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ABSTRACT
LetG be a graph with n vertices and maximum degree d . Fix some
minor-closed property P (such as planarity). We say thatG is ε-far
fromP if one has to remove εdn edges tomake it haveP. The prob-
lem of property testing P was introduced in the seminal work of
Benjamini-Schramm-Shapira (STOC 2008) that gave a tester with
query complexity triply exponential in ε−1. Levi-Ron (TALG 2015)
have given the best tester to date, with a quasipolynomial (in ε−1)
query complexity. It is an open problem to get property testers
whose query complexity is poly(dε−1), even for planarity.

In this paper, we resolve this open question. For any minor-
closed property, we give a testerwith query complexityd ·poly(ε−1).
The previous line of work on (independent of n, two-sided) testers
is primarily combinatorial. Our work, on the other hand, employs
techniques from spectral graph theory. This paper is a continua-
tion of recent work of the authors (FOCS 2018) analyzing random
walk algorithms that 󰎓nd forbidden minors.

CCS CONCEPTS
• Mathematics of computing → Graph algorithms; • The-
ory of computation→ Streaming, sublinear and near linear
time algorithms.
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1 INTRODUCTION
The classic result of Hopcroft-Tarjan gives a linear time algorithm
for deciding planarity [12]. As the old theorems of Kuratowski and
Wagner show, planarity is characterized by the non-existence ofK5
and K3,3 minors [17, 26]. The monumental graph minor theorem
of Robertson-Seymour proves that any property of graphs closed
under minors can be expressed by the non-existence of a 󰎓nite list
of minors [21–23]. Moreover, given a 󰎓xed graph, H , the property
of beingH -minor-free can be decided in quadratic time [14]. Thus,
any minor-closed property of graphs can be decided in quadratic
time.

What if an algorithm is not allowed to read the whole graph?
This questionwas󰎓rst addressed in the seminal result of Benjamini-
Schramm-Shapira (BSS) in the language of property testing [2].
Consider the model of random access to a graph adjacency list, as
introduced by Goldreich-Ron [10]. LetG = (V ,E) be a graphwhere
V = [n] and the maximum degree is d . We have random access
to the list through neighbor queries. There is an oracle that, given
󰸮 ∈ V and i ∈ [d], returns the ith neighbor of 󰸮 (if no neighbor
exists, it returns ⊥).

For a property P of graphs with degree bound d , the distance
of G to P is the minimum number of edge additions/removals re-
quired to make G have P, divided by dn. We say that G is ε-far
from P if the distance to P is more than ε . A property tester for
P is a randomized procedure that takes as input (query access to)
G and a proximity parameter, ε > 0. If G ∈ P, the tester must ac-
cept with probability at least 2/3. If G is ε-far from P, the tester
must reject with probability at least 2/3. A tester is one-sided if it
accepts G ∈ P with probability 1.

Let P be some minor-closed property such as planarity. BSS
proved the remarkable result that any such P is testable in time
independent of n. Their query complexity was triply exponential
in (d/ε). Hassidim-Kelner-Nguyen-Onak improved this complex-
ity to singly exponential, introducing the novel concept of parti-
tion oracles [11]. Levi-Ron gave a more e󰎏cient analysis, proving
the existence of testers with query complexity quasi-polynomial
in (d/ε) [18]. For the special cases of outerplanarity and bounded
treewidth, poly(d/ε) query testers are known [6, 27].

It has been a signi󰎓cant open problem to get poly(d/ε) query
testers for all minor-closed properties. In Open Problem 9.26 of
Goldreich’s recent book on property testing, he states the “beg-
ging question of whether [the query complexity bound of test-
ing minor-closed properties] can be improved to a polynomial [in
1/ε]" [8]. Even for classic case of planarity, this was unknown.
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In this paper, we resolve this open problem.

T󰝕󰝒󰝜󰝟󰝒󰝚 1.1. Let P be any minor-closed property of graphs with
degree bound d . There exists a (two-sided) tester for P that runs in
d2 · poly(ε−1) time.

Thus, properties such as planarity, series-parallel graphs, em-
beddability in bounded genus surfaces, linkless embeddable, and
bounded treewidth are all testable in time d2 · poly(ε−1).

By the graph minor theorem of Robertson-Seymour [23], Theo-
rem 1.1 is a corollary of ourmain result for testingH -minor-freeness.
As alluded to earlier, for any minor-closed property P, there ex-
ists a 󰎓nite list of graphs {H1,H2, . . . ,Hb } satisfying the following
condition. A graph G is in P i󰎎 for all i ≤ b, G does not contain
an Hi -minor. Let PHi be the property of being Hi -minor-free. The
characterization implies that ifG is ε-far from P, there exists i ≤ b
such that G is Ω(ε)-far from PHi . Thus, property testers for Hi -
minor freeness imply property testers for P (with constant blowup
in the proximity parameter).

Our main quantitative theorem follows.

T󰝕󰝒󰝜󰝟󰝒󰝚 1.2. There is an absolute constant c such that the fol-
lowing holds. Fix a graph H with r vertices. The property of being
H -minor-free is testable in d(r/ε)c queries and d2(r/ε)2c time.

We stress that c is independent on r . Currently, our value of c is
likely more than 100, and we have not tried to optimize the expo-
nent of ε . We believe that signi󰎓cant improvement is possible, even
by just tightening the current analysis. It would be of signi󰎓cant
interest to get a better bound, even for the case of planarity.

1.1 Related Work
Property testing on bounded-degree graphs is a large topic, and
we point the reader to Chapter 9 of Goldreich’s book [8]. Graph
minor theory is immensely deep, and Chapter 12 of Diestel’s book
is an excellent reference [4]. We will focus on the work regarding
property testing of H -minor-freeness.

As mentioned earlier, this line of work started with Benjamini-
Schramm-Shapira [2]. Their tester basically approximates the fre-
quency of all subgraphs with radius 21/ε , which leads to the large
dependence in d/ε . Central to their result (and subsequent) work
is the notion of hyper󰎓niteness. A hyper󰎓nite class of graphs has
the property that the removal of a small constant fraction of edges
leaves connected components of constant size. Hassidim-Kelner-
Nguyen-Onak design partition oracles for hyper󰎓nite graphs to get
improved testers [11, 18]. These oracles are local procedures that
output the connected component that a vertex lies in, without ex-
plicit knowledge of any global partition. This is extremely chal-
lenging as one has tomaintain consistency among di󰎎erent queries.
The󰎓nal construction is an intricate recursive procedure thatmakes
exp(d/ε) queries. Levi-Ron gave a signi󰎓cantly simpler and more
e󰎏cient analysis leading to their query complexity of (dε−1)log ε−1 .
Newman-Sohler show how partition oracles lead to testers for any
property of hyper󰎓nite graphs [20].

Given the challenge of poly(dε−1) testers for planarity, there
has been focus on other minor-closed properties. Yoshida-Ito give
such a tester for outerplanarity [27], which was subsumed by a
poly(dε−1) tester by Edelman et al for bounded treewidth graphs [6].
Nonetheless, poly(dε−1) testers for planarity remained open.

Unlike general (two-sided) testers, one-sided testers forH -minor-
freeness must have a dependence on n. BSS conjectured that the
complexity of testingH -minor-freeness (and speci󰎓cally planarity)
is Θ(

√
n). Czumaj et al [3] showed such a lower bound for any H

containing a cycle, and gave an 󰁨O(√n) tester when H is a cycle.
Fichtenberger-Levi-Vasudev-Wötzel give an 󰁨O(n2/3) tester for H -
minor-freeness when H is K2,k , the (k × 2)-grid or the k-circus
graph [7]. Recently, Kumar-Seshadhri-Stolman (henceforth KSS)
nearly resolved the BSS conjecture with an n1/2+o(1)-query one-
sided tester for H -minor-freeness [15]. The underlying approach
uses the proof strategy of the bipartiteness tester of Goldreich-
Ron [9].

The body of work on two-sided (independent of n) testers is
primarily combinatorial. The proof of Theorem 1.2 is a signi󰎓cant
deviation from this line of work, and is inspired by the spectral
graph theoretic methods in KSS. As we explain in the next section,
we do not require the full machinery of KSS, but we do follow
the connections between randomwalk behavior and graphminors.
The tester of Theorem 1.2 is simpler than those of Hassidim et al
and Levi-Ron, who use recursive algorithms to construct partition
oracles [11, 18].

1.2 Main Ideas
Let us revisit the argument of KSS, that gives an n1/2+o(1)-query
one-sided tester for H -minor-freeness. We will take great liberties
with parameters, to explain the essence. The proof of Theorem 1.2
is inspired by the approach in KSS, but the proof details deviate
signi󰎓cantly. We discover that the full machinery is not required.
But the main idea is to exploit connections between random walk
behavior and graph minor-freeness.

First, we 󰎓x a random walk length ℓ = nδ ≫ 1/ε , for small con-
stant δ > 0. One of the building blocks is a randomwalk procedure
that 󰎓nds H -minors by performing

√
n · poly(ℓ) random walks of

length ℓ. For our purposes, it is not relevant what the algorithm is,
and we simply refer to this as the “random walk procedure". One
of the signi󰎓cant concepts in KSS is the notion of a returning ran-
domwalk. For any subset of vertices S ⊂ V , an S-returning random
walk of length ℓ is a random walk that starts from S and ends at S .
For any vertex s ∈ S , we use q[S ],s,ℓ to denote the |S |-dimensional
vector of probabilities of an S-returning walk of length ℓ starting
from s .

KSS proves the following two key lemmas. We use c to denote
some constant that depends only on H .

(1) Suppose there is a subset S ⊆ V , |S | ≥ n/ℓ, with the follow-
ing property. For at least half the vertices s ∈ S , 󰀂q[S ],s,ℓ 󰀂 ≤
ℓ−c . Then, whp, the

√
n · poly(ℓ)-time random walk proce-

dure 󰎓nds an H -minor.
(2) Suppose there is a subset S ⊆ V , |S | ≥ n/ℓ, with the follow-

ing property. For at least half the vertices s ∈ S , 󰀂q[S ],s,ℓ 󰀂 >
ℓ−c . Then, for every such vertex s , there is a cut of con-
ductance at most 1/ℓ contained in S , where all vertices (in
the cut) are reached with probability at least 1/poly(ℓ) by
ℓ-length S-returning walks from s .

To get a one-sided tester, we run the
√
n · poly(ℓ) random walk

procedure. If it does not 󰎓nd an H -minor, then the antecedent of
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the second part above is true for all S such that |S | ≥ n/ℓ. The con-
sequent basically talks of local partitioning within S , even though
random walks are performed in the whole graph G. The state-
ment is proven using arguments from local partitioning theorems
of Spielman-Teng [25]. By iterating the argument, we can prove
the existence of a set of εdn edges, whose removal breaks G into
connected components of size at most poly(ℓ). Moreover, a super-
set of any piece can be “discovered" by performing poly(ℓ) random
walks (of length ℓ) from some starting vertex. Roughly speaking,
each piece has a distinct starting vertex. Thus, if G was ε-far from
being H -minor-free, an ε-fraction (by size) of the pieces will con-
tain H -minors. A procedure that picks poly(ℓ) random vertices (to
hit the starting vertex of these pieces) and runs poly(ℓ) random
walks of length ℓ will, whp, cover a subgraph that contains an H -
minor. We refer to this as the “local search procedure", which runs
in poly(ℓ) time.

This sums up the KSS approach. Observe that in the 󰎓rst case
above, by the probabilistic method, we are guaranteed the exis-
tence of a minor. Let us abstract out the argument as follows. LetQ
be the statement/condition: there exists a subset S ⊆ V , |S | ≥ n/ℓ
such that for at least half the vertices s ∈ S , 󰀂q[S ],s,ℓ 󰀂 ≤ ℓ−c . KSS
basically proves the following lemmas, which we refer to subse-
quently as Lemma 1 and Lemma 2.

(1) Q ⇒ G contains an H -minor.
(2) ¬Q ⇒ IfG is ε-far from beingH -minor-free, the local search

procedure 󰎓nds an H -minor whp.

We now have an approach to get a poly(ε−1) tester. Suppose we
could set the random walk length ℓ to be poly(ε−1). And suppose
we could test the conditionQ in time poly(ε−1). We could then run
local search on top of this, and get a bona󰎓de tester.

A simple adaptation of proofs of both Lemma 1 and Lemma 2
run into some fundamental di󰎏culties. The proof of Lemma 1 cru-
cially requires ℓ to be nδ (or at least Ω(logn)). The existence of the
minor is shown through the success of the

√
n · poly(ℓ) random

walk procedure. Constant length random walks cannot 󰎓nd an H -
minor, even if G was Ω(1)-far from being H -minor-free (G could
be a 3-regular expander).

From hyper󰎓niteness to ℓ = poly(ε−1). We employ a di󰎎erent
(and simpler) approach to reduce the walk length. A classic result
of Alon-Seymour-Thomas asserts that anyH -minor-free bounded-
degree graph G satis󰎓es the following “hyper󰎓nite" decomposi-
tion: for any α ∈ (0, 1), we can remove an α-fraction of the edges to
get connected components of size O(α−2). Let us set α = poly(ε)
and the walk length ℓ ≪ 1/α . We can show that ℓ-length ran-
dom walks inG encounter the removed edges with very low prob-
ability. By and large, the walks behave as if they were performed
on the decomposition. Thus, walks inG are “trapped" in the small
components of sizeO(α−2). Quantitatively, we can show that most
vertices s , |ps,ℓ 󰀂2 ≥ poly(ε). (We use ps,ℓ to denote the random
walk distribution with starting vertex s .) By the contrapositive: if
there are at least poly(ε)-fraction of vertices s such that |ps,ℓ 󰀂2 ≤
poly(ε), thenG contains anH -minor. This is easily testable. We get
a more convenient, poly(ε−1)-query testable version of Lemma 1.

Clipped norms for local partitioning. We can now express our
new condition ¬Q as: for more than a (1−poly(ε))-fraction of ver-
tices s , 󰀂ps,ℓ 󰀂2 ≥ poly(ε). This is a weakening of the antecedent.
Previously, the condition referred to returning walks, which have
smaller norm. Furthermore, the returning walks speci󰎓cally refer-
ence S , the set in whichwe are performing local partitioning. Thus,
we have some conditions on the behavior of random walks within
S itself, which is necessary to perform the local partitioning. Our
new condition only refers to the l2-norms of random walks in G.

The new condition appears to be too fragile to get local par-
titioning within S . It is possible that the l2-norm of ps,ℓ is dom-
inated by a few vertices outside of S , whose l1-norm is tiny. In
other words, an event of small probability dominates the l2-norm.
The existing proof of Lemma 2 (from KSS) is not sensitive enough
to handle such situations.

We overcome this problem by using a more robust version of
norm, called the clipped norm. We de󰎓ne cl(x , ξ ) for distribution
vector x and ξ ∈ (0, 1) to be the smallest l2-norm obtained by
removing ξ probability mass (l1-norm) from x . In other words,
we can measuring the l2-norm after “clipping" away ξ probabil-
ity worth of outliers. We can prove a version of Lemma 2 with a
lower bound of the clipped norm. We need to now rework Lemma
1 in terms of clipped norms. This turns out to be relatively straight-
forward.

Putting it all together. Our 󰎓nal tester is as follows. The length ℓ
is set to poly(ε−1). It picks some random vertices, and estimates the
l2-norm of clipped probability vectors of ℓ-length random walks
from these vertices. If su󰎏ciently many of them have “small"
(poly(ε−1)) norms, then the tester rejects. Otherwise, it runs poly(ε−1)
walks to 󰎓nd a superset of a low conductance cut. The tester em-
ploys some exact H -minor 󰎓nding algorithm on the observed sub-
graph.

2 THE ALGORITHM
In the algorithm and analysis, we will use the following notation.

• Randomwalks - Unless stated otherwise, we consider lazy
randomwalks on graphs. If the walk is at a vertex,󰸮 , it tran-
sitions to each neighbor of 󰸮 with probability 1/2d and re-
mains at 󰸮 with probability 1 − d󰸮

2d where d󰸮 is the degree
of the vertex v. Note that the stationary distribution is uni-
form. We useM to denote the transition matrix of this ran-
dom walk.

• p󰸮,t - the n-dimensional probability vector, where the uth
entry is the probability that a length t random walk started
from 󰸮 ends at u. We denote each entry as p󰸮,t (u).

• 󰀂 · 󰀂p - the usual lp norm on vectors.

The two parameters to the algorithm are ε ∈ [0, 1/2], and a
graphH on r ≥ 3 vertices. We set the walk length ℓ = αr3+ ⌈ε−20⌉,
where α is some absolute constant.

Our algorithm runs as a subroutine the exact quadratic time
minor-󰎓nding algorithm of Kawarabayashi-Kobayashi-Reed [14].
We denote this procedure by KKR.
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IsMinorFree (G, ε,H )
(1) Pick multiset S of ℓ21 uniform random vertices.
(2) For every s ∈ S , run EstClip(s) and LocalSearch(S).
(3) If any call to LocalSearch returns FOUND, REJECT.
(4) If more than 2ℓ20 calls to EstClip return LOW, REJECT.
(5) ACCEPT

LocalSearch(s)
(1) Perform ℓ21 independent random walks of length ℓ11 from

s . Add all the vertices encountered to set Bs .
(2) Determine G[Bs ], the subgraph induced by Bs .
(3) If KKR(G[Bs ],H ) 󰎓nds an H -minor, return FOUND.

EstClip(s)
(1) Performw = ℓ14 walks of length ℓ from s .
(2) For every vertex 󰸮 , let w󰸮 be the number of walks that end

at 󰸮 .
(3) Let T = {󰸮 | w󰸮 ≥ ℓ7/2}.
(4) If

󳕐
󰸮 ∈T w󰸮 ≥ w/3, output HIGH, else output LOW.

Theorem 1.2 follows directly from the following theorems.

T󰝕󰝒󰝜󰝟󰝒󰝚 2.1. If G is H -minor-free, IsMinorFree outputs AC-
CEPT with probability at least 2/3.

T󰝕󰝒󰝜󰝟󰝒󰝚 2.2. IfG is ε-far fromH -minor-freeness, then IsMinor-
Free outputs REJECT with probability at least 2/3.
Claim 2.3. There exists an absolute constant, c such that the query
complexity of IsMinorFree is O(d(r/ε)c ) and time complexity is
O(d2(r/ε)2).

P󰝟󰝜󰝜󰝓. The entire algorithm is based on performing poly(ℓ)
random walks of length poly(ℓ). Note that ℓ = poly(r/ε). The de-
pendence on d appears because the subgraphG[Bs ] is constructed
by query the neighborhood of all vertices in Bs . The quadratic
overhead in running time is because of KKR. □

3 RANDOM WALKS DO NOT SPREAD IN
MINOR-FREE GRAPHS

We 󰎓rst de󰎓ne the clipped norm.

De󰎓nition 3.1. Given x ∈ (R+) |V | and parameter ξ ∈ [0, 1),
the ξ -clipped vector cl(x , ξ ) is the lexicographically least vector 󱗌
optimizing the program: min 󰀂󱗌󰀂2, subject to 󰀂x − 󱗌󰀂1 ≤ ξ and
∀󰸮 ∈ V ,󱗌(󰸮) ≤ x(󰸮).

The clipping operation removes “outliers" from a vector, with
the intention of minimizing the l2-norm. For a probability distri-
bution ps,ℓ , a small value of 󰀂ps,ℓ 󰀂22 is a measure of the spread of
the walk. But this is a crude lens. There may be one large coordi-
nate in ps,ℓ that determines the norm, while all other coordinates
are (say) uniform. The clipped norm better captures (for our pur-
poses) the notion of a random walk spreading.

We state the main result of this section. The constant 3/8 be-
low is just for convenience, and can be replaced by any non-zero
constant (with a constant drop in the lower bound).

Lemma 3.2. There is an absolute constant α such that the following
holds. Let H be a graph on r vertices. Suppose G is a H -minor-free
graph. Then for any ℓ ≥ αr3, there exists at least (1 − 1/ℓ)n vertices
such that 󰀂cl(p󰸮,ℓ , 3/8)󰀂22 ≥ ℓ−7.

In order to show this lemma, we will use the classic decomposi-
tion theorem for minor-free graphs by Alon-Seymour-Thomas [1].
It originally appears phrased in terms of a weight function w :
V → R+. We use the uniform weight function ∀󰸮 ∈ V w(󰸮) = 1/n
to obtain the restatement below.

Lemma 3.3 (Proposition 4.1 of [1]). There is an absolute constant α
such that the following holds. LetH be a graph on r vertices. Suppose
G is anH -minor-free graphwithmaximumdegreed . Then, for allk ∈
N, there exists a set of at most αnr3/2/k1/2 vertices whose removal
leaves G will all connected components of size at most k .

It is convenient to think of the Markov chain on G in terms
of a multigraph on G, with 2d edges from each vertex. Each edge
has probability exactly 1/2d , and self-loops consist of many such
edges. Note that every edge of the original graph is a single edge
in this multigraph. For any subset of vertices C ⊆ V , let us de󰎓ne
the random walk restricted to C . We remove every cut edge (u,󰸮)
(whereu ∈ C and󰸮 󲧿 C) and add a self-loop of the same probability
at u. This produces a Markov chain on C that is symmetric. Given
a subset C and 󰸮 ∈ C , we use p′󰸮,t to denote the distribution of
endpoints of t-length random walk starting from 󰸮 and restricted
toC . (In our use,C will apparent from context, so we will not carry
the dependence on C in the notation.)

The following claim relates the clipped norms of the p󰸮,t and
p′󰸮,t vectors.

Claim 3.4. Let C ⊂ V and 󰸮 ∈ C . Let η be the probability that
a t-length random walk from 󰸮 (in G) leaves C . For any σ > η,
󰀂cl(p󰸮,t ,σ − η)󰀂22 ≥ 󰀂cl(p′󰸮,t ,σ )󰀂22 .

P󰝟󰝜󰝜󰝓. The random walk restricted to C is obtained by adding
some self-loops that are not in the original Markov chain. Color
all these self-loops red. Let r󰸮,t (u) be the probability of a t-length
walk from 󰸮 to u that contains a red edge. Any path without a
red edge is a path in G (with the same probability), so p′󰸮,t (u) ≤
p󰸮,t (u) + r󰸮,t (u).

Note that
󳕐
u ∈C r󰸮,t (u) is the total probability of a randomwalk

from u restricted to C encountering a red self-loop. Red self-loops
correspond to cut edges in the original graph, and thus, this is the
probability of encountering a cut edge. Hence,

󳕐
u ∈C r󰸮,t (u) ≤ η.

Intuitively, we can obtain a σ -clipping of p′󰸮,t by 󰎓rst clipping
at most η probability mass to get p󰸮,t , and then performing a (σ −
η)-clipping of p󰸮,t . We formalize this below.

Let q = cl(p󰸮,t ,σ − η), and let us de󰎓ne the |C |-dimensional
vector w by w(u) = min

󰀓
q(u), p′󰸮,t (u)

󰀔
. Since w is non-negative

and w(u) ≤ q(u) for all u ∈ C , it follows that 󰀂w 󰀂22 ≤ 󰀂q󰀂22 =

󰀂cl(p󰸮,t ,σ − η)󰀂22 . By construction, for all u ∈ C , w(u) ≤ p′󰸮,t (u).
Wewill prove that 󰀂w−p′󰸮,t 󰀂1 ≤ σ , implying that 󰀂cl(p′󰸮,t ,σ )󰀂22 ≤
󰀂w 󰀂22 . This will complete the argument.

Let D ⊆ C be the set of coordinates such that q(u) < p′󰸮,t (u).
Sincew(u) = min(q(u), p′󰸮,t (u)), 󰀂p′󰸮,t −w 󰀂1 =

󳕐
u ∈D [p′󰸮,t (u)−

q(u)]. Combining with the previous observations and noting that
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q = cl(p󰸮,t ,σ − η),

󰀂p′󰸮,t −w 󰀂1 ≤
󳕗
u ∈D

[p󰸮,t (u) + r󰸮,t (u) − q(u)] (1)

≤ 󰀂p󰸮,t (u) − q󰀂1 +
󳕗
u ∈C

r󰸮,t (u) (2)

≤ (σ − η) + η = σ (3)

□

We now prove the main lemma of this section.

P󰝟󰝜󰝜󰝓 󰝜󰝓 L󰝒󰝚󰝚󰝎 3.2. Fix some ℓ ∈ N, ℓ > αr3 and use Lemma 3.3
with k = r3ℓ6. There exists a subset R of at most αdn/ℓ3 edges
whose removal breaks up G into connected components of size at
most r3ℓ6. Refer to these as AST components. Now, consider an ℓ-
length walk in G starting from the stationary distribution (which
is uniform). The probability that this walk encounters an edge in
R at any step is exactly |R |/2dn. Let the random variable X󰸮 be
the number of edges of R encountered in an ℓ-length walk from 󰸮 .
Note that when X󰸮 = 0, then the walk remains in the AST compo-
nent containing󰸮 . Thus, the expected probability that a walk from
a uniformly selected vertex leaves the AST component in which
it started is at most E󰸮∼u.a.r.[X󰸮 ] = ℓ |R |/2dn ≤ α/(2ℓ2). Since
ℓ > αr3 > 4α , we can upper bound by 1/8ℓ. By the Markov bound,
for at least (1−1/ℓ)n vertices, the probability that an ℓ-length walk
starting at󰸮 encounters an edge of R and thus leaves the AST piece
containing 󰸮 is at most 1/8. Denote the set of these vertices by S .

Consider any s ∈ S . Suppose it is contained in the AST compo-
nent C . Note that 󰀂cl(p′s,ℓ , 1/2)󰀂1 ≥ 1/2. Furthermore, it has sup-
port at most |C | ≤ r3ℓ6. By Jensen’s inequality, 󰀂cl(p′s,ℓ , 1/2)󰀂22 ≥
1(4r3ℓ6). As argued earlier, the probability that a random walk (in
G) from s leaves C is at most 1/8. Applying Claim 3.4 for σ = 1/2
and η = 1/8, we conclude that 󰀂cl(ps,ℓ , 1/2−1/8)󰀂22 ≥ 1/(4r3ℓ6) ≥
1/ℓ7. (For convenience, we assume that α > 4.) □

4 THE EXISTENCE OF A DISCOVERABLE
DECOMPOSITION

If many vertices have large clipped norms, we prove thatG can be
partitioned into small low conductance cuts. Furthermore, each cut
can be discovered by poly(ℓ) ℓ-length random walks. The analysis
follows the structure given in [15].

Lemma 4.1. Let c > 1 be a parameter. Suppose there exists S ⊆ V

such that |S | > n/ℓ1/5 and ∀s ∈ S, 󰀂cl(ps,ℓ , 1/4)󰀂22 > ℓ−c . Then,
there exists 󰁨S ⊆ S with |󰁨S | ≥ |S |/4 such that for each s ∈ 󰁨S , there
exists a subset Ps ⊆ S where

• ∀󰸮 ∈ Ps ,
󳕐
t<16ℓc+1 ps,t (󰸮) ≥ 1/8ℓc+1.

• |E(Ps , S \ Ps )| ≤ 4d |Ps |
󰁴
cℓ−1/5 log ℓ.

A straightforward application of this lemma leads to the main
decomposition theorem.

T󰝕󰝒󰝜󰝟󰝒󰝚 4.2. Suppose there are at least (1 − 1/ℓ1/5)n vertices s
such that 󰀂cl(ps,ℓ , 1/4)󰀂22 > ℓ−c . Then, there is a partition {P1, . . . , Pb }
of the vertices such that:

• For each Pi , there exists s ∈ V such that: ∀󰸮 ∈ Pi ,󳕗
t<10ℓc+1

ps,t (󰸮) ≥ 1/8ℓc+1

• The total number of edges crossing the partition is at most

8dn
󰁴
cℓ−1/5 log ℓ.

P󰝟󰝜󰝜󰝓. We simply iterate over Lemma 4.1. Let T be the set of
vertices, s , such that 󰀂cl(ps,ℓ , 1/4)󰀂22 ≤ ℓ−c . By assumption, |T | ≤
n/ℓ1/5.Wewill maintain a partition of the vertices {T ,Q1, . . . ,Qa , S}
with the following properties. (1) Each Qi satis󰎓es the 󰎓rst condi-
tion of the theorem. (2) The total number of edges crossing the
partition is at most

4d
󰁴
cℓ−1/5 log ℓ

󳕗
i≤a

|Qi | + d |T |.

We initialize with the trivial partition {T , S = V \T }.
As long as |S | > n/ℓ1/5, we invoke Lemma 4.1. We get a new

set Q ⊆ S satisfying the 󰎓rst condition of the theorem, and the

number of edges from Q to S \Q is at most 4d
󰁴
cℓ1/5 log ℓ |Q |. We

add Q to our partition, reset S = S \Q , and iterate.
When this process terminates, |S | ≤ n/ℓ1/5. We get the 󰎓nal

partition by removing all edges incident to S∪T . Alternately, every
single vertex in S ∪ T becomes a separate set. Note that a single
vertex trivially satis󰎓es the 󰎓rst condition of theorem, since for all
s , ps,s (1) ≥ 1/2. The total number of edges crossing the partition
is at most

4dn
󰁴
cℓ−1/5 log ℓ + 2dnℓ−1/5 ≤ 8dn

󰁴
cℓ−1/5 log ℓ.

□

4.1 Proving Lemma4.1
An important tool used to argue about conductanceswithin S is the
projected Markov chain. These ideas come from the work of Kale-
Peres-Seshadhri to analyze random walks in noisy expanders [13],
and were used by the authors in their previous paper on one-sided
testers for minor-freeness [15].We closely follow the structure and
notation of that paper, and explicitly mention the di󰎎erences.

We de󰎓ne the “projection" of the random walk onto the set S .
We de󰎓ne a Markov chain MS , over the set S . We retain all tran-
sitions from the original random walk onG that are within S , and
we denote these by e(1)u,󰸮 for every u to 󰸮 transition in the random
walk on G. Additionally, for every u,󰸮 ∈ S and t ≥ 2, we add a
transition e(t )u,󰸮 . The probability of this transition is equal to the to-
tal probability of t-length walks inG fromu to󰸮 , where all internal
vertices in the walk lie outside S .

Note that e(t )u,󰸮 = e
(t )
󰸮,u . Since G is irreducible and the station-

ary mass on S is nonzero, all walks eventually reach S . Thus, for
any u,

󳕐
t
󳕐
󰸮 e

(t )
u,󰸮 = 1, so MS is a symmetric Markov chain. The

stationary distribution ofMS is uniform on S .
For a transition e(t )u,󰸮 inMS , de󰎓ne the “length" of this transition

to be t . For clarity, we use “hops" to denote the number of steps of
a walk inMS , and retain “length" for walks inG. The length of an
h hop random walk in MS is de󰎓ned to be the sum of the lengths
of the transitions it takes.
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We use τs,h to denote the distribution of the h-hop walk from
s , and τs,h (󰸮) to denote the corresponding probability of reaching
󰸮 . We use Wh to denote the distribution of h-hop walks starting
from the uniform distribution.

The following lemma is crucial for relating walks inG withMS .

Lemma 4.3 (Lemma 6.4 of [16]). EW ∼Wh [length ofW ] = hn/|S |

We come to an important lemma. The conditions in Lemma 4.1
are on the clipped norms of random walks in G, but the conclu-
sion (regarding the cut) refers to conductances within the pro-
jected Markov chainMS . The following lemma shows that random
walks inMS must also be su󰎏ciently trapped. This is an analogue
of Lemma 6.5 of [16], but the proof deviates signi󰎓cantly because
of the use of clipped norms.

Lemma 4.4. There exists a subset S ′ ⊆ S , |S ′ | ≥ |S |/2, such that
∀s ∈ S ′, 󰀂τs,ℓ1/5 󰀂∞ ≥ 1/2ℓc+1.

P󰝟󰝜󰝜󰝓. Consider ℓ-length random walks inG starting from s ∈
S . For any such walk, we can de󰎓ne the number of hops it makes
as the number of vertices in S encountered minus one.

For h ∈ N and s ∈ S , de󰎓ne the event Es,h that an ℓ-length walk
from s makes h hops. We will further split this event into Fs,h ,
when the walk ends at S , and Gs,h , when the walk does not end
at S . A walk that ends in S directly corresponds to an h-hop walk
inMS . By Lemma 4.3, |S |−1󳕐s ∈S Pr[Fs,h ]ℓ ≤ hn/|S |. Consider any
walk in the event Gs,h . If one continued until it ends in S , this gives
a walk in MS with a single additional hop (and a longer length).
Thus, the total probability mass Pr[Gs,h ] corresponds to walks in
MS that make (h+1) hops and have length at least ℓ. By Lemma 4.3
again, |S |−1󳕐s ∈S Pr[Gs,h ]ℓ ≤ (h + 1)n/|S |.

Summing these bounds and applying the size bound on S ,

|S |−1
󳕗
s ∈S

Pr[Es,h ]ℓ ≤ (2h + 1)n/|S | ≤ ℓ1/5(2h + 1),

and dividing both sides by ℓ gives us

|S |−1
󳕗
s ∈S

Pr[Es,h ] ≤ ℓ−4/5(2h + 1).

Now, we sum over h and use the fact that ℓ is a su󰎏ciently large
constant.

|S |−1
󳕗

h≤ℓ1/5

󳕗
s ∈S

Pr[Es,h ] ≤ ℓ−4/5
󳕗

h≤ℓ1/5
(2h + 1) ≤ 4ℓ−2/5 < 1/10

By the Markov bound, there is a set S ′, |S ′ | ≥ |S |/2 such that ∀s ∈
S ′,

󳕐
h≤ℓ1/5 Pr[Es,h ] < 1/5.

For 󰸮 ∈ V , let 󱗌s (󰸮) be the probability that an ℓ-length walk
from s to 󰸮 makes at most ℓ1/5 hops. Note that

󳕐
󰸮 ∈V 󱗌s (󰸮) ≤󳕐

h≤ℓ1/5 Pr[Es,h ] < 1/5. We now use the clipped norm de󰎓nition.
Since 󰀂cl(ps,ℓ , 1/4)󰀂22 ≥ ℓ−c , 󳕐󰸮 ∈V (ps,ℓ(󰸮) − 󱗌s (󰸮))2 ≥ ℓ−c . This
is important, since we can “remove" the low hop walks and still
have a large norm.

Consider the probability α that a 2ℓ-length walk from s back to
s makes at least ℓ1/5 hops. (Note that this corresponds to walks
in MS .) Clearly, any walk going from s to 󰸮 in an ℓ-length walk
making at least ℓ1/5 hops and then returning to s in an ℓ-length
walk contributes to this probability. Thus, we can lower bound α
by

󳕐
󰸮 ∈V (ps,ℓ(󰸮) − 󱗌s (󰸮))2 ≥ ℓ−c . Note that all walks considered

make at most 2ℓ hops.

Thus,
󳕐2ℓ
h≥ℓ1/5 󰀂τs,ℓ1/5 󰀂∞ ≥ ℓ−c . Since the in󰎓nity norm is non-

increasing in hops, by averaging, 󰀂τs,ℓ1/5 󰀂∞ ≥ 1/2ℓc+1. □

The remaining proof of Lemma 4.1 is almost identical to analo-
gous calculations in Section 6 of [16]. Therefore, we move it to the
appendix.

5 PROOF OF MAIN RESULT
Before we show Theorem 2.1 and Theorem 2.2, we argue about the
guarantees of EstClip. The proofs of the next two claims are rela-
tively routine concentration arguments. Recall thatT is the vertex
set constructed in a call to EstClip(s).

Claim 5.1. Consider any vertex s . With probability at least 1 −
2−1/ε

2
over the randomness in EstClip(s): all 󰸮 such that ps,ℓ(󰸮) ≥

1/ℓ7 are in T , and no 󰸮 such that ps,ℓ(󰸮) ≤ 1/ℓ8 is in T .

P󰝟󰝜󰝜󰝓. Consider 󰸮 such that ps,ℓ(󰸮) ≥ 1/ℓ7. Recall that the
total number of walks is w = ℓ14. The expected value of w󰸮 is
at least ℓ14/ℓ7 = ℓ7. Note that w󰸮 is a sum of Bernoulli random
variables. By a multiplicative Cherno󰎎 bound (Theorem 1.1 of [5]),
Pr[w󰸮 ≤ ℓ7/2] ≤ exp(−ℓ7/8). There are at most ℓ7 such vertices󰸮 .
By a union bound over all of them, the probability that some such
󰸮 is not inT is at most ℓ7 · exp(−ℓ7/8) ≤ exp(−ℓ6) ≤ 2−2/ε

2
. (Note

that ℓ > ε−20.) This proves the 󰎓rst part.
For the second part, consider 󰸮 such that ps,ℓ(󰸮) ≤ 1/ℓ8. We

split into two cases.
Case 1, ps,ℓ(󰸮) ≥ exp(−ℓ/2). The expectation of w󰸮 is at most

ℓ14/ℓ8 = ℓ6. Since ℓ7/2 ≥ 2eℓ6, by a Cherno󰎎 bound (third part,
Theorem 1.1 of [5]), Pr[w󰸮 ≥ ℓ7/2] ≤ 2−ℓ

7/2. There are at most
exp(ℓ/2) such vertices󰸮 . Taking a union bound over all of them, the
probability that any such vertex appears inT is atmost exp(ℓ/2)2−ℓ7/2 ≤
2−ℓ

5 ≤ 2−2/ε
2
.

Case 2, ps,ℓ(󰸮) < exp(−ℓ/2). For convenience, set p = ps,ℓ(󰸮).
The probability thatw󰸮 ≤ 1 is:

(1 − p)w +wp(1 − p)w−1 ≥ (1 −wp) +wp(1 − p(w − 1))
= 1 − p2w(w − 1)
≥ 1 − p2w2

(We use the inequality (1 − x)r ≥ 1 − xr , for |x | ≤ 1, r ∈ N.) Thus,
the probability that w󰸮 > 1 is at most p2w2. Note that ℓ7/2 (the
threshold to be placed in T ) is at least 2.

Let us take a union bound over all such vertices. We note that
w = ℓ14 and ℓ > ε−20. The probability that any such 󰸮 is placed in
T is at most󳕗

󰸮 :ps,ℓ (󰸮)<exp(−ℓ/2)
ps,ℓ(󰸮)2w2 ≤ ℓ28 exp(−ℓ/2)

󳕗
󰸮

ps,ℓ(󰸮)

≤ exp(−1/ε2)
We union bound over all errors to complete the proof.

□

We can now argue about the main guarantee of EstClip.

Claim 5.2. For all vertices s , with probability at least 1−2−1/ε over
the randomness of EstClip(s):

• If 󰀂cl(ps,ℓ , 1/4)󰀂22 < ℓ−8/400, then EstClip(s) outputs LOW.
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• If 󰀂cl(ps,ℓ , 3/8)󰀂22 > ℓ−7, then EstClip(s) outputs HIGH.

P󰝟󰝜󰝜󰝓. Consider the 󰎓rst case. Let H = {󰸮 |ps,ℓ(󰸮) ≥ ℓ−8}. We
󰎓rst argue that

󳕐
󰸮 ∈H ps,ℓ(󰸮) ≤ 1/4 + 1/20. Suppose not. Then,

any clipping of 1/4 of the probability mass of ps,ℓ leaves at least
1/20 probability mass onH . The size ofH is at most ℓ8. By Jensen’s
inequality, 󰀂cl(ps,ℓ , 1/4)󰀂22 ≥ 1/400ℓ8, contradicting the case con-
dition.

Thus,
󳕐
󰸮 ∈H ps,ℓ(󰸮) ≤ 1/4+1/20. The expected value of󳕐󰸮 ∈H w󰸮

is at mostw(1/4+ 1/20). By an additive Cherno󰎎 bound (󰎓rst part,
Theorem 1.1 of [5]), Pr[󳕐󰸮 ∈H w󰸮 ≥ w/3] is at most exp(−2(1/3 −
1/4−1/20)2w) ≤ exp(−ℓ13). By Claim 5.1, with probability at least
1 − 2−1/ε

2
, T ⊆ H . By a union bound, with probability at least

1 − 2−1/ε ,
󳕐
󰸮 ∈T w󰸮 ≤ 󳕐

󰸮 ∈H w󰸮 < w/3, and the output is LOW.
Now for the second case. Let H ′ = {󰸮 |ps,ℓ(󰸮) ≥ ℓ−7}. We

will show that
󳕐
󰸮 ∈H ps,ℓ(󰸮) ≥ 3/8. Suppose not. We can clip

away all the probability mass of ps,ℓ that is on H , which is at
most 3/8. All remaining probability/entries of the clipped vector
are at most ℓ−7. Thus, the squared l2-norm is at most ℓ−7, imply-
ing 󰀂cl(ps,ℓ , 3/8)󰀂22 ≤ ℓ−7 (contradiction).

Thus,
󳕐
󰸮 ∈H ′ ps,ℓ(󰸮) ≥ 3/8. By an additive Cherno󰎎 bound

(󰎓rst part, Theorem 1.1 of [5]), Pr[󳕐󰸮 ∈H w󰸮 < w/3] is at most
exp(−2(3/8 − 1/3)2w) ≤ exp(−ℓ13). By Claim 5.1, with probability
at least 1 − 2−1/ε

2
, H ′ ⊆ T . By a union bound, with probability at

least 1 − 2−1/ε ,
󳕐
󰸮 ∈T w󰸮 ≥ 󳕐

󰸮 ∈H ′ w󰸮 ≥ w/3, and the output is
HIGH. □

We now prove completeness, Theorem 2.1. We will prove that
if G is H -minor-free, then the tester IsMinorFree accepts with
probability > 2/3. This follows almost directly from Lemma 3.2.

P󰝟󰝜󰝜󰝓 󰝜󰝓 2.1. SupposeG isH -minor-free. Note that calls to Local-
Search can never return FOUND, so rejection can only happen
because of the output of calls to EstClip.

By Lemma 3.2, there are at least (1 − 1/ℓ)n vertices such that
󰀂cl(ps,ℓ , 3/8)󰀂22 ≥ ℓ−7. Call these vertices heavy. The expected
number of light vertices in the multiset S chosen in Step 1 of Is-
MinorFree is at most 1/ℓ × ℓ21 = ℓ20. By a multiplicative Cher-
no󰎎 bound (Theorem 1 of [5]), the number of light vertices in S is
strictly less than 2ℓ20 with probability at least 1−exp(−ℓ19) > 9/10.
Let us condition on this event. The probability that any call to
EstClip(s) returns HIGH for a heavy s ∈ S is at least 1 − 2−1/ε ,
by Claim 5.2. By a union bound over the at most ℓ21 heavy ver-
tices in S , all calls to EstClip(s) for heavy s ∈ S return HIGH with
probability at least 1 − ℓ212−1/ε > 9/10.

We now remove the conditioning. With probability > (9/10)2 >

2/3, there are strictly less than 2ℓ18 calls (for the light vertices) that
return LOW. When this happens, IsMinorFree accepts. □

Now we prove soundness, Theorem 2.2. We prove that if G is
ε-far from H -minor-freeness, the tester rejects with probability >

2/3. The main ingredient is the decomposition of Theorem 4.2.

P󰝟󰝜󰝜󰝓 󰝜󰝓 2.2. Assume G is ε-far from being H -minor free. We
split into two cases.

Case 1: There are less than (1 − 1/ℓ1/5)n vertices such that
󰀂cl(ps,ℓ , 1/4)󰀂22 > ℓ−9.

Then, there are at least n/ℓ1/5 vertices such that 󰀂cl(ps,ℓ , 1/4)󰀂22
is at most ℓ−9. The expected number of such vertices (with repe-
tition) in the multiset S (of Step 1) is at least ℓ21/ℓ1/5. By a multi-
plicative Cherno󰎎 bound, there are at least ℓ21/2ℓ1/5 > 2ℓ20 such
vertices in S , with probability at least 1 − exp(−ℓ20/4). For each
such vertex s , the probability that EstClip(s) outputs LOW is at
least 1 − 2−1/ε (Claim 5.2). By a union bound over all vertices in
S , with probability > (1 − exp(−ℓ20))(1 − ℓ212−1/ε ) > 5/6, there
are at least 2ℓ20 calls to EstClip(s) that return LOW. So the tester
rejects.

Case 2: There are at least (1 − 1/ℓ1/5)n vertices such that
󰀂cl(ps,ℓ , 1/4)󰀂22 > ℓ−9.

We apply the decomposition of Theorem 4.2 (with c = 9). There
is a partition {P1, P2, . . . , Pb } of the vertices such that:

• For each Pi , there exists s ∈ V such that:∀󰸮 ∈ Pi ,
󳕐
t<10ℓ10 ps,t (󰸮) ≥

1/8ℓ10. Call s the anchor for Pi , noting that multiple sets may have
the same anchor.

• The total number of edges crossing the partition is at most

24dn
󰁴
ℓ−1/5 log ℓ.

Among the sets in the partition, let {Q1,Q2, . . . ,Qa } be the sets
of vertices that contain an H -minor (or technically, the subgraphs
induced by these sets contain an H -minor). Note that one can re-

move d
󳕐
i≤a |Qi | + 24dn

󰁴
ℓ−1/5 log ℓ edges to make G H -minor-

free. Since ℓ > ε−20, 24dn
󰁴
ℓ−1/5 log ℓ ≤ εnd/2. Since G is ε-far

from beingH -minor free, we deduce from the above that
󳕐
i≤a |Qi | ≥

εn/2.
Let Z = {s |s is anchor for some Qi }. Let us lower bound |Z |.

For everyQi , there is some s ∈ Z such that∀󰸮 ∈ Qi ,
󳕐
t<10ℓ10 ps,t (󰸮) ≥

1/8ℓ10. Thus, for every Qi , there is some s ∈ Z such that󳕗
󰸮 ∈Qi

󳕗
t<10ℓ10

ps,t (󰸮) ≥ |Qi |/8ℓ10.

Let us sum over all s ∈ Z (and note that
󳕐
󰸮 ∈V ps,t (󰸮) = 1).󳕗

i≤a
|Qi |/8ℓ10 ≤

󳕗
s ∈Z

󳕗
󰸮 ∈V

󳕗
t<10ℓ10

ps,t (󰸮)

≤
󳕗

t<10ℓ10

󳕗
s ∈Z

󳕗
󰸮 ∈V

ps,t (󰸮)

≤ 10ℓ10 |Z |

Since
󳕐
i≤a |Qi | ≥ εn/2, |Z | ≥ εn/160ℓ20 ≥ 5n/ℓ21.

Focus on the multiset S in Step 1 of IsMinorFree . Note that S
contains an element of Z with probability ≥ 1 − (1 − 5/ℓ21)ℓ21 ≥
9/10. Let us condition of this event, and let s ∈ S ∩ Z . There
exists some Qi such that ∀󰸮 ∈ Qi ,

󳕐
t<10ℓ10 ps,t (󰸮) ≥ 1/8ℓ10.

By averaging over walk length, ∀󰸮 ∈ Qi , ∃t < 10ℓ10 such that
ps,t (󰸮) ≥ 1/80ℓ20.

Now, consider the call to LocalSearch(s). The set Bs in Step 1
of LocalSearch is constructed by performing ℓ21 random walks
of length ℓ11. For any 󰸮 ∈ Qi , the probability that 󰸮 is in Bs is
at least 1 − (1 − 1/80ℓ20)ℓ21 ≥ 1 − exp(−ℓ/80). Taking a union
bound over all 󰸮 ∈ Qi , the probability that Qi ⊆ Bs is at least
1− ℓ21 exp(−ℓ/80) ≥ 9/10. WhenQi ⊆ Bs , thenG[Bs ] contains an
H -minor and the tester rejects. The probability of this happening
is at least (9/10)2 > 2/3. □
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A LOCAL PARTITIONING AND COMPLETING
THE PROOF OF 4.1

We perform local partitioning on MS , starting with an arbitrary
s ∈ S ′. We apply the Lovász-Simonovits curve technique. (The def-
initions are originally from [19]. Refer to Lecture 7 of Spielman’s
notes [24] as well as Section 2 in Spielman-Teng [25]. This is also
a restatement of material in Section 6.1 of [16], which is needed to
state the main lemma.)

• Conductance: for someT ⊆ S we de󰎓ne the conductance of
T inMS to be

Φ(T ) =

󳕐
u ∈T

󰸮 ∈S\T
τu,1(󰸮)

min {|S \T |, |T |}

• Ordering of states at time t : At time t , let us order the ver-
tices inMS as󰸮

(t )
1 ,󰸮

(t )
2 , . . . such thatτs,t (󰸮(t )1 ) ≥ τs,t (󰸮(t )2 ) . . .,

breaking ties by vertex id. At t = 0, we set τs,0(s) = 1, and
all other values to 0.

• The LS curveht :We de󰎓ne a functionht : [0, |S |] → [0, 1] as
follows. For every k ∈ [|S |], set ht (k) to be

󳕐
j≤k τs,t (󰸮

(t )
j ).

(Set ht (0) = 0.) For every x ∈ (k,k + 1), we linearly interpo-
late to construct h(x). Alternately,

ht (x) = max
󳑞w ∈[0,1]|S |, 󰀂 󳑞w 󰀂1=x

󳕗
󰸮 ∈S

[τs,t (󰸮) − 1/n]wi .

• Level sets: For k ∈ [0, |S |], we de󰎓ne the (k, t)-level set, Lk,t
to be {󰸮(t )1 ,󰸮

(t )
2 , . . . ,󰸮

(t )
k }. Theminimum probability of Lk,t

denotes τs,t (󰸮(t )k ).

The main lemma of Lovász-Simonovits is the following (Lemma
1.4 of [19], also refer to Theorem 7.3.3 of Lecture 7 in [24]).

Lemma A.1. For all k and all t , ht (k) ≤ 1
2 [ht−1(k − 2min(k,n −

k)Φ(Lk,t )) + ht−1(k + 2min(k,n − k)Φ(Lk,t ))]

We employ this lemma to prove a condition of the level set con-
ductances. An analogous lemma was proven in [16] for speci󰎓c
parameters. We redo the calculation here.

Lemma A.2. Suppose there exists ϕ ∈ [0, 1] and p > 2/n such that
for all t ′ ≤ t it is true that for all k ∈ [n] that if Lk,t ′ has a minimum
probability of at least p, then Φ(Lk,t ) ≥ ϕ. Then for all k ∈ [0,n],
ht (k) ≤

√
k(1 − ϕ2/2)t + pk .

P󰝟󰝜󰝜󰝓. We will prove by induction over t . For the base case,
consider t = 0. The RHS is at least 1, proving the bound.

Now for the induction. Note that ht is a concave, and the RHS
is also concave. Thus, it su󰎏ces to prove the bound for the integer
points (ht (k) for integer k). If k ≥ 1/p, then the RHS is at least 1.
Thus the bound is trivially true. Let us assume that k < 1/p < n/2.
We now split the proof into two cases based on the conductance
of Lk,t .

First let us consider the case where Φ(Lk,t ) ≥ ϕ. By LemmaA.1
and concavity of h,

ht (k) ≤
1
2

󰀓
ht−1

󰀃
k(1 − 2ϕ)

󰀄
+ ht−1

󰀃
k(1 + 2ϕ)

󰀄 󰀔

≤ 1
2

󰀓√
k

󰀕
1 − ϕ2

2

󰀖t−1 󰀓󰁳
1 − 2ϕ +

󰁳
1 + 2ϕ

󰀔
+ 2kp

󰀔

≤
√
k
󰀓
1 − ϕ2/2

󰀔t
+ kp

For the last inequality we use the bound
󰀓√

1 + z +
√
1 − z

󰀔
/2 ≤

1 − z2/8.
Now we deal with the case when Φ(Lk,t ) < ϕ. By assump-

tion, Lk,t has minimum probability less than p. Let k ′ < k be
the largest index such that Lk ′,t has minimum probability at least
p. Note that Φ(Lk ′,t ) ≥ ϕ. Therefore, as proven in the 󰎓rst case,
ht (k ′) ≤

√
k ′

󰀃
1 − ϕ2/2

󰀄t
+ k ′p. Every vertex we add to Lk ′,t adds

less than p probability mass to Lk ′,t , and therefore, by the concav-
ity of ht (x),

ht (k) ≤ ht (k ′) + (k − k ′)p (4)

≤
√
k ′

󰀓
1 − ϕ2/2

󰀔t
+ k ′p + (k − k ′)p (5)

≤
√
k ′

󰀓
1 − ϕ2/2

󰀔t
+ kp ≤

√
k
󰀓
1 − ϕ2/2

󰀔t
+ kp (6)

□

For convenience, we restate Lemma 4.1.

Lemma 4.1. Let c > 1 be a parameter. Suppose there exists S ⊆ V

such that |S | > n/ℓ1/5 and ∀s ∈ S, 󰀂cl(ps,ℓ , 1/4)󰀂22 > ℓ−c . Then,
there exists 󰁨S ⊆ S with |󰁨S | ≥ |S |/4 such that for each s ∈ 󰁨S , there
exists a subset Ps ⊆ S where

• ∀󰸮 ∈ Ps ,
󳕐
t<16ℓc+1 ps,t (󰸮) ≥ 1/8ℓc+1.

• |E(Ps , S \ Ps )| ≤ 4d |Ps |
󰁴
cℓ−1/5 log ℓ.

P󰝟󰝜󰝜󰝓. By Lemma 4.4, there is a set S ′ ⊆ S , |S ′ | ≥ |S |/2 such
that for all s ∈ S ′, 󰀂τs,ℓ1/5 󰀂∞ ≥ 1/2ℓc+1. Consider any s ∈ S ′.

Suppose for all t ′ ≤ ℓ1/5, all level sets Lk,t ′ withminimum prob-

ability 1/2ℓc+1 have conductance at least
󰁴
4cℓ−1/5 log ℓ. LemmaA.2

implies that 󰀂τs,ℓ1/5 󰀂∞ = hℓ1/5 (1) ≤ (1 − 2c log ℓ
ℓ1/5

)ℓ1/5 + 1/4ℓc+1

< 1/4ℓc+1 + 1/4ℓc+1 = 1/2ℓc+1. This is a contradiction.
Thus, for every s ∈ S ′, there exists a level set denoted Ps with

minimumprobability 1/2ℓc+1 and conductance atmost
󰁴
4cℓ−1/5 log ℓ.

Note that |Ps | ≤ 2ℓc+1 < |S |/2.

󰁴
4cℓ−1/5 log ℓ ≥ Φ(Ps ) =

󳕐
x ∈Ps

󱗌∈S\Ps
τx,1(󱗌)

min(|Ps |, |S \ Ps |
≥ E(Ps , S \ Ps )

2d |Ps |
(7)

The inequality is obtained by only considering transitions from
S to S \ Ps that come from a single edge in G. Each such edge has
a traversal probability of 1/2d . Therefore,

E(Ps , S \ Ps ) ≤ 4d |Ps |
󰁴
cℓ−1/5 log ℓ.

Set L = 8ℓc+2. De󰎓ne 󰁨S ⊆ S ′ to be the vertices s ∈ S ′ with the
property that ∀󰸮 ∈ Ps ,

󳕐
l<L ps,󰸮 (l) ≥ 1/8ℓc+1. Together with the

cut bound above, this clearly satis󰎓es the conditions on the lemma.
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It remains the prove a suitable upper bound of |S ′\󰁨S |, to show that󰁨S is su󰎏ciently large.
For every s ∈ S ′\󰁨S , there exists󰸮s ∈ Ps such that

󳕐
l<L ps,l (󰸮) <

1/8ℓc+1. Let p̂s,l (󰸮) denote that probability that an ℓ1/5-hop walk
inMS from s reaches 󰸮 with length l . Consider s ∈ S ′ \ 󰁨S .

τs,ℓ1/5 (󰸮s ) =
󳕗

l ≥ℓ1/5
p̂s,l (󰸮s )

=

L−1󳕗
l ≥ℓ1/5

p̂s,l (󰸮s ) +
󳕗
l ≥L

p̂s,l (󰸮s )

≤
L−1󳕗

l ≥ℓ1/5
ps,l (󰸮) +

󳕗
l ≥L

p̂s,l (󰸮)

Since theminimumprobability of Ps is at least 1/4ℓc+1,τs,ℓ1/5 (󰸮s ) ≥
1/4ℓc+1. We argued above that

󳕐L−1
l ≥ℓ1/5 ps,l (󰸮) ≤ 󳕐

l<L ps,l (󰸮) <

1/8 ≤c+1. We conclude that
󳕐
l>L p̂s,l (󰸮) ≥ 1/8ℓc+1. Note that all

of this probability mass corresponds to ℓ1/5-hop walks that have a
large length. We now lower bound EW ∼W

ℓ1/5
[length ofW ].

EW ∼W
ℓ1/5

[length ofW ] ≥ 1
|S |

󳕗
s ∈S ′\󰁨S

󰀓󳕗
l>L

p̂s,l (󰸮s )
󰀔
L

≥ |S ′ \ 󰁨S |
|S | · L

8ℓc+1

≥ ℓ |S
′ \ 󰁨S |
|S |

By Lemma 4.3, EW ∼W
ℓ1/5

[length ofW ] = ℓ1/5n/|S |. Combining,
|S ′ \ 󰁨S | ≤ n/ℓ4/5 ≤ n/4ℓ1/5 ≤ |S |/4. By Lemma 4.4, |S ′ | ≥ |S |/2.
By the setting of Lemma 4.1, |S | > n/ℓ1/5. Thus, |S ′ \󰁨S | ≤ n/4ℓ1/5,
and |󰁨S | ≥ |S |/4. □
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