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Abstract: In recent years accelerated destructive degradation testing (ADDT) has been applied to 

obtaining the reliability information of an asset (component) at use conditions when the component 

is highly reliable. In ADDT, degradation data are measured under stress levels more severe than 

usual so that more component failures can be observed in a short period. In the literature, most 

application-specific ADDT models assume a parametric degradation process under different 

accelerating conditions. Models without strong parametric assumptions are desirable to describe 

the complex ADDT processes. This research proposes a general ADDT model that consists of a 

nonparametric part to describe the degradation path and a parametric part to describe the 

accelerating-variable effect. The proposed model not only provides more model flexibility with 

few assumptions, but also retains the physical mechanisms of degradation. Due to the complexity 

of parameter estimation, an efficient method based on self-adaptive differential evolution is 

developed to estimate model parameters. A simulation study is implemented to verify the 

developed methods. Two real-world case studies are conducted and the results show the superior 

performance of the developed model compared with the existing methods. 

Index Terms—Accelerated model; ADDT; Degradation model; Long-term property 

evaluation; B-spline; Akaike Information Criterion 
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ACRONYMS 

ADDT      Accelerated Destructive Degradation Testing 

SD            Standard Deviation 

MSE         Mean Squared Error 

AIC          Akaike Information Criterion 

REML      Restricted Maximum Likelihood 

MLE Maximum Likelihood Estimation 

 

NOTATION   

i
x             Transformed temperature level 

( )
i

y t        Degradation measurement under i
x at time t 

i
AF          Accelerating value at level i  

( ,  )α β    Unknown parameters associated with the accelerating variable          

maxx         The transformed value of the maximum of the accelerating variable  

θ             Parameters of the proposed model 

( )qlG z     The thl  B-spline basis function of degree q evaluated at z  
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r
d           The th

r  interior knot 

M            Number of accelerating conditions 

N             Number of measurement time points for each sample under an accelerating   

                condition 

ε             The unit-to-unit variability and the measurement error 

loglik       The log-likelihood value under a given parameter combination 

AIC          The AIC value under a given parameter combination and knot selection 

 

I. INTRODUCTION 

In modern industries, high-quality products are expected to perform for years to decades. 

Degradation testing is a method developed in the reliability literature to obtain product reliability 

by using the degradation of performance characteristics, such as the light intensity [1], crack length 

[2], and material elongation [3]. With the development of highly-quality products, degradation 

testing under a normal use condition is not efficient to meet industrial requirements due to the 

limitation of testing times. In practice, accelerating variables such as temperature, voltage, or 

pressure  are incorporated into the degradation testing so that the failures can be reached in less 

time. In some cases, the physical property being tested may only not survive the measurement 

procedure; that is, the measurement can only be done through destructive means. This kind of 

testing is referred to as the Accelerated Destructive Degradation Testing (ADDT).  

In the reliability literature for degradation data analysis, Whitmore and Schenkelberg [4], Lu, 

et al. [5], Nelson [6], Crk [7] conducted early research in degradation modeling. Chen, et al. [8] 
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summarized the methods for degradation data including non-destructive and destructive 

degradation testing. Nelson [9] used accelerated life testing as a tool to estimate performance 

degradation. Lu and Meeker [10] used the repeated-measures degradation testing (RMDT) data to 

estimate the failure time. Meeker, et al. [11] developed a nonlinear mixed-effects model for RMDT 

data. Gorjian, et al. [12] and Meeker, et al. [13] made an introductory level description of some 

degradation models. In related literature, Lu and Meeker [10] used RMDT data to estimate the 

failure time and Meeker, et al. [11] proposed a nonlinear mixed-effects model for analyzing RMDT 

data. Gorjian, et al. [12] and Meeker, et al. [13] further developed statistical degradation models 

for reliability analysis. Xu, et al. [14] proposed a nonlinear general path model for analyzing 

degradation data with dynamic covariates. 

In the ADDT literature, several parametric models have been developed to analyze ADDT data. 

Shi, et al. [15] designed an ADDT plan to study combinations of different accelerating variables. 

Tsai, et al. [16] proposed an optimal design approach for ADDT. , Lim and Yum [17], and Jeng, 

et al. [18] developed methods for ADDT planning and analysis. In recent years, Xiao and Ye [19] 

analyzed destructive degradation tests for highly reliable products with random initial degradation 

values. Hong, et al. [20] proposed models in which the acceleration can be represented by 

stochastic processes under certain conditions. Tsai, et al. [16] developed parametric models to 

analyze ADDT data collected from different materials with multiple accelerating levels.  

Although the existing parametric ADDT models have been widely used in practice, the 

common disadvantages of parametric models are their being application specific and the 

significantly biased conclusions if the model assumption is not satisfied. Instead of a case-by-case 

parametric modeling approach, Xie, et al. [21] proposed a semiparametric model to analyze ADDT 

data. In this research, we propose a general ADDT model with a nonparametric part to describe 
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the degradation path and a parametric part to describe the accelerating-variable effect. The 

parametric part takes both the scale and shape parameters of the response distribution into 

consideration. The major contribution of this paper is two-fold. First, the proposed model is more 

general and robust than the existing semiparametric model in the literature. Through a simulation 

study and real-world case studies, we later show that the performance of the proposed general 

ADDT model is much more improved over the existing one. Second, the traditional optimization 

method cannot be directly applied to estimating the model parameters due to the complexity of the 

objective function. To overcome this challenge, we develop an efficient model parameter 

estimation method based on self-adaptive differential evolution.  

      The remainder of this paper is organized as follows. In Section II, we present the notation 

and propose the general ADDT model. In Section III, we develop the method for model parameter 

estimation. In Section IV, we conduct a simulation study to investigate the performance of the 

developed methods. In Section V, we apply the proposed model to analyzing ADDT data of two 

real-world examples and compare the performance to existing models. In Section VI, a conclusion 

and future work are provided.  

 

 

II. DATA AND MODEL 

For a given ADDT, denote the degradation measurement at time t under acceleration factor 

condition i
x  by i

y , which is related to i
x  by  

                                                                ( ) ( ; ) ,
i i i

t xy t H ε+=                                                          (1) 

where i
ε  represent both the unit-to-unit variability and the measurement error, which is assumed 

to follow the normal distribution, i.e., 2~ (0, )i Nε σ . Here �� is the variance of i
ε . When there 
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are multiple test units in the ADDT experiment under the same condition i
x  at the same time t, 

their corresponding error correlation is ρ . As an example of an ADDT model, consider a 

temperature-accelerated process, which is occurance of this type of test. A popular model to 

describe the relationship between the degradation and temperature is the Arrhenius model. In this 

model, the temperature is transformed into the following form 

                                             
11605

,
273

(
. 6

)
1

i i

i

x
T

h
emp

AF
−

=
+

=                                                          (2)        

where i
Temp is the temperature in degrees Celsius, and the value 11,605 is the reciprocal of the 

Boltzmann’s constant.  The value 273.16 is the difference between the  Kelvin temperature scale 

and the Celsius temperature scale. Without loss of generality, i
y  is assumed to be monotonic 

decreasing over time.  

In this research, we propose a general model form to fit ADDT data. Specifically, ( ; )
i

H t x  

in equation (1) is expressed as  

                                                   ,( ; ) [ ( ; )],  i iH t x f t xα βη=                (3) 

where ( )f ⋅  is a nonparametric construction and 
, ( ; )it xα βη  is a scale-shape-acceleration model 

with parameters ( , )α β . An example of this model for the case of temperature acceleration would 

be  

                                             
maxexp[ ( )]

,

max

( ; ) ,
exp[ ( )]

ix x

i

i

t
t x

x x

α

α βη
β

−

=
−

                                                         (4) 

where i
x  is the accelerating variable defined in equation (2), and 

max 11605 /[max ( ) 273.16]
i i

x Temp= − + . 
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We choose the monotonic B-spline method to describe the nonparametric portion of the 

proposed model. Let 1 r
d d≤ ≤L  be the interior knots and let 0d  and 1r

d +  be the two boundary 

points. The ordered knots are 
0 1 1 1q r r r q

d d d d d d− + + += = ≤ ≤ ≤ ≤ = =L L L . Here the lower and 

upper boundary points are repeated q times, where q is the polynomial degree. In the following, 

we define the ordered knot sequence as 
1 2 2
, ,

r q
d d + +L  for simplicity. The B-spline basis functions 

are defined recursively. For degree 0, the first spline function is 

                                               0 1( ) ( ),
l l l

G z d z d += ≤ ≤1                                                                        (5)          

and for degree q , the function is                             

                       
1

, 1, 1, 1

1 1

( ) ( ) ( ).
l ql

q l q l q l

l q l l q l

d zz d
G z G z G z

d d d d

+ +

− − +

+ + + +

−−
= +

− −
                                             (6) 

Here 1, , ,l p= K  and ( )⋅1  is an indicator function.  

With the combination of the nonparametric and parametric portions, the model in (1) is 

represented in its entirety as 

                                 , ,

1

[ ( ; )( ) ( ; ) ] .
p

l q li i i

l

i
y t t x xH G tα βε γ η ε

=

+= = +∑                                                           (7) 

Here, lγ  is the coefficients of the B-spline basis function 
, ,
[ ( ; )]

l iq
G t xα βη . The proposed model 

in (7) falls within the class of shape-scale-acceleration models. For every stress level i , ( ; )iH t x  

is a decreasing function on time t , with the effects of the time-scale and the time shape controlled 

through shape acceleration factor (SHAF) maxexp[ ( )]ix xα −  and the scale acceleration factor 

(SCAF) maxexp[ ( )]ix xβ − , respectively, as shown in equation (4). When the SHAF=1, the time 
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acceleration rate ��/�� is determined by the SCAF and so does not depend on a specific time 

point. When the SHAF≠ 1, the time acceleration rate also varies with time. Thus, the introduction 

of the SHAF allows for more flexibility in modeling the time acceleration rate.   

When the acceleration level is at its highest, i.e., max max 0x x− = , ( ; , )i it x tη α β = , 

indicating that the degradation path no longer relies on α  and β . Under this situation, the 

corresponding baseline degradation path for the scale-shape-acceleration model is  

                                                             max ,

1

( ; ) ( ).
p

l q l

l

H t x G tγ
=

=∑                                                           (8) 

The first derivative of ( ; )iH t x  with respect to 
,

( ; )
i

t xα βη  can be calculated as follows. 

                          
1

1, ,

2, 1

( ; )
( 1) ( ( ; )).

( ; )

p

i l l
q l i

li l q l

dH t x
q G t x

d t x d d
α β

α β

γ γ
η

η
−

−
= + +

−
= −

−
∑                                            (9) 

According to the assumption of monotone decreasing behavior in the degradation path, Equation 

(9) should always be negative. As the B-spline basis functions are nonnegative, this indicates that 

for 2 l p≤ ≤ , the condition 1l lγ γ −≤  is sufficient for a monotone decreasing degradation path  

when the degree of the basis function 1,2q = . A low degree of spline ( 4q ≤ ) and a small number 

of interior knots (1 5γ≤ ≤ ) are usually sufficient to provide a good fit to the data. It was proved 

in the literature [22] that the optimal number of knots is in the order of 
1/5

n , where n  is the number 

of observation. Thus, a small number of knots (1 5γ≤ ≤ ) is sufficient for the modest size of 

datasets, such as the datasets in the case study of this research. 
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III. MODEL PARAMETER ESTIMATION AND KNOT SELECTION  

To estimate the unknown parameters in the proposed model (7), we develop a likelihood-based 

optimization method. As shown in Figure 1, the developed method is an iterative process that 

consists of two parts: (1) knot selection of B-splines, and (2) parameter estimation. The parameter 

estimation is based on the initial selected knot setting from part 1, and the updated knot selection 

is based on the profile likelihood value calculated from part 2.  

       To find the best knot setting, we use Akaike Information Criterion (AIC), which considers 

both the profile log-likelihood values and the number of model parameters. For a given knot setting, 

the model parameters can be estimated by maximizing profile log-likelihood values. The objective 

function of the corresponding optimization problem is nonlinear and complex. As a result, the 

traditional gradient-based optimization methods cannot be directly applied. To overcome this 

difficulty, we develop an efficient parameter estimation method by applying the framework of self-

adaptive differential evolution (SaDE) (). The SaDE method is a population-based stochastic 

search strategy which aims to solve global optimization problems like other evolution algorithms. 

In the classical differential evolution (DE) method (), the control parameters and learning strategies 

highly dependents on the problems under consideration so that significant time needs to be spent 

to try through various strategies and adjust the corresponding parameters. The key improvement 

of the SaDE over the classical DE method is that the learning strategy and parameter settings are 

gradually self-adapted during the evaluation process based on the learning experience. Besides 

that, The authors of [23] also give the numerical analysis of the convergence of the SaDE algorithm 

which shows that the convergence speed of SaDE performs much better than the original DE 

algorithm especially in the high-dimension situation. 
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After obtaining the optimum profile log-likelihood by using the developed optimization 

method, the AIC value can be calculated and used as the performance index to select optimal knot 

setting of the B-splines. Thus, the two parts run iteratively until the best knot setting and the 

optimal model parameters are obtained. The details of the parameter estimation and knot selection 

stages are discussed in Sections 3.1 and 3.2, respectively.  

 

Figure 1. the framework of the knot selection and parameter estimation 

  

3.1 Parameter estimation    

For simplicity, we express the proposed model using the matrix form. Suppose there are M 

samples under testing, and for each sample the degradation path consists of N measurement time 

points. The response vector 11 1 1( , , , , , , )
N M MN

y y y y=y L L L  contains all the degradation 

measurements.  The degradation model can then be written as 

                                                     , ,α βy = X γ + ε                                                                             (10) 

where 

Knot selection by minimizing 

the AIC value of parameter 

estimation 

Parameter estimation using the 

likelihood based SaDE algorithm 

based on the selected knots  

Iteratively updating 
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,1 1 1 1 , 1 1 1

,1 1 2 2 , 1 2 2

,

,1 ,

( ( ; , , )) ( ( ; , , ))

( ( ; , , )) ( ( ; , , ))
.

( ( ; , , )) ( ( ; , , ))

q q p

q q p

q N k M q p N k M

G t x G t x

G t x G t x

G t x G t x

α β

η α β η α β

η α β η α β

η α β η α β

 
 
 =
 
 
  

X

L

L

M O M

L

         

In equation (10), 1( , , )pγ γ ′=γ L  are the coefficients, 11 1 1( , , , , , , )
n M MN

ε ε ε ε ′=ε L L L , ~ (0, )Nε Σ .

11 1 1( , , , , , , )
N M MN

Diag=Σ Σ Σ Σ ΣL L L  and 2[(1 ) ]mn N Nσ ρ ρ= − +Σ I J , where N
I is an N N×  

identity matrix and N
J is an N N×  matrix of 's1 . We also rewrite 2σ=Σ R , where 

11 1 1( , , , , , , )
N M MN

Diag=R R R R RL L L  and (1 )
mn N N

ρ ρ= − +R I J .  

To calculate the objective function of the SaDE algorithm which is the profile log-likelihood 

function of ( , )α β , the corresponding estimation of 
' '

( , , )σ ργ  for a given pair of ( , )α β  needs to 

be obtained. We develop an iterative procedure to calculate the estimate of 
' '

( , , )σ ργ . Specifically, 

given the estimates
( 1) ( 1)( , )m mσ ρ− − ′  at the th

m  iteration, the value of ( )ˆ m

iγ  is calculated by 

minimizing 

                              
' ( 1) 1

, ,
ˆ( ) ( ) ( ) ( ),m

Q α β α β
− −=γ y- X γ Σ y- X γ                                                                                                                     

                                  subject to:  1, 2 ,l l l pγ γ −≤ ≤ ≤                                                                                    (11) 

which is a quadratic objective function with linear constraints and can be solved by traditional 

optimization methods (e.g.,  the dual method in Goldfarb and Idnani [24] or the Hinge algorithm 

in Meyer [25]).  

After obtaining 
( )ˆ m
γ , the estimates of 

( ) ( )
( , )

m mσ ρ ′   can be calculated by using the Restricted 

Maximum Likelihood (REML) if 
( )ˆ m
γ  does not take values on the boundary of the linear 
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constraints. Otherwise, we use the approximate REML to replace the estimates of σ  and ρ . To 

derive the approximate REML, let ( )ˆ m

uγ  represent all of the unique values in 
( )ˆ m
γ  and let u

p  be 

the length of ( )ˆ m

uγ . For each unique value ( )

,
ˆ m

i u
γ , let ,i ux αβ  be the sum of the corresponding columns 

in ,α βX . Then we have ( ) ( )

,
垐

m m

u uα β αβ=X γ X γ , where 1, ,( , , )
uu u p ux xαβ αβ αβ=X L . The approximate 

REML log-likelihood is calculated as 

( ) ' 1 ( ) ' 1 ( )

; , ; , , ,

1
垐 ?( , | ) {log log ( ) ( )}.

2

m m m

REML u u
L α β α β α β α βσ ρ − −= − + + − −γ Σ X Σ X y X γ Σ y X γ    (12) 

The parameter estimates of 
( ) ( )

( , )
m mσ ρ ′  are those values that maximize (12), and ( )mσ  has the 

following closed-form expression 

                                

( ) ' ( 1) 1 ( ) 1
, ,( ) 2

ˆ
垐( ) ( ) ( )

ˆ [ ] .

m M m

m

uN p

α β α βσ
− −− −

=
−

y X γ R y X γ
                                      (13) 

Then 
( )mρ  can be obtained from a one-dimensional optimization problem. That is,  

( ) ( ) 2 ( ) 2 ' 1 ( ) 2 ( ) ' 1 ( )

; , ; , , ,
垐 ?

垐 ?argmax{ log ( ) log ( ) ( ) ( ) ( )}.m m m m m m

u uα β α β α β α β
ρ

ρ σ σ σ− − − −= − − − − −R X R X y X γ R y X γ    (14) 

Upon convergence, the estimates of  
' '垐 ˆ( , , )σ ργ  , denoted by ' '

垐 ˆ( , , )αβ αβ αβσ ργ , are obtained for given 

parameters ( , )α β . The initial values 
(0) (0)( , )σ ρ ′  can be obtained by fitting an unconstrained 

model. 

 The goal of the  SaDE method is to maximize the profile log-likelihood of ( , )α β , which 

is calculated as 
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' 1

, , , , ,

1/2
/2

,

ˆ垐( ) ( )1
垐ˆ( , , , , ) log{ exp[ ]}.

2ˆ(2 )MN

l
α β α β α β α β α β

α β

α β σ ρ
π

−− −
= −

y X γ Σ y X γ
γ

Σ
      (15) 

Here, the objective function (15) has a nonlinear structure and the corresponding surface profile 

over the parameters ( , )α β  is complex. As a result, the classical gradient-based optimization 

methods cannot be directly applied. To overcome this challenge, we develop the parameter 

estimation method based on the SaDE framework.  

In the SaDE framework, there are four steps: initialization, mutation, crossover and selection. 

Here, the mutation strategy is given as  

                          
1 2 3, , , , , ,( , ) ( , ) [( , ) ( , ) ] [( , ) ( , ) ],i G i G r G i G r G r GK Fα β α β α β α β α β α β′ ′ = + ⋅ − + ⋅ −      (16)  

where the control parameter F  is generated by a normal distribution with mean value 0.5 and 

standard deviation 0.3 and ,( , )i Gα β  is a target vector at generation G . The indices 

1 2 3, , {1, 2,3, , }pr r r N∈ L  are mutually exclusive and randomly generated integers, and all of them 

distinct from index i . Finally, ,( , )i Gα β′ ′  is the vector after mutation and K  is a randomly 

generated number on the unit interval [ ]0,1 .   

3.2 Knot selection  

Given Equation (15), the AIC can be calculated as 

' 1

, , , , ,

1/2
/2

,

ˆ垐( ) ( )1
2log{ exp[ ]} 2 .

2ˆ(2 )MN

AIC edf
α β α β α β α β α β

α βπ

−− −
= − − + ×

y X γ Σ y X γ

Σ
            (17) 

The initial condition of the parameter estimation is a given group of B-spline knots equally 

distributed in the interval. Here, we use the AIC value to evaluate the performance of the knot 
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setting and choose the best group of knots with the smallest AIC value. In Equation (17), edf is the 

effective degrees of freedom, which is calculated as the degrees of freedom in  γ  plus four degrees 

of freedom for the parameters 
'

( , , , )α β σ ρ . With 1p −  linear constraints, the effective degrees of 

freedom in γ  has a value from 1 to p, where p corresponds to the release of the constraint of (11). 

Letting q denote the degree of the B-spline functions, the knot selection procedure can be 

summarized as the following two steps. 

Step 1. Determine the optimal number of interior knots ,opt qr  by minimizing (17). The knots are to 

be evenly distributed in the given interval.  

Step 2. Calculate the change of the AIC value that is caused by the deletion of each interior knots 

in sequence. Remove the knot that leads to the greatest increase of the AIC value. Repeat until no 

more existing knots can be removed. 

 Stepwise knot selection methods have been used in the literature including [26-29]. We 

start from a set of uniform knots (in percentile ranks) to keep the amount of computation as small 

as possible. The convergence of the iterative framework is proved by the research work [22], 

which is based on the asymptotic analysis and the existing work [30, 31]. 

 

3.3 Summary of parameters estimation 

The detailed steps of the estimation method are listed in the following algorithm 1. 

Algorithm 1. 

Initialize the interior knots sequence 

Do 

    Update the constraint of (11) based on the result of knot selection; 
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    For k in 1,2, … 

        Initialize  0 1,0 1,0 2,0 2,0
垐垐{( , ),( , ), };P α β α β= L    

        For n in 1,2, … 

            Mutation with strategy (16) and Crossover to decide whether to accept the mutation result 

under a given probability; 

            Initialize (0) (0) (0)
垐 ˆ( , , )i i iγ σ ρ  by solving Equations (11), (13), and (14) with , 1 , 1

ˆˆ( , )
i n i n

α β− −   

            and no constraint; 

            For m in 0,1,2, … 

                Minimize (11) to get ( )ˆ m

iγ ; 

            Maximize (12) to get ( ) ( )ˆˆ( , )m m

i iσ ρ  ; 

        End For 

        Calculate (15) with ( ) ( ) ( )
垐 ˆ( , , )m m m

i i iγ σ ρ  and 0P  ; 

        Selection with objective function (15); 

        Calculate (17) based on the result of parameter estimation; 

    End For 

         While (the deletion of any one of the knots would lead to the reduction of the AIC value) 

Remove the interior knot whose deletion leads to the greatest reduction of the AIC; 

    End For 

 

3.4 Reliability Measures 

At first, the failure threshold fD  can be derived by the following equation. 

  

maxˆexp[ ( )]

1 max

ˆ
ˆ ˆˆ( , ; ) ,

ˆexp[ ( )]

fx xp
f

f f f l ql f

l f

D x G D
x x

α
µ

µ γ
β

−

=

 
= = 

 − 
∑θ                   (18) 



  16  
 

where ˆ
fµ is the mean time to failure (MTTF) at use condition fx . Thus, the failure time 

distribution can be derived based on the general ADDT model as follows.  

 

exp( )

[ ; ]
exp( )

( ) ( ) ( ) ,  t 0,

s

f

T t f

t
D

s
F t P T t P y D

α

η
β

σ

 
− 

 = ≤ = ≤ = Φ ≥
 
 
 

γ

        (19) 

where the failure time T is equivalent to the degradation measurement at time t  . The function 

( )Φ ⋅  is the cdf of the standard normal distribution. The quantile function can then be calculated 

as the inverse of the cdf which the α  quantile is 1( )Tt Fα α−=  .  

 

IV. SIMULATION STUDY 

We conduct a simulation study to investigate the performance of the developed parameter 

estimation method. In the simulation study, temperature is used as the acceleration factor. We use 

two types of temperature settings: (1) 3M =  temperature levels at 50°C, 65°C, and 80°C  and (2) 

6M =  temperature levels at 30°C, 40°C, 50°C, 60°C, 70°C, and 80°C. There are 5N =  

measuring times set as 8, 25, 75, 130, and 170 days.   

The data are simulated from the following parametric model: 

                                                     0 1 2( ) exp( ) ,
i

Y t x tξ ξ ξ ε= + +                                                          (20) 

where 11,605 / ( 273.15)
i i

x Temp= − +  and i
Temp  denotes the th

i  temperature level. The 

parameters of the parametric model are set as 0 1 2( ,  ,  ) (1,  3.5,  0.3)ξ ξ ξ = − , and 

( ,  ) (0.02,  0)σ ρ = . 
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Figure 2. The simulated response under the two settings 

Simulated responses based on these settings are shown in Figure 2. Using algorithm 1, we get the 

estimated parameters listed in Table 1 and the fitted degradation results as shown Figure 3.  

Table 1: The estimation results under specific settings 

 α̂  β̂  

M=3, N=5 0.9052 2.3571 

M=6, N=5 -0.0157 -1.5122 
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Figure 3. The fitted degradation paths of simulated data 

We calculate the Mean Squared Error (MSE) and AIC values of the proposed general 

ADDT model, and compared with the semiparametric model in Xie, et al. [21].  Specifically, the 

MSE values are calculated as  

                                                   2ˆ( ) (( ( ) ( )) ).MSE y E Y t Y t= −                                                             (21) 

Table 2 shows the simulation results of the two semiparametric models when the data are simulated 

using parametric model. 

Table 2. Comparison of results with different two settings 

 MSE AIC 

General ADDT (M=3, N=5) 4
4.3869 10

−×  -418.5742 

Semiparametric model (M=3, N=5) 32.1314 10−×  -385.3262 

General ADDT (M=6, N=5) 48.8380 10−×  -586.2078 

Semiparametric model (M=6, N=5) 39.2530 10−×  -584.6612 
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 It can be seen from Table 2 that the general ADDT model we proposed has smaller MSE 

and AIC values compared to the semiparametric model, indicating that the new model outperforms 

the existing semiparametric method under different settings.  

 We further the simulation study to analyze the performance of the General ADDT model 

under the use condition. The temperature of use condition is set to be 20°C. The simulated data is 

based on the first setting which is 3M =  temperature levels at 50°C, 65°C, 80°C and 5N =  

measuring times set as 8, 25, 75, 130, and 170 days. Simulated responses based on these settings 

are shown in Figure 4 and the fitted degradation results as shown Figure 5. 
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Figure 4. The simulated response under use condition 20°C

 

(a) Semiparametric model                                   (b) General ADDT model 

Figure 5. The fitted degradation paths by using two models under use condition 

We calculate the MSE values of the fitted degradation paths under use condition and the result 

are showed in Table 3. It can be seen in Table 3 that the general ADDT model proposed in this 

paper outperforms the existing semiparametric method. 

Table 3. Comparison of results at use condition 

 General ADDT (M=3, N=5) Semiparametric model (M=3, N=5) 

MSE MSE 42.1042 10−×   42.4131 10−×   

 

 Based on the existing simulated results, we further our experiments.  For each simulated 

dataset, the MTTF at 30°C (considered as the normal use condition) for each simulated dataset by 

using the true parametric model, the semiparametric model [21],  and the proposed general ADDT 

model. The mean, bias, standard derivation (SD), and root MSE of the MTTF for all the three 

different models are summarized in the following Table 1. The results in Table 1 show that the 
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estimated mean of MTTF using the general ADDT model is closer to the true value, and general 

ADDT method has a smaller bias, SD and RMSE of the MTTF estimation than the semiparametric 

model [21]. So the proposed general ADDT model outperforms the existing semiparametric model 

[21].  

Table 4. Comparison of mean, bias, SD, and root MSE of MTTF estimation using the true 

model, the  semiparametric model in [21], and the general ADDT model 

Model Mean Bias SD RMSE 

True Model  82.60 0.01 2.99 2.99 

Semiparametric model  82.77 0.16 4.22 4.22 

General ADDT model 82.70 0.11 3.56 3.56 

 

 

V. CASE STUDY 

Two real-life case studies are conducted to demonstrate the proposed ADDT model. In each 

case study, we also demonstrate the advantages of the proposed model by comparing its 

performance with the parametric model and an existing semi-parametric model in the literature. 

1. The adhesive formulation K data 

An ADDT of the adhesive formulation K is conducted to estimate the lifetime of a certain 

kind of adhesive that has a new formulation with a new additive compound to help enhance the 

performance. The adhesive’s viscidity would decrease over time till failure. During the ADDT 

process, the temperature is the acceleration factor and is set at three levels: 40°C, 50°C and 60°C. 

First, ten samples were tested at nominal temperature as baseline units. Next, for each temperature, 

30 samples are placed and measured at different times to obtain the degradation paths of the 

material. The strength of the adhesive is measured in Newtons. Figure 6 shows the raw data of the 

Adhesive Formulation K. 



  22  
 

 

Figure 6. Measurement of adhesive formulation K data at different temperature settings 

The parametric model used to describe the adhesive formulation K data is  

                                0 1 2 2( ) log(90) (1 exp{ exp[ ( )] }) ,
i i i

y t x x tξ ξ ξ ε= + − − − +                                (22) 

where ( )Y t  is the strength of adhesive formulation K in log-Newtons at time t, 

11,605/ ( 273.15)
i i

x Temp= − + , ( )2
11,  605 / 50  273.15x = − + , and ε  ∼ 

2(0, )N σ . The 

estimates of the model parameters are 0ξ  = −0.9978, 1ξ  = 0.4091, 2ξ  = 0.8371, and σ̂  = 0.0501. 

For the general ADDT model, the parameter estimates are 0.0631,  1.5510α β= = .  

Figure 7(a) shows the scatterplot of the parametric model and the Figure 7(b) is the fitted 

degradation path using the proposed general ADDT model.  
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(b) Parametric model                                       (b) General ADDT model 

Figure 7. Fitted degradation paths of the Adhesive Formulation K data 

Table 4 shows the log-likelihood and AIC values of the proposed general ADDT model, compared 

with the parametric model and the existing semiparametric model in Xie, et al. [21].  As the general 

ADDT model has a smaller AIC value, the new model outperforms the existing models.  

Table 5. Comparison of the general ADDT model and the existing semiparametric model  

 Loglik df AIC 

Parametric model 158.950 4 -309.901 

Semiparametric model 162.607 8 -309.213 

General ADDT 171.932 9 -325.864 
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2. The polymer Y data 

 Tsai, et al. [16] studied the Polymer Y data measured from  a type of new polymer material 

exposed to an alkaline environment at elevated temperatures. Three temperatures were chosen: 

1 50Temp = °C, 2 65Temp = °C, and 3 80Temp = °C. At each of the selected temperatures, 25 

coupons were destructively tested to assess their initial tensile strength. Then, 5 coupons were 

tested at selected measurement times to assess degradation. Figure 8 shows the data of the Polymer 

Y. 

 

Figure 8. The observed points of polymer Y  

 In Tsai, et al. [16], a parametric model is used to describe the mechanical process of the 

polymer material in ADDT: 

     ( ) , 0;
i

it

i
y t e t

αβ ε−
= + > 2

1exp( ),
273.15

i

i
Temp

γ
α γ= +

+
4

3exp( ).
273.15

i

i
Temp

γ
β γ= +

+
           (23) 

Here, ( )
i

y t , the strength of polymer Y, is the ratio of the tensile strength to the original strength 

under stress i
Temp  at time t. When the ratio is less than a pre-defined failure level, the material is 
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considered to have failed. The parameters i
α  and i

β  are fixed and unknown and ε  is the error 

term. The estimates for the parametric model are 

1 2 3 4
垐 垐5.22,  1462.42,  15.12,  6160.68,  0.02γ γ γ γ σ= − = = = − = . For the general ADDT model, the 

parameters are estimated as 0.1057,  1.4218α β= = .  

Figure 9(a) shows the scatterplot of the parametric model and Figure 9(b) represents the fitted 

degradation path using the general ADDT model.  

         

(a) Parametric model                                       (b) General ADDT model 

Figure 9. Fitted degradation paths of the Polymer Y data 

 

Table 5 shows the log-likelihood and the AIC values of the proposed general ADDT model 

compared with the parametric model and the existing semiparametric model in the literature.  As 

the general ADDT model has a smaller AIC value, the new model outperforms the existing models. 
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Table 6. Comparison of the general ADDT model and the existing semiparametric model  

 Loglik df AIC 

Parametric model 189.1715 5 -368.343 

Semiparametric model 195.1065 5 -380.213 

General ADDT 201.560 6 -391.120 

 

 

VI. CONCLUSION AND FUTURE WORK 

In this article, we developed a new general model for analyzing ADDT data. The degradation 

path is modeled using the B-spline and includes both location and scale parameters to describe the 

acceleration factor effect. We developed methods to select the optimal number and location of 

interior knots of B-splines based on AIC values. We also developed an MLE method based on 

self-adaptive differential evolution to estimate the model parameters.  

We implement a simulation study and a case study to assess the performance of the developed 

methods. The results show that the proposed model performs well in fitting degradation paths. We 

also compare the proposed model to the existing parametric and semiparametric ADDT model. 

Both the simulation results and the real-world case studies show that the proposed model 

outperforms the existing models in terms of model-fitting. Compared to the existing models, the 

newly proposed model’s is more general and flexible to describe complex relationships between 

the response and the acceleration factors.  

The newly proposed model can be applied to a wide range of applications. An interesting future 

research topic would be using the model as a basis for optimal test planning. Also, we can assess 



  27  
 

the performance of the model using other types of nonparametric methods, such as cubic splines 

or wavelets, which are also applied widely in the engineering and science research fields. In 

addition, this research only focuses on ADDT data; a similar model could be developed for RMDT 

data or other similar data types. 
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