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Title: Spatial patterns of discovery points and invasion hotspots of non-native forest pests 1 

Running title: Spatial patterns of non-native forest pests 2 

Abstract 3 

Aim Establishments of non-native forest pests (insects and pathogens) continue to increase 4 

worldwide with the growing number of introductions and changes in invasion pathways. 5 

Quantifying spatiotemporal patterns in establishment locations and subsequent invasion 6 

dynamics can provide insight into the underlying mechanisms driving invasions and assist 7 

biosecurity agencies with prioritizing areas for proactive surveillance and management. 8 

Location Contiguous United States of America 9 

Time period 1794-2018 10 

Major taxa studied Insecta and plant pathogens 11 

Methods Using locations of first discovery and county-level occurrence data for 101 non-native 12 

pests across the contiguous USA, we (1) quantified spatial patterns in discovery points and 13 

county-level species richness using spatial point process models and spatial hotspot analyses, 14 

respectively, and (2) identified potential proxies for propagule pressure (e.g., human population 15 

density) associated with these observed patterns. 16 

Results Discovery points were highly aggregated in space and located in areas with high 17 

densities of ports and roads. Though concentrated in the northeastern USA, discovery points also 18 

occurred farther west and became less aggregated as time progressed. Invasion hotspots were 19 

more common in the northeast. Geographic patterns of discovery points and hotspots varied 20 

substantially among pest origins (i.e., global region of pests’ native ranges) and pest feeding 21 

guilds. Significant variation in invasion richness was primarily attributed to the patterns of first 22 

discovery locations.  23 
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Main conclusions Use of spatial point pattern analyses provided a quantitative characterization 24 

of the central role of human activities in establishment of non-native pests. Moreover, the 25 

decreased aggregation of discovery points through time suggests that invasion pathways to 26 

certain areas in the USA have either been created or intensified by human activities. Overall, our 27 

results suggest that spatiotemporal variability in the intensity of invasion pathways has resulted 28 

in marked geographical patterns of establishment and contributed to current macroscale patterns 29 

of pest invasion in the USA. 30 

Keywords: Getis-Ord, Insecta, invasion biology, pathogens, pathways, Ripley’s K function, 31 

spatial point process  32 
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Introduction 33 

Biological invasions can be categorized into three phases: arrival, establishment, and 34 

spread (Liebhold & Tobin, 2008). For invasive forest pests (insects and pathogens), the first 35 

phase is typically facilitated by inadvertent human transportation, for example, through 36 

importation of live plants, wood packaging material, or timber (Skarpaas & Økland, 2009; 37 

Liebhold et al., 2012; Brockerhoff & Liebhold, 2017). The arrival of non-native pests has 38 

increased with international trade and travel (Levine & D’Antonio, 2003; Turbelin et al., 2016). 39 

Arrival of more conspecifics per unit of time and/or space (i.e., higher propagule pressure) 40 

increases the likelihood that a species will locate resources and overcome demographic barriers 41 

to establishment (Lockwood et al., 2005; Simberloff, 2009). The final invasion phase, spread, is 42 

affected by human activities (e.g., movement of pests within the invaded range) (Shigesada & 43 

Kawasaki, 1997; Gilbert et al., 2004), variation in habitat quality (Liebhold et al., 2013; Hudgins 44 

et al., 2017), temperature (Lantschner et al., 2014), voltinism (Fahrner & Aukema, 2018), time 45 

since establishment (Andow et al., 1990) and other factors. Processes operating during each 46 

phase combine to determine the extent of currently invaded ranges. 47 

The number of non-native forest pests arriving and establishing in the USA continues to 48 

increase (Aukema et al., 2010). Non-native pests impact forest structure and succession (Morin 49 

& Liebhold, 2015; Lovett et al., 2016; Liebhold et al., 2017) and cause billions of dollars (US$) 50 

in damage per annum (Aukema et al., 2011). Given that human activity drives pest arrival and 51 

establishment, discovery of pests in densely populated or well-traveled regions may be expected 52 

(Huang et al., 2012). Locations of arrival and establishment may vary temporally with changes 53 

in international trade, such as fluctuations in economic markets that alter the intensity of invasion 54 

pathways between regions (Everett, 2000) or as human population densities change in time and 55 
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space. However, spatial correlates of discovery points for non-native forest pests in the USA 56 

have not been quantified. 57 

The USA is highly invaded by forest pests with the number of non-native species per unit 58 

area (“invasion richness”) distributed heterogeneously across the country (Liebhold et al., 2013). 59 

The geographical distribution of locations of initial invader establishment likely contributes to 60 

macroscale patterns of invasion richness, as pests spread into adjacent areas. However, after 61 

establishment, it does not necessarily follow that areas surrounding sites of initial establishment 62 

will be conducive to rapid population growth and expansion of the invasive range. That is, 63 

patterns of invasion richness are the result of both establishment and spread and therefore 64 

patterns of invasion richness may not exactly mirror those of establishment locations.  65 

Geographic variation in establishment and invasion richness may be driven, in part, by 66 

frequent human-aided movement of pests into specific regions (Brockerhoff et al., 2014), forest 67 

structure including host availability and/or apparency (Liebhold et al., 2013; Guo et al., 2019), 68 

and climate (Ward & Masters, 2007). Among other factors, establishment and invasion richness 69 

may also be influenced by global regions of origin and/or guilds of invaders. For example, rates 70 

of establishment and spread may be greatest when pests are moved between regions with similar 71 

climates (Roura-Pascual et al., 2011; Venette, 2017) or more wood-borers may arrive in areas 72 

with high imports of wood packaging material (Brockerhoff et al., 2006; Haack, 2006; Rassati et 73 

al., 2015). Following establishment, spread may be guild dependent, for example, if firewood, a 74 

major pathway for wood-boring insects (Koch et al., 2012), is moved with different frequencies 75 

between two regions than live plant material, a major pathway for foliage- and sap-feeding 76 

insects (Liebhold et al., 2012). It is unclear if either global region of origin or guild mediate 77 

patterns in establishment locations or invasion richness. 78 
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Here, we quantify spatial patterns in discovery points and invasion richness of non-native 79 

forest pests using spatial point pattern and hotspot analyses, respectively. Application of spatial 80 

point pattern analyses to ecological data has increased over the previous ~20 years and been 81 

frequently used to quantify spatial aggregation patterns (e.g., compete spatial randomness) in 82 

univariate data (Velázquez et al., 2016). Point pattern analyses may also be used to quantify the 83 

influence of spatial heterogeneity (e.g., habitat features) on point patterns (Dodd et al., 2016) and 84 

conduct marked point pattern analyses, which enable the inclusion of trait information 85 

(Velázquez et al., 2016). To that end, we analyzed changes in first discovery points by time 86 

period of introduction, origin, and guild. For analyses of invasion richness, we identified richness 87 

hotspots by estimating local Getis-Ord statistics (Getis & Ord, 1992) at the county-level. Our 88 

intention was to provide insight on underlying drivers of macroscale patterns of invasion by non-89 

native forest pests. We anticipate that our findings will assist management agencies in targeting 90 

areas for increased monitoring and mitigation efforts. 91 

Materials and Methods 92 

Data collection and processing 93 

 The locations of first detection, henceforth referred to as discovery points, and county-94 

level occurrence for 101 major non-native pests (n = 84 insects, 17 pathogens) of trees were 95 

compiled for the contiguous USA. Data were originally collected for the Alien Forest Pest 96 

Explorer database. Briefly, locations (latitude, longitude) of discovery and occurrence at the 97 

county-level were compiled from primary literature articles, surveys, and federal and state 98 

government reports. A detailed description of the database was provided in Liebhold et al., 99 

(2013), which focused on mapping invasion richness at the county-level and identifying terms 100 

for propagule pressure and habitat invasibility that explained variation in invasion richness. Here, 101 
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we conducted analyses to predict spatial patterns in discovery locations and quantitatively 102 

identify invasion hotspots (see below). For each pest, we obtained the year of first discovery, 103 

global region of origin or simply “origin” (Asian Palearctic, Australasia, European plus Asian 104 

Palearctic, European Palearctic, or Neotropic Mexico/Central/South America; based on a pest’s 105 

native range and henceforth referred to as Asia, Australasia, Eurasia, Europe, and 106 

Mexico/Central America/South America respectively), and guild (bark/wood-borer, foliage-107 

feeder, sap-feeder, pathogen). Pests were discovered between 1794-2004. Most were introduced 108 

from Asia (33) and Eurasia (33), followed by Europe (25), Australasia (8), and Mexico/Central 109 

America/South America (2). Of the total pests, 23 were bark/wood-borers, 34 were foliage-110 

feeders, 27 were sap-feeders, and 17 were pathogens.  111 

For analyses of discovery points, some pests were not included either due to lack of 112 

documentation or because points were only traceable to the state level. One pest, beech scale 113 

(Cryptoccocus fagisuga Lind.), was removed from analysis of discovery points because this 114 

species arrived in the USA via diffusive spread from Canada rather than as a point introduction. 115 

Some pests were assigned to county centroids and were retained for analyses. Ten pests (n = 4 116 

insects, 6 pathogens) were discovered in two, isolated locations and were treated as independent 117 

data points. In total, 79 discovery points for 74 pests (n = 62 insects, 12 pathogens) across 62 US 118 

counties were available for analyses of discovery points (Figure 1).  119 

Hotspot analyses of invasion richness focused on 101 pests across 3,109 counties and 120 

were current as of July 2018. First discovery locations were not available for all pests; hence, 121 

number of species between first detection point analyses and hotspot analyses differed. Two 122 

pests, soapberry borer (Agrilus prionurus Chevrolat) and, oak wilt (Bretziella fagacearum (T. W. 123 

Bretz) J. Hunt) originating from Mexico/Central America/South America were not included in 124 
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origin-dependent analyses. Summaries of pests analyzed for discovery points (Table S1.1) and 125 

hotspots (Table S1.2) by origin × guild are available in Appendix S1 in supporting information. 126 

All data and Geographic Information Systems (GIS) layers used in analyses are available 127 

through the Purdue University Research Repository (PURR) (Ward et al., 2019). 128 

First discovery points 129 

 We analyzed the spatial intensity of discovery points (discovery points per km2) using 130 

spatial point pattern analysis (Renner et al., 2015). Our spatial window of analysis was the 131 

border of the entire contiguous USA. All points were projected using Albers equal area 132 

projection. We then quantified Ripley’s K-function (K(r); Ripley 1976) for discovery points, 133 

which provides inference on spatial clustering of points within circles of increasing radii (i.e., at 134 

various spatial scales) (Bivand et al., 2013b). The estimated K(r) was transformed (�𝐾𝐾(𝑟𝑟)/𝜋𝜋𝜋𝜋 −135 

𝑟𝑟) and compared visually to K(r) values simulated from a random distribution of 200 points. All 136 

point pattern analyses were conducted in R statistical software (R Core Team, 2018) via the 137 

‘spatstat’ package (Baddeley & Turner, 2005; Baddeley et al., 2015).  138 

We then evaluated the explanatory power of invasion pathway variables such as 139 

population density in 1990 (converted to 10 × 10 km raster; Falcone, 2016), coastal port density 140 

(National Geospatial-Intelligence Agency, 2017), road density (primary roads; US Census 141 

Bureau Department of Commerce, 2016) and first and second order terms for the west-east and 142 

south-north directions in log-transformed intensity of discovery locations using point process 143 

models (PPMs). Non-directional terms were converted to pixel-images for analysis (Baddeley & 144 

Turner, 2005). Note that our analyses predicted where pests were discovered, not necessarily 145 

where they first became established. The west-east and south-north terms were included as 146 

putative correlates for the arrival of pests in coastal areas by means not accounted for by the 147 
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invasion pathway variables. For example, a positive correlation between west-east and intensity 148 

of first discovery points would indicate that there are statistically higher concentrations of points 149 

in the east vs. west. Approximately 80,000 quadrature points were selected to approximate the 150 

integral in the log-likelihood function that is maximized when fitting point process models 151 

(Baddeley & Turner, 2005; Renner et al., 2015). Diagnostic plots of residuals suggested that 152 

substantial unexplained variation in both the west-east and south-north directions remained 153 

(Appendix S2). 154 

We further analyzed the location of discovery points in relation to time periods of 155 

discovery, origins, and guilds. To investigate temporal patterns in aggregation, the discovery 156 

point data were split into four groups using quartiles (Q1 = 1794-1907, Q2 = 1908-1927, Q3 = 157 

1928-1991, Q4 = 1992-2004) for year of first discovery and Ripley’s K statistic was then 158 

estimated separately for each quartile. Following the approach of Bivand et al., (2013), we also 159 

conducted pairwise comparisons of aggregation between time periods to determine, for example, 160 

if discovery points from time period i were more or less aggregated than those of time period j 161 

(graphical results of pairwise comparisons are provided in Appendix S3 in supporting 162 

information). We then conducted a marked point pattern analysis, which enabled each point to be 163 

assigned to a level of time period, by fitting a point process model with spatial covariates for the 164 

west-east direction, south-north direction, and each direction’s interaction with a term for time 165 

period (i.e., west-east × time period, south-north × time period; time period had four levels, Q1-166 

Q4). Thus, we quantified (1) aggregation and (2) directional trends of points in space. Parallel 167 

analyses were conducted using origin and guild, each a categorical variable with four levels as 168 

described above, instead of time period. Trends were assessed visually by graphing intensity of 169 

discovery points as estimated via an isotropic Gaussian smoothing kernel fit via the density.ppp() 170 
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function in R (Diggle, 1985; Baddeley & Turner, 2005). To determine robustness of full models, 171 

individual models for each level within a predictor were constructed by fitting terms for the 172 

west-east and south-north direction (e.g., assessing directional trends for pests introduced in Q1) 173 

and are provided in Appendix S4 in supporting information. 174 

Finally, to determine if patterns associated with origin or guild may have changed with 175 

time, we fit two separate ANOVAs assessing the role of origin or guild in year of first discovery. 176 

When significant variation in discovery year was explained by a predictor (either guild or 177 

origin), we used TukeyHSD tests fit via the ‘emmeans’ package (Lenth, 2018) in R to conduct 178 

pairwise comparisons. 179 

Current invasion hotspot patterns 180 

Hotspot analyses compare attributes of a spatial feature, such as the invasion richness of a 181 

county, and its neighbors, to the global pattern across all spatial features to identify features with 182 

attribute levels greater than would be expected due to random chance (Patil & Taillie, 2004; Fei, 183 

2010; Iannone et al., 2016). Invasion hotspots were identified by quantifying local Getis-Ord 184 

(𝐺𝐺𝑖𝑖∗) statistics (Getis & Ord, 1992) for each county in the data set. 𝐺𝐺𝑖𝑖∗ is a local neighborhood 185 

statistic that can account for invasion richness in neighboring counties and enable one to detect 186 

spatial patterns that may not be accounted for when using global statistics (Ord & Getis, 1995). 187 

Thus, a county with low invasion richness could be identified as a hotspot if it is surrounded by 188 

counties with extremely low invasion richness values. Moreover, estimating 𝐺𝐺𝑖𝑖∗ produces a Z-189 

score, which can be used as a threshold value for identifying areas with high invasion richness, 190 

rather than a scale of integer values such as invasion richness counts. That is, invasion richness 191 

counts do not involve a statistical test to determine which areas have significantly higher 192 

richness.  193 
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A first-order spatial neighborhood was constructed for calculating 𝐺𝐺𝑖𝑖∗statistics. Separate 194 

analyses were conducted for all pests combined, origins, and guilds. For origin and guild, we 195 

quantified 𝐺𝐺𝑖𝑖∗statistics both among (i.e., to identify counties with significantly more origins or 196 

guilds) and within (i.e., to identify counties with significantly more species belonging to a 197 

specific origin or guild) groupings. Calculating 𝐺𝐺𝑖𝑖∗ statistics results in a Z-score that can be 198 

compared to a standard normal distribution to obtain a P-value. We defined a hotspot as any Z ≥ 199 

4.158 (i.e., P < 0.05/3,109, or < 0.00002), equivalent to a Bonferroni correction, to protect 200 

against inflated type I error rates from calculating 3,109 Z-values (one for each county). 201 

Current invasion hotspot patterns and first discovery locations 202 

To quantify the effect of discovery locations on invasion richness, we first estimated the 203 

intensity of discovery points at county centroids from observed discovery point data using an 204 

isotropic Gaussian smoothing kernel as described above (see Figure 1 for a representation of the 205 

smoothed surface). Estimated intensities ranged from 0.0000001 to 0.00011 pests per km2. We 206 

then fit three spatial simultaneous autoregressive error (SAR) models. For the first two, we 207 

predicted invasion richness and hotspots, using estimated Z-values, as a function of estimated 208 

intensities of discovery points. For the third model, we regressed hotspot Z-values on invasion 209 

richness. Model residuals for each analysis were weighted by second order spatial neighborhoods 210 

to account for spatial autocorrelation. The SAR models were fit and Moran’s I estimated using 211 

the ‘spdep’ package in R (Bivand et al., 2013a; Bivand & Piras, 2015). GIS analyses relied on 212 

the ‘geosphere’ (Hijmans, 2017), ‘geostatsp’ (Brown, 2015, 2018), ‘maptools’ (Bivand & Lewin-213 

Koh, 2017) and ‘rgdal’ (Bivand et al., 2018) packages in R (R Core Team, 2018). 214 

 215 

Results 216 
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First discovery points: population density, ports, and roads 217 

Discovery points were concentrated in the northeast and western coastal areas except for 218 

~10 points (~12%) distributed across the inland and southern USA (Figure 1). Owing to a total of 219 

79 discoveries across the entire contiguous USA, the mean intensity was low (0.00001 points per 220 

km2). Discoveries were highly aggregated in space at both local and continental scales (Figure 221 

2a). In point process models, a second order term for west-east (west-east2) was significantly, 222 

positively correlated with the intensity of discovery points, indicating that more pests initially 223 

invaded on both the east and west coasts (Table 1). Neither a first nor second order term for 224 

south-north was significant. After accounting for these directional trends in discovery points, the 225 

density of ports and roads, proxies for invasion pathway intensity (propagule pressure), were 226 

positively correlated with the intensity of discovery points (Table 1). Human population density 227 

was not significantly correlated with intensity of discovery points in our full model (Table 1), but 228 

was significantly, positively correlated when fit with just the directional predictors (Appendix S5 229 

of supporting information). In the full model, the most significant pathway correlate of discovery 230 

point intensity was the density of roads, followed by density of ports and human population 231 

density, which was not significant (Table 1). 232 

First discovery points: time period 233 

 When modeling the intensity of discovery points using marked point pattern analysis, we 234 

found that spatial patterns in discoveries varied among time periods. Pests discovered between 235 

1794-1907 (Q1) and 1908-1927 (Q2) were significantly more aggregated than pests discovered 236 

between 1928-1991 (Q3) and 1992-2004 (Q4) (all P < 0.01; Figure 2b). There were no statistical 237 

differences between Q1 vs. Q2 and Q3 vs. Q4. When analyzing how directional trends and time 238 

period of introduction (Q1-Q4) jointly influence discovery point intensity, there was a 239 
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statistically significant interaction between both directional predictors and time (west-east × time 240 

period and south-north × time period). Pests discovered between 1794-1927 (Q1-Q2) were more 241 

likely to be discovered in eastern and northern regions of the USA (Table 2a, Figure 3a,b). Pests 242 

discovered from 1928-1991 (Q3) were more likely to be discovered farther west than pests from 243 

Q1 (Table 2a, Figure 3c). Pests discovered from 1992-2004 (Q4) were more likely to be 244 

discovered farther south and west than pests from Q1 (Table 2a, Figure 3d). Individual fits by 245 

time period confirmed that discoveries were more likely to occur father west and south as time 246 

progressed (Table S4.1, Appendix S4). 247 

First discovery points: origin 248 

 Marked point pattern analyses demonstrated that, in addition to changes with time period, 249 

spatial patterns of discovery points were mediated by pests’ global region of origin. Within an 250 

origin, all pests were aggregated in space (e.g., pests from Asia were likely to be discovered near 251 

other pests from Asia), although discovery points of pests from Australasia, Eurasia, and Europe 252 

were more aggregated than those from Asia (Figure 2c). There were no differences in 253 

aggregation among discovery points of pests from Australasia, Eurasia, and Europe. Pests from 254 

Asia were more likely to be discovered in the east vs. the west (Table 2b, Figure 3e). Pests 255 

originating in Australasia were more likely to be discovered in the southwestern USA than those 256 

from Asia (Table 2b, Figure 3f), whereas pests from Eurasia and Europe were typically 257 

discovered in the northeastern USA, similar to pests from Asia (Table 2b, Figure 3g,h). 258 

Individual fits by origin confirmed that pests from Asia, Eurasia, and Europe were generally 259 

discovered in the east whereas pests from Australasia were discovered in the southwest (Table 260 

S4.2, Appendix S4). 261 

First discovery points: guild 262 
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We also found that spatial patterns in discovery points differed among guilds. 263 

Discoveries of foliage-feeders were significantly more aggregated than borers, sap-feeders, and 264 

pathogens (all P < 0.01; Figure 2d). There were no other differences detected in aggregation 265 

among guilds (all P > 0.05). Foliage-feeders were more likely to be discovered in the 266 

northeastern USA (Figure 3i), whereas borers (Figure 3j), sap-feeders (Figure 3k), and pathogens 267 

(Figure 3l) were more likely to be discovered farther west than foliage-feeders (Table 2c). 268 

Higher densities of discovery points of pathogens were observed at higher latitudes, though this 269 

trend was not statistically significant (Table 2c). Individual fits by guild confirmed conclusions 270 

from full models, except that the positive trend of discoveries of pathogens in the y-direction was 271 

statistically significant in the model evaluating pathogens alone (Table S4.3, Appendix S4). 272 

First discovery points: guild and origin by time period 273 

Year of first discovery did not vary with region of origin (F4,74 = 2.10, P = 0.09). Pests 274 

from Australasia were the most recently discovered group on average, with a mean discovery 275 

year of 1973 (± 18 years SE), followed by pests from Asia (1943 ± 8), Eurasia (1928 ± 11), and 276 

Europe (1923 ± 12). Year of first discovery varied significantly among guilds. The means for 277 

year of first discovery of borers and pathogens were 1981 (± 8 years SE) and 1949 (± 9), 278 

respectively, and did not differ significantly (TukeyHSD, t75 = 2.08, P = 0.17). Foliage-feeders 279 

and sap-feeders were discovered, on average, in 1916 (± 9 SE) and 1918 (± 11), respectively, 280 

significantly earlier than borers (TukeyHSD, all t75 > 4.3 and P < 0.0004). No differences were 281 

detected among foliage-feeders, sap-feeders, and pathogens (TukeyHSD, all t75 < 2.29 and P > 282 

0.10). 283 

Current invasion hotspot patterns: all pests 284 



14 
 

Of the 3,109 counties comprising our analysis, 89% were invaded by at least one species 285 

(Figure 4a). The average number of species per county was 4.88 (± 0.09 SE; maximum = 36 286 

species) and 6.3 % of counties were identified as hotspots (i.e., Z ≥ 4.158, < 0.00002) as 287 

estimated by Getis-Ord (𝐺𝐺𝑖𝑖∗) statistics (Figure 4b). Most hotspots were in the northeastern USA 288 

except for one county in southeastern Wisconsin (Figure 4b). 289 

Current invasion hotspot patterns: origin 290 

 Species region of origin was associated with distinct geographical patterns. The average 291 

county had pests belonging to 1.62 (± 0.018 SE) origins. Pests from Asia were the most 292 

widespread and established in 80% of counties. Pests from Eurasia (50% of counties infested) 293 

were the second most widespread, followed by pests from Europe (28%) and Australasia (4%). 294 

Several counties in California and one county each in Massachusetts and Montana were hotspots 295 

for the number of different origins represented (Figure 5a). That is, in those counties in 296 

California, Massachusetts, and Montana, there were more origins represented per county than 297 

would be expected due to random chance. Hotspots based on origin were relatively limited in 298 

spatial extent for pests from Asia, Australasia, Eurasia, and Europe, covering 7%, 2%, 6%, and 299 

5% of counties (Figure 5b-e). Hotspots for pests from Asia (Figure 5b) and Eurasia (Figure 5d) 300 

were concentrated in northeastern counties, though a hotspot for Eurasian pests was identified in 301 

Washington state. Hotspots of pests from Australasia were concentrated in the southwest and 302 

Florida (Figure 5c), whereas hotspots for pests from Europe were located in several coastal and 303 

inland western counties, some counties in the upper Midwest, and several northeastern counties 304 

(Figure 5e). 305 

Current invasion hotspot patterns: guild 306 
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 Counts and distributions of guilds exhibited considerable geographical variation. The 307 

average county contained 2.22 (0.023 ± SE) guilds. Pathogens were the most widespread and 308 

were detected in 76% of counties, followed by foliage-feeders (64% of counties), borers (49%), 309 

and sap-feeders (34%). Hotspots for numbers of different guilds represented occurred in few 310 

counties (< 1%) and were concentrated in the northeast (Figure 6a). Hotspots for borers, foliage-311 

feeders, sap-feeders, and pathogens were limited in their spatial extent, covering 4.7%, 5.2%, 312 

4.6% and 7.1% of counties, respectively (Figure 6b-e). Despite that hotspots for borers (Figure 313 

6b) and sap-feeders (Figure 6d) were the least geographically widespread, hotspots for both 314 

guilds were identified in the northeast and southwest. Additional hotspots for borers were found 315 

in Michigan and Wisconsin, with one hotspot in northwestern Utah. Several counties throughout 316 

California were identified as hotspots for sap-feeders. Hotspots of foliage-feeders (Figure 6c) 317 

and pathogens (Figure 6e) were distributed similarly and concentrated in the northeast and some 318 

Midwestern states. 319 

Current invasion hotspot patterns and first discovery locations 320 

 Both county-level invasion richness (Figure 7a) and hotspot Z-values (Figure 7b) were 321 

positively correlated with estimated intensities of first discovery locations. That is, invasion 322 

richness was higher in counties located in areas with higher densities of first discovery points. 323 

Similarly, hotspot Z-values were significantly, positively correlated with invasion richness 324 

(Figure 7c). The simultaneous autoregressive error models used to regress invasion richness and 325 

hotspots on estimated intensities of discovery points sufficiently accounted for spatial 326 

autocorrelation (both Moran’s I < -0.10, P = 0.99). There remained some spatial autocorrelation 327 

in the model regressing hotspot Z-values on invasion richness (Moran’s I = 0.02, P < 0.05). 328 

Discussion 329 
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Our finding that discovery locations of forest pests are associated with human activity 330 

provides quantitative support for the role humans have in facilitating invasions. Movement of 331 

non-native species by humans has long been recognized (Hulme, 2009), however, we found that 332 

proxies for human activity, such as density of ports and roads, were more correlated with the 333 

intensity of discovery points than human population density itself (Table 1). Such findings may 334 

be indicative of frequent pest arrival in cargo imports (Work et al., 2005; Aukema et al., 2010). 335 

The final destination of contaminated cargo is not necessarily near the port of entry (Rassati et 336 

al., 2015) and areas with high densities of roads may contain many final destinations for cargo. 337 

The predictive ability of human population density may have been improved by considering 338 

population densities at earlier time periods (e.g., prior to the 1920s), given the relatively large 339 

temporal window of our first discovery point data (1794-2004). Human population density, 340 

ports, and roads are also correlated in space, which may have masked the predictive power of 341 

population density (Appendix S5). Nonetheless, there remained unexplained variation in 342 

locations of initial establishment, as indicated by the strong association of discovery points with 343 

coastal regions after accounting for the densities of ports, roads, and humans (Table 1), which 344 

may be attributable to habitat invasibility (e.g., tree diversity) (Liebhold et al., 2013; Guo et al., 345 

2019). 346 

The spatial distribution of discovery points differed between time periods and were 347 

dependent on pest origin and feeding guild, likely reflecting changes in the intensity of invasion 348 

pathways, prevention/management efforts at ports of entry, or composition/volume of imports. 349 

For example, the historically dominant invasion pathway for foliage-feeders is the movement of 350 

live plants (Liebhold et al., 2012). Prior to 1918, imports of plants to the USA were largely 351 

unregulated but subsequent implementation of quarantine practices greatly diminished accidental 352 
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imports of insects on commercial plant imports (Liebhold & Griffin, 2016). We found that 353 

discoveries of foliage-feeders occurred the earliest on average (1916) and were concentrated in 354 

the northeastern USA. Thus, the concentration of human populations in the northeast in the early 355 

1900s coupled with unregulated importation of live plants likely drove the high aggregation of 356 

discovery points for foliage-feeders (Figure 2d). It follows that increased population density in 357 

the western USA would increase propagule pressure in the west and spread the risk of non-native 358 

pest establishment across a larger area, thus decreasing aggregation; indeed, we observed a 359 

decrease in aggregation through time (Figure 2b). Patterns of borer discovery also suggest that 360 

intensity of invasion pathways change with time. The average introduction year for borers was 361 

1981, which may reflect temporal changes in their dominant invasion pathway, solid wood 362 

packaging material (Brockerhoff et al., 2006; Brockerhoff & Liebhold, 2017). Imports to the 363 

USA have risen dramatically over the last 100 years and widespread adoption of containerized 364 

cargo has led to increased movement of wood packaging and associated increases in borer 365 

invasions with time (Aukema et al., 2010). 366 

We note that patterns in discovery points may be a function of sampling bias, with more 367 

pests discovered in areas of human activity due to survey efforts. However, invaders often arrive 368 

via pathways such that they typically establish in populated areas (Colunga-Garcia et al., 2009; 369 

Paap et al., 2017) and thus first establishments in rural areas are generally low. Conspicuousness 370 

of impacts may also be an important determinant of first discovery point patterns. For example, 371 

there may be shorter time lags between establishment and detection for pests with immediately 372 

visible impacts when at low densities. Variability in detection and/or imperfect detection may be 373 

able to be accounted for using occupancy models (Dorazio, 2014; MacKenzie et al., 2017). 374 

However, data on impact detectability, particularly when at low densities as is observed 375 
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immediately following introduction, were not available and thus not accounted for in our 376 

analyses. 377 

Hotspot analyses using all pest species indicated that hotspots were concentrated in the 378 

northeastern USA, corroborating findings by Liebhold et al., (2013), but striking differences 379 

emerged when viewing hotspots by pest origin and guild. Moreover, hotspot patterns may also be 380 

driven by the origin × guild composition of invasive forest pests. Hotspots of Australasian pests 381 

(Figure 5c) and sap-feeders (Figure 6d) were abundant in California and Florida and 3/7 pests 382 

from Australasia were sap-feeders (only 3/25 sap-feeders were from Australasia; Appendix S1). 383 

Thus, the number of species per guild arriving from a place of origin could have contributed to 384 

some of the patterns in both first discovery points and hotspots observed here 385 

Invasion pathways begetting higher rates of establishment appear to, in part, drive 386 

subsequent patterns in invasion richness. That is, high numbers of invasive forest pest species 387 

accumulate in regions simply because pests are likely to initially establish in those regions 388 

(Figure 7), in addition to those regions being conducive to spread (Liebhold et al., 2013). 389 

Quantification of spatiotemporal import trends may provide further insights, for example, if 390 

certain regions and time periods are associated with guild-dependent invasion pathways and 391 

associated establishments. We caution that our hotspot results may be scale-dependent, analyzing 392 

data at the county level was ideal, however, given that (1) these data were recorded and 393 

quarantines are often imposed (e.g., emerald ash borer) at the county-level and (2) hotspot 394 

analyses at the state level may have been limited by too few data points (i.e., 3000+ counties vs. 395 

48 states). 396 

Future analyses encompassing more discovery points, including those of pests of 397 

agricultural, rangeland, and/or other ecosystems, may exhibit different patterns and/or provide 398 
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insight into the behavior of different invasion pathways. Patterns described here may not reflect 399 

the patterns of all non-native forest insects and pathogens, as our data are limited to tree insects 400 

and pathogens having some detectable impacts. Further analyses are also needed to examine the 401 

role of biotic resistance, the ecological components of a community that decrease invasibility, in 402 

patterns of first discovery locations. Investigations of the effects of urban and rural forest 403 

diversity and structure on pest establishment may potentially help managers promote more pest-404 

resistant urban and rural forests (Santamour, 1990; Raupp et al., 2006; Jactel et al., 2009). 405 

Nonetheless, our findings highlight the central role humans play in the movement and 406 

establishment of non-native forest pests and suggest continued monitoring near ports and highly 407 

populated areas to maximize early detection of new invaders.  408 
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Tables and Figures 580 

Table 1 Summary statistics from a spatial point process model evaluating the role of invasion 581 

pathways and terms for cardinal directions in intensity of first detection points, log(points per 582 

km2), of non-native forest insects and pathogens discovered in the contiguous USA between 583 

1794-2004. The terms west-east and south-north represent geographic coordinates in Albers 584 

projection (km). Model AIC: 1571. 585 

Covariate Estimatea SE |Z|b P 
Intercept -14.12 0.39 36.39 <0.0001 
Population density 0.00006 0.00007 0.81 0.29 
Port density 0.37 0.15 2.57 0.0149 
Road density 0.00704 0.00081 8.68 <0.0001 
west-east 0.00041 0.00008 5.01 <0.0001 
west-east2 10.2×10-7 1.3×10-7 8.00 <0.0001 
south-north 0.00009 0.00027 0.35 0.38 
south-north2 -2.0×10-7 3.5×10-7 -0.58 0.34 

a Exponentiated coefficients for point process models indicate the factor by which density of 586 

discovery locations would increase per unit area with a one unit increase in the density of a 587 

covariate. For example, holding all else equal, an increase in 1 port per km2 was associated with 588 

a 1.4× [=exp(0.37)] increase in discovery points per km2. 589 

b Z statistics indicating whether coefficients estimated using spatial point process models are 590 

significantly different from 0.  591 



29 
 

Table 2 Spatial covariates of the intensity of first detection points, log(points per km2), of non-592 

native forest insects and pathogens discovered in the contiguous USA between 1794-2004. 593 

Trends were analyzed using marked spatial point process models. Three separate analyses were 594 

conducted in which points were marked by time period of discovery (a), origin (b), or guild (c). 595 

The terms west-east and south-north represent geographic coordinates in Albers projection (km). 596 

Covariatea Estimateb SE |Z|c P 
a. Time period of discovery (AIC: 2120)    
Intercept (Q1, 1974-1907) -13.48 0.35 38.93 <0.0001 
Q2 (1908-1927) -0.19 0.52 0.37 0.37 
Q3 (1928-1991) 0.51 0.43 1.19 0.20 
Q4 (1992-2004) 0.45 0.43 1.06 0.23 
west-east 0.00117 0.00025 4.76 <0.0001 
south-north 0.00110 0.00041 2.66 0.0116 
Q2 × west-east 0.00022 0.00037 0.60 0.33 
Q3 × west-east -0.00076 0.00031 2.45 0.0200 
Q4 × west-east -0.00113 0.00034 3.35 0.0014 
Q2 × south-north 0.00001 0.00059 0.02 0.40 
Q3 × south-north -0.00001 0.00057 0.02 0.40 
Q4 × south-north -0.00116 0.00056 2.05 0.0484 
     
b. Origin (AIC: 1994)   
Intercept -12.62 0.21 61.29 <0.0001 
Australasia -29.11 9.12 3.19 0.0024 
Eurasia -0.64 0.37 1.73 0.09 
Europe -2.08 0.66 3.15 0.0028 
west-east 0.00053 0.00018 2.99 0.0046 
south-north 0.00051 0.00031 1.63 0.11 
Australasia × west-east -0.01497 0.00419 3.57 0.0007 
Eurasia × west-east 0.00044 0.00026 1.68 0.10 
Europe × west-east 0.00147 0.00046 3.20 0.0024 
Australasia × south-north -0.00945 0.00288 3.28 0.0018 
Eurasia × south-north 0.00106 0.00051 2.08 0.0463 
Europe × south-north 0.00082 0.00060 1.36 0.16 
     
c. Guild (AIC: 2089)     
Intercept -15.05 0.78 19.39 <0.0001 
Borers 2.00 0.82 2.45 0.0198 
Pathogens 1.50 0.86 1.75 0.09 
Sap-feeders 2.18 0.81 2.70 0.0104 
west-east 0.00265 0.00052 5.06 <0.0001 
south-north 0.00065 0.00041 1.57 0.12 
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Borers × west-east -0.00230 0.00057 4.06 0.0001 
Pathogens × west-east -0.00210 0.00057 3.71 0.0004 
Sap-feeders × west-east -0.00262 0.00056 4.64 <0.0001 
Borers × south-north -0.00005 0.00057 0.09 0.40 
Pathogens × south-north 0.00097 0.00066 1.46 0.14 
Sap-feeders × south-north -0.00056 0.00054 1.03 0.23 

a Models predict the intensity of discovery points as a function of variables for west-east and 597 

south-north directions and a categorical predictor (each with four levels). For example, in model 598 

(a), the model reference level is Q1 (1974-1907), and thus the interaction of other levels of the 599 

variable time period with west-east and south-north are each compared to the slope coefficients 600 

of west-east and south-north associated with level Q1 (i.e., 0.00117 and 0.00110, respectively). 601 

In models (b) and (c), the reference levels for the variables origin and guild are Asia and foliage-602 

feeders, respectively. 603 

b Exponentiated coefficients for point process models indicate the factor by which density of 604 

discovery locations would increase per unit area with either a change between levels of a factor 605 

or a one unit increase in the density of a covariate. For example, for model (a) and holding all 606 

else equal, a shift 500 km west between Q1 and Q4 was associated with 1.76× [=exp(0.00113 × 607 

500 km)] increase in the number of discovery points per km2. 608 

c Z statistics indicating whether coefficients estimated using spatial point process models are 609 

significantly different from 0. 610 

  611 
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Figures 612 

 613 

Figure 1 Intensity of discovery points (points per km2; black circles) of non-native forest insects 614 

and pathogens discovered in the contiguous USA between 1794-2004. Colors and scale bar 615 

indicate a kernel smoother fit to observed first discovery locations. Map projection: Albers equal 616 

area.  617 
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 618 

Figure 2 Ripley’s K statistics for discovery points of non-native forest insects and pathogens 619 

discovered in the contiguous USA between 1794-2004 as a function scale (radius of circles in 620 

km). Panels display patterns across a) all discovery points, b) time period of discovery, c) 621 

origins, or d) guilds. Solid lines indicate observed K(r) statistics, transformed for visualization 622 

(y-axis), at a radius r from each discovery point (x-axis). The dotted line provides an estimate of 623 

complete spatial randomness and the gray area represents 95% confidence limits for K(r) 624 

statistics simulated from a theoretical, random distribution of discovery points. Lines above gray 625 

areas are significantly aggregated at the scale of analysis. For example, discoveries of all pests 626 

(panel a) are highly aggregated, regardless of scale.  627 
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 628 

Figure 3 Discovery locations of non-native forest insects and pathogens discovered in the 629 

contiguous USA between 1794-2004 displayed by time period (a-d; quartiles of introduction 630 

year), world region of origin (e-h), and feeding guild (i-l). Models comparing changes in the 631 

distribution of points by time period (row 1 of figure), origin (row 2), and guild (row 3) are 632 

provided in Table 2. Changes in aggregation between groupings are presented in Figure 2. Map 633 

projection: Albers equal area. 634 

  635 
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 636 

Figure 4 County-level a) invasion richness and b) hotspots for non-native forest insects and 637 

pathogens as of 2018 in the contiguous USA. Hotspot analyses enable comparisons of invasion 638 

richness of a county and its neighbors to the global richness patterns across all counties to 639 

identify counties with richness levels greater than would be expected due to random chance. 640 

Invasion hotspots were identified by quantifying local Getis-Ord (𝐺𝐺𝑖𝑖∗) statistics, which produces 641 

a Z-score. Counties with Z-scores ≥ 4.158 were considered invasion hotspots. Map projection: 642 

Albers equal area.  643 
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  644 

Figure 5 County-level invasion hotspots for non-native forest insects and pathogens as of 2018 645 

in the contiguous USA based on pest origin: a) numbers of origins, b) Asia, c) Australasia, d) 646 

Eurasia, and e) Europe. A hotspot is defined as any county where Getis-Ord (𝐺𝐺𝑖𝑖∗) statistics (Z 647 

scores) are ≥ 4.158. See Figure 4 and main text for description of 𝐺𝐺𝑖𝑖∗. Map projection: Albers 648 

equal area.  649 
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 650 

Figure 6 County-level invasion hotspots for non-native forest insects and pathogens as of 2018 651 

in the contiguous USA based on pest guild: a) numbers of guilds, b) bark/wood-borers, c) 652 

foliage-feeders, d) sap-feeders, and e) pathogens. A hotspot is defined as any county where 653 

Getis-Ord (𝐺𝐺𝑖𝑖∗) statistics (Z scores) are ≥ 4.158. See Figure 4 and main text for description of 𝐺𝐺𝑖𝑖∗. 654 

Map projection: Albers equal area.  655 
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 656 

Figure 7 (a) Number of non-native pests per county as of 2018 in the contiguous USA (y-axis; 657 

invasion richness) as a function of kernel estimated discovery points per km2 at county centroids. 658 

The kernel smoother was fit to observed first discovery locations for non-native forest pests in 659 
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the contiguous USA (1794-2004) and estimated discoveries (x-axis) for each county were 660 

obtained from that interpolated surface. Intercept (± 0.22 SE, Z = 13.46, P < 0.0001) and slope (± 661 

7816.57 SE, Z = 17.92, P < 0.0001) of fit line significantly differ from 0. (b) Z-values from 662 

hotspot analyses of invasion richness, displayed in Figure 4c, as a function of estimated 663 

discoveries at the county-level. Intercept (± 0.14 SE, Z = -3.18, P = 0.0015) and slope (± 5773.40 664 

SE, Z = 5.64, P < 0.0001) of fit line significantly differ from 0. (c) Z-values from hotspot 665 

analyses as a function invasion richness at the county-level level. Intercept (± 0.02 SE, Z = -666 

132.48, P < 0.0001) and slope (± 0.002 SE, Z = 182.05, P < 0.0001). 667 


