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Abstract

Lyme disease is an infectious disease that is caused by a bacterium called Borrelia

burgdorferi sensu stricto. In the United States, Lyme disease is one of the most common

infectious diseases. The major endemic areas of the disease are New England, Mid-

Atlantic, East-North Central, South Atlantic, and West North-Central. Virginia is on

the front-line of the disease’s diffusion from the northeast to the south. One of the

research objectives for the infectious disease community is to identify environmental and

economic variables that are associated with the emergence of Lyme disease. In this

paper, we use a spatial Poisson regression model to link the spatial disease counts and

environmental and economic variables, and develop a spatial variable selection procedure

to effectively identify important factors by using an adaptive elastic net penalty. The

proposed methods can automatically select important covariates, while adjusting for

possible spatial correlations of disease counts. The performance of the proposed method

is studied and compared with existing methods via a comprehensive simulation study.

We apply the developed variable selection methods to the Virginia Lyme disease data

and identify important variables that are new to the literature. Supplementary materials

for this paper are available online.

Key Words: Gaussian Process; GLMM; Multicollinearity; Poisson Regression; S-

patial Count Data; Spatial Correlation.
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1 Introduction

Lyme disease is one of the most commonly reported vector-borne diseases in the United

States. The disease was first identified in 1975 in the town of Old Lyme, Connecticut, and was

therefore named Lyme disease. Lyme disease is caused by the bacterium Borrelia burgdorferi

sensu stricto. Through Ixodid species tick bites, the bacterium is transmitted to humans.

Early symptoms of Lyme disease includes skin rash, fever, headache, and fatigue. If the

patients are not treated during the early stage of infection, severe and chronic symptoms can

occur. Those chronic symptoms include arthritis in major joints, shooting pains, numbness

in the hands or feet, and memory problems. Based on Maes, Lecomte, and Ray (1998), the

estimated treatment costs for the disease were around $2.5 billion over a five-year period,

which is a significant public health burden. Thus, the study of Lyme disease emergence is of

general interest in public health.

Although New England and other northeastern states are the initial endemic area for the

disease, the endemic area has expanded over the last several decades, and Virginia is currently

at its southward front line. Lyme disease spread from the northern part of Virginia to the

southwestern part over the past decade, and the state also experienced an increasing number

of cases. This makes Virginia an ideal state to study the mechanism behind the disease and

discover crucial factors associated with emergence of Lyme disease. Because the transmission

of Lyme disease involves tick bites, which are related to both environmental and human

factors, one of the important research questions in Lyme disease study is to identify possible

environmental and demographic factors that can contribute to the emergence of the disease.

The main objective of this paper is to develop a method to identify a subset of the ex-

planatory variables that are important for the case counts of Lyme disease based on Virginia

data. As we can see from Lyme disease data (more details will be described in Section 2),

there exist spatial correlations among disease counts, and there is also strong multicollinearity

among explanatory variables. Variable selection while accounting for spatial dependence and

multicollinearity is a challenging aspect. In the Lyme disease literature, the basic statistical

models such as the Poisson regression are often used for modeling disease counts, without

consideration of spatial correlation. When the goal is to identify important covariates, sim-

ple analyses such as bivariate analyses were used (e.g., Allan, Keesing, and Ostfeld 2003,

and Jackson, Hilborn, and Thomas 2006). The proposed methods in this paper will enable

automatic variable selection while accounting for spatial correlation. Methodologically, the

present work provides the Lyme disease research community more sophisticated analytic tools

for statistical modeling and analysis. To the best of our knowledge, this paper is the first
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work that uses statewide Lyme disease data and covariates at census tract level to identify

important environmental and human factors involved in the disease’s spread.

Spatial data modeling, which has broad applications in ecology, epidemiology, agriculture,

sociology, and other areas, has attracted great attention in recent years in the statistical

literature. For spatial data, correlations among observations in near locations are typically

nonnegligible, and one way to model the spatial correlations among locations is through ran-

dom effects. For example, Diggle, Moyeed, and Tawn (1998), and Zhang (2002) employed

generalized linear mixed models (GLMM) for spatial data with non-Gaussian outcomes. Var-

ious approaches to estimate the parameters in GLMM have been developed. An overview on

current methods can be found in McCulloch, Searle, and Neuhaus (2008).

Regarding variable selections, a wide class of variable selection approaches have been de-

veloped via shrinkage methods. The least absolute shrinkage and selection operator (LASSO)

penalty is studied in Tibshirani (1996) to solve the regression type problem. It is shown that

LASSO does parameter estimation and variable selection simultaneously due to the shrinkage

property of the L1 penalty. The ridge penalty introduced in Hoerl and Kennard (1970) always

includes all the covariates. If there is a group of highly correlated covariates, the ridge penalty

shrinks coefficients to each other but not to zero. Conversely, LASSO picks one covariate and

assigns all weights to this covariate. In other words, ridge penalty tends to select the entire

group, while LASSO tends to randomly pick only one covariate (Tibshirani 1996). Zou and

Hastie (2005) proposed the elastic net penalty, which is a linear combination of the LASSO

penalty and the ridge penalty. For a group of highly correlated covariates, the ridge and LAS-

SO combination results in the trend of in and out together. Thus, the elastic net penalty has

the property of automatic variable selection and continuous shrinkage. LASSO does not have

the oracle property and can be inconsistent unless certain conditions are satisfied. In light of

these drawbacks of LASSO, the adaptive LASSO (Zou 2006) and adaptive elastic net (Zou and

Zhang 2009) were developed. In addition, Fan and Li (2001) developed the smoothly clipped

absolute deviation (SCAD) penalty. One may refer to Fan and Lv (2010) for a comprehensive

review of variable selection methods. In addition to the above work, Bayesian methods are

also popular for variable selection. A review and comparison of Bayesian variable selection

methods is available in O’Hara and Sillanpää (2009).

In terms of implementation, Efron et al. (2004) proposed the least-angle regression (LARS)

method to efficiently calculate the solution path of LASSO penalty in linear models. Park

and Hastie (2007) extended the concept of the LARS algorithm to generalized linear mod-

els (GLM). An algorithm named elastic net penalized least squares (LARS-EN) in Zou and

Hastie (2005) is proposed for linear models with elastic net penalty. Schelldorfer, Meier,
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and Bühlmann (2014) developed “GLMMLasso” for high-dimensional GLMM with LASSO

penalty and the corresponding R package is named “glmmixedlasso” (Schelldorfer, Meier, and

Bühlmann 2012). Groll and Tutz (2014) also considered this type of problem and a gra-

dient descent algorithm is proposed to maximize the penalized log-likelihood function with

implementation in an R package “glmmLasso” (Groll 2016). A number of variable selection

procedures for GLMM with longitudinal data settings are studied in Yang (2007) and Cui

(2011). Besides, Cai and Dunson (2006) proposed a fully Bayesian method to select fixed

and random effects in the setting of GLMM. Ibrahim et al. (2011) selected both fixed and

random effects in a general class of mixed effects models using maximum penalized likelihood

estimation along with the SCAD and the adaptive LASSO penalty functions. Yang and Zou

(2012) developed an generalized coordinate descent algorithm for computing the solution path

of the hybrid Huberized support vector machine. Boehm Vock et al. (2015) developed spatial

variable selection methods using a spatially varying coefficients model and applied them to

study the acute health effects of fine particular matter components.

Despite the rich literature in spatial data analysis and various developments in variable

selections, there is still a gap in performing variable selection for spatially correlated responses

and correlated covariates. Although the focus of the paper is in Lyme disease applications, the

developed spatial variable selection methods and comparisons also contribute to the general

statistical literature. Extensive simulations show that the performance of the proposed meth-

ods perform better than existing methods for spatially correlated responses and correlated

covariates. We also use bootstrap to quantify the uncertainties in parameter estimations. An

R package is developed to implement the proposed methods.

The rest of this paper is organized as follows. Section 2 introduces the Virginia Lyme

disease data and the potential covariates for selection. Section 3 presents the spatial Poisson

regression model with random effects and the computation of the likelihood function. Section 4

presents two customized estimation procedures for estimating model parameters and develops

a bootstrap algorithm for constructing confidence intervals. Section 5 conducts simulations

to study the performance of the developed methods in variable selections and compares with

existing methods. Section 6 presents the data analysis for the Virginia Lyme data with

interpretation and discussions. Section 7 contains conclusions and areas for future research.

2 Virginia Lyme Disease Data

The Lyme disease dataset for this paper contains case data from 2006 to 2011, and demo-

graphic data and land cover data in Virginia. Lyme disease case data were collected by the
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(a) Census Centroids (b) Ecoregions

Figure 1: (a) Illustrations of the Virginia study area and the locations of census centroids

as indicated by dots, and (b) the level III ecoregions from Ecoregions of Virginia (2015).

The Subregion 1 (Eco id = 1) represents the southern/eastern subregion, which includes

Piedmont (code 45), Middle Atlantic Coastal Plain (code 63), and Southeastern Plains (code

65). The Subregion 0 (Eco id = 0) represents northern/western subregion, which includes

Northern Piedmont (code 64), Blue Ridge (code 66), Ridge and Valley (code 67), and Central

Appalachian (code 69).

Virginia Department of Health (2006-2011). The demographic data (e.g., population density,

median income, and average age) are from the 2010 census (Almquist 2010). Land cover data

were obtained from the Multi-Resolution Land Cover Consortium for 2006 (Fry et al. 2012).

A more detailed explanation of the data sources is available in Seukep et al. (2015).

The Lyme disease cases were aggregated into census tracts for a couple of reasons: 1) the

demographic information and land cover data are available for each census tract; and 2) the

tract borders are based on certain features (e.g., rivers, roads) that are potential barriers to

the movement of tick or other species involved in the Lyme disease transmission cycle (e.g.,

white-footed mice or deer). Figure 1(a) illustrates the Virginia study area and the locations of

census centroids as indicated by dots. The response of interest is the summary of case counts

from 2006 and 2011 in each census tract. The total population counts in each census tract

are included into the model as an offset term. Figure 2 shows the number of Lyme disease

cases and incidence rates (i.e., the number of cases divided by the total population) for each

census tract. A more detailed visualization of the Virginia Lyme disease data is available in

Li et al. (2014).

Here, we discuss candidate covariates that may contribute to the case counts of Lyme
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Figure 2: Number of cases and incidence rates of each census tract in Virginia for the five-year

period (2006-2011). (a) Case counts. (b) Incidence rates.

6



disease. The summary of the candidate covariates is available in Table 1. The dissimilarities

in economic and demographic characteristics may affect the incidence of Lyme disease. To

understand the transmission of Lyme disease, it is important to study the environment of

ticks and Lyme disease reservoirs.

In past studies, white-footed mice or deer are shown to be very important hosts of ticks.

Forested and herbaceous/scrub areas are ideal habitats for white-footed mice or deer. Accord-

ing to Seukep et al. (2015), the herbaceous land type included scrub, herbaceous grasslands,

cultivated agricultural lands, pasture, open impervious space, and emergent herbaceous wet-

lands. For example, scrub can provide tall enough vegetation to conceal deer and white-footed

mice, and enough shade and humidity to allow black-legged ticks to survive the hot dry months

of the summer. We consider four land cover types, which are the developed land, forest, herba-

ceous and water. The percentages of developed land, forest, and herbaceous within each tract

are considered as covariates, with the percentage of water excluded because the percentages

of those four land types add to 100%.

Allan, Keesing, and Ostfeld (2003) and Jackson, Hilborn, and Thomas (2006) studied

the effect of forest fragmentation on Lyme disease and showed that the percent of forested

areas and number of small forest fragments (<2 ha) within each polygon are associated with

incidence rate of Lyme disease. In this study, we consider two types of forest fragmentation

variables: percent of small forest fragments (<2 ha) and percent of perimeters of the small

forest fragments (<2 ha) within each census tract.

The mixture of land cover types can also be an important factor for the disease cases. For

example, the boundary between forest and residential areas raises the risk for the interaction

between tick or disease reservoirs and humans, which may lead to an increase in the incidence

rate. In this study, we consider three types of edges of land covers, which are the developed-

forest edge, the forest-herbaceous edge, and the herbaceous-developed edge. For each edge,

we consider two types of indices that characterize the mixture of land cover types: Contrast

Weighted Edge Density (CWED) and Total Edge Contrast Index (TECI), which represent two

different algorithms for computing the mixture indices used in FRAGSTATS 4.1 (McGarigal,

Cushman, and Ene 2012).

We also consider the type of ecoregion in our analysis. Based on the level III ecoregion

map of Virginia (2015), Virginia can be divided into two major subregions, representing en-

vironmental and demographic differences. Figure 1(b) illustrates the level III Ecoregions of

Virginia. Subregion 1 (i.e., the southern/eastern subregion) consists of Piedmont, Middle

Atlantic Coastal Plain, and Southeastern Plains areas, while Subregion 0 (i.e., the north-

ern/western subregion) includes the Northern Piedmont, Blue Ridge, Ridge and Valley and

7



Table 1: Description of covariates in Lyme disease data.

Variable Description
Dvlpd NLCD06 Percentage of developed land in each census tract
Forest NLCD06 Percentage of forest in each census tract
Herbaceous NLCD06 Percentage of herbaceous in each census tract
Tract Frag06 Sum of area of forested fragments in each census tract

divided by the total area
FragPerim06 Sum of forest fragment perimeters in each census tract

divided by the total area
CWED DF06 CWED of developed-forest edge
TECI DF06 TECI of developed-forest edge
CWED FH06 CWED of forest-herbaceous edge
TECI FH06 TECI of forest-herbaceous edge
CWED HD06 CWED of herbaceous-developed edge
TECI HD06 TECI of herbaceous-developed edge
Pop den Tract population density in 2010
Median age Median age at each census tract in 2010
Mean income Mean income (inflation adjusted) at each census tract

in 2010
Eco id Eco id = 1 represents the Piedmont, Middle Atlantic

Coastal Plain, and Southeastern Plains areas; Eco id = 0
represents the Northern Piedmont, Blue Ridge, Ridge
and Valley, and Central Appalachian areas

Central Appalachian areas. In addition, the population density, median age, and mean income

in 2010 are also included as potential factors in the study.

We observe multi-collinearity among the covariates in the data using the pairwise correla-

tions among all the covariates. The range of the absolute values of the pairwise correlations

is from 0.002 to 0.986. From Supplementary Figure 1, we can also see that the correlation-

s among the covariates can go quite high (i.e., above 0.8), which motivates us to use the

elastic-net type penalty in variable selection.

3 The Statistical Model

Here we introduce some notations about the spatial count data and covariates. Let n be the

number of spatial locations, which are indexed by i = 1, . . . , n. Let Yi be the random variable

for the count of disease cases at location i, which takes values in {0, 1, 2, . . .}. The corre-

sponding observation is denoted by yi. The explanatory variables at location i are denoted by

xi = (xi1, . . . , xij, . . . , xip)
′, where p is the number of explanatory variables and xij is the value
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of the jth covariate at location i. Let y = (y1, y2, . . . , yn)′ be the vector of the observations,

and X be an n × p matrix for the explanatory variables. That is X = (x1, . . . ,xi, . . . ,xn)′.

The population for location i is denoted by mi.

We use a spatial Poisson regression model with random effect bi to describe the spatial

count data. That is,

Yi|bi ∼ Poisson(µi), (1)

where

ηi = log(µi) = β0 + xi1β1 + · · ·+ xipβp + bi + log(mi).

Here, µi is the conditional mean, ηi is the log of µi, βj is the regression coefficient of the

corresponding covariate, and log(mi) is the offset term corresponding to the population for

location i. The random effect is bi. Given bi, the probability mass function (pmf) of Yi is

exp (−µi)µyii /yi!. The responses Yi are independent conditional on random effects bi. Let

µ = (µ1, . . . , µn)′,β = (β0, β1, . . . , βp)
′, and b = (b1, b2, . . . , bn)′.

The spatial correlations among locations are captured through the random effects b. Fol-

lowing the spatial literature, we use the multivariate normal distribution to model the random

effect b. That is,

b ∼ N(0,Σθ). (2)

The variance-covariance matrix of b is Σθ = σ2Ω, and the ijth element of the Ω is ρ(dij;θ).

Here ρ(·) is a spatial correlation function and θ are parameters in Σθ. Note that dij is the

distance between two locations i and j. In this paper, the exponential correlation function

is used. That is, ρ(dij;θ) = exp(−dij/d) and d > 0 is the scale parameter. In this case,

θ = (σ2, d)′. The proposed method, however, can be extended to other spatial correlation

functions such as the Gaussian, powered exponential, and Matérn correlation functions (e.g.,

Li et al. 2015).

Note that we use a distance-based correlation structure in (2). In some disease mapping

and ecology applications, the Gaussian Markov random field is also used for the correlation

structure. However, our problem is special in the sense that we use census tracts as our study

units. As illustrated in Figure 1(a), some census tracts in southwest Virginia are relatively

large while other census tracts in the northern Virginia area (outside Washington DC) are

relatively small. If one uses a Markov random field, it would ignore the differences in distance

among different census tracts. In addition, the transmission of Lyme disease is related to

distance. Based on those considerations, we use a distance-based correlation structure in this

paper.
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Based on the model specification in (1) and (2), one can derive the likelihood function of

unknown parameters β and θ. Specifically, let f(y|β, b) be the pmf of y given b, and f(b|θ)

be the probability density function (pdf) of b. The likelihood function of {β,θ} is

L(β,θ) =

∫
Rn

f(y|β, b)f(b|θ) db

=

∫
Rn

[
n∏
i=1

exp (−µi)
µyii
yi!

] [
(2π)−

n
2 |Σθ|−

1
2 exp

(
−1

2
b′Σ−1θ b

)]
db

= (2π)−
n
2 |Σθ|−

1
2

∫
Rn

exp

{
n∑
i=1

[−µi + yiηi − log(yi!)]−
1

2
b′Σ−1θ b

}
db, (3)

where the integral of b is over the n-dimensional Euclidian space Rn.

To perform variable selection, we add an adaptive elastic net (AEN) penalty term for fixed

effects β to the log-likelihood function. That is, we consider the following penalized negative

log-likelihood function

L(β,θ) = − log[L(β,θ)] + Pλ(β), (4)

where

Pλ(β) = λ1

[
λ2
∑
j

ŵj|βj|+ (1− λ2)
∑
j

β2
j

]
is the AEN penalty. Here λ = (λ1, λ2)

′ are regularization parameters. Note that 0 6 λ2 6 1,

λ2 = 1 is the case of LASSO penalty, and λ2 = 0 is the case of ridge penalty. In addition,

ŵj = |β̂cnst|−r is the adaptive weight with constant r > 0, and β̂cnst is an estimate of β that

will be specified in Section 4.3.

Note that the likelihood function in (3) contains intractable integrals over distribution of

random effects. If the random effects are of low dimension, we may use Gaussian quadrature

to do numerical integration. However, in the spatial Poisson regression model with random

effects, the dimension of random effects is often the same as the number of observations. That

is, the dimension of integrals is typically so large that the Gaussian quadrature or other low-

dimensional methods may not work well. Because the computation of the exact likelihood is

infeasible, if not impossible, approximate likelihood is often used in literature, by employing

the Laplace approximation. In particular, the Laplace approximation (Laplace 1986) of multi-

dimensional integrals over a multivariate function exp[h(·)] is of the form∫
Rn

exp[h(b)] db ≈ (2π)
n
2

∣∣∣∣− h′′(b̃)∣∣∣∣− 1
2

exp[h(b̃)],
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where b̃ is the maximizer of function h(b), and
∣∣−h′′(b̃)∣∣ is the determinant of the negative of

the Hessian matrix of h(·). For the likelihood function in (3), the corresponding h(·) function

is

h(b) =
n∑
i=1

[−µi + yiηi − log(yi!)]−
1

2
b′Σ−1b. (5)

Note that the maximizer b̃ of the function h(·) in (5) depends on parameters {β,θ}. Applying

the Laplace approximation to likelihood function (3), we obtain

log [L(β,θ)] ≈ l(β,θ), (6)

where

l(β,θ) = −1

2
log
(∣∣ΣθW + In

∣∣)+
n∑
i=1

[−µi + yiηi − log(yi!)]−
1

2
b̃
′
Σ−1θ b̃,

is the log of the approximate likelihood function, W = Diag{µ}, and In is an n× n identity

matrix.

Thus, we use the following approximate penalized log-likelihood (APL) function to ap-

proximate the objective function in (4),

LAPL(β,θ) = −l(β,θ) + Pλ(β). (7)

The estimates of {β,θ} can be obtained by finding the values of {β,θ} that minimize the

objective function in (7). An alternative approach from Breslow and Clayton (1993) is to

ignore the term
∣∣ΣθW+In

∣∣ in l(β,θ), leading to the penalized quasi-likelihood (PQL) method.

In particular, the PQL method aims to find the estimate of {β,θ} by finding the values of

{β,θ} that minimize the following objective function,

LPQL(β,θ) = −la(β,θ) + Pλ(β), (8)

where

la(β,θ) =
n∑
i=1

[−µi + yiηi − log(yi!)]−
1

2
b̃
′
Σ−1θ b̃. (9)

Essentially, the PQL uses la(β,θ) to approximate l(β,θ). Under the consideration of compu-

tation, the PQL method is more efficient, with the tradeoff of ignoring the dependency of Σθ

and W on {β,θ} in the expression
∣∣ΣθW + In

∣∣.
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4 Parameter Estimation and Inference Procedures

In this section, we develop computational methods to optimize LAPL(β,θ) and LPQL(β,θ)

in (7) and (8), respectively. The developed estimation procedures are iterative. The goal is

to estimate the unknown parameters β and θ. Both the APL and PQL methods share the

following major steps:

• we first update b̃ based on the current estimates of β and θ,

• then update β with penalty Pλ(β) to achieve variable selection, and

• finally update θ based on the current estimates of β and b̃.

The above three-step procedure will be conducted iteratively until convergence. The details

for the selection of tuning parameters λ are given in Section 4.3.

4.1 The APL Method

For the APL method, the first step is to find b̃ that maximizes h(b) in (5), given the current

estimate of β and θ. Regular optimization methods such as the Newton-Raphson method can

be used here. The second step is to use the block coordinate gradient descent (BCGD) method

in Tseng and Yun (2009) to update β under penalty, given the current estimates of β and θ.

The solution of an AEN penalty problem can be solved by transforming it into a LASSO type

of problem. Specifically, minimizing (7) with respect to β is equivalent to minimizing

f(β|b,θ) + λ1λ2
∑
j

ŵj|βj|,

where

f(β|b,θ) =
1

2
log
(∣∣ΣθW + In

∣∣)− n∑
i=1

(−µi + yiηi) +
1

2
b′Σ−1θ b+ λ1(1− λ2)

∑
j

β2
j . (10)

It is important to note that f(β|b,θ) is a non-convex but differentiable function, and
∑

j ŵj|βj|
is a convex but non-differentiable function. To apply the BCGD algorithm, we update only

one component of β at a time. For the jth component of β, denoted as βj, we first obtain b̃

based on current estimates of β and θ, which are denoted by β̃ and θ̃, respectively. Then we

update the jth component by β̃j + dj. Here,

dj = median

{
ŵjλ1λ2 − fj(β̃|b̃, θ̃)

hjj
, −β̃j,

−ŵjλ1λ2 − fj(β̃|b̃, θ̃)

hjj

}
.
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Also, fj(β|b̃, θ̃) is the jth component of the first derivative of f(β|b̃, θ̃) with respect to β (i.e.,

∂f(β|b̃, θ̃)/∂β), and hjj is the jth diagonal element of H, where

∂f(β|b̃, θ̃)

∂β
= X ′(µ− y) + 2λ1(1− λ2)β + c,

H = X ′WX + 2λ1(1− λ2)Ip.

The jth element of c is (1/2)tr {(ΣθW + In)−1Σθ∂W/∂βj}, and Ip is a p× p identity matrix.

The last step of the iterative procedure is to update θ. The estimate of θ is updated by

minimizing (7) with current estimates β̃ and b̃. A description of the algorithm for the APL

estimation procedure is as follows.

Algorithm 1: APL with Adaptive Elastic Penalty (APL.AEN)

For a collection of values of (λ1, λ2):

1. Initialize β(0), b(0), and θ(0).

2. For the kth iteration:

(i) To update the jth component of β, one first finds b̃
(k,j)

that maximizes h(b) with

given β̃
(k,j)

= (β̃
(k)
1 , . . . , β̃

(k)
j−1, β̃

(k−1)
j , . . . , β̃

(k−1)
p ) and θ̃

(k−1)
.

(ii) Then update β̃
(k)
j = β̃

(k−1)
j + dj.

(iii) Repeat (i) and (ii) for j = 1, . . . , p.

(iv) θ̃
(k)

is obtained by minimizing (7) with β̃
(k)

.

3. Repeat Step 2 until convergence. The final version of estimates β̃, b̃, and θ̃ are denoted

by β̂, b̂, and θ̂, respectively.

4.2 The PQL Method

In this section we present how the parameters β, θ, and b are sequentially updated in the PQL

method. We use the iterative algorithm in Breslow and Clayton (1993) to estimate {β, b}
from (5). In particular, Breslow and Clayton (1993) showed that the estimation of {β, b} is

equivalently to fit a linear mixed model (LMM) as follows:

y∗ = Xβ + b+ ε, with b ∼ N(0,Σθ), and ε ∼ N(0,W−1). (11)
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Here y∗ = (y∗1, . . . , y
∗
n) is the working response vector with y∗i = x′iβ+ bi+(yi − µi)/µi. Based

on the model formulation in (11), we obtain Var(y∗) = V = W−1 + Σθ. We update β̃ and b̃

in the following formulas iteratively until convergence. In particular,

β̃ =
(
X ′V −1X

)−1
X ′V −1y∗, and b̃ = ΣθV

−1
(
y∗ −Xβ̃

)
.

The second step is to update β under penalty. To efficiently obtain one step update of

β under the penalty, we use a quadratic approximation to la(β|b̃, θ̃), which is the la(β,θ) in

(9) but given θ̃ and b̃. Note that la(β|b̃, θ̃) is a concave function of β given θ̃ and b̃, and β̃

is the maximizer of la(β|b̃, θ̃). We form a quadratic approximation to la(β|b̃, θ̃) around β̃ to

speed up the updating of β. Friedman, Hastie, and Tibshirani (2010) used a similar method

for generalized linear models. In particular, we have

la(β|θ̃, b̃) ≈ −
1

2

n∑
i=1

µi(zi − x′iβ)2,

where zi = x′iβ̃−1+yi/µi. The details regrading the derivation of the quadratic approximation

is given in Appendix A. Incorporating the elastic net penalty function, we obtain

LQPQL(β|θ̃, b̃) =
1

2

n∑
i=1

µi(zi − x′iβ)2 + Pλ(β). (12)

The minimizer β̃Q of (12) can be achieved as a penalized weighted least squares problem by

using the R package “glmnet” (Friedman, Hastie, and Tibshirani 2010).

It is interesting to point out that estimating β via optimizing (12) is equivalent to consider

the penalized log-likelihood of the linear mixed model (11). That is,

−1

2
(y∗ −Xβ − b)′W (y∗ −Xβ − b)− 1

2
b′Σ−1θ b− Pλ(β). (13)

To see the connection between (12) and (13), we estimate b̃ first and let y∗∗ = y∗ − b̃. Then

again we have a weighted linear regression with elastic net penalty problem. That is we want

to minimize
1

2

n∑
i=1

µi(y
∗∗
i − x′iβ)2 + Pλ(β),

which is equivalent to minimizing (12). That is, we can transform the GLMM with penalty

problem into an LMM with penalty problem.

The last step of the iterative procedure is to update θ. We update θ by using the restricted

maximum likelihood (REML) method. The calculation of the REML function involves the

elastic net penalty function Pλ(β), which has the singularity at the origin. Therefore, we
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consider an approximation of the penalty function Pλ(β). Based on Fan and Li (2001), the

penalty function Pλ(β) can be approximated by

Pλ(β) ≈ 1

2
β̃
′
λΣλ(β̃)βλ,

where β̃λ only contains nonzero elements β̃1, . . . , β̃m of β̃, and

Σλ(β̃) = Diag

{
Pλ, β̃1

(|β̃1|)

|β̃1|
, . . . ,

Pλ, β̃m
(|β̃m|)

|β̃m|

}
.

Here Pλ, β̃j
(|β̃j|) is the first partial derivative with respect to β̃j. Also, define Xλ to be the

matrix corresponding to the nonzero elements of β̃. Cui (2011) showed that the approximate

REML estimator for θ can be calculated by maximizing

−1

2
log |V | − 1

2
log |X ′λV −1Xλ + Σλ(β̃)| − 1

2

(
y∗ −Xλβ̃λ

)′
V −1

(
y∗ −Xλβ̃λ

)
. (14)

Note that the term Σλ(β̃) in log |X ′λV −1Xλ+Σλ(β̃)| is for adjustment of the penalty function

of β. Note that in alternative of maximizing the function in (14), expectation maximization

(EM) type estimators can also be used (e.g., Fahrmeir and Tutz 2001, and Groll and Tutz

2014). The estimation procedure is summarized in the following algorithm.

Algorithm 2: PQL with Adaptive Elastic Net Penalty (PQL.AEN)

For a collection of values of (λ1, λ2):

1. Initialize β(0), b(0), and θ(0).

2. For the kth iteration:

(i) Find {β, b} that maximize (5). Specifically, define the working response as

y∗(k) = x′iβ̃
(k−1)

+ b̃
(k−1)

+ (y − µ̃(k−1))/µ̃(k−1),

and update β̃ and b̃ iteratively until converge. The estimates obtained are denoted

as β̃
(k)
, b̃

(k)
.

(ii) Given the current estimates β̃
(k)
, b̃

(k)
, and θ̃

(k−1)
, solve

LQPQL(β|θ̃
(k−1)

, b̃
(k)

) =
1

2

n∑
i=1

µi(zi − x′iβ)2 + Pλ(β), (15)

where zi and µi are evaluated at β̃
(k)
, b̃

(k)
, and θ̃

(k−1)
. The estimate obtained is

denoted by β̃
(k)

Q .
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(iii) Obtain the estimates of covariance parameters θ̃
(k)

by maximizing (14) with β̃
(k)

Q

and b̃
(k)

.

3. Repeat Step 2 until convergence. The final version of estimates β̃Q, b̃, and θ̃ are denoted

by β̂, b̂, and θ̂, respectively.

Both Algorithms 1 and 2 are implemented in R (2016) via an R package “SpatialVS” (2018a)

and a data package “VALymeData” (2018b). The Virginia Lyme disease data and the R code

for simulation and analysis are also available via the online supplementary materials.

4.3 Specification of Adaptive Weights and Selection of Tuning Pa-

rameters

We need to specify the adaptive weights ŵj = |β̂cnst|−r for the AEN penalty in (4). Follow-

ing Zou and Zhang (2009), we specify β̂cnst to be the estimates under the elastic net penalty.

For those elements of β̂cnst that are set to zero by the elastic net penalty, we set them to be

1/n as in Zou and Zhang (2009). We use r = 1 in the simulation study and data analysis.

Regarding tuning parameters, popular methods of choosing the tuning parameters λ =

(λ1, λ2)
′ include cross-validation and criterion-based approaches. In this paper, we use the

Bayesian Information Criterion (BIC) to select the tuning parameter. The calculation of

exact log-likelihood for GLMM is complicated. Thus the Laplace approximated log-likelihood

is used. For notation simplicity, we also use β̂, b̂, and θ̂ to represent estimates obtained from

penalized approximate likelihood. In particular, the BIC is defined by −2l(β̂, θ̂) + log(n)df ,

where df is number of nonzero parameters in β̂ plus the number of parameters in θ̂. The

values of the tuning parameters λ = (λ1, λ2)
′ are chosen to minimize the BIC.

Here we provide a brief discussion on the degrees of freedom (df) of the model. We use the

number of nonzero parameters in β̂ plus the number of parameters in θ̂ as the effective df, fol-

lowing Schelldorfer et al. (2014) and Groll and Tutz (2014). The “real” complexity in GLMM

is an open issue of current research. In particular, not only the number of random effects

variance-covariance parameters but also their size has an influence on the model’s complexity.

For example, if a random effect has a large variance, the corresponding random intercept or

slope estimates are much larger and, the model tends to be more complex. Alternatively, the

“glmmLasso” in Groll (2016) allows to use the trace of the corresponding approximate hat

matrix as model complexity.
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4.4 Confidence Interval Procedures

In this section, we first review several existing methods for statistical inference of penalized

models and then suggest to use parametric bootstrap to obtain confidence intervals (CIs) for

parameters in the spatial model in this paper. Fan and Li (2001) derived a sandwich-type stan-

dard error formula for nonzero components of the LASSO estimator. Zou (2006) used a similar

approach to derive the standard error formula for the nonzero components of the adaptive

Lasso estimator. The sandwich-type estimator, however, can not provide uncertainty quantifi-

cation for those zero components of the estimator. Berk et al. (2013) proposed a framework

for valid post-selection inference by using simultaneous inference. Bachoc, Preinerstorfer, and

Steinberger (2016) proposed a general method to construct asymptotically uniformly valid CIs

post-model-selection using the principles in Berk et al. (2013). Lee et al. (2016) developed a

general approach for valid inference after model selection by characterizing the distribution of

the post selection-estimator conditional on the selection event. Lu et al. (2017) investigated

the CI problem from a different point of view, and they used stochastic variational inequal-

ity techniques in optimization to derive CIs for the LASSO estimator. Overall, the current

methodological developments are mostly made for LASSO type estimators.

Ning and Liu (2017) developed general theory for statistical inference for generic penalized

M-estimator using the idea of decorrelated score function. Their approach is quite general

and it can be applied to a variety of models such as linear models, generalized linear models,

and survival models. Their approach can not be directly applied to our setting because all

observations are correlated under the spatial model.

Chatterjee and Lahiri (2011) showed that bootstrap methods are valid for the adaptive

LASSO estimator due to its oracle property. For the AEN penalty, Zou and Zhang (2009)

showed that it also has oracle property under the setting of linear models. Although our

setting is different, based on current methodological developments, a practical approach for

constructing CIs for our model is the parametric bootstrap. One advantage of using the

parametric bootstrap is that it can easily keep the spatial correlation in the bootstrapped

samples. Thus, we use the parametric bootstrap to construct CIs in this paper. The detailed

algorithm for the parametric bootstrap is available in Supplementary Section 2.

5 Simulation Studies

In this section, we evaluate the performance of the APL and PQL methods proposed in

Sections 4.1 and 4.2, and compare with existing methods through simulations.
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5.1 Simulation Setting

In the simulation study, we consider the following model:

yi|bi ∼ Poisson [exp(x′iβ + bi)] ,

where xi is the vector of covariates and β collects the corresponding coefficients. Here, the

distribution of the random effect b is the same as in (2). That is the covariance has the form

(Σθ)ij = σ2 exp(dij/d), where d > 0 is the scale parameter. Each dataset consists of n = 225

equal spaced data points that are simulated on a [1, 10] × [1, 10] regular grid. The distance

between point i and j is denoted by dij. The xi are simulated from multivariate normal

distribution with mean 0 and variance 0.5.

We consider the following three settings of β and θ to represent different degrees of co-

variate effects and the number of active (i.e., nonzero-effect) covariates:

(i) β = (−0.5, 0.75, 1,−0.75,−1,010)
′,

(ii) β = (0.2, 0.3, 0.4, 0.5, 0.7, 0.8,−0.1,−0.6,−0.9,−1,010)
′,

(iii) β = (−0.5, 0.75, 1,−0.75,−1,020)
′.

Here 0n is a vector of zeros with length n, and let p represent the length of β. The value of

θ = (σ2, d)′ is specified to be (0.1, 5)′, (0.5, 5)′ or (0.1, 10)′.

For the model matrix, we consider the following five cases to represent various types of

collinearity among covariates. The main motivation is to explore different kind of correlation

structures to see if there are any effects on the variable selection.

1. All covariates are independent.

2. Corr(Xk, Xl) = ω|k−l|, k = 1, . . . , 5, l = 1, . . . , 5 with ω = 0.8; the other covariates are

independent. In this case, the first five covariates are correlated with exponential decay.

3. Corr(Xk, Xl) = ω|k−l|, k = 1, 2, 3, l = 1, 2, 3 with ω = 0.8 and Corr(X4, X5) = 0.8; the

other covariates are independent. In this case, we consider different degree of correlations

among covariates. We impose a strong correlation between the first two covariates. Another

three variables are correlated with exponential decay correlations, and the rest variables are

uncorrelated.

4. Corr(Xk, Xl) = ω|k−l|, k = 1, 2, 3, l = 1, 2, 3 with ω = 0.8 and Corr(X4, X5) = 0.5; the

other covariates are independent. This case is similar to Case 3 but with two moderately

correlated covariates.

5. Corr(Xk, Xl) = ω|k−l|, k = 1, . . . , 5, l = 1, . . . , 5 with ω = 0.8; Corr(Xk, Xl) = ω|k−l|, k =

p−4, . . . , p, l = p−4, . . . , p with ω = 0.8; the other covariates are independent. While Cases 2-

4 only consider nonzero-effect covariates to be correlated, Case 5 extends to the scenario that

zero-effect covariates can also be correlated.
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For each case, we simulate 300 datasets and the covariates are all centered and standard-

ized. For simplicity, we assume there is no intercept term in the model. For each simulated

dataset, we apply the methods described in Sections 4.1 (APL.AEN) and 4.2 (PQL.AEN) to

obtain estimates of parameters and do variable selection. We also fit the case of (Σθ)ij = σ2,

under which case the spatial correlation induced by the distance is ignored.

We consider the following performance measures for variable selection accuracy: (a) aver.size:

average model size; (b) corr.coef : average number of coefficients set to 0 correctly; (c) mis.coef :

average number of coefficients set to 0 incorrectly.

5.2 Results and Discussions

Table 2 reports the aver.size, corr.coef and mis.coef for the setting of β = (−0.5, 0.75, 1,−0.75,

− 1,010)
′, and θ = (0.1, 5)′. There is no big difference among the five cases of model matri-

ces, which suggests that the AEN penalty performs well for correlated covariates. The APL

or PQL methods yield similar results. Considering spatial correlation yields slightly better

results than ignoring spatial correlation.

Table 3 summarizes the results of considering β = (−0.5, 0.75, 1,−0.75,−1,010)
′, and

θ = (0.5, 5)′. The APL method provides reasonably good results, while the PQL method gives

slightly worse results because the PQL method tends to have larger active sets. Comparing

to the results in Table 2, for the PQL method, the average number of coefficients that is

set to 0 correctly is lower and the average model size is larger. If σ2 increases, which means

the random effects account for greater proportion of variation in the dependent variable, the

PQL method tends to include more irrelevant covariates, while the performance of the APL

method is less affected. Table 4 shows the results of increasing d (i.e., the spatial correlation

is stronger). The performance of the APL and PQL methods are both good.

Tables 5 and 6 show the results of varying the number of coefficients. The mis.coef in

Table 5 is larger compared to Table 2. In Table 5, the value of fixed-effect parameters is

changed. Some of the values are quite small (e.g., −0.1), and increases the difficulty of

picking the correct model. The weak covariate effects sometimes can not be captured by the

algorithms. From Table 6, we notice that the variable selection performance is not affected

when the number of noise variables increases.

In general, it is seen that the proposed variable selection methods perform reasonably well

for independent or correlated covariates, different settings of fixed-effect and random-effect

parameters. In terms of variable selection, the performance of the APL and the PQL are

comparable. However, the PQL method requires less computing time when compared to the
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Table 2: Model selection results based on simulated samples. The parameters are β =

(−0.5, 0.75, 1,−0.75,−1,010)
′, and θ = (0.1, 5)′.

Method Cases
Consider spatial correlation Ignore spatial correlation

aver.size corr.coef mis.coef aver.size corr.coef mis.coef
True value 5 10 0 5 10 0

APL.AEN

Case 1 5.04 9.96 0.00 5.21 9.79 0.00
Case 2 4.86 9.92 0.22 5.41 9.56 0.02
Case 3 5.01 9.97 0.02 5.30 9.70 0.00
Case 4 5.02 9.97 0.02 5.30 9.70 0.00
Case 5 4.74 9.96 0.30 5.37 9.60 0.02

PQL.AEN

Case 1 5.27 9.73 0.00 5.35 9.65 0.00
Case 2 5.36 9.55 0.09 5.65 9.32 0.03
Case 3 5.27 9.73 0.00 5.58 9.41 0.00
Case 4 5.24 9.76 0.00 5.48 9.52 0.00
Case 5 5.65 9.31 0.04 5.63 9.35 0.03

APL method. Supplementary Table 1 provides the computing time for one trial corresponding

to the scenarios in Table 6. While the computing time varies from case to case, we can see in

general that the PQL method is about five times faster than the APL method.

5.3 Comparisons with Existing Methods

In this section, we extend the simulation studies in Section 5.1 to make comparisons with

existing methods. Specifically, we compare the performance of the P-value-based method,

the backward selection method, and the glmmLasso method as implemented in Groll (2016).

Here, we briefly describe the three existing methods. For the P-value-based method, we use

the R function glmmPQL() in Venables and Ripley (2002) to fit the GLMM and obtain the

p-value for each covariate. A covariate will stay in the model if its corresponding p-value is

less than 0.05. For the backward selection method, we first use the glmmPQL() function to fit

a full model. Then we do a backward elimination until all remaining covariates are significant

(i.e., the p-value is less than 0.05). In each round, we eliminate the one with the highest

p-value. For the glmmLasso method, we use the glmmLasso() function in the “glmmLasso”

package (Groll 2016). We first fit a GLMM model to generate the initial values then use the

BIC to select the best penalty parameter.

For the three existing methods, we repeated all simulation settings as in Tables 2-6. Here

we discuss the comparison of the proposed and existing methods for the setting regarding to

Table 6. Table 7 shows the model selection results for the three existing methods. The rest of
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Table 3: Model selection results based on simulated samples. The parameters are β =

(−0.5, 0.75, 1,−0.75,−1,010)
′, and θ = (0.5, 5)′.

Method Cases
Consider spatial correlation Ignore spatial correlation

aver.size corr.coef mis.coef aver.size corr.coef mis.coef
True value 5 10 0 5 10 0

APL.AEN

Case 1 5.01 9.99 0.00 5.38 9.62 0.00
Case 2 4.41 9.96 0.63 5.40 9.42 0.18
Case 3 4.87 9.99 0.15 5.33 9.59 0.08
Case 4 4.89 9.96 0.14 5.30 9.61 0.09
Case 5 4.48 9.96 0.56 5.50 9.38 0.12

PQL.AEN

Case 1 5.53 9.47 0.00 6.34 8.66 0.00
Case 2 5.20 9.63 0.17 5.66 9.15 0.19
Case 3 5.88 9.11 0.01 6.85 8.13 0.02
Case 4 5.69 9.27 0.04 6.65 8.30 0.05
Case 5 5.26 9.59 0.15 5.65 9.23 0.12

Table 4: Model selection results based on simulated samples. The parameters are β =

(−0.5, 0.75, 1,−0.75,−1,010)
′, and θ = (0.1, 10)′.

Method Cases
Consider spatial correlation Ignore spatial correlation

aver.size corr.coef mis.coef aver.size corr.coef mis.coef
True value 5 10 0 5 10 0

APL.AEN

Case 1 5.02 9.98 0.00 5.25 9.75 0.00
Case 2 4.86 9.95 0.19 5.37 9.62 0.00
Case 3 5.03 9.96 0.02 5.26 9.74 0.00
Case 4 5.03 9.94 0.02 5.26 9.74 0.00
Case 5 4.74 9.97 0.29 5.29 9.67 0.03

PQL.AEN

Case 1 5.20 9.80 0.00 5.35 9.65 0.00
Case 2 5.43 9.50 0.06 5.61 9.38 0.01
Case 3 5.25 9.74 0.01 5.47 9.53 0.00
Case 4 5.26 9.74 0.00 5.45 9.55 0.00
Case 5 5.31 9.60 0.09 5.36 9.60 0.04
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Table 5: Model selection results based on simulated samples. The parameters are β =

(0.2, 0.3, 0.4, 0.5, 0.7, 0.8,−0.1,−0.6,−0.9,−1,010)
′, and θ = (0.1, 5)′.

Method Cases
Consider spatial correlation Ignore spatial correlation

aver.size corr.coef mis.coef aver.size corr.coef mis.coef
True value 10 10 0 10 10 0

APL.AEN

Case 1 9.08 9.97 0.95 10.10 9.43 0.48
Case 2 8.97 9.97 1.06 9.60 9.65 0.75
Case 3 8.92 9.93 1.15 9.64 9.57 0.79
Case 4 8.72 9.97 1.31 9.56 9.60 0.84
Case 5 8.84 9.95 1.20 9.27 9.68 1.05

PQL.AEN

Case 1 9.76 9.68 0.55 10.19 9.33 0.47
Case 2 9.79 9.64 0.58 10.08 9.27 0.65
Case 3 9.62 9.69 0.69 9.99 9.32 0.69
Case 4 9.55 9.65 0.80 10.00 9.26 0.74
Case 5 9.47 9.64 0.89 9.95 9.13 0.92

Table 6: Model selection results based on simulated samples. The parameters are β =

(−0.5, 0.75, 1,−0.75,−1,020)
′, and θ = (0.1, 5)′.

Method Cases
Consider spatial correlation Ignore spatial correlation

aver.size corr.coef mis.coef aver.size corr.coef mis.coef
True value 5 20 0 5 20 0

APL.AEN

Case 1 5.05 19.95 0.00 5.29 19.71 0.00
Case 2 4.82 19.85 0.32 5.60 19.35 0.06
Case 3 5.04 19.94 0.02 5.41 19.59 0.00
Case 4 5.04 19.93 0.03 5.59 19.41 0.00
Case 5 4.83 19.88 0.29 5.56 19.39 0.04

PQL.AEN

Case 1 5.24 19.76 0.00 5.54 19.46 0.00
Case 2 5.17 19.70 0.14 5.65 19.28 0.07
Case 3 5.40 19.59 0.00 5.86 19.13 0.01
Case 4 5.47 19.53 0.00 6.06 18.94 0.00
Case 5 5.28 19.62 0.10 5.51 19.43 0.06
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Table 7: Comparisons with existing methods for model selection results based on simulated

samples. The setting is the same as in Table 6. The metrics used are aver.size (AS), corr.coef

(CC), and mis.coef (MC).

Cases
P-value-based Backward glmmLasso

AS CC MC AS CC MC AS CC MC
True value 5 20 0 5 20 0 5 20 0

Case 1 6.64 18.36 0.00 6.68 18.32 0.00 6.66 17.52 0.82
Case 2 6.21 18.78 0.01 6.41 18.58 0.01 3.16 19.75 2.09
Case 3 6.75 18.25 0.00 6.69 18.31 0.00 7.71 16.53 0.75
Case 4 6.87 18.13 0.00 6.82 18.18 0.00 7.57 16.69 0.74
Case 5 6.18 18.81 0.00 6.35 18.65 0.00 3.15 19.63 2.22

the results are available in Supplementary Tables 2-5. Here, aver.size, corr.coef, and mis.coef

are abbreviated as “AS”, “CC”, and “MC”, respectively. From Tables 6 and 7, the proposed

APL and PQL work well with corr.coef very close to 20 (the target is 20) and the mis.coef is

very close to zero. The P-value-based and backward methods work somewhat worse because

the corr.coef is around 18.5. For the glmmLasso method, the mis.coef tends to be larger. We

also observe a similar pattern for additional results in Supplementary Tables 2-5. Overall, the

proposed methods have advantages in variable selection under the setting of spatial variable

selection with correlated covariates.

5.4 Comparison with Covariates Simulated from Real Data

In this section, we consider a simulation scenario in which the covariates are sampled from

the Virginia Lyme disease data. The details of the data analysis is given in Section 6. We use

the parameter estimates of β and θ from Ecoregion 0 as the true values of the parameters in

the simulation. For each simulated trial, we sample n = 225 rows from the model matrix X

to obtain the covariate information. We then use the fitted model to simulate the number of

counts. With the simulated data, we apply the proposed and existing methods to do variable

selection. Similar to other settings, we repeat for 300 trials.

Table 8 shows the comparisons of the proposed and existing methods for model selection

results using covariates sampled from the real data. From the results, we can see that both

the APL and PQL methods have the top two largest corr.coef, while the backward selection

and PQL methods are with the first and second smallest mis.coef. We also notice that the

mis.coef is large for all methods. This is because there are three covariates with relatively

small effect size, which is a challenging case for variable selection and thus the mis.coef tends
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Table 8: Comparisons of the proposed and existing methods for model selection re-

sults using covariates sampled from the Lyme disease data. The parameters are β =

(0.503, 0.185,−0.161, 0.064,−0.048, 0.009,08)
′, and θ = (0.417, 39.660)′.

Methods aver.size corr.coef mis.coef
True value 6 8 0
APL.AEN 1.48 7.59 4.93
PQL.AEN 2.78 7.05 4.17

P-value-based 1.72 6.46 4.83
Backward 3.39 5.73 3.87

glmmLasso 1.04 6.41 5.54

to be large. Overall, the PQL method has the best performance for this simulation scenario.

6 Virginia Lyme Disease Data Analysis

In this section, we present the data analysis for the Virginia Lyme disease data. To fit the

GLMM to the Lyme disease data, we consider an exponential correlation function. We apply

the PQL.AEN algorithm as described in Section 4 to the Lyme disease data because of its

computational efficiency.

We fit separate models to the two subregions in Virginia because the two subregions have

different environmental and demographic characteristics, which could lead to different sets

of active variables for the model and different spatial correlation patterns. The Subregion 0

(n = 583), which consists of Northern Piedmont, Blue Ridge, Ridge and Valley and Central

Appalachian areas, reported larger number of Lyme disease cases than the Subregion 1 (n =

1275). Table 9 lists the selected covariates, estimates of corresponding regression coefficients,

and the estimates of parameters in the covariance structure. The results show that the factors

that affect the Lyme disease case counts are different for the two subregions. Here, we interpret

the selected variables for each subregion.

For Subregion 0 (i.e., the northern/western sub-region), the selected variables are percent-

age of forest (Forest NLCD06), percentage of herbaceous (Herbaceous NLCD06), developed-

forest edge (TECI DF06), forest-herbaceous edge (TECI FH06), population density (Pop den),

and mean income (Mean income). In particular,

• the percentage of herbaceous cover has positive relationships with Lyme disease case

counts, which is consistent with the findings in Jackson, Hilborn, and Thomas (2006). Herba-

ceous (especially scrub) areas can provide favorable living environment for deer and mice.
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• The forest-herbaceous edge is positively correlated with the disease counts. The mixture

of forest and herbaceous areas is appealing for some host animals. For example, deer always

stays within a short distance of forest cover (forest edge), but forest cover provides too much

shade to grow many of the plants that deer like to feed on whereas scrub offers more sunlight

for vegetative growth while still providing some cover. Therefore, the interspersion of forest

and herbaceous land can have a positive relationship with Lyme disease incidence.

• Although the percentage of forest cover is negatively correlated with the case counts,

we notice that the correlation between Forest NLCD06 and TECI FH06 is 0.89. Because the

forest-herbaceous edge has a strong positive effect, the combined effects of the forest cover

and forest-herbaceous edge can still be positive. The percentage of forest cover was also found

out to be an important variable in literature (Jackson, Hilborn, and Thomas 2006).

• The developed-forest edge is positively correlated with the case counts. Due to devel-

opment, forest communities were fragmented by suburban, creating developed-forest edge.

The developed-forest edge results in a habitat environment that is suitable for deer, small

rodents, and the white-footed mouse (e.g., Page 150 of Mayer and Pizer 2008). Those animals

contribute to the hosting and transmission of the Lyme disease.

• The population density is negatively correlated with the case counts. This is because

large population density often means that the area is an urban and developed regions. In

those regions, the environments tend to provide fewer habitats for ticks and disease reservoirs.

There is also less human-environment interaction in highly populated regions.

• The mean income was also found out to be an active variable, which is consistent with

the Lyme disease literature. Both Jackson, Hilborn, and Thomas (2006) and Seukep et al.

(2015) found that income is correlated with Lyme disease incidence. As pointed out by Seukep

et al. (2015), counties in northern Virginia (outside Washington DC) are wealthy, and Lyme

disease incidence rates have been high in that region, which likely contributes to the correlation

between income and incidence rates.

For Subregion 1 (i.e., the southern/eastern sub-region), the selected variables are percent-

age of developed land (Dvlpd NLCD06), forested fragments (Tract Frag06), developed-forest

edge (CWED DF06), herbaceous-developed edge (TECI HD06), median age (Median age),

and mean income (Mean income). In addition to those variables already interpreted in Ecore-

gion 0,

• the percent developed has a negative correlation with the number of Lyme disease cases.

For areas with high percentage of development such as in inner cities, the population is not

exposed to much Lyme because that environment does not support deer or white-footed mouse

habitat. Areas with lower percentage than inner cities, such as many suburban counties, tend
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to have a lot of deer in and around residential areas. In Subregion 1, Lyme disease incidence

appears to be more prevalent in counties that have some suburban sprawl (e.g., the counties

around Richmond City or Lynchburg City, or the counties between Richmond and the cities

of the Hampton Roads along Interstate Highway-64).

• The forested fragments is negatively correlated with the case counts. Because the cor-

relation between Tract Frag06 and CWED DF06 is 0.60, and the developed-forest edge has a

strong positive effect, the combined effects of the forested fragments and developed-forest edge

can still be positive. The forested fragments was also found out to be an important variable

in literature (Jackson, Hilborn, and Thomas 2006).

• The presence of interspersion of herbaceous and developed areas has a negative correla-

tion with Lyme disease incidence. The present of interspersion of herbaceous and developed

limit the movement of white-footed mice into the developed area. White footed mice are

the primary contributors to the dispersion of infected larval-stage ticks, which then develop

into nymph stage ticks that bite people and transmit Lyme. However, white-footed mice are

primarily a forest species and while they may spend time in scrub habitats near a forest tract

they might not venture far from the forest edge.

• Median age is positively correlated with the case counts. Census tracts with older

populations tend to have higher incidence rates because Lyme disease tends to appear more

in adults older than 40 (e.g., Kilpatrick and LaBonte 2007).

Table 9 also shows the corresponding approximate 95% bootstrap CIs for parameters

based on B = 1000 bootstrap samples. For Ecoregion 0, the variable with CI excludes zero

is TECI FH06, and for Ecoregion 1, the variables with CIs exclude zero are CWED DF06,

Median age, and Mean income. The results indicate that environmental variables that are

related to edges (i.e., developed-forest edge and forest-herbaceous edge) and the income vari-

able are particularly important for the disease emergency. We also note that, for Ecoregion 0,

the CIs for the regression coefficients of Dvlpd NLCD06 and Forest NLCD06 are wide, due

to the strong correlation between the two variables (i.e., the correlation is −0.85).

The results in this paper are largely consistent with results in Allan, Keesing, and Ostfeld

(2003), Jackson, Hilborn, and Thomas (2006), and Seukep et al. (2015) but with new findings.

We found that the developed-forest edge and forest-herbaceous edge are particularly important

for the Lyme disease counts. In our study, the forest fragment perimeters (FragPerim06)

is not included in the final models for either ecoregions. Seukep et al. (2015) found that

the percentage of forest was not selected, while our findings support the results in Jackson,

Hilborn, and Thomas (2006) and suggest that it is an important variable.

Seukep et al. (2015) fitted a spatial model using Lyme disease data without considering
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Table 9: The list of selected covariates, estimates of corresponding regression coefficients, the

estimates of parameters in the covariance structure, and their corresponding approximate 95%

bootstrap CIs. Note that separate models were fitted for the two subregions.

Parameters

Ecoregion 0 Ecoregion 1

estimate
95% CI

estimate
95% CI

lower upper lower upper
Intercept 1.794 1.012 2.543 1.393 1.297 1.480

Dvlpd NLCD06 0 0 5.095 −0.115 −0.469 0
Forest NLCD06 −0.161 −3.999 0 0 0 0.278

Herbaceous NLCD06 0.009 −0.430 1.643 0 0 0.174
Tract Frag06 0 0 1.362 −0.057 −0.416 0
FragPerim06 0 0 1.600 0 0 0.416
CWED DF06 0 0 0.377 0.173 0.096 0.507
TECI DF06 0.064 0 0.520 0 0 0.292

CWED FH06 0 0 0.481 0 0 0.181
TECI FH06 0.503 0.297 1.047 0 0 0.395

CWED HD06 0 0 0.383 0 0 0.380
TECI HD06 0 0 0.419 −0.231 −0.421 0

Pop den −0.048 −0.914 0 0 0 0.124
Median age 0 0 0.449 0.136 0.028 0.248

Mean income 0.185 0 0.372 0.397 0.347 0.487
σ2 0.417 0.248 0.889 0.457 0.392 0.524

d (in km) 39.660 0.026 64.402 1.314 0.043 6.397

the ecoregion variable. We show that two ecoregions have different sets of active variables.

In addition, the estimates of parameters in the covariance structure are different in the two

ecoregions. Specifically, the estimated scale parameter d in the correlation function is quite

small in Subregion 1, which implies that the spatial correlation is weak in that subregion.

For subregion 0, the estimated d is 39.660. That is, when the distance between two census

tracts is 39.66 kilometer (km), the correlation is estimated to be 0.37. The estimated σ̂2 in

two subregions are close.

7 Conclusions and Areas for Future Research

In this paper, we consider the problem of variable selection in the spatial Poisson regression.

By using the AEN penalty, we perform variable selection and parameter estimation simulta-

neously. We consider both APL and PQL methods for parameter estimations. Simulation

studies in Section 5 show that both methods perform reasonably well and their performance
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are comparable to each other. The comparisons with existing methods show that the devel-

oped methods have advantages in the setting of spatial variable selection. We then apply our

method to select important variables associated with the Lyme disease emergence in Virginia.

For the Lyme disease research community, we develop an automatic variable selection

procedure while accounting for spatial correlation. We used statewide Lyme disease data

and covariates at census tract level to identify important environmental and human factors,

which is new to the literature. Interestingly, we found different ecoregions have different

sets of factors that are important to the disease spread, which can be important for disease

monitoring.

In our analysis, we use datasets from different resources with different collection frequen-

cies. For example, the US census data are updated every ten years, and the land cover data

are updated every five years. Because our explanatory variables are aggregated at census

tract level, we expect that the temporal changes over a five-year span to be a second order.

For another perspective, the life cycle of ticks that causes Lyme disease is two years. Using a

study period of five years allows us to study the overall effects of environmental and economic

variables on the Lyme disease occurrence. However, we do want to point out that the temporal

misalignment in Lyme disease counts and covariates could be one limitation of this study.

In disease mapping applications, it is not uncommon to have “nugget” effects (i.e., an

unstructured Gaussian random effect). For our Lyme disease application, we did some model

checking to see if it is necessary to add an unstructured Gaussian random effect. We computed

the estimated number of counts for each census tract and plot it versus the observed number

of counts. The results are shown in Supplementary Figure 2. From the plot, we can see

most points align well with the 45-degree line. The overall R2 is 96.1%, indicating that the

model can explain most of the variation in the data. Thus it is not necessary to add an

unstructured term in our model. However, spatial variable selection with nugget effects could

be an interesting topic for future research.

In this paper, we use Laplace approximation to the integrals in likelihood functions. As for

future research, Bayesian methods can also be used as alternative to approximate integrals.

We may use Gibbs sampler, Metropolis-Hastings algorithm, Markov chain Monte Carlo, im-

portance sampling, to name a few. However, this is usually time-consuming. Also, we consider

a Poisson regression model with random effects and a dispersion parameter φ equal to one.

If over-dispersion appears in the data, we can add the dispersion parameter into model for-

mulation and obtain estimates of {β,θ, φ} simultaneously. In some cases, one may encounter

a dataset with large n. Kaufman, Schervish, and Nychka (2008) developed the covariance

tapering method for large irregularly spaced data or missing data on lattice. By taking the
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inner product of a covariance matrix with a positive definite and compactly supported corre-

lation matrix, one can obtain the “tapered” covariance matrix with sparsity. Future research

can be devoted to incorporating the covariance tapering method for large n case to achieve

computational efficiency. In this paper, we use parametric bootstrap as a practical way to

construct CIs. It would be an interesting topic for future research to develop a theoretical

framework for CIs under the spatial variable selection setting.
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A Quadratic Approximation to PQL

Given current estimates of θ and b, which are denoted by θ̃ and b̃, respectively, (9) reduces

to

la(β|θ̃, b̃) =
n∑
i=1

(−µi + yix
′
iβ) , (16)

up to a constant that is independent of β. We apply a quadratic approximation to la(β|θ̃, b̃)
around the current estimate β̃. That is

la(β|θ̃, b̃) ≈ la(β̃|θ̃, b̃) +
∂la(β|θ̃, b̃)

∂β′

∣∣∣∣
β=β̃

(β − β̃) +
1

2
(β − β̃)′

∂2la(β|θ̃, b̃)
∂β∂β′

∣∣∣∣
β=β̃

(β − β̃),

where

∂la(β|θ̃, b̃)
∂β

∣∣∣∣
β=β̃

=
n∑
i=1

(−µixi + yixi) , and
∂2la(β|θ̃, b̃)
∂β∂β′

∣∣∣∣
β=β̃

=
n∑
i=1

−µixix′i
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are the first and second derivatives of la(β|θ̃, b̃) with respect to β, respectively. Therefore,

la(β|θ̃, b̃) ≈
∂la(β|θ̃, b̃)

∂β′

∣∣∣∣
β=β̃

β +
1

2
(β − β̃)′

∂2la(β|θ̃, b̃)
∂β∂β′

∣∣∣∣
β=β̃

(β − β̃) + c

=
n∑
i=1

(yi − µi)x′iβ +
1

2
(β − β̃)′

[
n∑
i=1

(−µixix′i)

]
(β − β̃) + c

= −1

2

n∑
i=1

µi

[
2

(
1− yi

µi

)
x′iβ + (β − β̃)′xix

′
i(β − β̃)

]
+ c

= −1

2

n∑
i=1

µi

(
x′iβ̃ − 1 +

yi
µi
− x′iβ

)2

+ c

= −1

2

n∑
i=1

µi(zi − x′iβ)2 + c,

where zi = x′iβ̃ − 1 + yi/µi (i.e., the working response), c is a constant that does not depend

on β.

Supplementary Materials

The following supplementary materials are available online.

Additional details Additional computing and simulation results (pdf file).

Data and code The Virginia Lyme disease data and R code for simulation and analysis (zip

file).

R packages The Virginia Lyme disease data and R code for algorithm implementation are

also available in R packages “VALymeData” and “SpatialVS”, respectively, which can

be downloaded from the Comprehensive R Archive Network (CRAN), https://cran.r-

project.org/. (R package).
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