

Title: Spatial patterns of discovery points and invasion hotspots of non-native forest pests

Running title: Spatial patterns of non-native forest pests

Abstract

Aim Establishments of non-native forest pests (insects and pathogens) continue to increase worldwide with the growing number of introductions and changes in invasion pathways.

Quantifying spatiotemporal patterns in establishment locations and subsequent invasion dynamics can provide insight into the underlying mechanisms driving invasions and assist biosecurity agencies with prioritizing areas for proactive surveillance and management.

Location Contiguous United States of America

10 *Time period* 1794-2018

11 *Major taxa studied* Insecta and plant pathogens

12 **Methods** Using locations of first discovery and county-level occurrence data for 101 non-native
13 pests across the contiguous USA, we (1) quantified spatial patterns in discovery points and
14 county-level species richness using spatial point process models and spatial hotspot analyses,
15 respectively, and (2) identified potential proxies for propagule pressure (e.g., human population
16 density) associated with these observed patterns.

17 **Results** Discovery points were highly aggregated in space and located in areas with high
18 densities of ports and roads. Though concentrated in the northeastern USA, discovery points also
19 occurred farther west and became less aggregated as time progressed. Invasion hotspots were
20 more common in the northeast. Geographic patterns of discovery points and hotspots varied
21 substantially among pest origins (i.e., global region of pests' native ranges) and pest feeding
22 guilds. Significant variation in invasion richness was primarily attributed to the patterns of first
23 discovery locations.

24 **Main conclusions** Use of spatial point pattern analyses provided a quantitative characterization
25 of the central role of human activities in establishment of non-native pests. Moreover, the
26 decreased aggregation of discovery points through time suggests that invasion pathways to
27 certain areas in the USA have either been created or intensified [by human activities](#). Overall, our
28 results suggest that spatiotemporal variability in the intensity of invasion pathways has resulted
29 in marked geographical patterns of establishment and contributed to current macroscale patterns
30 of pest invasion in the USA.

31 **Keywords:** Getis-Ord, Insecta, invasion biology, pathogens, pathways, [Ripley's K function](#),
32 spatial point process

33

Introduction

34 Biological invasions can be categorized into three phases: arrival, establishment, and
35 spread (Liebhold & Tobin, 2008). For invasive forest pests (insects and pathogens), the first
36 phase is typically facilitated by inadvertent human transportation, for example, through
37 importation of live plants, wood packaging material, or timber (Skarpaas & Økland, 2009;
38 Liebhold *et al.*, 2012; Brockerhoff & Liebhold, 2017). The arrival of non-native pests has
39 increased with international trade and travel (Levine & D'Antonio, 2003; Turbelin *et al.*, 2016).
40 Arrival of more conspecifics per unit of time and/or space (i.e., higher propagule pressure)
41 increases the likelihood that a species will locate resources and overcome demographic barriers
42 to establishment (Lockwood *et al.*, 2005; Simberloff, 2009). The final invasion phase, spread, is
43 affected by human activities (e.g., movement of pests within the invaded range) (Shigesada &
44 Kawasaki, 1997; Gilbert *et al.*, 2004), variation in habitat quality (Liebhold *et al.*, 2013; Hudgins
45 *et al.*, 2017), temperature (Lantschner *et al.*, 2014), voltinism (Fahrner & Aukema, 2018), time
46 since establishment (Andow *et al.*, 1990) and other factors. Processes operating during each
47 phase combine to determine the extent of currently invaded ranges.

48 The number of non-native forest pests arriving and establishing in the USA continues to
49 increase (Aukema *et al.*, 2010). Non-native pests impact forest structure and succession (Morin
50 & Liebhold, 2015; Lovett *et al.*, 2016; Liebhold *et al.*, 2017) and cause billions of dollars (US\$)
51 in damage per annum (Aukema *et al.*, 2011). Given that human activity drives pest arrival and
52 establishment, discovery of pests in densely populated or well-traveled regions may be expected
53 (Huang *et al.*, 2012). Locations of arrival and establishment may vary temporally with changes
54 in international trade, such as fluctuations in economic markets that alter the intensity of invasion
55 pathways between regions (Everett, 2000) or as human population densities change in time and

56 space. However, spatial correlates of discovery points for non-native forest pests in the USA
57 have not been quantified.

58 The USA is highly invaded by forest pests with the number of non-native species per unit
59 area (“invasion richness”) distributed heterogeneously across the country (Liebhold *et al.*, 2013).
60 The geographical distribution of locations of initial invader establishment likely contributes to
61 macroscale patterns of invasion richness, as pests spread into adjacent areas. However, after
62 establishment, it does not necessarily follow that areas surrounding sites of initial establishment
63 will be conducive to rapid population growth and expansion of the invasive range. That is,
64 patterns of invasion richness are the result of both establishment and spread and therefore
65 patterns of invasion richness may not exactly mirror those of establishment locations.

66 Geographic variation in establishment and invasion richness may be driven, in part, by
67 frequent human-aided movement of pests into specific regions (Brockerhoff *et al.*, 2014), forest
68 structure including host availability and/or apparenency (Liebhold *et al.*, 2013; Guo *et al.*, 2019),
69 and climate (Ward & Masters, 2007). Among other factors, establishment and invasion richness
70 may also be influenced by global regions of origin and/or guilds of invaders. For example, rates
71 of establishment and spread may be greatest when pests are moved between regions with similar
72 climates (Roura-Pascual *et al.*, 2011; Venette, 2017) or more wood-borers may arrive in areas
73 with high imports of wood packaging material (Brockerhoff *et al.*, 2006; Haack, 2006; Rassati *et
al.*, 2015). Following establishment, spread may be guild dependent, for example, if firewood, a
75 major pathway for wood-boring insects (Koch *et al.*, 2012), is moved with different frequencies
76 between two regions than live plant material, a major pathway for foliage- and sap-feeding
77 insects (Liebhold *et al.*, 2012). It is unclear if either global region of origin or guild mediate
78 patterns in establishment locations or invasion richness.

79 Here, we quantify spatial patterns in discovery points and invasion richness of non-native
80 forest pests using spatial point pattern and hotspot analyses, respectively. Application of spatial
81 point pattern analyses to ecological data has increased over the previous ~20 years and been
82 frequently used to quantify spatial aggregation patterns (e.g., compete spatial randomness) in
83 univariate data (Velázquez *et al.*, 2016). Point pattern analyses may also be used to quantify the
84 influence of spatial heterogeneity (e.g., habitat features) on point patterns (Dodd *et al.*, 2016) and
85 conduct marked point pattern analyses, which enable the inclusion of trait information
86 (Velázquez *et al.*, 2016). To that end, we analyzed changes in first discovery points by time
87 period of introduction, origin, and guild. For analyses of invasion richness, we identified richness
88 hotspots by estimating local Getis-Ord statistics (Getis & Ord, 1992) at the county-level. Our
89 intention was to provide insight on underlying drivers of macroscale patterns of invasion by non-
90 native forest pests. We anticipate that our findings will assist management agencies in targeting
91 areas for increased monitoring and mitigation efforts.

Materials and Methods

93 *Data collection and processing*

94 The locations of first detection, henceforth referred to as discovery points, and county-
95 level occurrence for 101 major non-native pests ($n = 84$ insects, 17 pathogens) of trees were
96 compiled for the contiguous USA. Data were originally collected for the Alien Forest Pest
97 Explorer database. Briefly, locations (latitude, longitude) of discovery and occurrence at the
98 county-level were compiled from primary literature articles, surveys, and federal and state
99 government reports. A detailed description of the database was provided in Liebhold *et al.*,
100 (2013), which focused on mapping invasion richness at the county-level and identifying terms
101 for propagule pressure and habitat invasibility that explained variation in invasion richness. Here,

102 we conducted analyses to predict spatial patterns in discovery locations and quantitatively
103 identify invasion hotspots (see below). For each pest, we obtained the year of first discovery,
104 global region of origin or simply “origin” (Asian Palearctic, Australasia, European plus Asian
105 Palearctic, European Palearctic, or Neotropic Mexico/Central/South America; based on a pest’s
106 native range and henceforth referred to as Asia, Australasia, Eurasia, Europe, and
107 Mexico/Central America/South America respectively), and guild (bark/wood-borer, foliage-
108 feeder, sap-feeder, pathogen). Pests were discovered between 1794-2004. Most were introduced
109 from Asia (33) and Eurasia (33), followed by Europe (25), Australasia (8), and Mexico/Central
110 America/South America (2). Of the total pests, 23 were bark/wood-borers, 34 were foliage-
111 feeders, 27 were sap-feeders, and 17 were pathogens.

112 For analyses of discovery points, some pests were not included either due to lack of
113 documentation or because points were only traceable to the state level. One pest, beech scale
114 (*Cryptococcus fagisuga* Lind.), was removed from analysis of discovery points because this
115 species arrived in the USA via diffusive spread from Canada rather than as a point introduction.
116 Some pests were assigned to county centroids and were retained for analyses. Ten pests ($n = 4$
117 insects, 6 pathogens) were discovered in two, isolated locations and were treated as independent
118 data points. In total, 79 discovery points for 74 pests ($n = 62$ insects, 12 pathogens) across 62 US
119 counties were available for analyses of discovery points (Figure 1).

120 Hotspot analyses of invasion richness focused on 101 pests across 3,109 counties and
121 were current as of July 2018. First discovery locations were not available for all pests; hence,
122 number of species between first detection point analyses and hotspot analyses differed. Two
123 pests, soapberry borer (*Agrilus prionurus* Chevrolat) and, oak wilt (*Bretziella fagacearum* (T. W.
124 Bretz) J. Hunt) originating from Mexico/Central America/South America were not included in

125 origin-dependent analyses. Summaries of pests analyzed for discovery points (Table S1.1) and
126 hotspots (Table S1.2) by origin \times guild are available in Appendix S1 in supporting information.
127 All data and Geographic Information Systems (GIS) layers used in analyses are available
128 through the Purdue University Research Repository (PURR) (Ward *et al.*, 2019).

129 ***First discovery points***

130 We analyzed the spatial intensity of discovery points (discovery points per km^2) using
131 spatial point pattern analysis (Renner *et al.*, 2015). Our spatial window of analysis was the
132 border of the entire contiguous USA. All points were projected using Albers equal area
133 projection. We then quantified Ripley's K-function ($K(r)$; Ripley 1976) for discovery points,
134 which provides inference on spatial clustering of points within circles of increasing radii (i.e., at
135 various spatial scales) (Bivand *et al.*, 2013b). The estimated $K(r)$ was transformed ($\sqrt{K(r)/\pi b} - r$)
136 and compared visually to $K(r)$ values simulated from a random distribution of 200 points. All
137 point pattern analyses were conducted in R statistical software (R Core Team, 2018) via the
138 'spatstat' package (Baddeley & Turner, 2005; Baddeley *et al.*, 2015).

139 We then evaluated the explanatory power of invasion pathway variables such as
140 population density in 1990 (converted to $10 \times 10 \text{ km}$ raster; Falcone, 2016), coastal port density
141 (National Geospatial-Intelligence Agency, 2017), road density (primary roads; US Census
142 Bureau Department of Commerce, 2016) and first and second order terms for the west-east and
143 south-north directions in log-transformed intensity of discovery locations using point process
144 models (PPMs). Non-directional terms were converted to pixel-images for analysis (Baddeley &
145 Turner, 2005). Note that our analyses predicted where pests were discovered, not necessarily
146 where they first became established. The west-east and south-north terms were included as
147 putative correlates for the arrival of pests in coastal areas by means not accounted for by the

148 invasion pathway variables. For example, a positive correlation between west-east and intensity
149 of first discovery points would indicate that there are statistically higher concentrations of points
150 in the east vs. west. Approximately 80,000 quadrature points were selected to approximate the
151 integral in the log-likelihood function that is maximized when fitting point process models
152 (Baddeley & Turner, 2005; Renner *et al.*, 2015). Diagnostic plots of residuals suggested that
153 substantial unexplained variation in both the west-east and south-north directions remained
154 (Appendix S2).

155 We further analyzed the location of discovery points in relation to time periods of
156 discovery, origins, and guilds. To investigate temporal patterns in aggregation, the discovery
157 point data were split into four groups using quartiles (Q1 = 1794-1907, Q2 = 1908-1927, Q3 =
158 1928-1991, Q4 = 1992-2004) for year of first discovery and Ripley's K statistic was then
159 estimated separately for each quartile. Following the approach of Bivand *et al.*, (2013), we also
160 conducted pairwise comparisons of aggregation between time periods to determine, for example,
161 if discovery points from time period i were more or less aggregated than those of time period j
162 (graphical results of pairwise comparisons are provided in Appendix S3 in supporting
163 information). We then conducted a marked point pattern analysis, which enabled each point to be
164 assigned to a level of time period, by fitting a point process model with spatial covariates for the
165 west-east direction, south-north direction, and each direction's interaction with a term for time
166 period (i.e., west-east \times time period, south-north \times time period; time period had four levels, Q1-
167 Q4). Thus, we quantified (1) aggregation and (2) directional trends of points in space. Parallel
168 analyses were conducted using origin and guild, each a categorical variable with four levels as
169 described above, instead of time period. Trends were assessed visually by graphing intensity of
170 discovery points as estimated via an isotropic Gaussian smoothing kernel fit via the density.ppp()

171 function in R (Diggle, 1985; Baddeley & Turner, 2005). To determine robustness of full models,
172 individual models for each level within a predictor were constructed by fitting terms for the
173 west-east and south-north direction (e.g., assessing directional trends for pests introduced in Q1)
174 and are provided in Appendix S4 in supporting information.

175 Finally, to determine if patterns associated with origin or guild may have changed with
176 time, we fit two separate ANOVAs assessing the role of origin or guild in year of first discovery.
177 When significant variation in discovery year was explained by a predictor (either guild or
178 origin), we used TukeyHSD tests fit via the ‘emmeans’ package (Lenth, 2018) in R to conduct
179 pairwise comparisons.

180 ***Current invasion hotspot patterns***

181 Hotspot analyses compare attributes of a spatial feature, such as the invasion richness of a
182 county, and its neighbors, to the global pattern across all spatial features to identify features with
183 attribute levels greater than would be expected due to random chance (Patil & Taillie, 2004; Fei,
184 2010; Iannone *et al.*, 2016). Invasion hotspots were identified by quantifying local Getis-Ord
185 (G_i^*) statistics (Getis & Ord, 1992) for each county in the data set. G_i^* is a local neighborhood
186 statistic that can account for invasion richness in neighboring counties and enable one to detect
187 spatial patterns that may not be accounted for when using global statistics (Ord & Getis, 1995).
188 Thus, a county with low invasion richness could be identified as a hotspot if it is surrounded by
189 counties with extremely low invasion richness values. Moreover, estimating G_i^* produces a Z-
190 score, which can be used as a threshold value for identifying areas with high invasion richness,
191 rather than a scale of integer values such as invasion richness counts. That is, invasion richness
192 counts do not involve a statistical test to determine which areas have significantly higher
193 richness.

194 A first-order spatial neighborhood was constructed for calculating G_i^* statistics. Separate
195 analyses were conducted for all pests combined, origins, and guilds. For origin and guild, we
196 quantified G_i^* statistics both among (i.e., to identify counties with significantly more origins or
197 guilds) and within (i.e., to identify counties with significantly more species belonging to a
198 specific origin or guild) groupings. Calculating G_i^* statistics results in a Z -score that can be
199 compared to a standard normal distribution to obtain a P -value. We defined a hotspot as any $Z \geq$
200 4.158 (i.e., $P < 0.05/3,109$, or < 0.000002), equivalent to a Bonferroni correction, to protect
201 against inflated type I error rates from calculating 3,109 Z -values (one for each county).

202 *Current invasion hotspot patterns and first discovery locations*

203 To quantify the effect of discovery locations on invasion richness, we first estimated the
204 intensity of discovery points at county centroids from observed discovery point data using an
205 isotropic Gaussian smoothing kernel as described above (see Figure 1 for a representation of the
206 smoothed surface). Estimated intensities ranged from 0.0000001 to 0.00011 pests per km^2 . We
207 then fit three spatial simultaneous autoregressive error (SAR) models. For the first two, we
208 predicted invasion richness and hotspots, using estimated Z -values, as a function of estimated
209 intensities of discovery points. For the third model, we regressed hotspot Z -values on invasion
210 richness. Model residuals for each analysis were weighted by second order spatial neighborhoods
211 to account for spatial autocorrelation. The SAR models were fit and Moran's I estimated using
212 the 'spdep' package in R (Bivand *et al.*, 2013a; Bivand & Piras, 2015). GIS analyses relied on
213 the 'geosphere' (Hijmans, 2017), 'geostatsp' (Brown, 2015, 2018), 'maptools' (Bivand & Lewin-
214 Koh, 2017) and 'rgdal' (Bivand *et al.*, 2018) packages in R (R Core Team, 2018).

215

216

Results

217 ***First discovery points: population density, ports, and roads***

218 Discovery points were concentrated in the northeast and western coastal areas except for
219 ~10 points (~12%) distributed across the inland and southern USA (Figure 1). Owing to a total of
220 79 discoveries across the entire contiguous USA, the mean intensity was low (0.00001 points per
221 km²). Discoveries were highly aggregated in space at both local and continental scales (Figure
222 2a). In point process models, a second order term for west-east (west-east²) was significantly,
223 positively correlated with the intensity of discovery points, indicating that more pests initially
224 invaded on both the east and west coasts (Table 1). Neither a first nor second order term for
225 south-north was significant. After accounting for these directional trends in discovery points, the
226 density of ports and roads, proxies for invasion pathway intensity (propagule pressure), were
227 positively correlated with the intensity of discovery points (Table 1). Human population density
228 was not significantly correlated with intensity of discovery points in our full model (Table 1), but
229 was significantly, positively correlated when fit with just the directional predictors (Appendix S5
230 of supporting information). In the full model, the most significant pathway correlate of discovery
231 point intensity was the density of roads, followed by density of ports and human population
232 density, which was not significant (Table 1).

233 ***First discovery points: time period***

234 When modeling the intensity of discovery points using marked point pattern analysis, we
235 found that spatial patterns in discoveries varied among time periods. Pests discovered between
236 1794-1907 (Q1) and 1908-1927 (Q2) were significantly more aggregated than pests discovered
237 between 1928-1991 (Q3) and 1992-2004 (Q4) (all $P < 0.01$; Figure 2b). There were no statistical
238 differences between Q1 vs. Q2 and Q3 vs. Q4. When analyzing how directional trends and time
239 period of introduction (Q1-Q4) jointly influence discovery point intensity, there was a

240 statistically significant interaction between both directional predictors and time (west-east \times time
241 period and south-north \times time period). Pests discovered between 1794-1927 (Q1-Q2) were more
242 likely to be discovered in eastern and northern regions of the USA (Table 2a, Figure 3a,b). Pests
243 discovered from 1928-1991 (Q3) were more likely to be discovered farther west than pests from
244 Q1 (Table 2a, Figure 3c). Pests discovered from 1992-2004 (Q4) were more likely to be
245 discovered farther south and west than pests from Q1 (Table 2a, Figure 3d). Individual fits by
246 time period confirmed that discoveries were more likely to occur farther west and south as time
247 progressed (Table S4.1, Appendix S4).

248 ***First discovery points: origin***

249 Marked point pattern analyses demonstrated that, in addition to changes with time period,
250 spatial patterns of discovery points were mediated by pests' global region of origin. Within an
251 origin, all pests were aggregated in space (e.g., pests from Asia were likely to be discovered near
252 other pests from Asia), although discovery points of pests from Australasia, Eurasia, and Europe
253 were more aggregated than those from Asia (Figure 2c). There were no differences in
254 aggregation among discovery points of pests from Australasia, Eurasia, and Europe. Pests from
255 Asia were more likely to be discovered in the east vs. the west (Table 2b, Figure 3e). Pests
256 originating in Australasia were more likely to be discovered in the southwestern USA than those
257 from Asia (Table 2b, Figure 3f), whereas pests from Eurasia and Europe were typically
258 discovered in the northeastern USA, similar to pests from Asia (Table 2b, Figure 3g,h).
259 Individual fits by origin confirmed that pests from Asia, Eurasia, and Europe were generally
260 discovered in the east whereas pests from Australasia were discovered in the southwest (Table
261 S4.2, Appendix S4).

262 ***First discovery points: guild***

263 We also found that spatial patterns in discovery points differed among guilds.
264 Discoveries of foliage-feeders were significantly more aggregated than borers, sap-feeders, and
265 pathogens (all $P < 0.01$; Figure 2d). There were no other differences detected in aggregation
266 among guilds (all $P > 0.05$). Foliage-feeders were more likely to be discovered in the
267 northeastern USA (Figure 3i), whereas borers (Figure 3j), sap-feeders (Figure 3k), and pathogens
268 (Figure 3l) were more likely to be discovered farther west than foliage-feeders (Table 2c).
269 Higher densities of discovery points of pathogens were observed at higher latitudes, though this
270 trend was not statistically significant (Table 2c). Individual fits by guild confirmed conclusions
271 from full models, except that the positive trend of discoveries of pathogens in the y -direction was
272 statistically significant in the model evaluating pathogens alone (Table S4.3, Appendix S4).

273 ***First discovery points: guild and origin by time period***

274 Year of first discovery did not vary with region of origin ($F_{4,74} = 2.10$, $P = 0.09$). Pests
275 from Australasia were the most recently discovered group on average, with a mean discovery
276 year of 1973 (± 18 years SE), followed by pests from Asia (1943 ± 8), Eurasia (1928 ± 11), and
277 Europe (1923 ± 12). Year of first discovery varied significantly among guilds. The means for
278 year of first discovery of borers and pathogens were 1981 (± 8 years SE) and 1949 (± 9),
279 respectively, and did not differ significantly (TukeyHSD, $t_{75} = 2.08$, $P = 0.17$). Foliage-feeders
280 and sap-feeders were discovered, on average, in 1916 (± 9 SE) and 1918 (± 11), respectively,
281 significantly earlier than borers (TukeyHSD, all $t_{75} > 4.3$ and $P < 0.0004$). No differences were
282 detected among foliage-feeders, sap-feeders, and pathogens (TukeyHSD, all $t_{75} < 2.29$ and $P >$
283 0.10).

284 ***Current invasion hotspot patterns: all pests***

285 Of the 3,109 counties comprising our analysis, 89% were invaded by at least one species
286 (Figure 4a). The average number of species per county was 4.88 (± 0.09 SE; maximum = 36
287 species) and 6.3 % of counties were identified as hotspots (i.e., $Z \geq 4.158$, < 0.00002) as
288 estimated by Getis-Ord (G_i^*) statistics (Figure 4b). Most hotspots were in the northeastern USA
289 except for one county in southeastern Wisconsin (Figure 4b).

290 ***Current invasion hotspot patterns: origin***

291 Species region of origin was associated with distinct geographical patterns. The average
292 county had pests belonging to 1.62 (± 0.018 SE) origins. Pests from Asia were the most
293 widespread and established in 80% of counties. Pests from Eurasia (50% of counties infested)
294 were the second most widespread, followed by pests from Europe (28%) and Australasia (4%).
295 Several counties in California and one county each in Massachusetts and Montana were hotspots
296 for the number of different origins represented (Figure 5a). That is, in those counties in
297 California, Massachusetts, and Montana, there were more origins represented per county than
298 would be expected due to random chance. Hotspots based on origin were relatively limited in
299 spatial extent for pests from Asia, Australasia, Eurasia, and Europe, covering 7%, 2%, 6%, and
300 5% of counties (Figure 5b-e). Hotspots for pests from Asia (Figure 5b) and Eurasia (Figure 5d)
301 were concentrated in northeastern counties, though a hotspot for Eurasian pests was identified in
302 Washington state. Hotspots of pests from Australasia were concentrated in the southwest and
303 Florida (Figure 5c), whereas hotspots for pests from Europe were located in several coastal and
304 inland western counties, some counties in the upper Midwest, and several northeastern counties
305 (Figure 5e).

306 ***Current invasion hotspot patterns: guild***

307 Counts and distributions of guilds exhibited considerable geographical variation. The
308 average county contained 2.22 (0.023 \pm SE) guilds. Pathogens were the most widespread and
309 were detected in 76% of counties, followed by foliage-feeders (64% of counties), borers (49%),
310 and sap-feeders (34%). Hotspots for numbers of different guilds represented occurred in few
311 counties (< 1%) and were concentrated in the northeast (Figure 6a). Hotspots for borers, foliage-
312 feeders, sap-feeders, and pathogens were limited in their spatial extent, covering 4.7%, 5.2%,
313 4.6% and 7.1% of counties, respectively (Figure 6b-e). Despite that hotspots for borers (Figure
314 6b) and sap-feeders (Figure 6d) were the least geographically widespread, hotspots for both
315 guilds were identified in the northeast and southwest. Additional hotspots for borers were found
316 in Michigan and Wisconsin, with one hotspot in northwestern Utah. Several counties throughout
317 California were identified as hotspots for sap-feeders. Hotspots of foliage-feeders (Figure 6c)
318 and pathogens (Figure 6e) were distributed similarly and concentrated in the northeast and some
319 Midwestern states.

320 ***Current invasion hotspot patterns and first discovery locations***

321 Both county-level invasion richness (Figure 7a) and hotspot Z-values (Figure 7b) were
322 positively correlated with estimated intensities of first discovery locations. That is, invasion
323 richness was higher in counties located in areas with higher densities of first discovery points.
324 Similarly, hotspot Z-values were significantly, positively correlated with invasion richness
325 (Figure 7c). The simultaneous autoregressive error models used to regress invasion richness and
326 hotspots on estimated intensities of discovery points sufficiently accounted for spatial
327 autocorrelation (both Moran's $I < -0.10$, $P = 0.99$). There remained some spatial autocorrelation
328 in the model regressing hotspot Z-values on invasion richness (Moran's $I = 0.02$, $P < 0.05$).

329

Discussion

330 Our finding that discovery locations of forest pests are associated with human activity
331 provides quantitative support for the role humans have in facilitating invasions. Movement of
332 non-native species by humans has long been recognized (Hulme, 2009), however, we found that
333 proxies for human activity, such as density of ports and roads, were more correlated with the
334 intensity of discovery points than human population density itself (Table 1). Such findings may
335 be indicative of frequent pest arrival in cargo imports (Work *et al.*, 2005; Aukema *et al.*, 2010).
336 The final destination of contaminated cargo is not necessarily near the port of entry (Rassati *et*
337 *al.*, 2015) and areas with high densities of roads may contain many final destinations for cargo.
338 The predictive ability of human population density may have been improved by considering
339 population densities at earlier time periods (e.g., prior to the 1920s), given the relatively large
340 temporal window of our first discovery point data (1794-2004). Human population density,
341 ports, and roads are also correlated in space, which may have masked the predictive power of
342 population density (Appendix S5). Nonetheless, there remained unexplained variation in
343 locations of initial establishment, as indicated by the strong association of discovery points with
344 coastal regions after accounting for the densities of ports, roads, and humans (Table 1), which
345 may be attributable to habitat invasibility (e.g., tree diversity) (Liebhold *et al.*, 2013; Guo *et al.*,
346 2019).

347 The spatial distribution of discovery points differed between time periods and were
348 dependent on pest origin and feeding guild, likely reflecting changes in the intensity of invasion
349 pathways, prevention/management efforts at ports of entry, or composition/volume of imports.
350 For example, the historically dominant invasion pathway for foliage-feeders is the movement of
351 live plants (Liebhold *et al.*, 2012). Prior to 1918, imports of plants to the USA were largely
352 unregulated but subsequent implementation of quarantine practices greatly diminished accidental

353 imports of insects on commercial plant imports (Liebhold & Griffin, 2016). We found that
354 discoveries of foliage-feeders occurred the earliest on average (1916) and were concentrated in
355 the northeastern USA. Thus, the concentration of human populations in the northeast in the early
356 1900s coupled with unregulated importation of live plants likely drove the high aggregation of
357 discovery points for foliage-feeders (Figure 2d). It follows that increased population density in
358 the western USA would increase propagule pressure in the west and spread the risk of non-native
359 pest establishment across a larger area, thus decreasing aggregation; indeed, we observed a
360 decrease in aggregation through time (Figure 2b). Patterns of borer discovery also suggest that
361 intensity of invasion pathways change with time. The average introduction year for borers was
362 1981, which may reflect temporal changes in their dominant invasion pathway, solid wood
363 packaging material (Brockerhoff *et al.*, 2006; Brockerhoff & Liebhold, 2017). Imports to the
364 USA have risen dramatically over the last 100 years and widespread adoption of containerized
365 cargo has led to increased movement of wood packaging and associated increases in borer
366 invasions with time (Aukema *et al.*, 2010).

367 We note that patterns in discovery points may be a function of sampling bias, with more
368 pests discovered in areas of human activity due to survey efforts. However, invaders often arrive
369 via pathways such that they typically establish in populated areas (Colunga-Garcia *et al.*, 2009;
370 Paap *et al.*, 2017) and thus first establishments in rural areas are generally low. Conspicuousness
371 of impacts may also be an important determinant of first discovery point patterns. For example,
372 there may be shorter time lags between establishment and detection for pests with immediately
373 visible impacts when at low densities. Variability in detection and/or imperfect detection may be
374 able to be accounted for using occupancy models (Dorazio, 2014; MacKenzie *et al.*, 2017).
375 However, data on impact detectability, particularly when at low densities as is observed

376 immediately following introduction, were not available and thus not accounted for in our
377 analyses.

378 Hotspot analyses using all pest species indicated that hotspots were concentrated in the
379 northeastern USA, corroborating findings by Liebhold *et al.*, (2013), but striking differences
380 emerged when viewing hotspots by pest origin and guild. Moreover, hotspot patterns may also be
381 driven by the origin \times guild composition of invasive forest pests. Hotspots of Australasian pests
382 (Figure 5c) and sap-feeders (Figure 6d) were abundant in California and Florida and 3/7 pests
383 from Australasia were sap-feeders (only 3/25 sap-feeders were from Australasia; Appendix S1).
384 Thus, the number of species per guild arriving from a place of origin could have contributed to
385 some of the patterns in both first discovery points and hotspots observed here

386 Invasion pathways begetting higher rates of establishment appear to, in part, drive
387 subsequent patterns in invasion richness. That is, high numbers of invasive forest pest species
388 accumulate in regions simply because pests are likely to initially establish in those regions
389 (Figure 7), in addition to those regions being conducive to spread (Liebhold *et al.*, 2013).
390 Quantification of spatiotemporal import trends may provide further insights, for example, if
391 certain regions and time periods are associated with guild-dependent invasion pathways and
392 associated establishments. We caution that our hotspot results may be scale-dependent, analyzing
393 data at the county level was ideal, however, given that (1) these data were recorded and
394 quarantines are often imposed (e.g., emerald ash borer) at the county-level and (2) hotspot
395 analyses at the state level may have been limited by too few data points (i.e., 3000+ counties vs.
396 48 states).

397 Future analyses encompassing more discovery points, including those of pests of
398 agricultural, rangeland, and/or other ecosystems, may exhibit different patterns and/or provide

399 insight into the behavior of different invasion pathways. Patterns described here may not reflect
400 the patterns of all non-native forest insects and pathogens, as our data are limited to tree insects
401 and pathogens having some detectable impacts. Further analyses are also needed to examine the
402 role of biotic resistance, the ecological components of a community that decrease invasibility, in
403 patterns of first discovery locations. Investigations of the effects of urban and rural forest
404 diversity and structure on pest establishment may potentially help managers promote more pest-
405 resistant urban and rural forests (Santamour, 1990; Raupp *et al.*, 2006; Jactel *et al.*, 2009).
406 Nonetheless, our findings highlight the central role humans play in the movement and
407 establishment of non-native forest pests and suggest continued monitoring near ports and highly
408 populated areas to maximize early detection of new invaders.

409

410

References

- 411 Andow, D.A., Kareiva, P.M., Levin, S.A. & Okubo, A. (1990) Spread of invading organisms.
- 412 *Landscape Ecology*, **4**, 177–188.
- 413 Aukema, J.E., Leung, B., Kovacs, K., Chivers, C., Britton, K.O., Englin, J., Frankel, S.J., Haight,
- 414 R.G., Holmes, T.P., Liebhold, A.M., McCullough, D.G. & Von Holle, B. (2011) Economic
- 415 impacts of non-native forest insects in the continental United States. *PLoS ONE*, **6**, 1–7.
- 416 Aukema, J.E., McCullough, D.G., Von Holle, B., Liebhold, A.M., Britton, K. & Frankel, S.J.
- 417 (2010) Historical accumulation of nonindigenous forest pests in the continental United
- 418 States. *BioScience*, **60**, 886–897.
- 419 Baddeley, A., Rubak, E. & Turner, R. (2015) *Spatial point patterns: methodology and*
- 420 *applications with R* (London: Chapman and Hall/CRC Press),.
- 421 Baddeley, A. & Turner, R. (2005) spatstat: an R package for analyzing spatial point patterns.
- 422 *Journal of Statistical Software*, **12**, 1–42.
- 423 Bivand, R., Keitt, T. & Rowlingson, B. (2018) rgdal: bindings for the “Geospatial” Data
- 424 Abstraction Library. R package version 1.3-3. <https://CRAN.R-project.org/package=rgdal>.
- 425 Accessed 1 October 2018.
- 426 Bivand, R. & Lewin-Koh, N. (2017) maptools: tools for reading and handling spatial objects. R
- 427 package version 0.9-2. <<https://CRAN.R-project.org/package=maptools>>.
- 428 Bivand, R.S., Hauke, J. & Kossowski, T. (2013a) Computing the Jacobian in Gaussian spatial
- 429 autoregressive models: an illustrated comparison of available methods. *Geographical*
- 430 *Analysis*, **45**, 150–179.
- 431 Bivand, R.S., Pebesma, E.J. & Gómez-Rubio, V. (2013b) *Applied spatial data analysis with R*

- 432 (Second Edition, Springer New York),.
- 433 Bivand, R.S. & Piras, G. (2015) Comparing implementations of estimation methods for spatial
434 econometrics. *Journal of Statistical Software*, **63**, 1–36.
- 435 Brockerhoff, E.G., Bain, J., Kimberley, M. & Knížek, M. (2006) Interception frequency of exotic
436 bark and ambrosia beetles (Coleoptera: Scolytinae) and relationship with establishment in
437 New Zealand and worldwide. *Canadian Journal of Forest Research*, **36**, 289–298.
- 438 Brockerhoff, E.G., Kimberley, M., Liebhold, A.M., Haack, R.A. & Cavey, J.F. (2014) Predicting
439 how altering propagule pressure changes establishment rates of biological invaders across
440 species pools. *Ecology*, **95**, 594–601.
- 441 Brockerhoff, E.G. & Liebhold, A.M. (2017) Ecology of forest insect invasions. *Biological
442 Invasions*, **19**, 3141–3159.
- 443 Brown, P.E. (2018) Geostatistical modelling with likelihood and Bayes. R package version 1.7.2
444 <<https://CRAN.R-project.org/package=geostatsp>>.
- 445 Brown, P.E. (2015) Model-based geostatistics the easy way. *Journal of Statistical Software*, **63**,
446 1–24.
- 447 Colunga-Garcia, M., Haack, R.A. & Adelaja, A.O. (2009) Freight transportation and the
448 potential for invasions of exotic insects in urban and periurban forests of the United States.
449 *Journal of Economic Entomology*, **102**, 237–246.
- 450 Diggle, P. (1985) A kernel method for smoothing point process data. *Journal of the Royal
451 Statistical Society. Series C (Applied Statistics)*, **34**, 138–147.
- 452 Dodd, A.J., McCarthy, M.A., Ainsworth, N. & Burgman, M.A. (2016) Identifying hotspots of
453 alien plant naturalisation in Australia: approaches and predictions. *Biological Invasions*, **18**,
454 631–645.

- 455 Dorazio, R.M. (2014) Accounting for imperfect detection and survey bias in statistical analysis
456 of presence-only data. *Global Ecology and Biogeography*, **23**, 1472–1484.
- 457 Everett, R.A. (2000) Patterns and pathways of biological invasions. *Trends in Ecology and*
458 *Evolution*, **15**, 177–178.
- 459 Fahrner, S. & Aukema, B.H. (2018) Correlates of spread rates for introduced insects. *Global*
460 *Ecology and Biogeography*, **27**, 734–743.
- 461 Falcone, J.A. (2016) U.S. block-level population density rasters for 1990, 2000, and 2010: U.S.
462 Geological Survey data release, <http://dx.doi.org/10.5066/F74J0C6M>.
- 463 Fei, S. (2010) Applying hotspot detection methods in forestry: a case study of chestnut oak
464 regeneration. *International Journal of Forestry Research*, **2010**, 1–8.
- 465 Getis, A. & Ord, J.K. (1992) The analysis of spatial association by use of distance statistics.
466 *Geographical Analysis*, **24**, 189–206.
- 467 Gilbert, M., Grégoire, J.C., Freise, J.F. & Heitland, W. (2004) Long-distance dispersal and
468 human population density allow the prediction of invasive patterns in the horse chestnut
469 leafminer *Cameraria ohridella*. *Journal of Animal Ecology*, **73**, 459–468.
- 470 Guo, Q., Fei, S., Potter, K.M., Liebhold, A.M. & Wen, J. (2019) Tree diversity regulates forest
471 pest invasion. *Proceedings of the National Academy of Sciences*, **116**, 7382–7386.
- 472 Haack, R.A. (2006) Exotic bark- and wood-boring Coleoptera in the United States: recent
473 establishments and interceptions. *Canadian Journal of Forest Research*, **36**, 269–288.
- 474 Hijmans, R.J. (2017) geosphere: spherical trigonometry. R package version 1.5-7.
475 <https://CRAN.R-project.org/package=geosphere>.
- 476 Huang, D., Zhang, R., Kim, K.C. & Suarez, A. V. (2012) Spatial pattern and determinants of the
477 first detection locations of invasive alien species in Mainland China. *PLoS ONE*, **7**, 1–7.

- 478 Hudgins, E.J., Liebhold, A.M. & Leung, B. (2017) Predicting the spread of all invasive forest
479 pests in the United States. *Ecology Letters*, **20**, 426–435.
- 480 Hulme, P.E. (2009) Trade, transport and trouble: managing invasive species pathways in an era
481 of globalization. *Journal of Applied Ecology*, **46**, 10–18.
- 482 Iannone, B. V., Potter, K.M., Guo, Q., Liebhold, A.M., Pijanowski, B.C., Oswalt, C.M. & Fei, S.
483 (2016) Biological invasion hotspots: a trait-based perspective reveals new sub-continental
484 patterns. *Ecography*, **39**, 961–969.
- 485 Jactel, H., Nicoll, B.C., Branco, M., Gonzalez-Olabarria, J.R., Grodzki, W., Långström, B.,
486 Moreira, F., Netherer, S., Orazio, C., Piou, D., Santos, H., Schelhaas, M.J., Tojic, K. &
487 Vodde, F. (2009) The influences of forest stand management on biotic and abiotic risks of
488 damage. *Annals of Forest Science*, **66**, 701–701.
- 489 Koch, F.H., Yemshanov, D., Magarey, R.D. & Smith, W.D. (2012) Dispersal of invasive forest
490 insects via recreational firewood: a quantitative analysis. *Journal of Economic Entomology*,
491 **105**, 438–450.
- 492 Lantschner, M.V., Villacide, J.M., Garnas, J.R., Croft, P., Carnegie, A.J., Liebhold, A.M. &
493 Corley, J.C. (2014) Temperature explains variable spread rates of the invasive woodwasp
494 *Sirex noctilio* in the Southern Hemisphere. *Biological Invasions*, **16**, 329–339.
- 495 Lenth, R. (2018) emmeans: estimated marginal means, aka least-squares means. R package
496 version 1.2.3. <https://CRAN.R-project.org/package=emmeans>.
- 497 Levine, J.M. & D'Antonio, C.M. (2003) Forecasting biological invasions with increasing
498 international trade. *Conservation Biology*, **17**, 322–326.
- 499 Liebhold, A.M., Brockerhoff, E.G., Garrett, L.J., Parke, J.L. & Britton, K.O. (2012) Live plant
500 imports: the major pathway for forest insect and pathogen invasions of the US. *Frontiers in*

- 501 *Ecology and the Environment*, **10**, 135–143.
- 502 Liebhold, A.M., Brockerhoff, E.G., Kalisz, S., Nuñez, M.A., Wardle, D.A. & Wingfield, M.J.
- 503 (2017) Biological invasions in forest ecosystems. *Biological Invasions*, **19**, 3437–3458.
- 504 Liebhold, A.M. & Griffin, R.L. (2016) The legacy of Charles Marlatt and efforts to limit plant
- 505 pest invasions. *American Entomologist*, **62**, 218–227.
- 506 Liebhold, A.M., McCullough, D.G., Blackburn, L.M., Frankel, S.J., Von Holle, B. & Aukema,
- 507 J.E. (2013) A highly aggregated geographical distribution of forest pest invasions in the
- 508 USA. *Diversity and Distributions*, **19**, 1208–1216.
- 509 Liebhold, A.M. & Tobin, P.C. (2008) Population ecology of insect invasions and their
- 510 management. *Annual Review of Entomology*, **53**, 387–408.
- 511 Lockwood, J.L., Cassey, P. & Blackburn, T. (2005) The role of propagule pressure in explaining
- 512 species invasions. *Trends in Ecology and Evolution*, **20**, 223–228.
- 513 Lovett, G.M., Weiss, M., Liebhold, A.M., Holmes, T.P., Leung, B., Lambert, K.F., Orwig, D.A.,
- 514 Campbell, F.T., Rosenthal, J., McCullough, D.G., Wildova, R., Ayres, M.P., Canham, C.D.,
- 515 Foster, D.R., LaDeau, S.L. & Weldy, T. (2016) Nonnative forest insects and pathogens in
- 516 the United States: impacts and policy options. *Ecological Applications*, **26**, 1437–1455.
- 517 MacKenzie, D.I., Nichols, J.D., Royle, J.A., Pollock, K.H., Bailey, L. & Hines, J.E. (2017)
- 518 Occupancy estimation and modeling: inferring patterns and dynamics of species occurrence
- 519 (2nd Edition, Elsevier Academic Press). 1–648.
- 520 Morin, R.S. & Liebhold, A.M. (2015) Invasions by two non-native insects alter regional forest
- 521 species composition and successional trajectories. *Forest Ecology and Management*, **341**,
- 522 67–74.
- 523 National Geospatial-Intelligence Agency (2017) National Geospatial-Intelligence Agency, World

- 524 Port Index 2017
- 525 <https://msi.nga.mil/NGAPortal/MSI.portal?_nfpb=true&_pageLabel=msi_portal_page_62
- 526 &pubCode=0015>.
- 527 Ord, J.K. & Getis, A. (1995) Local spatial autocorrelation statistics: distributional issues and an
528 application. *Geographical Analysis*, **27**, 286–306.
- 529 Paap, T., Burgess, T.I. & Wingfield, M.J. (2017) Urban trees: bridge-heads for forest pest
530 invasions and sentinels for early detection. *Biological Invasions*, **19**, 3515–3526.
- 531 Patil, G. & Taillie, C. (2004) Upper level set scan statistic for detecting arbitrarily shaped
532 hotspots. *Environmental and Ecological Statistics*, **11**, 183–197.
- 533 R Core Team (2018) R: a language and environment for statistical computing. R Foundation for
534 Statistical Computing, Vienna, Austria.
- 535 Rassati, D., Faccoli, M., Toffolo, E.P., Battisti, A. & Marini, L. (2015) Improving the early
536 detection of alien wood-boring beetles in ports and surrounding forests. *Journal of Applied
537 Ecology*, **52**, 50–58.
- 538 Raupp, M.J., Cumming, A.B. & Raupp, E.C. (2006) Street tree diversity in eastern North
539 America and its potential for tree loss to exotic borers. *Arboriculture and Urban Forestry*,
540 **32**, 297–304.
- 541 Renner, I.W., Elith, J., Baddeley, A., Fithian, W., Hastie, T., Phillips, S.J., Popovic, G. &
542 Warton, D.I. (2015) Point process models for presence-only analysis. *Methods in Ecology
543 and Evolution*, **6**, 366–379.
- 544 Ripley, B.D. (1976) The second-order analysis of stationary point processes. *Journal of Applied
545 Probability*, **13**, 255.
- 546 Roura-Pascual, N., Hui, C., Ikeda, T., Leday, G., Richardson, D.M., Carpintero, S., Espadaler,

- 547 X., Gómez, C., Guénard, B., Hartley, S., Krushelnicky, P., Lester, P.J., McGeoch, M.A.,
548 Menke, S.B., Pedersen, J.S., Pitt, J.P.W., Reyes, J., Sanders, N.J., Suarez, A. V., Touyama,
549 Y., Ward, D., Ward, P.S. & Worner, S.P. (2011) Relative roles of climatic suitability and
550 anthropogenic influence in determining the pattern of spread in a global invader.
551 *Proceedings of the National Academy of Sciences*, **108**, 220–225.
- 552 Santamour, F.S. (1990) Trees for urban planting: diversity, uniformity, and common sense.
553 *Proceedings of the 7th Conference of the Metropolitan Tree Improvement Alliance*, **7**, 57–
554 65.
- 555 Shigesada, N. & Kawasaki, K. (1997) Biological invasions: theory and practice. Oxford
556 University Press, UK.
- 557 Simberloff, D. (2009) The role of propagule pressure in biological invasions. *Annual Review of
558 Ecology and Systematics*, **40**, 81–102.
- 559 Skarpaas, O. & Økland, B. (2009) Timber import and the risk of forest pest introductions.
560 *Journal of Applied Ecology*, **46**, 55–63.
- 561 Turbelin, A.J., Malamud, B.D. & Francis, R.A. (2016) Mapping the global state of invasive alien
562 species: patterns of invasion and policy responses. *Global Ecology and Biogeography*, **26**,
563 78–92.
- 564 US Census Bureau Department of Commerce (2016) TIGER/Line Shapefile, 2016, nation, U.S.,
565 Primary Roads National Shapefile <<https://catalog.data.gov/dataset/tiger-line-shapefile-2016-nation-u-s-primary-roads-national-shapefile>>.
- 567 Velázquez, E., Martínez, I., Getzin, S., Moloney, K.A. & Wiegand, T. (2016) An evaluation of
568 the state of spatial point pattern analysis in ecology. *Ecography*, **39**, 1042–1055.
- 569 Venette, R.C. (2017) Climate analyses to assess risks from invasive forest insects: simple

- 570 matching to advanced models. *Current Forestry Reports*, **3**, 255–268.
- 571 Ward, N.L. & Masters, G.J. (2007) Linking climate change and species invasion: an illustration
- 572 using insect herbivores. *Global Change Biology*, **13**, 1605–1615.
- 573 Ward, S.F., Fei, S. & Liebhold, A.M. (2019) Spatial patterns of discovery points and invasion
- 574 hotspots of non-native forest pests. Purdue University Research Repository. doi:
- 575 10.4231/7YT5-ET33.
- 576 Work, T.T., McCullough, D.G., Cavey, J.F. & Komsa, R. (2005) Arrival rate of nonindigenous
- 577 insect species into the United States through foreign trade. *Biological Invasions*, **7**, 323–
- 578 332.
- 579

580

Tables and Figures

581 **Table 1** Summary statistics from a spatial point process model evaluating the role of invasion
 582 pathways and terms for cardinal directions in intensity of first detection points, log(points per
 583 km^2), of non-native forest insects and pathogens discovered in the contiguous USA between
 584 1794-2004. The terms west-east and south-north represent geographic coordinates in Albers
 585 projection (km). Model AIC: 1571.

Covariate	Estimate ^a	SE	$ Z ^b$	P
Intercept	-14.12	0.39	36.39	<0.0001
Population density	0.00006	0.00007	0.81	0.29
Port density	0.37	0.15	2.57	0.0149
Road density	0.00704	0.00081	8.68	<0.0001
west-east	0.00041	0.00008	5.01	<0.0001
west-east ²	10.2×10^{-7}	1.3×10^{-7}	8.00	<0.0001
south-north	0.00009	0.00027	0.35	0.38
south-north ²	-2.0×10^{-7}	3.5×10^{-7}	-0.58	0.34

586 ^a Exponentiated coefficients for point process models indicate the factor by which density of
 587 discovery locations would increase per unit area with a one unit increase in the density of a
 588 covariate. For example, holding all else equal, an increase in 1 port per km^2 was associated with
 589 a $1.4 \times [\exp(0.37)]$ increase in discovery points per km^2 .

590 ^b Z statistics indicating whether coefficients estimated using spatial point process models are
 591 significantly different from 0.

592 **Table 2** Spatial covariates of the intensity of first detection points, $\log(\text{points per km}^2)$, of non-
 593 native forest insects and pathogens discovered in the contiguous USA between 1794-2004.
 594 Trends were analyzed using marked spatial point process models. Three separate analyses were
 595 conducted in which points were marked by time period of discovery (a), origin (b), or guild (c).
 596 The terms west-east and south-north represent geographic coordinates in Albers projection (km).

Covariate ^a	Estimate ^b	SE	Z ^c	P
a. Time period of discovery (AIC: 2120)				
Intercept (Q1, 1974-1907)	-13.48	0.35	38.93	<0.0001
Q2 (1908-1927)	-0.19	0.52	0.37	0.37
Q3 (1928-1991)	0.51	0.43	1.19	0.20
Q4 (1992-2004)	0.45	0.43	1.06	0.23
west-east	0.00117	0.00025	4.76	<0.0001
south-north	0.00110	0.00041	2.66	0.0116
Q2 × west-east	0.00022	0.00037	0.60	0.33
Q3 × west-east	-0.00076	0.00031	2.45	0.0200
Q4 × west-east	-0.00113	0.00034	3.35	0.0014
Q2 × south-north	0.00001	0.00059	0.02	0.40
Q3 × south-north	-0.00001	0.00057	0.02	0.40
Q4 × south-north	-0.00116	0.00056	2.05	0.0484
b. Origin (AIC: 1994)				
Intercept	-12.62	0.21	61.29	<0.0001
Australasia	-29.11	9.12	3.19	0.0024
Eurasia	-0.64	0.37	1.73	0.09
Europe	-2.08	0.66	3.15	0.0028
west-east	0.00053	0.00018	2.99	0.0046
south-north	0.00051	0.00031	1.63	0.11
Australasia × west-east	-0.01497	0.00419	3.57	0.0007
Eurasia × west-east	0.00044	0.00026	1.68	0.10
Europe × west-east	0.00147	0.00046	3.20	0.0024
Australasia × south-north	-0.00945	0.00288	3.28	0.0018
Eurasia × south-north	0.00106	0.00051	2.08	0.0463
Europe × south-north	0.00082	0.00060	1.36	0.16
c. Guild (AIC: 2089)				
Intercept	-15.05	0.78	19.39	<0.0001
Borers	2.00	0.82	2.45	0.0198
Pathogens	1.50	0.86	1.75	0.09
Sap-feeders	2.18	0.81	2.70	0.0104
west-east	0.00265	0.00052	5.06	<0.0001
south-north	0.00065	0.00041	1.57	0.12

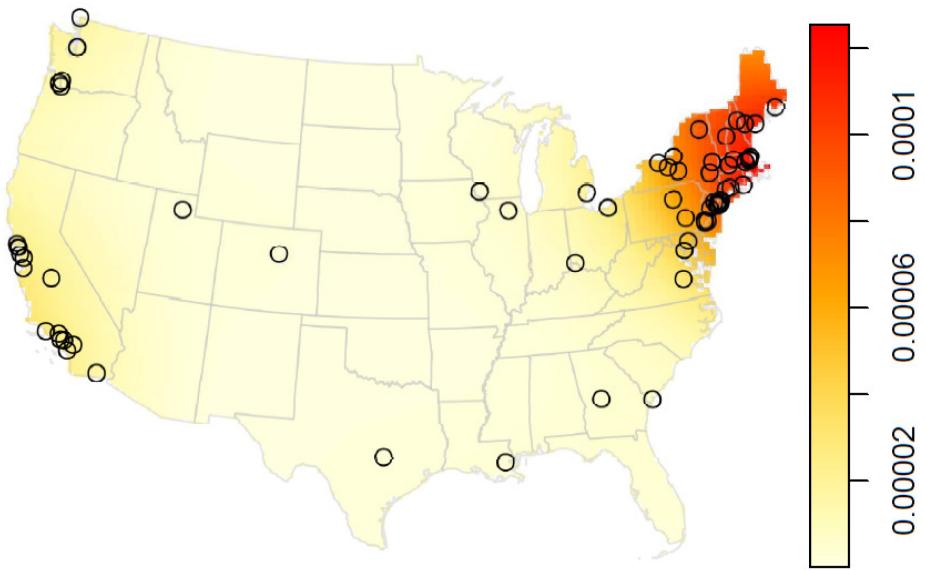
Borers × west-east	-0.00230	0.00057	4.06	0.0001
Pathogens × west-east	-0.00210	0.00057	3.71	0.0004
Sap-feeders × west-east	-0.00262	0.00056	4.64	<0.0001
Borers × south-north	-0.00005	0.00057	0.09	0.40
Pathogens × south-north	0.00097	0.00066	1.46	0.14
Sap-feeders × south-north	-0.00056	0.00054	1.03	0.23

597 ^a Models predict the intensity of discovery points as a function of variables for west-east and
 598 south-north directions and a categorical predictor (each with four levels). For example, in model
 599 (a), the model reference level is Q1 (1974-1907), and thus the interaction of other levels of the
 600 variable time period with west-east and south-north are each compared to the slope coefficients
 601 of west-east and south-north associated with level Q1 (i.e., 0.00117 and 0.00110, respectively).
 602 In models (b) and (c), the reference levels for the variables origin and guild are Asia and foliage-
 603 feeders, respectively.

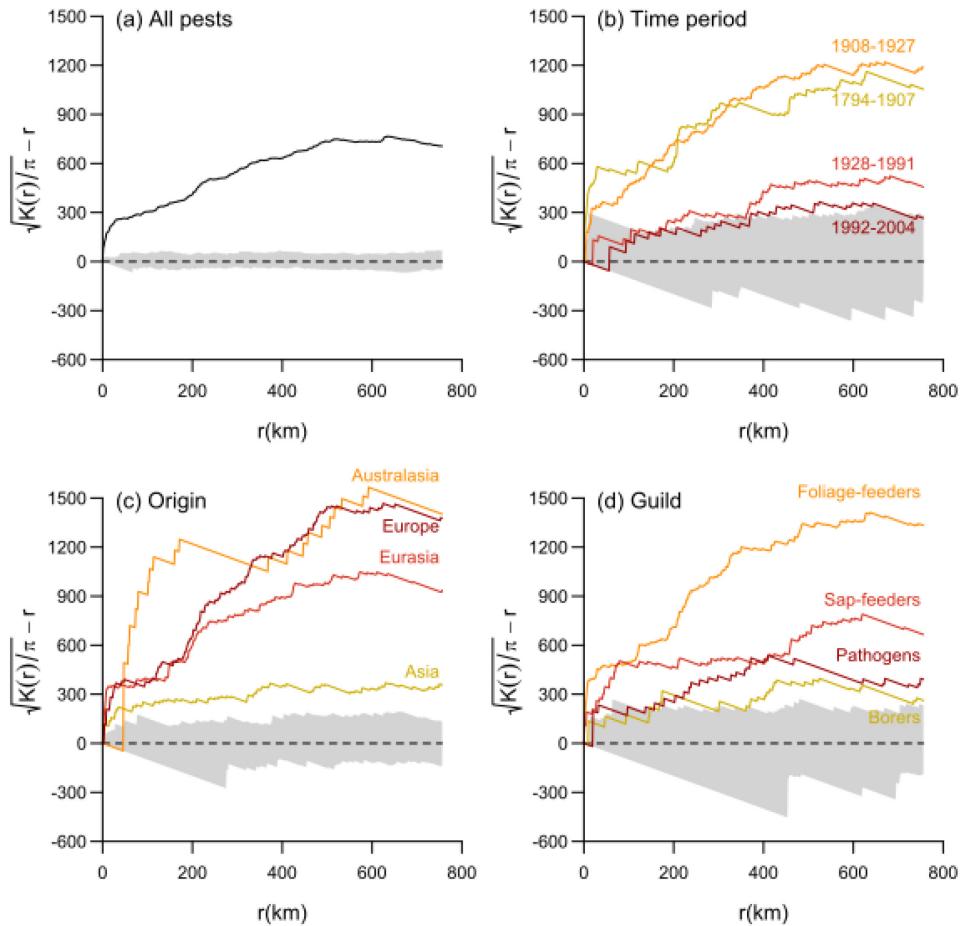
604 ^b Exponentiated coefficients for point process models indicate the factor by which density of
 605 discovery locations would increase per unit area with either a change between levels of a factor
 606 or a one unit increase in the density of a covariate. For example, for model (a) and holding all
 607 else equal, a shift 500 km west between Q1 and Q4 was associated with $1.76 \times [\exp(0.00113 \times$
 608 $500 \text{ km})]$ increase in the number of discovery points per km^2 .

609 ^c Z statistics indicating whether coefficients estimated using spatial point process models are
 610 significantly different from 0.

611

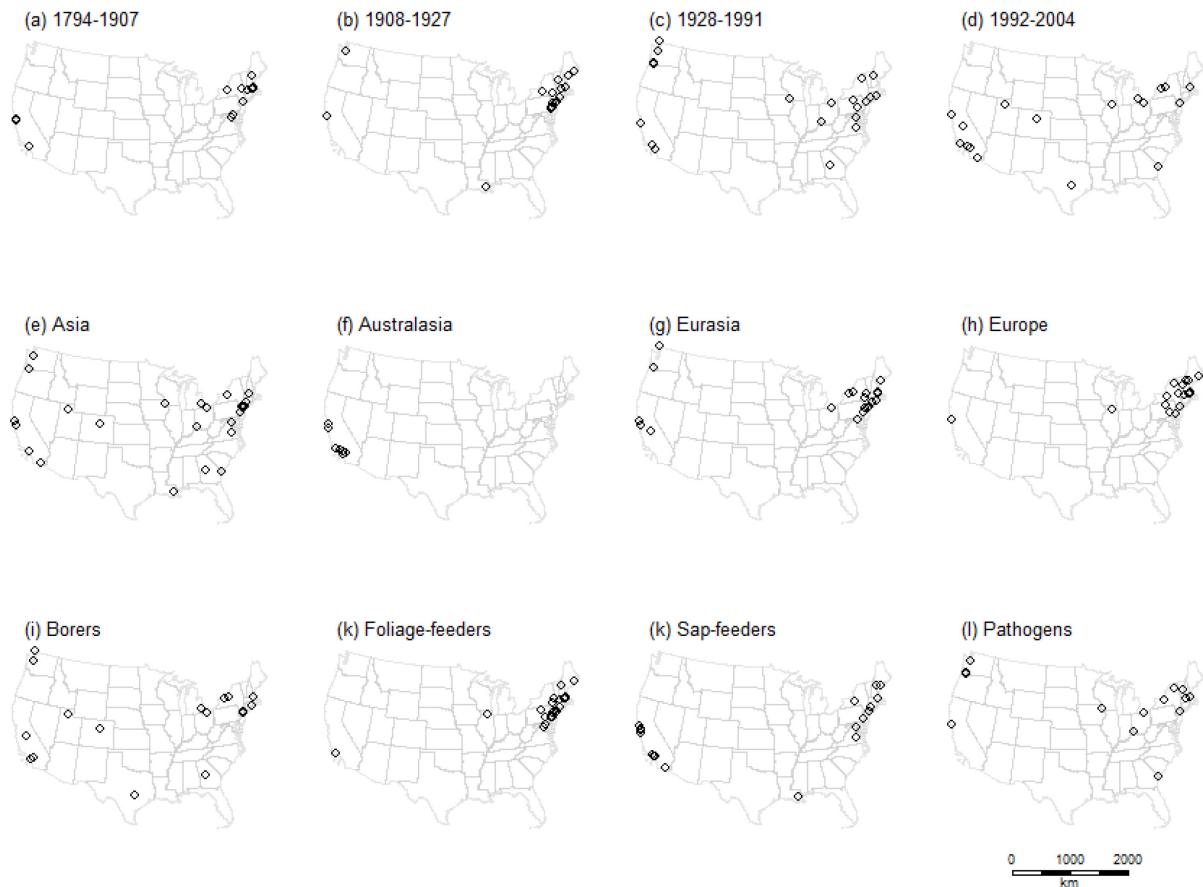
Figures

614 **Figure 1** Intensity of discovery points (points per km^2 ; black circles) of non-native forest insects
615 and pathogens discovered in the contiguous USA between 1794-2004. Colors and scale bar
616 indicate a kernel smoother fit to observed first discovery locations. Map projection: Albers equal
617 area.



618

619 **Figure 2** Ripley's K statistics for discovery points of non-native forest insects and pathogens
 620 discovered in the contiguous USA between 1794-2004 as a function scale (radius of circles in
 621 km). Panels display patterns across a) all discovery points, b) time period of discovery, c)
 622 origins, or d) guilds. Solid lines indicate observed $K(r)$ statistics, transformed for visualization
 623 (y-axis), at a radius r from each discovery point (x-axis). The dotted line provides an estimate of
 624 complete spatial randomness and the gray area represents 95% confidence limits for $K(r)$
 625 statistics simulated from a theoretical, random distribution of discovery points. Lines above gray
 626 areas are significantly aggregated at the scale of analysis. For example, discoveries of all pests
 627 (panel a) are highly aggregated, regardless of scale.

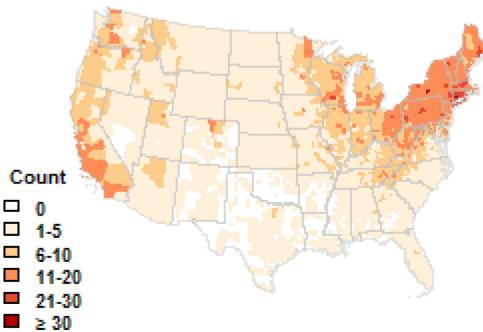


628

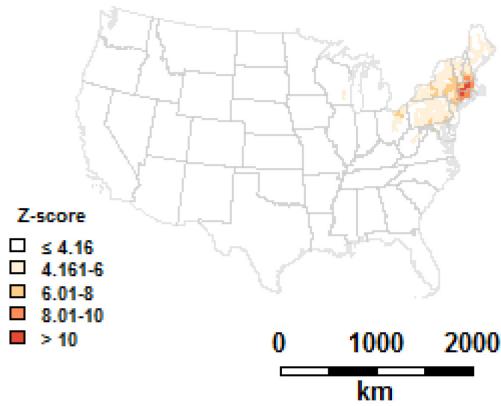
629 **Figure 3** Discovery locations of non-native forest insects and pathogens discovered in the
 630 contiguous USA between 1794-2004 displayed by time period (a-d; quartiles of introduction
 631 year), world region of origin (e-h), and feeding guild (i-l). Models comparing changes in the
 632 distribution of points by time period (row 1 of figure), origin (row 2), and guild (row 3) are
 633 provided in Table 2. Changes in aggregation between groupings are presented in Figure 2. Map
 634 projection: Albers equal area.

635

(a) All pest counts

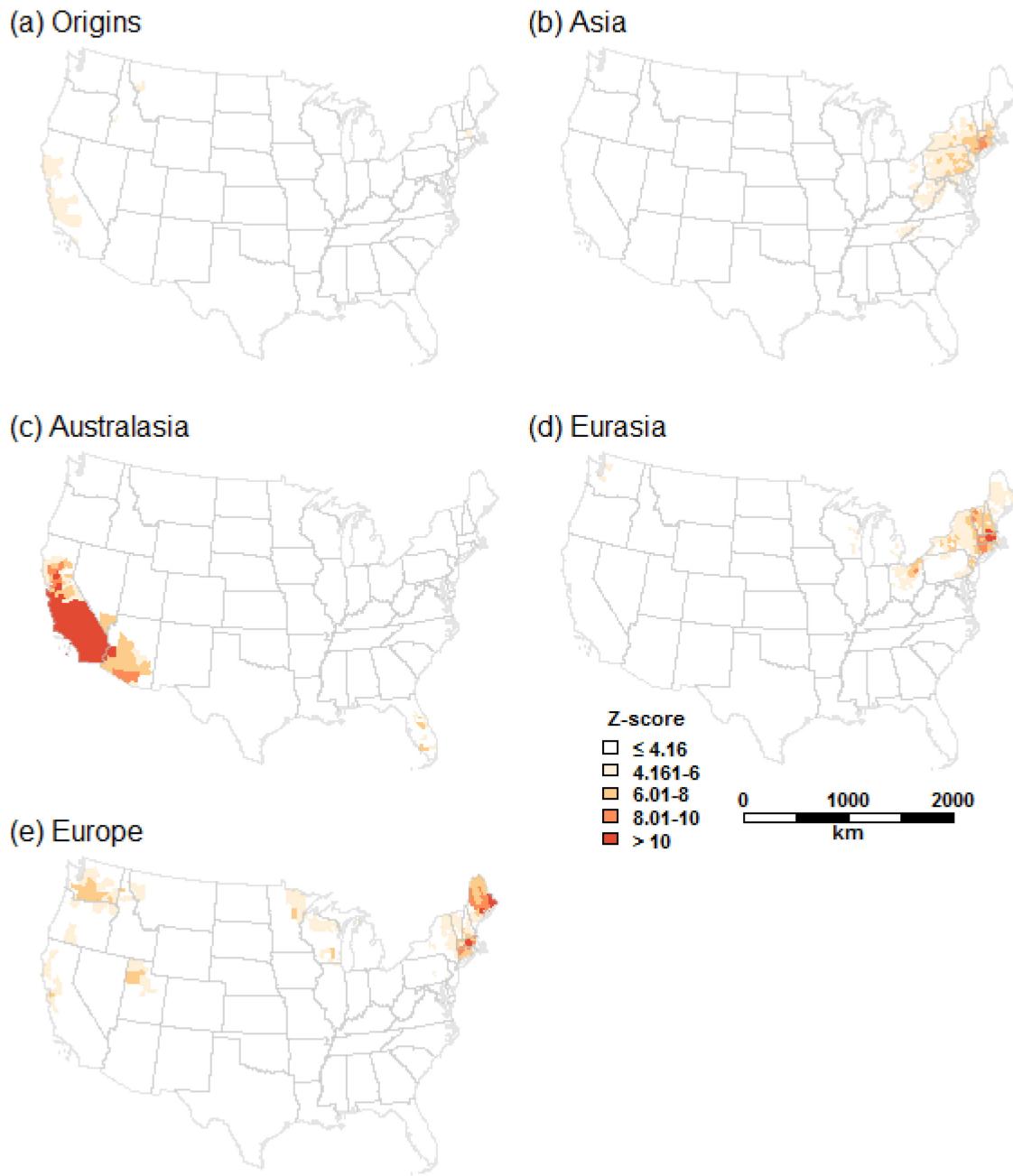


(b) All pest hotspots



636

637 **Figure 4** County-level a) invasion richness and b) hotspots for non-native forest insects and
638 pathogens as of 2018 in the contiguous USA. Hotspot analyses enable comparisons of invasion
639 richness of a county and its neighbors to the global richness patterns across all counties to
640 identify counties with richness levels greater than would be expected due to random chance.
641 Invasion hotspots were identified by quantifying local Getis-Ord (G_i^*) statistics, which produces
642 a Z-score. Counties with Z-scores ≥ 4.158 were considered invasion hotspots. Map projection:
643 Albers equal area.



644

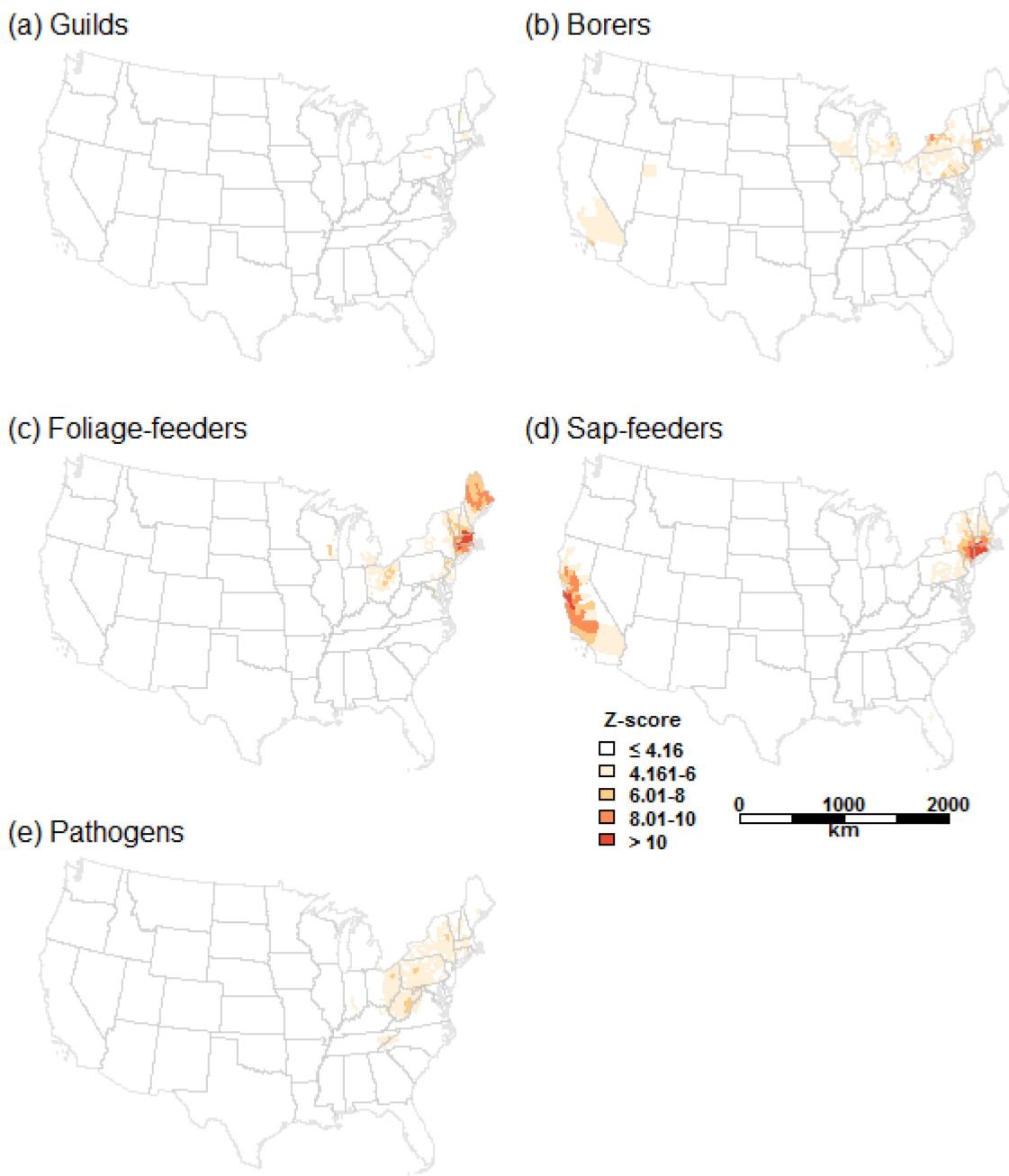
645 **Figure 5** County-level invasion hotspots for non-native forest insects and pathogens as of 2018

646 in the contiguous USA based on pest origin: a) numbers of origins, b) Asia, c) Australasia, d)

647 Eurasia, and e) Europe. A hotspot is defined as any county where Getis-Ord (G_i^*) statistics (Z

648 scores) are ≥ 4.158 . See Figure 4 and main text for description of G_i^* . Map projection: Albers

649 equal area.



650

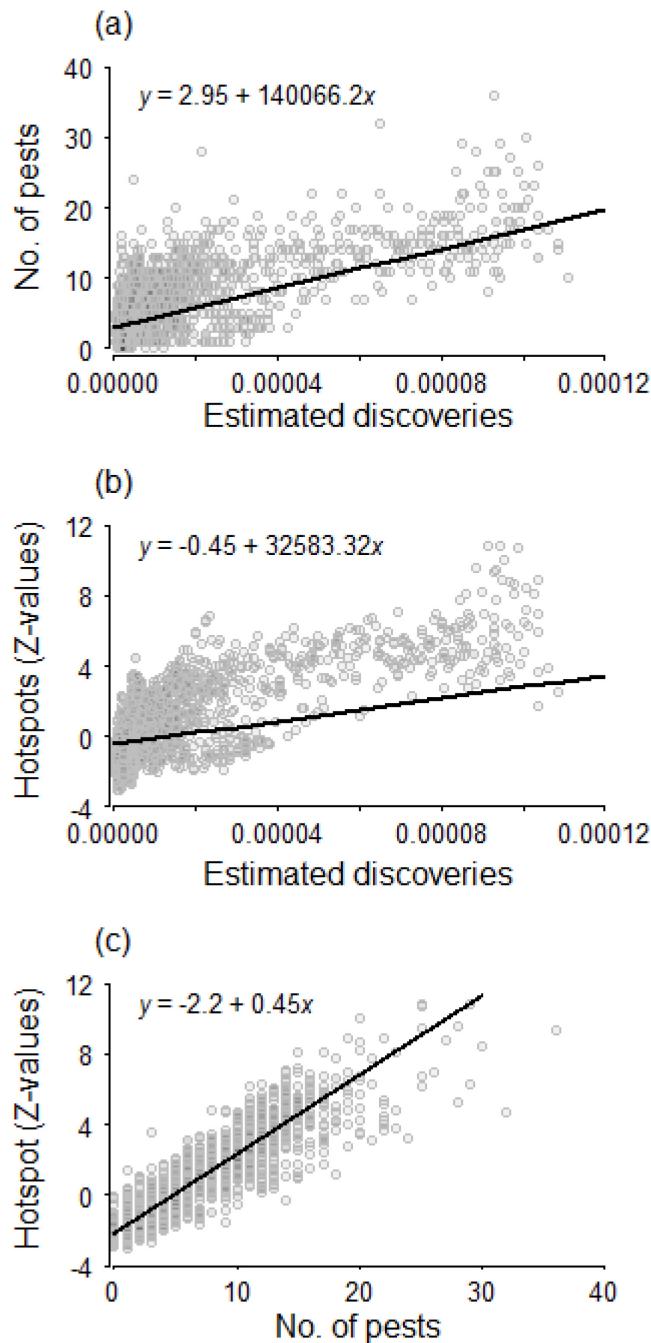
651 **Figure 6** County-level invasion hotspots for non-native forest insects and pathogens as of 2018

652 in the contiguous USA based on pest guild: a) numbers of guilds, b) bark/wood-borers, c)

653 foliage-feeders, d) sap-feeders, and e) pathogens. A hotspot is defined as any county where

654 Getis-Ord (G_i^*) statistics (Z scores) are ≥ 4.158 . See Figure 4 and main text for description of G_i^* .

655 Map projection: Albers equal area.



656

657 **Figure 7** (a) Number of non-native pests per county as of 2018 in the contiguous USA (y-axis;
 658 invasion richness) as a function of kernel estimated discovery points per km^2 at county centroids.
 659 The kernel smoother was fit to observed first discovery locations for non-native forest pests in

660 the contiguous USA (1794-2004) and estimated discoveries (x -axis) for each county were
661 obtained from that interpolated surface. Intercept (± 0.22 SE, $Z = 13.46$, $P < 0.0001$) and slope (\pm
662 7816.57 SE, $Z = 17.92$, $P < 0.0001$) of fit line significantly differ from 0. (b) Z-values from
663 hotspot analyses of invasion richness, displayed in Figure 4c, as a function of estimated
664 discoveries at the county-level. Intercept (± 0.14 SE, $Z = -3.18$, $P = 0.0015$) and slope (± 5773.40
665 SE, $Z = 5.64$, $P < 0.0001$) of fit line significantly differ from 0. (c) Z-values from hotspot
666 analyses as a function invasion richness at the county-level level. Intercept (± 0.02 SE, $Z = -$
667 132.48 , $P < 0.0001$) and slope (± 0.002 SE, $Z = 182.05$, $P < 0.0001$).