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Abstract: Most of the existing automated code compliance checking (ACC) methods are unable to fully 
automatically convert complex building-code requirements into computer-processable forms. Such complex 
requirements usually have hierarchically complex clause and sentence structures. There is, thus, a need 
to decompose such complex requirements into hierarchies of much smaller, manageable requirement units 
that would be processable using most of the existing ACC methods. Rule-based methods have been used 
to deal with such complex requirements and have achieved high performance. However, they lack 
scalability, because the rules are developed manually and need to be updated and/or adapted when applied 
to a different type of building code. More research is, thus, needed to develop a scalable method to 
automatically convert the complex requirements into hierarchies of requirement units to facilitate the 
succeeding steps of ACC such as information extraction and compliance reasoning. To address this need, 
this paper proposes a new, machine learning-based method to automatically extract requirement 
hierarchies from building codes. The proposed method consists of five main steps: (1) data preparation and 
preprocessing; (2) data adaptation; (3) deep neural network model training for dependency parsing; (4) 
automated requirement segmentation and restriction interpretation based on the extracted dependencies; 
and (5) evaluation. The proposed method was trained using the English Treebank data; and was tested on 
sentences from the 2009 International Building Code (IBC) and the Champaign 2015 IBC Amendments. 
The preliminary results show that the proposed method achieved an average normalized edit distance of 
0.32, a precision of 89%, a recall of 76%, and an F1-measure of 82%, which indicates good requirement 
hierarchy extraction performance. 

 

1 INTRODUCTION 
 

To reduce the time, cost, and errors of compliance checking, various automated code compliance checking 
(ACC) methods have been developed and implemented. Although these methods have achieved different 
levels of automation, representativeness, and accuracy, most of them are unable to fully automatically 
convert complex building-code requirements into computer-processable forms. Such complex requirements 
usually have hierarchically complex clause and sentence structures (e.g., nested syntactic and semantic 
structures, conjunctive and alternative obligations, multiple exceptions, etc.). There is, thus, a need to 
decompose such complex requirements into hierarchies of much smaller, manageable requirement units 
that would be processable using most of the existing ACC methods. 

 

Only a limited number of research efforts have focused on decomposing complex requirement sentences 
into semantically related units. Most of these research efforts, which have used annotation-based and/or 
rule-based methods, require intensive human effort. Annotation-based methods require experts to read and 
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annotate the building-code sentences with a set of semantic labels that indicate the role played by the 
sentence fragment in the context of compliance checking [e.g., requirement, application, selection, and 
exception (Hjelseth and Nisbet 2011)]. Recent rule-based methods (Zhang and El-Gohary 2013; Zhou and 
El-Gohary 2017) deal with complex requirements, segmenting a complex requirement into smaller semantic 
information elements including essential ones, such as subject and compliance checking attributes, and 
secondary ones, such as restrictions and exceptions. These rule-based methods have achieved the state- 
of-the-art performance, and only require limited human effort. However, they still lack scalability, because 
the rules are developed manually by experts and need to be updated and/or adapted when applied to a 
different type of building code and/or when the building code goes through major updates. More research 
is, thus, needed to develop a scalable method to automatically convert complex requirements into 
hierarchies of requirement units to facilitate the succeeding steps of ACC such as deep information 
extraction, information transformation, data matching, and compliance reasoning. 

 

To address this need, this paper proposes a new, machine learning-based method to automatically extract 
the requirement hierarchies from building codes, which consist of requirement units and restriction 
relationships between the units, based on syntactic dependencies. To identify those dependencies, a deep 
neural network model was trained on out-of-domain, large-scale annotated data, which were first adapted 
to the architectural, engineering, and construction (AEC) domain based on data similarity. The proposed 
method is composed of five main steps: (1) prepare and preprocess training and testing data from both 
outside of and within the AEC domain; (2) adapt the out-of-domain training data to the domain-specific task; 
(3) train a machine-learning model to automatically perform dependency parsing; (4) extract the 
requirement hierarchies by segmenting each requirement sentence into requirement units and interpreting 
the restriction relationships between the requirement units based on the dependencies; and (5) evaluate 
the proposed method by evaluating the requirement segmentation and restriction interpretation separately, 
using average normalized edit distance, and precision, recall, and F1-measure, respectively. The proposed 
method was trained using the English Treebank data from the computational linguistic domain, and tested 
on sentences selected from the 2009 International Building Code (IBC) and the Champaign 2015 IBC 
Amendments, with each converted into a requirement hierarchy. 

 

2 BACKGROUND 
 

2.1 Requirement Semantic Representation 
 

Semantic representations of requirements aim to represent the natural language requirements in computer- 
processable forms. Different semantic representations of requirements have been developed in the AEC 
domain for the purpose of regulatory document analysis in the context of compliance checking. Hjelseth 
and Nisbet (2011) proposed semantic markups including requirement, applicability, selection and exception 
(RASE) to model requirements with constraints. Zhang and El-Gohary (2013) and Zhou and El-Gohary 
(2017) proposed a set of semantic information elements to represent the information elements of 
requirements for facilitating the extraction of information from regulatory documents for supporting 
automated compliance checking. The semantic information elements include essential ones (e.g., subject, 
compliance checking attribute, quantity value) and secondary ones (e.g., subject restriction, quantity 
restriction). The building-code requirements are converted into the semantic representations either 
manually (Hjelseth and Nisbet 2011; Solihin and Eastman 2016) or automatically using hand-crafted rules 
(Zhang and El-Gohary 2013; Zhou and El-Gohary 2017). 

 

2.2 Dependency Parsing 
 

Dependency parsing aims to analyze the syntactic structure of a sentence by extracting the dependencies 
between a head word and words that directly relate to the head word (Nivre and Scholz 2004). The 
dependencies can be classified as three types: argument, modifier, and function-word dependencies. 
Argument dependencies are dependencies between arguments (i.e., a verb, the subject or object of a verb). 
Modifier dependencies are dependencies between an argument and the clauses, phrases, or words that 
modify this argument. Function-word dependencies are dependencies between words that indicate 
grammatical relationships and have little lexical meanings (e.g., prepositions, pronouns) and other words. 
Figure 1 shows the dependencies between the words of an example building-code sentence. The 
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dependencies can be used to further interpret the semantic relationships between the words, phrases, 
and/or fragments of the sentences. 

 

Figure 1: Dependencies between the words in an example sentence 
 

The commonly used dependency parsing methods are transition-based. The transition-based methods 
update two sequences of words, the buffer (i.e., unprocessed words) and the stack (i.e., partially processed 
words), where initially the stack is empty and the buffer has all the words in the sentence (Nivre and Scholz 
2004). One of the three transitions are performed – moving the word in the buffer to the stack, adding a 
dependency from the top word in the stack to the top word in the buffer and removing the top word from the 
stack, and adding a dependency from the top word in the buffer to the top word in the stack and moving the 
top word in the stack back to the buffer – until the buffer and the stack are empty. The transition and type 
of dependency are determined based on the features of the top words in the buffer and the stack. 

 

2.3 Deep Learning 
 

Deep learning methods use deep neural networks to automatically learn the patterns in large-scale training 
data (LeCun et al. 2015). Compared to traditional machine-learning methods, deep learning methods can 
achieve better performance, with least or no manual feature engineering. Deep neural networks have been 
used in the AEC domain recently, mainly for computer-vision tasks. For example, convolutional neural 
networks have been used for several tasks such as equipment detection (Kim et al. 2017), activity 
recognition (Luo et al. 2018), and crack/damage detection (Gulgec et al. 2019). However, no deep neural 
networks have been used in regulatory document analysis. To prevent overfitting problems, the training of 
deep neural networks requires a large, annotated dataset. However, the sizes of training data in the AEC 
domain are typically small (e.g., hundreds) due to the high cost of annotating the training data. One solution 
is to use a large-scale training dataset from another domain and adapt it to the target domain (e.g., AEC 
domain) by methods such as similarity-based data adaptation (Bhatt et al. 2015) and transfer learning (Yang 
et al. 2017). Such adaptation aims to adapt the syntactic and semantic features of the out-of-domain data 
so they become similar to those of the domain data, which could potentially increase the performance of 
the machine-learning model. 

 

3 PROPOSED REQUIREMENT HIERARCHY MODELING 

The paper proposes a new, hierarchical semantic representation to model complex requirements with 

restrictions and exceptions. A requirement hierarchy aims to represent a building-code requirement 

sentence in a hierarchical structure that consists of several requirement units and the relationships between 

the requirement units. Each requirement unit describes a requirement or condition on a subject and/or a 

compliance checking attribute. It may or may not include other essential semantic information elements 

(Zhang and El-Gohary 2013) such as quantitative relation, comparative relation, quantity value, quantity 

unit, and deontic operator indicator); and may not include any secondary semantic information elements 

such as restrictions and exceptions. Instead, a restriction or exception is represented as a separate, but 

related, requirement unit. A requirement unit is, thus, easily processable by most of the existing semi- 

automated or automated compliance checking methods and applications. There are three types of 

relationships between requirement units: conjunction (i.e., two units conjoined/disjoined by “and” and “or”), 

exception, and restriction. Restrictions can be further classified as subject restriction, compliance checking 

restriction, quantity restriction, and whole-unit restriction, depending on which requirement unit or semantic 

information element is being restricted/constrained. Conjunction and exception relationships can be directly 
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identified using function words, whereas restriction relationships cannot be easily identified. This paper, 

thus, focuses on restriction relationships. 

The proposed method is designed to extract a requirement hierarchy given a building-code sentence, by 

first segmenting the sentence into units, and then interpreting the restriction relationships between the units. 

Figure 2 shows an example building-code sentence and the corresponding requirement hierarchy. In this 

example, the whole sentence is modeled as one hierarchy consisting of five requirement units. Each unit 

contains at least one subject and/or compliance checking attribute, as shown in Figure 2. Unit 4 (RU 4) is 

the restriction of Unit 3 (RU 3), and Units 2 and 3 (RU 2 and RU 3) are the restrictions of Unit 1 (RU 1), 

which is the main unit in the requirement hierarchy. 
 

Figure 2: An example of requirement hierarchy modeling 

 

4 PROPOSED MACHINE LEARNING-BASED REQUIREMENT HIERARCHY EXTRACTION 
METHOD 

 

The proposed method consists of five main steps, as illustrated in Figure 3: data preparation and 
preprocessing, similarity-based training data pruning, dependency parsing model training, dependency- 
based requirement hierarchy extraction, and method evaluation. 

 

Figure 3: Proposed machine learning-based requirement hierarchy extraction method 
 

4.1 Data Preparation and Preprocessing 

Two types of data – out-of-domain and AEC-domain data – were prepared for training and testing. For out- 

of-domain data, the English Treebanks from the Universal Dependencies (Nivre 2018) were used for 
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training. The English Treebanks consist of 22,000 sentences collected from multiple domains (e.g., news, 

Wikipedia, social media) that are annotated with dependencies between words. The English Treebanks are 

large in scale, rich in syntactic and semantic patterns, and already annotated, which makes them suitable 

for training the deep neural network model for dependency parsing. 

For AEC-domain data, a dataset of 6,000 sentences were collected from the 2009 International Building 

Code (IBC) and the Champaign 2015 IBC Amendments. The dataset was randomly split into two datasets: 

5,850 sentences for training data pruning (Step 2) and 150 sentences for testing (Step 5). For annotating 

the testing dataset, the sentences were manually converted into requirement hierarchies, by first 

segmenting each sentence into requirement units and then annotating pairs of requirement units with 

restriction relationships. The AEC-domain data were then preprocessed using four steps: tokenization, 

lowercasing, stemming, and part-of-speech (POS) tagging. 
 

4.2 Similarity-Based Training Data Pruning 
 

4.2.1 Sentence Similarity Assessment 

Data similarity assessment aims to compute the similarity between the out-of-domain data and the AEC- 

domain data. The proposed similarity between two sentences is defined as the cosine similarity between 

the embeddings of the two sentences. The sentence embedding is a vector representation of the semantics 

and syntactics of the sentence, and is formed by concatenating the average word embedding and the 

average POS-tag embedding of the sentence. The average word embedding is the average of the word 

embeddings of all the words in the sentence; and the average POS-tag embedding is the average of the 

POS-tag embeddings of all the POS tags corresponding to the words in the sentence. A word or POS-tag 

embedding is a vector representation of the word or POS tag in a specific context (e.g., building code) 

(Mikolov et al. 2013). Both word and POS-tag embeddings were trained using the corpus of 5,850 building- 

code sentences, using the word2vec algorithm by Gensim (Rehurek and Sojka 2010) built in Python. 

4.2.2 Training Data Pruning 

The out-of-domain training data were pruned based on data similarity. For each training sentence, the 

average of the similarities to all of the testing sentences were calculated. All the training sentences were 

then ranked based on the average similarities. If a training sentence ranks below a percentage threshold, 

the training sentence is pruned. Different pruning thresholds were tested and compared in terms of final 

requirement hierarchy extraction performance. 
 

4.3 Dependency Parsing Model Training 

The deep neural network architecture proposed by Kiperwasser and Goldberg (2016) was adopted for 

dependency parsing, which consists of three main layers: the embedding layer, the long short term memory 

(LSTM) layer, and the multi-layer perceptron (MLP) layer. The embedding layer aims to create the word 

and POS-tag embeddings for each word in the training sentences. The LSTM layer aims to compute the 

feature values using the word and POS-tag embeddings of the current word and context words. Given a 

transition-based dependency parsing status (i.e., the buffer and the stack), the MLP layer aims to compute 

the scores for all the three possible transitions and all the possible types of dependencies, using the output 

feature values of the LSTM layer. The transition and/or dependency with the highest score is selected. The 

basic model architecture is shown in Figure 4. The hyperparameters of the model were tuned (e.g., the 

number of LSTM layers) for improving the performance of dependency parsing. 
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Figure 4: The basic architecture of the deep neural network model for dependency parsing 
 

4.4 Dependency-based Requirement Hierarchy Extraction 
 

The requirement hierarchy was then extracted from each sentence based on the dependencies, using two 
steps: requirement segmentation and restriction interpretation. 

 

4.4.1 Requirement Segmentation 

A requirement sentence is first segmented into several requirement units based on the word dependencies 

resulting from Step 3. Two simple rules were developed for requirement segmentation. First, any two words 

that have argument or function-word dependencies should belong to the same requirement unit. Second, 

any two words that have modifier dependencies are the segmentation boundary for two requirement units. 

The second rule has two exceptions: (1) one of the words is a cardinal number, because it acts as the 

quantity value in the requirement unit; and (2) one of the words is an adjective because it could be part of 

a subject or compliance checking attribute (e.g., “nonload-bearing” as an adjective modifying “wall” in the 

subject “nonload-bearing wall”), or could indicate a comparative relation (e.g., “minimum” as an adjective 

modifying the quantity value in the sentence “the floor shall extend 12 inches minimum”) in a requirement 

unit. 

Figure 5 shows an example of requirement segmentation. In the example, the dependencies between the 

word pairs “room” and “openings”, “protectives” and “protected”, “having” and “protectives” are modifier 

dependencies, and thus those pairs are the segmentation boundaries. The dependencies between word 

pairs “3/4-hour” and “rating” and “less” and “3/4-hour” are modifier dependencies but those words are either 

cardinal numbers (i.e. “3/4-hour”) or adjectives (i.e., “less”), and thus should not belong to different 

requirement units. The rest of the dependencies are either argument (e.g., the dependency between 

“openings” and “protected”) or function-word dependencies (e.g., the dependency between “the” and 

“room”), and thus the words linked by those dependencies shall not be the segmentation boundaries. 

 
 

Figure 5: An example of dependency-based requirement segmentation 
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4.4.2 Restriction Interpretation 

The restriction relationships between the requirement units were then interpreted based on their modifier 

dependencies. A modifier dependency between a pair of words belonging to two requirement units indicates 

a restriction relationship between the two units. The direction of the modifier dependency (i.e., from a word 

to its head word) indicates the direction of the restriction relationship (i.e., a unit is the restriction of the 

other unit). Figure 6 shows an example of restriction interpretation. In the example, there is a modifier 

dependency between the word “room” and its head word “openings”. Thus, Unit 2 (RU2), which includes 

the word “room”, is the restriction of Unit 1 (RU1), which includes the head word “openings”. Similarly, the 

modifier dependencies between the word “protectives” and its head word “protected”, and between the 

word “having” and its head word “protectives”, indicate that RU3 is the restriction of RU1, and that RU4 is 

the restriction of RU3, respectively. 
 

Figure 6: An example of dependency-based restriction interpretation 
 

4.5 Method Evaluation 
 

The performances of requirement segmentation and restriction interpretation were evaluated separately. 
 

4.5.1 Requirement Segmentation Evaluation 

The average normalized edit distance was used to evaluate the requirement segmentation performance. 

The normalized edit distance between two requirement units is defined as the minimum number of 

operations (i.e., insertion, deletion, and substitution) needed to transform one unit to the other, normalized 

by the lengths of the two units (Marzal and Vidal 1993). The average normalized edit distance is computed 

as the average of the minimum normalized edit distances from the requirement unit in the testing data to 

the requirement units generated by the requirement segmentation step. This metric ranges from 0 to 1. The 

lower the distance, the more similar the requirement units resulting from the proposed method to the 

requirement units in the gold standard, and the better the requirement segmentation performance; and vice 

versa. 

4.5.2 Restriction Interpretation Evaluation 

Three metrics were used to evaluate the restriction interpretation performance: precision (Eq. 1), recall (Eq. 

2), and F1-measure (Eq. 3), where TP is the number of true positives (i.e., number of pairs of requirement 

units correctly labeled as having restriction relationship), FP is the number of false positives (i.e., number 

of pairs of requirement units incorrectly labeled as having restriction relationship), and FN is the number of 

false negatives (i.e., number of pairs of requirement units not labeled as having restriction relationship but 

should have been) (Zhai and Massung 2016). All the three metrics range from 0 to 1. The higher the metrics, 

the better the restriction interpretation performance. The testing of the restriction interpretation step was 

conducted using the gold standard units to evaluate each step (requirement segmentation and restriction 

interpretation) separately and independently. 

[1] Precision = 
TP

 
TP+FP 

 

[2] Recall  =      
TP

 
TP+FN 

 

[3] 
F1 = 

2×Precision×Recall 

Precision+Recall 
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5 PRELIMINARY EXPERIMENTAL RESULTS 
 

5.1 Performance Results 
 

The performance results of requirement segmentation and restriction interpretation are summarized in 
Tables 1 and 2. The average normalized distance is 0.32, indicating good requirement segmentation. The 
precision, recall, and F1-measure for restriction interpretation is 89%, 76%, and 82%, respectively, 
indicating good requirement hierarchy extraction. 

 

Different pruning thresholds were tested, including 10% (slight pruning), 50% (halving), and 75% (significant 
pruning), as shown in Table 1. The optimal performance for requirement segmentation and restriction 
interpretation was achieved at 10% (slight pruning) and 50% (halving) pruning thresholds, respectively. But, 
the differences were small. Compared to not pruning the training data, the slight pruning decreased the 
average normalized distance by 0.01, and halving increased the precision, recall, and F1-measure by 2%, 
which indicates the potential of pruning in improving the performance of the proposed method. However, 
when 75% of the data were pruned, the performances of the proposed method started to decrease, possibly 
because the size of the training data shrank to a point where the dependency parsing model suffered from 
overfitting. 

 

Two dependency parsing algorithms were tested for comparative evaluation: the deep neural network 
model (see Section 4.3) and the neural network dependency parsing model by the Stanford CoreNLP (Chen 
and Manning 2014), as shown in Table 2. The deep learning model for dependency parsing achieved better 
performance for both requirement segmentation (lower average normalized edit distance) and restriction 
interpretation (higher precision, recall, and F1-measure). But, the differences were small. Compared to 
using the traditional neural network algorithm for the dependency parsing step, using the deep neural 
network algorithm decreased the average normalized edit distance by 0.13, and increased the precision, 
recall, and F1-measure by 2%. More testing is needed in future work to further verify these results and 
study the statistical and practical significances of these performance differences. 

 

Table 1: Performance of the proposed method with different pruning thresholds (and using deep neural 
network model for dependency parsing) 

 
 

Pruning 
threshold 

Requirement segmentation1
 Restriction interpretation1

 

Pruning method Average normalized edit 
distance 

Precision Recall F1-measure 

No pruning 0% 0.33 87% 74% 80% 
Slight pruning 10% 0.32 88% 74% 80% 
Halving 50% 0.34 89% 76% 82% 
Significant pruning 75% 0.34 86% 74% 80% 

1Bolded font indicates highest performance. 
 

Table 2: Performance of the proposed method with different dependency parsing algorithms (and using 
10% pruning for requirement segmentation and 50% pruning for restriction interpretation) 

 

Machine learning-based 
dependency parsing 

algorithm 

Requirement segmentation1
 Restriction interpretation1

 

Average normalized edit 
distance 

Precision Recall F1-measure 

Deep neural network 
algorithm 

0.32 89% 76% 82% 

Traditional neural network 
algorithm 

0.45 87% 74% 80% 

1Bolded font indicates highest performance. 
 

5.2 Error Analysis 
 

Two main types of errors were identified based on the experimental results. For requirement segmentation, 
the proposed method had errors when dealing with sentences that contain multiword expressions that are 
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made up of multiple words and act as a single syntactic and/or semantic unit (Sag et al. 2002), such as “in 
accordance with” and “means of egress”. The words in a fixed expression shall belong to a single 
requirement unit, while the proposed method segmented them into multiple units. In future work, a gazetteer 
list of fixed expressions used in the AEC domain could be added to the requirement segmentation step. For 
restriction interpretation, the proposed method had errors when dealing with sentences that have a mixed 
structure of preposition phrases and clauses (e.g., “the compartment shall extend through the highest level 
of exit discharge serving the underground portions”). The proposed method linked the requirement unit 
corresponding to the modifier clause (e.g., “serving the underground portions”) to the unit corresponding to 
the main clause (e.g., “the compartment shall extend through the highest level”) mistakenly, rather than to 
the unit corresponding to the preposition phrase (e.g., “of exit discharge”). In future research, more 
sentences that have this type of structure could be used for training the dependency parsing model. 

 

6 CONCLUSIONS AND FUTURE WORK 
 

This paper proposed a new semantic representation for modeling requirement sentences as hierarchies of 
smaller units and a machine learning-based method for automatically extracting such requirement 
hierarchies from building-code sentences for supporting automated compliance checking. First, a similarity- 
based data pruning method was proposed to adapt the out-of-domain English Treebank data, which are 
large in scale and rich in syntactic and semantic patterns, to the AEC-domain task at hand. Second, a deep 
neural network-based dependency parsing model was trained using the adapted data. Third, the 
requirement hierarchies were extracted by segmenting the requirement sentences into units, and 
interpreting the restriction relationships between the units, based on the dependencies. The proposed 
method achieved an average normalized distance of 0.32, indicating good requirement segmentation 
performance; and achieved a precision of 89%, a recall of 76%, and an F1-measure of 82%, indicating 
good restriction interpretation performance. 

 

This paper contributes to the body of knowledge in two primary ways. First, the paper proposed a new way 
to model the complex requirement sentences, which can be used to convert complex requirements into 
hierarchies of much simpler requirement units to facilitate automated machine learning-based processing 
of those complex requirements. Second, the results show that the dependencies can be used in analyzing 
the semantic relationships between different parts of the requirement sentences and can be used to 
automatically segment the requirements and extract the restriction relationships. 

 

In their future work, the authors first plan to improve the requirement modeling by identifying different types 
of restrictions based on examining building-code sentences, in terms of the semantic information elements 
that are restricted (e.g., subject restriction, compliance checking attribute restriction, quantity restriction) 
and the content of the restriction (e.g., location restriction, time restriction, method restriction). Second, the 
authors will explore further ways to improve the performance of the proposed requirement hierarchy 
extraction method, including using more training data, exploring different data adaptation methods (e.g., 
different similarity measures), and integrating the use of domain ontology for restriction interpretation. Third, 
and most importantly, the authors plan to integrate the proposed requirement hierarchy extraction method 
with machine learning-based information extraction, with an aim to find a scalable method for automated 
compliance checking. 
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