliers and are neglected in the following template generation steps. 

Figure 2 shows an example of the clustering results. 
 

𝑏(𝑖) − 𝑎(𝑖) 
silhouette(i) = 

max{𝑎(𝑖), 𝑏(𝑖)}
 

 

Step 3: Template Generation. 

Defining the fixed parts. A template was generated for each type of sentence or sentence 

fragment. The fixed parts in the templates were identified based on the frequent words. First, the 

frequent words are identified. Then, for each sentence fragment template, the frequent words 

form the fixed parts of the template. Term frequency was used to find the frequent words in each 

cluster. The term frequency of every word in all sentence fragments was calculated for each 

cluster. Articles such as “a”, “an”, and “the”, symbols, and punctuations were neglected when 

calculating the term frequency. A threshold n was set to define the frequent words. The top n 

percent of words in terms of frequency (or words with the highest frequency if the size of the 

vocabulary is too small) were treated as frequent words. 

 

Interpreting and annotating the slots. A slot in a template is the non-fixed (or blank) part 

between two consecutive fixed parts. The complete template is, thus, a mixed sequence of both 

frequent words and slot labels. The slots were annotated using two sets of labels: syntactic and 

semantic labels. The syntactic labels are the phrasal tags at the first level below the root of the 

constituency parsing tree. The slots were labeled with the phrasal tags of the fragments 

corresponding to the slots. For example, the slot in the sentence fragment “an airspace of not less 

than 1 inch” corresponding to “an airspace” was labeled as NP. The semantic labels are the 

semantic roles based on the semantic information elements by Zhang and El-Gohary (2015) (e.g., 

subject, compliance checking attribute, and quantity value) and the proposition units. For 

example, a slot was labeled as “subject” if the corresponding fragment represents a thing (e.g., 

building element) that is subject to a requirement; and a slot was labeled as “location” if the slot 
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is in the “LOC” in a proposition unit, and follows a preposition such as “in”, “above”, or 

“below”. Figure 2 shows an example of the template generation results. 
 

Figure 2. An example of the clustering-based template generation. 

 

Step 4: Template Evaluation. Five metrics were used to evaluate the templates: the total 

number and the average length of templates, coverage, entropy, and accuracy. The total number 

of templates and the average length of templates are two basic indicators of the complexity of a 

template system. The larger the total number of templates and the average length of templates, 

the more complex the template system is. In addition, coverage and entropy were computed to 

evaluate the templates (Proskurnia et al. 2017). The coverage is how much of the training 

sentences can be represented using the template system. The entropy indicates how 

rigid/inflexible the templates are; the higher the probability of the word occurrence in the fixed 

parts, the higher the entropy. One important step of template generation is to find the optimal 

frequent-word threshold to maximize the coverage and minimize the entropy simultaneously. 

Coverage was computed as per the following equation, where 𝑙(𝑡𝑖) is the number of 

words in the fixed parts of the ith template, T is the number of templates, 𝑙(𝑠𝑖) is total number of 

words in the jth sentence, and S is the number of sentences. 
∑𝑇 𝑙(𝑡𝑖) 

coverage =    𝑖=1  
𝑆 
𝑗=1 𝑙(𝑠𝑗) 

Entropy was computed as per the following equation, where 𝑃(𝑤𝑖) is the probability of 

𝑤𝑖 occurring in the fixed parts of the templates and is computed by dividing the word frequency 

of 𝑤𝑖 by the total length of all templates, and N is the total number of frequent words. 
𝑁 

entropy = − ∑ 𝑃(𝑤𝑖) log2 𝑃(𝑤𝑖) 
𝑖=1 

Accuracy was computed as the portion of the testing sentence fragments that are matched 

to at least one of the templates to the total of testing sentence fragments. To develop the testing 

dataset, a total of 160 sentence fragments were randomly selected from the rest of the chapters of 

IBC 2009 (i.e., from Chapters 1 to 10 and Chapters 17 to 35). 

 

PRELIMINARY EXPERIMENT RESULTS AND DISCUSSION 

 

Sentence Fragment Clustering. A total of 3,000 sentence fragments were generated from 

Chapter 11 to 16 of the IBC 2009 (ICC 2009). The corresponding proposition units were 

clustered using the agglomerative hierarchical clustering method. The resulting average 

silhouette coefficient is 0.5, which indicates good clustering performance. The clusters with size 

∑ 
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lower than 30 were neglected, resulting in a total of eight clusters that were used for template 

induction. Table 1 shows the proposition unit structures corresponding to the eight clusters and 

the size of each cluster. The proposition unit roles that exist in the majority of data in the cluster 

are bolded. 

 
Table 1. Proposition Unit Structures of the Clusters. 

Cluster Proposition unit structure Cluster size 

1 A1 AM (PNC/MNR/LOC/MOD) V 243 

2 A1 A0 V AM (MOD) 220 

3 A1 A0 A2 R V 109 

4 A1 A2 AM (LOC/MOD) V 389 
5 A1 A2 V 305 

6 A1 A0 V 414 

7 A1 AM (MNR/ LOC) V 985 
8 A1 A2 AM (PNC/MNR/LOC/ADV/MOD) V 111 

Note: A0=Agent; A1=Patient; A2=General argument with no specific semantic meaning; AM=Adjunct 

LOC=Location; MNR=Manner; MOD=Modal verb; PNC=Purpose; R=Reference argument; V=Verb 

 

Template Development. Four example templates and the corresponding example sentences or 

sentence fragments that were used to generate the templates are shown in Table 2. The left side 

of each template is the proposition unit element and the right side includes the slots, slot labels, 

and the fixed parts. The sentence parts corresponding to the template slots are underlined. 

 

Table 2. Example Templates. 
Example templates Example sentence or fragment 

A1 Slot Subject [NP]  
“a drainage system installed in accordance 

with Sections 1805.4.2 and 1805.4.3” 

V Fixed part installed 

MNR 
Fixed part in accordance with 

Slot Reference [NP] 

A1 Slot Subject [NP]  
 

“freestanding press boxes that are elevated 

above grade 12 feet minimum” 

R Fixed part that are 

V Slot Quantitative relation [V] 
 Fixed part above grade 

A2 Slot Quantity value [CD] 
 Fixed part feet minimum 

LOC 
Fixed part in  

“In multilevel parking structures, van- 

accessible parking spaces are permitted on 

one level.” 

Slot Location [NP] 

A1 Slot Subject [NP] 

V Fixed part permitted 

A2 
Fixed part on 

Slot Location [NP] 

A0 Slot Subject [NP]  

“A building, room or space used for 

assembly purposes with fixed seating shall 

comply with Sections 1108.2.1 through 

1108.2.5.” 

MOD Fixed part shall 

V Fixed part comply 

A1 
Fixed part with 

Slot Reference [NP] 

MNR 
Fixed part through 

Slot Reference [CD] 
Note: A0=Agent; A1=Patient; A2=General argument with no specific semantic meaning; CD=Cardinal number; 

LOC=Location; MNR=Manner; MOD=Modal verb; NP=Noun phrase; R=Reference argument; V=Verb 
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Template Evaluation. A sequence of frequent-word thresholds ranging from 0.01 to 0.2 with a 

step of 0.01 were tested. Based on the empirical analysis of the coverage and entropy results, a 

threshold value of 0.05 was found optimal. The coverage and entropy results are illustrated in 

Figure 3(a) and (b), respectively. As shown, the coverage and entropy of the templates increase 

as the threshold increases. The coverage increases because more words in the training sentences 

are used in the fixed parts of the templates; and the entropy increases because the rigidity of the 

templates increases. Similarly, the average length of the templates and the total number of 

templates both increase as the threshold increases. Using the testing dataset, the accuracy of the 

final templates is 0.76. 

 

(a) (b) 

Figure 3. (a) Plot of coverage; (b) Plot of entropy. 

 

CONCLUSIONS AND FUTURE WORK 

 

This paper proposed an unsupervised learning-based template extraction approach for analyzing 

building code requirement sentences. The training building code sentences were first parsed by a 

constituency parser and labeled by a shallow semantic role labeler. The proposition units 

generated in the process of shallow semantic role labeling were clustered using an agglomerative 

hierarchical clustering method based on pairwise edit distance. The sentence fragments 

corresponding to the resulted clusters were then used to induce the templates: first, frequent 

words were found and assembled into the fixed parts of the templates; second, the slots were 

interpreted using syntactic and semantic labels. A number of building code requirement sentence 

templates were generated and evaluated using five metrics: total number of templates, average 

size of templates, coverage, entropy, and accuracy. An accuracy of 0.76 was achieved for the 

final set of templates, at a 0.05 frequent-word threshold value. 

This paper contributes to the body of knowledge in two primary ways. First, these 

preliminary results show that the clusters learned from the syntactic and semantic features are 

potentially effective for template generation. Second, the results also indicate that sentence 

templates could help improve building code analytics by enabling the analysis of text and the 

extraction of information using these templates. 

In their future work, the authors plan to refine the semantic annotation of the template 

slots using more compliance checking-related semantic roles; integrate the templates with 

ontologies to enhance the quality of semantic annotation for improving coverage and decreasing 

entropy; and leverage the templates to improve the tagging and extraction of information from 

building codes and thus the performance of automated/semi-automated compliance checking. 
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