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Title: Spatial patterns of discovery points and invasion hotspots of non-native forest pests
Running title: Spatial patterns of non-native forest pests

Abstract
Aim Establishments of non-native forest pests (insects and pathogens) continue to increase
worldwide with the growing number of introductions and changes in invasion pathways.
Quantifying spatiotemporal patterns in establishment locations and subsequent invasion
dynamics can provide insight into the underlying mechanisms driving invasions and assist
biosecurity agencies with prioritizing areas for proactive surveillance and management.
Location Contiguous United States of America
Time period 1794-2018
Major taxa studied Insecta and plant pathogens
Methods Using locations of first discovery and county-level occurrence data for 101 non-native
pests across the contiguous USA, we (1) quantified spatial patterns in discovery points and
county-level species richness using spatial point process models and spatial hotspot analyses,
respectively, and (2) identified potential proxies for propagule pressure (e.g., human population
density) associated with these observed patterns.
Results Discovery points were highly aggregated in space and located in areas with high
densities of ports and roads. Though concentrated in the northeastern USA, discovery points also
occurred farther west and became less aggregated as time progressed. Invasion hotspots were
more common in the northeast. Geographic patterns of discovery points and hotspots varied
substantially among pest origins (i.e., global region of pests’ native ranges) and pest feeding
guilds. Significant variation in invasion richness was primarily attributed to the patterns of first

discovery locations.
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Main conclusions Use of spatial point pattern analyses provided a quantitative characterization
of the central role of human activities in establishment of non-native pests. Moreover, the
decreased aggregation of discovery points through time suggests that invasion pathways to
certain areas in the USA have either been created or intensified by human activities. Overall, our
results suggest that spatiotemporal variability in the intensity of invasion pathways has resulted
in marked geographical patterns of establishment and contributed to current macroscale patterns
of pest invasion in the USA.

Keywords: Getis-Ord, Insecta, invasion biology, pathogens, pathways, Ripley’s K function,

spatial point process
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Introduction

Biological invasions can be categorized into three phases: arrival, establishment, and
spread (Liebhold & Tobin, 2008). For invasive forest pests (insects and pathogens), the first
phase is typically facilitated by inadvertent human transportation, for example, through
importation of live plants, wood packaging material, or timber (Skarpaas & @kland, 2009;
Liebhold et al., 2012; Brockerhoff & Liebhold, 2017). The arrival of non-native pests has
increased with international trade and travel (Levine & D’Antonio, 2003; Turbelin et al., 2016).
Arrival of more conspecifics per unit of time and/or space (i.e., higher propagule pressure)
increases the likelihood that a species will locate resources and overcome demographic barriers
to establishment (Lockwood et al., 2005; Simberloff, 2009). The final invasion phase, spread, is
affected by human activities (e.g., movement of pests within the invaded range) (Shigesada &
Kawasaki, 1997; Gilbert et al., 2004), variation in habitat quality (Liebhold et al., 2013; Hudgins
et al., 2017), temperature (Lantschner et al., 2014), voltinism (Fahrner & Aukema, 2018), time
since establishment (Andow ef al., 1990) and other factors. Processes operating during each
phase combine to determine the extent of currently invaded ranges.

The number of non-native forest pests arriving and establishing in the USA continues to
increase (Aukema et al., 2010). Non-native pests impact forest structure and succession (Morin
& Liebhold, 2015; Lovett ef al., 2016; Liebhold et al., 2017) and cause billions of dollars (US$)
in damage per annum (Aukema et al., 2011). Given that human activity drives pest arrival and
establishment, discovery of pests in densely populated or well-traveled regions may be expected
(Huang et al., 2012). Locations of arrival and establishment may vary temporally with changes
in international trade, such as fluctuations in economic markets that alter the intensity of invasion

pathways between regions (Everett, 2000) or as human population densities change in time and
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space. However, spatial correlates of discovery points for non-native forest pests in the USA
have not been quantified.

The USA is highly invaded by forest pests with the number of non-native species per unit
area (“invasion richness”) distributed heterogeneously across the country (Liebhold ez al., 2013).
The geographical distribution of locations of initial invader establishment likely contributes to
macroscale patterns of invasion richness, as pests spread into adjacent areas. However, after
establishment, it does not necessarily follow that areas surrounding sites of initial establishment
will be conducive to rapid population growth and expansion of the invasive range. That is,
patterns of invasion richness are the result of both establishment and spread and therefore
patterns of invasion richness may not exactly mirror those of establishment locations.

Geographic variation in establishment and invasion richness may be driven, in part, by
frequent human-aided movement of pests into specific regions (Brockerhoff et al., 2014), forest
structure including host availability and/or apparency (Liebhold et al., 2013; Guo et al., 2019),
and climate (Ward & Masters, 2007). Among other factors, establishment and invasion richness
may also be influenced by global regions of origin and/or guilds of invaders. For example, rates
of establishment and spread may be greatest when pests are moved between regions with similar
climates (Roura-Pascual et al., 2011; Venette, 2017) or more wood-borers may arrive in areas
with high imports of wood packaging material (Brockerhoff et al., 2006; Haack, 2006; Rassati et
al., 2015). Following establishment, spread may be guild dependent, for example, if firewood, a
major pathway for wood-boring insects (Koch et al., 2012), is moved with different frequencies
between two regions than live plant material, a major pathway for foliage- and sap-feeding
insects (Liebhold ef al., 2012). It is unclear if either global region of origin or guild mediate

patterns in establishment locations or invasion richness.
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Here, we quantify spatial patterns in discovery points and invasion richness of non-native
forest pests using spatial point pattern and hotspot analyses, respectively. Application of spatial
point pattern analyses to ecological data has increased over the previous ~20 years and been
frequently used to quantify spatial aggregation patterns (e.g., compete spatial randomness) in
univariate data (Veldzquez et al., 2016). Point pattern analyses may also be used to quantify the
influence of spatial heterogeneity (e.g., habitat features) on point patterns (Dodd et al., 2016) and
conduct marked point pattern analyses, which enable the inclusion of trait information
(Velazquez et al., 2016). To that end, we analyzed changes in first discovery points by time
period of introduction, origin, and guild. For analyses of invasion richness, we identified richness
hotspots by estimating local Getis-Ord statistics (Getis & Ord, 1992) at the county-level. Our
intention was to provide insight on underlying drivers of macroscale patterns of invasion by non-
native forest pests. We anticipate that our findings will assist management agencies in targeting
areas for increased monitoring and mitigation efforts.

Materials and Methods
Data collection and processing

The locations of first detection, henceforth referred to as discovery points, and county-
level occurrence for 101 major non-native pests (n = 84 insects, 17 pathogens) of trees were
compiled for the contiguous USA. Data were originally collected for the Alien Forest Pest
Explorer database. Briefly, locations (latitude, longitude) of discovery and occurrence at the
county-level were compiled from primary literature articles, surveys, and federal and state
government reports. A detailed description of the database was provided in Liebhold et al.,
(2013), which focused on mapping invasion richness at the county-level and identifying terms

for propagule pressure and habitat invasibility that explained variation in invasion richness. Here,
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we conducted analyses to predict spatial patterns in discovery locations and quantitatively
identify invasion hotspots (see below). For each pest, we obtained the year of first discovery,
global region of origin or simply “origin” (Asian Palearctic, Australasia, European plus Asian
Palearctic, European Palearctic, or Neotropic Mexico/Central/South America; based on a pest’s
native range and henceforth referred to as Asia, Australasia, Eurasia, Europe, and
Mexico/Central America/South America respectively), and guild (bark/wood-borer, foliage-
feeder, sap-feeder, pathogen). Pests were discovered between 1794-2004. Most were introduced
from Asia (33) and Eurasia (33), followed by Europe (25), Australasia (8), and Mexico/Central
America/South America (2). Of the total pests, 23 were bark/wood-borers, 34 were foliage-
feeders, 27 were sap-feeders, and 17 were pathogens.

For analyses of discovery points, some pests were not included either due to lack of
documentation or because points were only traceable to the state level. One pest, beech scale
(Cryptoccocus fagisuga Lind.), was removed from analysis of discovery points because this
species arrived in the USA via diffusive spread from Canada rather than as a point introduction.
Some pests were assigned to county centroids and were retained for analyses. Ten pests (n =4
insects, 6 pathogens) were discovered in two, isolated locations and were treated as independent
data points. In total, 79 discovery points for 74 pests (n = 62 insects, 12 pathogens) across 62 US
counties were available for analyses of discovery points (Figure 1).

Hotspot analyses of invasion richness focused on 101 pests across 3,109 counties and
were current as of July 2018. First discovery locations were not available for all pests; hence,
number of species between first detection point analyses and hotspot analyses differed. Two
pests, soapberry borer (Agrilus prionurus Chevrolat) and, oak wilt (Bretziella fagacearum (T. W.

Bretz) J. Hunt) originating from Mexico/Central America/South America were not included in
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origin-dependent analyses. Summaries of pests analyzed for discovery points (Table S1.1) and
hotspots (Table S1.2) by origin x guild are available in Appendix S1 in supporting information.
All data and Geographic Information Systems (GIS) layers used in analyses are available
through the Purdue University Research Repository (PURR) (Ward et al., 2019).
First discovery points

We analyzed the spatial intensity of discovery points (discovery points per km?) using
spatial point pattern analysis (Renner et al., 2015). Our spatial window of analysis was the
border of the entire contiguous USA. All points were projected using Albers equal area
projection. We then quantified Ripley’s K-function (K(7),; Ripley 1976) for discovery points,

which provides inference on spatial clustering of points within circles of increasing radii (i.e., at

various spatial scales) (Bivand ef al., 2013b). The estimated K(r) was transformed (\/W —
r) and compared visually to K(7) values simulated from a random distribution of 200 points. All
point pattern analyses were conducted in R statistical software (R Core Team, 2018) via the
‘spatstat’ package (Baddeley & Turner, 2005; Baddeley et al., 2015).

We then evaluated the explanatory power of invasion pathway variables such as
population density in 1990 (converted to 10 x 10 km raster; Falcone, 2016), coastal port density
(National Geospatial-Intelligence Agency, 2017), road density (primary roads; US Census
Bureau Department of Commerce, 2016) and first and second order terms for the west-east and
south-north directions in log-transformed intensity of discovery locations using point process
models (PPMs). Non-directional terms were converted to pixel-images for analysis (Baddeley &
Turner, 2005). Note that our analyses predicted where pests were discovered, not necessarily
where they first became established. The west-east and south-north terms were included as

putative correlates for the arrival of pests in coastal areas by means not accounted for by the
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invasion pathway variables. For example, a positive correlation between west-east and intensity
of first discovery points would indicate that there are statistically higher concentrations of points
in the east vs. west. Approximately 80,000 quadrature points were selected to approximate the
integral in the log-likelihood function that is maximized when fitting point process models
(Baddeley & Turner, 2005; Renner et al., 2015). Diagnostic plots of residuals suggested that
substantial unexplained variation in both the west-east and south-north directions remained
(Appendix S2).

We further analyzed the location of discovery points in relation to time periods of
discovery, origins, and guilds. To investigate temporal patterns in aggregation, the discovery
point data were split into four groups using quartiles (Q1 = 1794-1907, Q2 = 1908-1927, Q3 =
1928-1991, Q4 = 1992-2004) for year of first discovery and Ripley’s K statistic was then
estimated separately for each quartile. Following the approach of Bivand et al., (2013), we also
conducted pairwise comparisons of aggregation between time periods to determine, for example,
if discovery points from time period i were more or less aggregated than those of time period j
(graphical results of pairwise comparisons are provided in Appendix S3 in supporting
information). We then conducted a marked point pattern analysis, which enabled each point to be
assigned to a level of time period, by fitting a point process model with spatial covariates for the
west-east direction, south-north direction, and each direction’s interaction with a term for time
period (i.e., west-east X time period, south-north x time period; time period had four levels, Q1-
Q4). Thus, we quantified (1) aggregation and (2) directional trends of points in space. Parallel
analyses were conducted using origin and guild, each a categorical variable with four levels as
described above, instead of time period. Trends were assessed visually by graphing intensity of

discovery points as estimated via an isotropic Gaussian smoothing kernel fit via the density.ppp()



171  function in R (Diggle, 1985; Baddeley & Turner, 2005). To determine robustness of full models,
172 individual models for each level within a predictor were constructed by fitting terms for the

173  west-east and south-north direction (e.g., assessing directional trends for pests introduced in Q1)
174  and are provided in Appendix S4 in supporting information.

175 Finally, to determine if patterns associated with origin or guild may have changed with
176  time, we fit two separate ANOV As assessing the role of origin or guild in year of first discovery.
177  When significant variation in discovery year was explained by a predictor (either guild or

178  origin), we used TukeyHSD tests fit via the ‘emmeans’ package (Lenth, 2018) in R to conduct
179  pairwise comparisons.

180  Current invasion hotspot patterns

181 Hotspot analyses compare attributes of a spatial feature, such as the invasion richness of a
182  county, and its neighbors, to the global pattern across all spatial features to identify features with
183 attribute levels greater than would be expected due to random chance (Patil & Taillie, 2004; Fei,
184  2010; Iannone ef al., 2016). Invasion hotspots were identified by quantifying local Getis-Ord
185  (G)) statistics (Getis & Ord, 1992) for each county in the data set. G;" is a local neighborhood
186  statistic that can account for invasion richness in neighboring counties and enable one to detect
187  spatial patterns that may not be accounted for when using global statistics (Ord & Getis, 1995).
188  Thus, a county with low invasion richness could be identified as a hotspot if it is surrounded by
189  counties with extremely low invasion richness values. Moreover, estimating G; produces a Z-
190  score, which can be used as a threshold value for identifying areas with high invasion richness,
191  rather than a scale of integer values such as invasion richness counts. That is, invasion richness
192 counts do not involve a statistical test to determine which areas have significantly higher

193  richness.
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A first-order spatial neighborhood was constructed for calculating G 'statistics. Separate
analyses were conducted for all pests combined, origins, and guilds. For origin and guild, we
quantified G; statistics both among (i.e., to identify counties with significantly more origins or
guilds) and within (i.e., to identify counties with significantly more species belonging to a
specific origin or guild) groupings. Calculating G;* statistics results in a Z-score that can be
compared to a standard normal distribution to obtain a P-value. We defined a hotspot as any Z >
4.158 (i.e., P <0.05/3,109, or < 0.00002), equivalent to a Bonferroni correction, to protect
against inflated type I error rates from calculating 3,109 Z-values (one for each county).

Current invasion hotspot patterns and first discovery locations

To quantify the effect of discovery locations on invasion richness, we first estimated the
intensity of discovery points at county centroids from observed discovery point data using an
isotropic Gaussian smoothing kernel as described above (see Figure 1 for a representation of the
smoothed surface). Estimated intensities ranged from 0.0000001 to 0.00011 pests per km?. We
then fit three spatial simultaneous autoregressive error (SAR) models. For the first two, we
predicted invasion richness and hotspots, using estimated Z-values, as a function of estimated
intensities of discovery points. For the third model, we regressed hotspot Z-values on invasion
richness. Model residuals for each analysis were weighted by second order spatial neighborhoods
to account for spatial autocorrelation. The SAR models were fit and Moran’s I estimated using
the ‘spdep’ package in R (Bivand ef al., 2013a; Bivand & Piras, 2015). GIS analyses relied on
the ‘geosphere’ (Hijmans, 2017), ‘geostatsp’ (Brown, 2015, 2018), ‘maptools’ (Bivand & Lewin-

Koh, 2017) and ‘rgdal’ (Bivand ef al., 2018) packages in R (R Core Team, 2018).

Results

10
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First discovery points: population density, ports, and roads

Discovery points were concentrated in the northeast and western coastal areas except for
~10 points (~12%) distributed across the inland and southern USA (Figure 1). Owing to a total of
79 discoveries across the entire contiguous USA, the mean intensity was low (0.00001 points per
km?). Discoveries were highly aggregated in space at both local and continental scales (Figure
2a). In point process models, a second order term for west-east (west-east?) was significantly,
positively correlated with the intensity of discovery points, indicating that more pests initially
invaded on both the east and west coasts (Table 1). Neither a first nor second order term for
south-north was significant. After accounting for these directional trends in discovery points, the
density of ports and roads, proxies for invasion pathway intensity (propagule pressure), were
positively correlated with the intensity of discovery points (Table 1). Human population density
was not significantly correlated with intensity of discovery points in our full model (Table 1), but
was significantly, positively correlated when fit with just the directional predictors (Appendix S5
of supporting information). In the full model, the most significant pathway correlate of discovery
point intensity was the density of roads, followed by density of ports and human population
density, which was not significant (Table 1).
First discovery points: time period

When modeling the intensity of discovery points using marked point pattern analysis, we
found that spatial patterns in discoveries varied among time periods. Pests discovered between
1794-1907 (Q1) and 1908-1927 (Q2) were significantly more aggregated than pests discovered
between 1928-1991 (Q3) and 1992-2004 (Q4) (all P <0.01; Figure 2b). There were no statistical
differences between Q1 vs. Q2 and Q3 vs. Q4. When analyzing how directional trends and time

period of introduction (Q1-Q4) jointly influence discovery point intensity, there was a
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statistically significant interaction between both directional predictors and time (west-east x time
period and south-north X time period). Pests discovered between 1794-1927 (Q1-Q2) were more
likely to be discovered in eastern and northern regions of the USA (Table 2a, Figure 3a,b). Pests
discovered from 1928-1991 (Q3) were more likely to be discovered farther west than pests from
QI (Table 2a, Figure 3c¢). Pests discovered from 1992-2004 (Q4) were more likely to be
discovered farther south and west than pests from Q1 (Table 2a, Figure 3d). Individual fits by
time period confirmed that discoveries were more likely to occur father west and south as time
progressed (Table S4.1, Appendix S4).
First discovery points: origin

Marked point pattern analyses demonstrated that, in addition to changes with time period,
spatial patterns of discovery points were mediated by pests’ global region of origin. Within an
origin, all pests were aggregated in space (e.g., pests from Asia were likely to be discovered near
other pests from Asia), although discovery points of pests from Australasia, Eurasia, and Europe
were more aggregated than those from Asia (Figure 2c). There were no differences in
aggregation among discovery points of pests from Australasia, Eurasia, and Europe. Pests from
Asia were more likely to be discovered in the east vs. the west (Table 2b, Figure 3e). Pests
originating in Australasia were more likely to be discovered in the southwestern USA than those
from Asia (Table 2b, Figure 3f), whereas pests from Eurasia and Europe were typically
discovered in the northeastern USA, similar to pests from Asia (Table 2b, Figure 3g,h).
Individual fits by origin confirmed that pests from Asia, Eurasia, and Europe were generally
discovered in the east whereas pests from Australasia were discovered in the southwest (Table
S4.2, Appendix S4).

First discovery points: guild

12



263 We also found that spatial patterns in discovery points differed among guilds.

264  Discoveries of foliage-feeders were significantly more aggregated than borers, sap-feeders, and
265  pathogens (all P <0.01; Figure 2d). There were no other differences detected in aggregation
266  among guilds (all P> 0.05). Foliage-feeders were more likely to be discovered in the

267  northeastern USA (Figure 31), whereas borers (Figure 3j), sap-feeders (Figure 3k), and pathogens
268  (Figure 31) were more likely to be discovered farther west than foliage-feeders (Table 2c).

269  Higher densities of discovery points of pathogens were observed at higher latitudes, though this
270  trend was not statistically significant (Table 2c¢). Individual fits by guild confirmed conclusions
271  from full models, except that the positive trend of discoveries of pathogens in the y-direction was
272 statistically significant in the model evaluating pathogens alone (Table S4.3, Appendix S4).
273 First discovery points: guild and origin by time period

274 Year of first discovery did not vary with region of origin (F4,74=2.10, P = 0.09). Pests
275  from Australasia were the most recently discovered group on average, with a mean discovery
276  year of 1973 (+ 18 years SE), followed by pests from Asia (1943 + 8), Eurasia (1928 £ 11), and
277  Europe (1923 £ 12). Year of first discovery varied significantly among guilds. The means for
278  year of first discovery of borers and pathogens were 1981 (£ 8 years SE) and 1949 (= 9),

279  respectively, and did not differ significantly (TukeyHSD, 75 = 2.08, P =0.17). Foliage-feeders
280  and sap-feeders were discovered, on average, in 1916 (=9 SE) and 1918 (£ 11), respectively,
281  significantly earlier than borers (TukeyHSD, all #75 > 4.3 and P < 0.0004). No differences were
282  detected among foliage-feeders, sap-feeders, and pathogens (TukeyHSD, all #75 <2.29 and P >
283 0.10).

284  Current invasion hotspot patterns: all pests
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Of the 3,109 counties comprising our analysis, 89% were invaded by at least one species
(Figure 4a). The average number of species per county was 4.88 (£ 0.09 SE; maximum = 36
species) and 6.3 % of counties were identified as hotspots (i.e., Z>4.158, <0.00002) as
estimated by Getis-Ord (G;) statistics (Figure 4b). Most hotspots were in the northeastern USA
except for one county in southeastern Wisconsin (Figure 4b).

Current invasion hotspot patterns: origin

Species region of origin was associated with distinct geographical patterns. The average
county had pests belonging to 1.62 (= 0.018 SE) origins. Pests from Asia were the most
widespread and established in 80% of counties. Pests from Eurasia (50% of counties infested)
were the second most widespread, followed by pests from Europe (28%) and Australasia (4%).
Several counties in California and one county each in Massachusetts and Montana were hotspots
for the number of different origins represented (Figure 5a). That is, in those counties in
California, Massachusetts, and Montana, there were more origins represented per county than
would be expected due to random chance. Hotspots based on origin were relatively limited in
spatial extent for pests from Asia, Australasia, Eurasia, and Europe, covering 7%, 2%, 6%, and
5% of counties (Figure 5b-¢). Hotspots for pests from Asia (Figure 5b) and Eurasia (Figure 5d)
were concentrated in northeastern counties, though a hotspot for Eurasian pests was identified in
Washington state. Hotspots of pests from Australasia were concentrated in the southwest and
Florida (Figure 5¢), whereas hotspots for pests from Europe were located in several coastal and
inland western counties, some counties in the upper Midwest, and several northeastern counties
(Figure Se).

Current invasion hotspot patterns: guild
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Counts and distributions of guilds exhibited considerable geographical variation. The
average county contained 2.22 (0.023 &+ SE) guilds. Pathogens were the most widespread and
were detected in 76% of counties, followed by foliage-feeders (64% of counties), borers (49%),
and sap-feeders (34%). Hotspots for numbers of different guilds represented occurred in few
counties (< 1%) and were concentrated in the northeast (Figure 6a). Hotspots for borers, foliage-
feeders, sap-feeders, and pathogens were limited in their spatial extent, covering 4.7%, 5.2%,
4.6% and 7.1% of counties, respectively (Figure 6b-e). Despite that hotspots for borers (Figure
6b) and sap-feeders (Figure 6d) were the least geographically widespread, hotspots for both
guilds were identified in the northeast and southwest. Additional hotspots for borers were found
in Michigan and Wisconsin, with one hotspot in northwestern Utah. Several counties throughout
California were identified as hotspots for sap-feeders. Hotspots of foliage-feeders (Figure 6¢)
and pathogens (Figure 6¢) were distributed similarly and concentrated in the northeast and some
Midwestern states.

Current invasion hotspot patterns and first discovery locations

Both county-level invasion richness (Figure 7a) and hotspot Z-values (Figure 7b) were
positively correlated with estimated intensities of first discovery locations. That is, invasion
richness was higher in counties located in areas with higher densities of first discovery points.
Similarly, hotspot Z-values were significantly, positively correlated with invasion richness
(Figure 7c). The simultaneous autoregressive error models used to regress invasion richness and
hotspots on estimated intensities of discovery points sufficiently accounted for spatial
autocorrelation (both Moran’s [ <-0.10, P = 0.99). There remained some spatial autocorrelation
in the model regressing hotspot Z-values on invasion richness (Moran’s I = 0.02, P <0.05).

Discussion
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Our finding that discovery locations of forest pests are associated with human activity
provides quantitative support for the role humans have in facilitating invasions. Movement of
non-native species by humans has long been recognized (Hulme, 2009), however, we found that
proxies for human activity, such as density of ports and roads, were more correlated with the
intensity of discovery points than human population density itself (Table 1). Such findings may
be indicative of frequent pest arrival in cargo imports (Work et al., 2005; Aukema et al., 2010).
The final destination of contaminated cargo is not necessarily near the port of entry (Rassati et
al., 2015) and areas with high densities of roads may contain many final destinations for cargo.
The predictive ability of human population density may have been improved by considering
population densities at earlier time periods (e.g., prior to the 1920s), given the relatively large
temporal window of our first discovery point data (1794-2004). Human population density,
ports, and roads are also correlated in space, which may have masked the predictive power of
population density (Appendix S5). Nonetheless, there remained unexplained variation in
locations of initial establishment, as indicated by the strong association of discovery points with
coastal regions after accounting for the densities of ports, roads, and humans (Table 1), which
may be attributable to habitat invasibility (e.g., tree diversity) (Liebhold et al., 2013; Guo et al.,
2019).

The spatial distribution of discovery points differed between time periods and were
dependent on pest origin and feeding guild, likely reflecting changes in the intensity of invasion
pathways, prevention/management efforts at ports of entry, or composition/volume of imports.
For example, the historically dominant invasion pathway for foliage-feeders is the movement of
live plants (Liebhold et al., 2012). Prior to 1918, imports of plants to the USA were largely

unregulated but subsequent implementation of quarantine practices greatly diminished accidental
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imports of insects on commercial plant imports (Liebhold & Griffin, 2016). We found that
discoveries of foliage-feeders occurred the earliest on average (1916) and were concentrated in
the northeastern USA. Thus, the concentration of human populations in the northeast in the early
1900s coupled with unregulated importation of live plants likely drove the high aggregation of
discovery points for foliage-feeders (Figure 2d). It follows that increased population density in
the western USA would increase propagule pressure in the west and spread the risk of non-native
pest establishment across a larger area, thus decreasing aggregation; indeed, we observed a
decrease in aggregation through time (Figure 2b). Patterns of borer discovery also suggest that
intensity of invasion pathways change with time. The average introduction year for borers was
1981, which may reflect temporal changes in their dominant invasion pathway, solid wood
packaging material (Brockerhoff et al., 2006; Brockerhoff & Liebhold, 2017). Imports to the
USA have risen dramatically over the last 100 years and widespread adoption of containerized
cargo has led to increased movement of wood packaging and associated increases in borer
invasions with time (Aukema et al., 2010).

We note that patterns in discovery points may be a function of sampling bias, with more
pests discovered in areas of human activity due to survey efforts. However, invaders often arrive
via pathways such that they typically establish in populated areas (Colunga-Garcia et al., 2009;
Paap et al., 2017) and thus first establishments in rural areas are generally low. Conspicuousness
of impacts may also be an important determinant of first discovery point patterns. For example,
there may be shorter time lags between establishment and detection for pests with immediately
visible impacts when at low densities. Variability in detection and/or imperfect detection may be
able to be accounted for using occupancy models (Dorazio, 2014; MacKenzie et al., 2017).

However, data on impact detectability, particularly when at low densities as is observed
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immediately following introduction, were not available and thus not accounted for in our
analyses.

Hotspot analyses using all pest species indicated that hotspots were concentrated in the
northeastern USA, corroborating findings by Liebhold et al., (2013), but striking differences
emerged when viewing hotspots by pest origin and guild. Moreover, hotspot patterns may also be
driven by the origin % guild composition of invasive forest pests. Hotspots of Australasian pests
(Figure 5c¢) and sap-feeders (Figure 6d) were abundant in California and Florida and 3/7 pests
from Australasia were sap-feeders (only 3/25 sap-feeders were from Australasia; Appendix S1).
Thus, the number of species per guild arriving from a place of origin could have contributed to
some of the patterns in both first discovery points and hotspots observed here

Invasion pathways begetting higher rates of establishment appear to, in part, drive
subsequent patterns in invasion richness. That is, high numbers of invasive forest pest species
accumulate in regions simply because pests are likely to initially establish in those regions
(Figure 7), in addition to those regions being conducive to spread (Liebhold et al., 2013).
Quantification of spatiotemporal import trends may provide further insights, for example, if
certain regions and time periods are associated with guild-dependent invasion pathways and
associated establishments. We caution that our hotspot results may be scale-dependent, analyzing
data at the county level was ideal, however, given that (1) these data were recorded and
quarantines are often imposed (e.g., emerald ash borer) at the county-level and (2) hotspot
analyses at the state level may have been limited by too few data points (i.e., 3000+ counties vs.
48 states).

Future analyses encompassing more discovery points, including those of pests of

agricultural, rangeland, and/or other ecosystems, may exhibit different patterns and/or provide
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insight into the behavior of different invasion pathways. Patterns described here may not reflect
the patterns of all non-native forest insects and pathogens, as our data are limited to tree insects
and pathogens having some detectable impacts. Further analyses are also needed to examine the
role of biotic resistance, the ecological components of a community that decrease invasibility, in
patterns of first discovery locations. Investigations of the effects of urban and rural forest
diversity and structure on pest establishment may potentially help managers promote more pest-
resistant urban and rural forests (Santamour, 1990; Raupp et al., 2006; Jactel et al., 2009).
Nonetheless, our findings highlight the central role humans play in the movement and
establishment of non-native forest pests and suggest continued monitoring near ports and highly

populated areas to maximize early detection of new invaders.
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Tables and Figures
Table 1 Summary statistics from a spatial point process model evaluating the role of invasion
pathways and terms for cardinal directions in intensity of first detection points, log(points per
km?), of non-native forest insects and pathogens discovered in the contiguous USA between
1794-2004. The terms west-east and south-north represent geographic coordinates in Albers

projection (km). Model AIC: 1571.

Covariate Estimate® SE |Z[° P
Intercept -14.12 0.39 36.39 <0.0001
Population density 0.00006 0.00007 0.81 0.29
Port density 0.37 0.15 2.57 0.0149
Road density 0.00704 0.00081 8.68 <0.0001
west-east 0.00041 0.00008 5.01 <0.0001
west-east? 10.2x107 1.3x1077 8.00 <0.0001
south-north 0.00009 0.00027 0.35 0.38
south-north? -2.0x1077 3.5x107 -0.58 0.34

? Exponentiated coefficients for point process models indicate the factor by which density of
discovery locations would increase per unit area with a one unit increase in the density of a
covariate. For example, holding all else equal, an increase in 1 port per km? was associated with
a 1.4x [=exp(0.37)] increase in discovery points per km?.

b Z statistics indicating whether coefficients estimated using spatial point process models are

significantly different from 0.
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Table 2 Spatial covariates of the intensity of first detection points, log(points per km?), of non-
native forest insects and pathogens discovered in the contiguous USA between 1794-2004.

Trends were analyzed using marked spatial point process models. Three separate analyses were
conducted in which points were marked by time period of discovery (a), origin (b), or guild (c).

The terms west-east and south-north represent geographic coordinates in Albers projection (km).

Covariate® Estimate” SE |Z[° P
a. Time period of discovery (AIC: 2120)
Intercept (Q1, 1974-1907) -13.48 0.35 3893 <0.0001
Q2 (1908-1927) -0.19 0.52  0.37 0.37
Q3 (1928-1991) 0.51 043 1.19 0.20
Q4 (1992-2004) 0.45 043 1.06 0.23
west-east 0.00117 0.00025 4.76 <0.0001
south-north 0.00110 0.00041 2.66 0.0116
Q2 x west-east 0.00022 0.00037  0.60 0.33
Q3 x west-east -0.00076 0.00031  2.45 0.0200
Q4 x west-east -0.00113 0.00034 3.35 0.0014
Q2 x south-north 0.00001 0.00059  0.02 0.40
Q3 x south-north -0.00001 0.00057  0.02 0.40
Q4 x south-north -0.00116 0.00056  2.05 0.0484
b. Origin (AIC: 1994)
Intercept -12.62 0.21 61.29 <0.0001
Australasia -29.11 9.12  3.19 0.0024
Eurasia -0.64 037 1.73 0.09
Europe -2.08 0.66 3.15 0.0028
west-east 0.00053 0.00018  2.99  0.0046
south-north 0.00051 0.00031  1.63 0.11
Australasia x west-east -0.01497 0.00419  3.57  0.0007
Eurasia X west-east 0.00044 0.00026  1.68 0.10
Europe x west-east 0.00147 0.00046  3.20 0.0024
Australasia x south-north -0.00945 0.00288  3.28 0.0018
Eurasia % south-north 0.00106 0.00051  2.08 0.0463
Europe X south-north 0.00082 0.00060  1.36 0.16
c. Guild (AIC: 2089)
Intercept -15.05 0.78 19.39 <0.0001
Borers 2.00 0.82 245 0.0198
Pathogens 1.50 0.86 1.75 0.09
Sap-feeders 2.18 0.81 270 0.0104
west-east 0.00265 0.00052  5.06 <0.0001
south-north 0.00065 0.00041  1.57 0.12
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Borers x west-east -0.00230 0.00057 4.06 0.0001

Pathogens x west-east -0.00210 0.00057  3.71  0.0004
Sap-feeders x west-east -0.00262 0.00056  4.64 <0.0001
Borers x south-north -0.00005 0.00057  0.09 0.40
Pathogens x south-north 0.00097 0.00066  1.46 0.14
Sap-feeders x south-north -0.00056 0.00054 1.03 0.23

4 Models predict the intensity of discovery points as a function of variables for west-east and
south-north directions and a categorical predictor (each with four levels). For example, in model
(a), the model reference level is Q1 (1974-1907), and thus the interaction of other levels of the
variable time period with west-east and south-north are each compared to the slope coefficients
of west-east and south-north associated with level Q1 (i.e., 0.00117 and 0.00110, respectively).
In models (b) and (c), the reference levels for the variables origin and guild are Asia and foliage-
feeders, respectively.

b Exponentiated coefficients for point process models indicate the factor by which density of
discovery locations would increase per unit area with either a change between levels of a factor
or a one unit increase in the density of a covariate. For example, for model (a) and holding all
else equal, a shift 500 km west between Q1 and Q4 was associated with 1.76x [=exp(0.00113 x
500 km)] increase in the number of discovery points per km?.

¢ Z statistics indicating whether coefficients estimated using spatial point process models are

significantly different from 0.
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614  Figure 1 Intensity of discovery points (points per km?; black circles) of non-native forest insects
615 and pathogens discovered in the contiguous USA between 1794-2004. Colors and scale bar
616 indicate a kernel smoother fit to observed first discovery locations. Map projection: Albers equal

617 area.
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619  Figure 2 Ripley’s K statistics for discovery points of non-native forest insects and pathogens
620  discovered in the contiguous USA between 1794-2004 as a function scale (radius of circles in
621  km). Panels display patterns across a) all discovery points, b) time period of discovery, c¢)

622  origins, or d) guilds. Solid lines indicate observed K(7) statistics, transformed for visualization
623  (y-axis), at a radius 7 from each discovery point (x-axis). The dotted line provides an estimate of
624  complete spatial randomness and the gray area represents 95% confidence limits for K(7)

625  statistics simulated from a theoretical, random distribution of discovery points. Lines above gray
626  areas are significantly aggregated at the scale of analysis. For example, discoveries of all pests

627  (panel a) are highly aggregated, regardless of scale.
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Figure 3 Discovery locations of non-native forest insects and pathogens discovered in the

contiguous USA between 1794-2004 displayed by time period (a-d; quartiles of introduction

year), world region of origin (e-h), and feeding guild (i-1). Models comparing changes in the

distribution of points by time period (row 1 of figure), origin (row 2), and guild (row 3) are

provided in Table 2. Changes in aggregation between groupings are presented in Figure 2. Map

projection: Albers equal area.
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Figure 4 County-level a) invasion richness and b) hotspots for non-native forest insects and
pathogens as of 2018 in the contiguous USA. Hotspot analyses enable comparisons of invasion
richness of a county and its neighbors to the global richness patterns across all counties to
identify counties with richness levels greater than would be expected due to random chance.
Invasion hotspots were identified by quantifying local Getis-Ord (G;) statistics, which produces
a Z-score. Counties with Z-scores > 4.158 were considered invasion hotspots. Map projection:

Albers equal area.
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645  Figure 5 County-level invasion hotspots for non-native forest insects and pathogens as of 2018
646  in the contiguous USA based on pest origin: a) numbers of origins, b) Asia, ¢) Australasia, d)
647  Eurasia, and ¢) Europe. A hotspot is defined as any county where Getis-Ord (G;') statistics (Z
648  scores) are > 4.158. See Figure 4 and main text for description of G;. Map projection: Albers

649  equal area.
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Figure 6 County-level invasion hotspots for non-native forest insects and pathogens as of 2018
in the contiguous USA based on pest guild: a) numbers of guilds, b) bark/wood-borers, ¢)
foliage-feeders, d) sap-feeders, and e) pathogens. A hotspot is defined as any county where
Getis-Ord (G;') statistics (Z scores) are > 4.158. See Figure 4 and main text for description of G;".
Map projection: Albers equal area.
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656
657  Figure 7 (a) Number of non-native pests per county as of 2018 in the contiguous USA (y-axis;
658  invasion richness) as a function of kernel estimated discovery points per km? at county centroids.

659  The kernel smoother was fit to observed first discovery locations for non-native forest pests in

37



660

661

662

663

664

665

666

667

the contiguous USA (1794-2004) and estimated discoveries (x-axis) for each county were
obtained from that interpolated surface. Intercept (+ 0.22 SE, Z= 13.46, P < 0.0001) and slope (+
7816.57 SE, Z=17.92, P <0.0001) of fit line significantly differ from 0. (b) Z-values from
hotspot analyses of invasion richness, displayed in Figure 4c, as a function of estimated
discoveries at the county-level. Intercept (+ 0.14 SE, Z=-3.18, P =0.0015) and slope (£ 5773.40
SE, Z=15.64, P <0.0001) of fit line significantly differ from 0. (c) Z-values from hotspot
analyses as a function invasion richness at the county-level level. Intercept (= 0.02 SE, Z = -

132.48, P <0.0001) and slope (+ 0.002 SE, Z=182.05, P <0.0001).
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