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Abstract: In recent years accelerated destructive degradation testing (ADDT) has been applied to
obtaining the reliability information of an asset (component) at use conditions when the component
is highly reliable. In ADDT, degradation data are measured under stress levels more severe than
usual so that more component failures can be observed in a short period. In the literature, most
application-specific ADDT models assume a parametric degradation process under different
accelerating conditions. Models without strong parametric assumptions are desirable to describe
the complex ADDT processes. This research proposes a general ADDT model that consists of a
nonparametric part to describe the degradation path and a parametric part to describe the
accelerating-variable effect. The proposed model not only provides more model flexibility with
few assumptions, but also retains the physical mechanisms of degradation. Due to the complexity
of parameter estimation, an efficient method based on self-adaptive differential evolution is
developed to estimate model parameters. A simulation study is implemented to verify the
developed methods. Two real-world case studies are conducted and the results show the superior

performance of the developed model compared with the existing methods.

Index Terms—Accelerated model; ADDT; Degradation model; Long-term property

evaluation; B-spline; Akaike Information Criterion
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ACRONYMS

ADDT  Accelerated Destructive Degradation Testing

SD Standard Deviation

MSE Mean Squared Error

AIC Akaike Information Criterion

REML  Restricted Maximum Likelihood

MLE Maximum Likelihood Estimation

NOTATION
X, Transformed temperature level
v, (1) Degradation measurement under X at time ¢

AF, Accelerating value at level
(a, B) Unknown parameters associated with the accelerating variable
X, The transformed value of the maximum of the accelerating variable

0 Parameters of the proposed model

G,(z) The [" B-spline basis function of degree q evaluated at z



d The " interior knot

M Number of accelerating conditions

N Number of measurement time points for each sample under an accelerating
condition

£ The unit-to-unit variability and the measurement error

loglik  The log-likelihood value under a given parameter combination

AIC The AIC value under a given parameter combination and knot selection

L. INTRODUCTION

In modern industries, high-quality products are expected to perform for years to decades.
Degradation testing is a method developed in the reliability literature to obtain product reliability
by using the degradation of performance characteristics, such as the light intensity [1], crack length
[2], and material elongation [3]. With the development of highly-quality products, degradation
testing under a normal use condition is not efficient to meet industrial requirements due to the
limitation of testing times. In practice, accelerating variables such as temperature, voltage, or
pressure are incorporated into the degradation testing so that the failures can be reached in less
time. In some cases, the physical property being tested may only not survive the measurement
procedure; that is, the measurement can only be done through destructive means. This kind of
testing is referred to as the Accelerated Destructive Degradation Testing (ADDT).

In the reliability literature for degradation data analysis, Whitmore and Schenkelberg [4], Lu,

et al. [5], Nelson [6], Crk [7] conducted early research in degradation modeling. Chen, et al. [8]



summarized the methods for degradation data including non-destructive and destructive
degradation testing. Nelson [9] used accelerated life testing as a tool to estimate performance
degradation. Lu and Meeker [10] used the repeated-measures degradation testing (RMDT) data to
estimate the failure time. Meeker, et al. [11] developed a nonlinear mixed-effects model for RMDT
data. Gorjian, et al. [12] and Meeker, et al. [13] made an introductory level description of some
degradation models. In related literature, Lu and Meeker [10] used RMDT data to estimate the
failure time and Meeker, et al. [11] proposed a nonlinear mixed-effects model for analyzing RMDT
data. Gorjian, et al. [12] and Meeker, et al. [13] further developed statistical degradation models
for reliability analysis. Xu, et al. [14] proposed a nonlinear general path model for analyzing
degradation data with dynamic covariates.

In the ADDT literature, several parametric models have been developed to analyze ADDT data.
Shi, et al. [15] designed an ADDT plan to study combinations of different accelerating variables.
Tsai, et al. [16] proposed an optimal design approach for ADDT. , Lim and Yum [17], and Jeng,
et al. [18] developed methods for ADDT planning and analysis. In recent years, Xiao and Ye [19]
analyzed destructive degradation tests for highly reliable products with random initial degradation
values. Hong, et al. [20] proposed models in which the acceleration can be represented by
stochastic processes under certain conditions. Tsai, et al. [16] developed parametric models to
analyze ADDT data collected from different materials with multiple accelerating levels.

Although the existing parametric ADDT models have been widely used in practice, the
common disadvantages of parametric models are their being application specific and the
significantly biased conclusions if the model assumption is not satisfied. Instead of a case-by-case
parametric modeling approach, Xie, et al. [21] proposed a semiparametric model to analyze ADDT

data. In this research, we propose a general ADDT model with a nonparametric part to describe



the degradation path and a parametric part to describe the accelerating-variable effect. The
parametric part takes both the scale and shape parameters of the response distribution into
consideration. The major contribution of this paper is two-fold. First, the proposed model is more
general and robust than the existing semiparametric model in the literature. Through a simulation
study and real-world case studies, we later show that the performance of the proposed general
ADDT model is much more improved over the existing one. Second, the traditional optimization
method cannot be directly applied to estimating the model parameters due to the complexity of the
objective function. To overcome this challenge, we develop an efficient model parameter
estimation method based on self-adaptive differential evolution.

The remainder of this paper is organized as follows. In Section II, we present the notation
and propose the general ADDT model. In Section III, we develop the method for model parameter
estimation. In Section IV, we conduct a simulation study to investigate the performance of the
developed methods. In Section V, we apply the proposed model to analyzing ADDT data of two
real-world examples and compare the performance to existing models. In Section VI, a conclusion

and future work are provided.

IL DATA AND MODEL

For a given ADDT, denote the degradation measurement at time ¢ under acceleration factor

condition x; by y., which is related to x; by
y(O)=H(t;x)+E, (1)
where & represent both the unit-to-unit variability and the measurement error, which is assumed

to follow the normal distribution, i.e., & ~ N (O, 0?) . Here ¢? is the variance of & . When there
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are multiple test units in the ADDT experiment under the same condition X, at the same time f,
their corresponding error correlation is Q. As an example of an ADDT model, consider a

temperature-accelerated process, which is occurance of this type of test. A popular model to
describe the relationship between the degradation and temperature is the Arrhenius model. In this

model, the temperature is transformed into the following form

-11605
Temp, +273.16°

X, = h(AF)= )

where Temp,is the temperature in degrees Celsius, and the value 11,605 is the reciprocal of the
Boltzmann’s constant. The value 273.16 is the difference between the Kelvin temperature scale
and the Celsius temperature scale. Without loss of generality, y; is assumed to be monotonic
decreasing over time.

In this research, we propose a general model form to fit ADDT data. Specifically, H (;x,)

in equation (1) is expressed as

H(t;x,) = [, x)], 3)

where f(-) is a nonparametric construction and 77, ,(#;x,) is a scale-shape-acceleration model

with parameters (a, £) . An example of this model for the case of temperature acceleration would

be

expl (X, —x;)]

expl B, —3)]

Mo p(13%) = “4)

where x, is the accelerating variable defined in equation (2), and

1

= —11605/[max, (Temp,)+273.16] .

'xmax



We choose the monotonic B-spline method to describe the nonparametric portion of the

proposed model. Let d, <---<d, be the interior knots and let d, and d

', be the two boundary

points. The ordered knots are d_, =---=d,<d <---<d <d, =--=d Here the lower and

r r+l T YragH
upper boundary points are repeated g times, where ¢ is the polynomial degree. In the following,

we define the ordered knot sequence as d,,--,d,,, ., for simplicity. The B-spline basis functions

are defined recursively. For degree 0, the first spline function is

Goz ()= l(dz <z< d1+1)s )
and for degree ¢, the function is
z—d dl+ 1<
G, (2)= LG, (Q+———G ,,.,(2). 6
q,l( ) dz+q_dz ! Ll( ) dz+q+1_dz+1 o 1( ) ©

Here [ =1,..., p, and 1(.) is an indicator function.

With the combination of the nonparametric and parametric portions, the model in (1) is

represented in its entirety as
P
Y () =H:x)+e=%G, 1, ,t:x)]+&,. (7
I=1

Here, 7, is the coefficients of the B-spline basis function G_,[7, ;(#; x;)]. The proposed model

in (7) falls within the class of shape-scale-acceleration models. For every stress level i, H(t;x;)
is a decreasing function on time ¢, with the effects of the time-scale and the time shape controlled

through shape acceleration factor (SHAF) expla(x,, —x;)] and the scale acceleration factor

(SCAF) explB(x,, —x;)], respectively, as shown in equation (4). When the SHAF=1, the time



acceleration rate dn/dt is determined by the SCAF and so does not depend on a specific time
point. When the SHAF= 1, the time acceleration rate also varies with time. Thus, the introduction

of the SHAF allows for more flexibility in modeling the time acceleration rate.

When the acceleration level is at its highest, ie., x  —x_ =0, nxap)=t,
indicating that the degradation path no longer relies on & and . Under this situation, the

corresponding baseline degradation path for the scale-shape-acceleration model is
)4
H(t:x,,) =Y 7G,,(1). (8)
=1

The first derivative of H (#;x;) with respect to 7, ,(#;x;) can be calculated as follows.

dH(t;x) <& .
——=) (- D)—"""-G_, (1, 4(t: x,)). ©
dﬂa,ﬂ(t;xl-) ; quH —d[ q-11 B

According to the assumption of monotone decreasing behavior in the degradation path, Equation

(9) should always be negative. As the B-spline basis functions are nonnegative, this indicates that

for 2 <1< p, the condition ¥, < y,_, is sufficient for a monotone decreasing degradation path
when the degree of the basis function ¢ =1,2. A low degree of spline (¢ <4) and a small number
of interior knots (1< ¥ <5) are usually sufficient to provide a good fit to the data. It was proved

in the literature [22] that the optimal number of knots is in the order of n'"® , Wwhere n is the number
of observation. Thus, a small number of knots (1< ¥<5) is sufficient for the modest size of

datasets, such as the datasets in the case study of this research.



.  MODEL PARAMETER ESTIMATION AND KNOT SELECTION

To estimate the unknown parameters in the proposed model (7), we develop a likelihood-based
optimization method. As shown in Figure 1, the developed method is an iterative process that
consists of two parts: (1) knot selection of B-splines, and (2) parameter estimation. The parameter
estimation is based on the initial selected knot setting from part 1, and the updated knot selection
1s based on the profile likelihood value calculated from part 2.

To find the best knot setting, we use Akaike Information Criterion (AIC), which considers
both the profile log-likelihood values and the number of model parameters. For a given knot setting,
the model parameters can be estimated by maximizing profile log-likelihood values. The objective
function of the corresponding optimization problem is nonlinear and complex. As a result, the
traditional gradient-based optimization methods cannot be directly applied. To overcome this
difficulty, we develop an efficient parameter estimation method by applying the framework of self-
adaptive differential evolution (SaDE) (). The SaDE method is a population-based stochastic
search strategy which aims to solve global optimization problems like other evolution algorithms.
In the classical differential evolution (DE) method (), the control parameters and learning strategies
highly dependents on the problems under consideration so that significant time needs to be spent
to try through various strategies and adjust the corresponding parameters. The key improvement
of the SaDE over the classical DE method is that the learning strategy and parameter settings are
gradually self-adapted during the evaluation process based on the learning experience. Besides
that, The authors of [23] also give the numerical analysis of the convergence of the SaDE algorithm
which shows that the convergence speed of SaDE performs much better than the original DE

algorithm especially in the high-dimension situation.



After obtaining the optimum profile log-likelihood by using the developed optimization
method, the AIC value can be calculated and used as the performance index to select optimal knot
setting of the B-splines. Thus, the two parts run iteratively until the best knot setting and the
optimal model parameters are obtained. The details of the parameter estimation and knot selection

stages are discussed in Sections 3.1 and 3.2, respectively.

Knot selection by minimizing Parameter estimation using the
the AIC value of parameter likelihood based SaDE algorithm
estimation based on the selected knots

Iteratively updating

Figure 1. the framework of the knot selection and parameter estimation

3.1 Parameter estimation

For simplicity, we express the proposed model using the matrix form. Suppose there are M

samples under testing, and for each sample the degradation path consists of N measurement time
points. The response vector Y =(Y,;,"** Yiys " Yu1>-" 5 Yyy) contains all the degradation

measurements. The degradation model can then be written as
y= Xaﬁy+s, (10)

where
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qul(nl(tl;xl’a’ﬁ)) Gq,p(ﬂl(tl;xl,a,ﬁ))
Gq,l(nl(tz;xz’a’ﬁ)) Gq,p(ﬂl(tZ;XZ’a’lB))

a.p

G, (ny(t;x,.a,p) G,,my@;x,,.a,0)
In equation (10), y:(%,-‘-,yp)' are the coefficients, €= (&, ", &, »Eyp> > Eyn) » €~ N(0,X) .
X =Diag(X,,,- -, Eiys s Do s ) and £ =0’ [(1-p)I, +pJ, 1, where I is an NXN
identity matrix and J, is an NXN matrix of 1's . We also rewrite £ =0’R , where

R=Diag(R,,---,R,\,-, R, ;s R,y) and R, =(1-p)I, +pJ .

To calculate the objective function of the SaDE algorithm which is the profile log-likelihood

function of (&, f) , the corresponding estimation of ('y',O', p)' for a given pair of («, ) needs to
be obtained. We develop an iterative procedure to calculate the estimate of (Y, 0, p) . Specifically,
given the estimates (0", 0" ") at the m" iteration, the value of §." is calculated by
minimizing
0 =(y-X, 1) ") (v-X,, 7).
subjectto: ¥, <y_ 2<I<p, (11)
which is a quadratic objective function with linear constraints and can be solved by traditional

optimization methods (e.g., the dual method in Goldfarb and Idnani [24] or the Hinge algorithm

in Meyer [25]).

(m)

After obtaining 7, the estimates of (6", p"”)" can be calculated by using the Restricted

Maximum Likelihood (REML) if 4" does not take values on the boundary of the linear
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constraints. Otherwise, we use the approximate REML to replace the estimates of o and 0. To

5 (m)

derive the approximate REML, let y,” represent all of the unique values in 7 and let p, be
the length of #," . For each unique value 7", let x, ; be the sum of the corresponding columns
in X, ;. Then we have X, ,#" =X_, v\, where X 5, = (X, 45,5"**»X, o5, The approximate

REML log-likelihood is calculated as
M 1 ' - m)\' §— m
LREML(O-’p | @)) = _5{10g|2| +10g‘Xu;a,/5'Z 1Xu;oz,/i' + (y - X(x,ﬁ'y( )) X l(y - Xa,ﬁ'?( >)} (12)

The parameter estimates of (O'(m), p(’"))' are those values that maximize (12), and " has the

following closed-form expression

s — I =X B R X, 7™

N_p. 1> (13)

Then p" can be obtained from a one-dimensional optimization problem. That is,

A =argmax{—log| (G Y' R ~log(0"")* X, , R X, . [ (") (y-X, " R (y-X, ,#"™)}. (14)
P

Upon convergence, the estimates of (%;‘OA', p)' , denoted by (ﬁ%ﬁ' , o“'aﬂ, Pop ), are obtained for given

(0)

parameters (¢, ) . The initial values (0, p) can be obtained by fitting an unconstrained

model.

The goal of the SaDE method is to maximize the profile log-likelihood of («, ), which

18 calculated as
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X H ) BV X )
2

r n 1
e, B, 5, p) =log{ / —exp[ 1}.  (15)

MN/2 |§
(27) X, 5

Here, the objective function (15) has a nonlinear structure and the corresponding surface profile

over the parameters (a, ) is complex. As a result, the classical gradient-based optimization

methods cannot be directly applied. To overcome this challenge, we develop the parameter

estimation method based on the SaDE framework.

In the SaDE framework, there are four steps: initialization, mutation, crossover and selection.

Here, the mutation strategy is given as
(a,7 ﬁ,)i,G = (a7 ﬁ)i,(; +K- [(a7 ﬁ)rl,(; - (a’ ﬁ)i,(;]-'_ F- [(a’ ﬁ)rz,G - (a’ ﬁ)r},G]’ (16)

where the control parameter F' is generated by a normal distribution with mean value 0.5 and

standard deviation 0.3 and (a,f),; is a target vector at generation G . The indices
n,n,re{l,2,3,---,N p} are mutually exclusive and randomly generated integers, and all of them
distinct from index i . Finally, (¢, ﬁ')i,G is the vector after mutation and K is a randomly

generated number on the unit interval [0,1].

3.2 Knot selection

Given Equation (15), the AIC can be calculated as

-X_ #HE (y-X
AIC =2logl————expp- T XesTin) ;/’(y wYar))) L ovedf.  (7)

(Zﬂ.)MN/Z ﬁa’ﬁ

The initial condition of the parameter estimation is a given group of B-spline knots equally

distributed in the interval. Here, we use the AIC value to evaluate the performance of the knot
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setting and choose the best group of knots with the smallest AIC value. In Equation (17), edf is the

effective degrees of freedom, which is calculated as the degrees of freedomin y plus four degrees

of freedom for the parameters (&, 3,0, p) . With p —1 linear constraints, the effective degrees of
freedom in Y has a value from 1 to p, where p corresponds to the release of the constraint of (11).

Letting g denote the degree of the B-spline functions, the knot selection procedure can be

summarized as the following two steps.

Step 1. Determine the optimal number of interior knots 7,

by minimizing (17). The knots are to
be evenly distributed in the given interval.
Step 2. Calculate the change of the AIC value that is caused by the deletion of each interior knots

in sequence. Remove the knot that leads to the greatest increase of the AIC value. Repeat until no

more existing knots can be removed.

Stepwise knot selection methods have been used in the literature including [26-29]. We
start from a set of uniform knots (in percentile ranks) to keep the amount of computation as small
as possible. The convergence of the iterative framework is proved by the research work [22],

which is based on the asymptotic analysis and the existing work [30, 31].

3.3 Summary of parameters estimation

The detailed steps of the estimation method are listed in the following algorithm 1.

Algorithm 1.
Initialize the interior knots sequence
Do

Update the constraint of (11) based on the result of knot selection;
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Forkin 1,2, ...

Initialize B, = {(cS, B), (@40 B s

Forninl?2, ...

Mutation with strategy (16) and Crossover to decide whether to accept the mutation result
under a given probability;

A

Initialize (Z2,6,”, p”) by solving Equations (11), (13), and (14) with (&, 5, ;)

and no constraint;
Formin0,1,2, ...

5 (m) |

Minimize (11) to get 7'™;
Maximize (12) to get (6,",5,"") ;
End For
Calculate (15) with (#¥,6"™,p,") and P, ;
Selection with objective function (15);
Calculate (17) based on the result of parameter estimation;
End For
While (the deletion of any one of the knots would lead to the reduction of the AIC value)

Remove the interior knot whose deletion leads to the greatest reduction of the AIC;

End For

3.4 Reliability Measures

At first, the failure threshold D, can be derived by the following equation.

N )4 IL’Z explA (X =X )]
Dy (%00 = 237G, | — =D, (18)
I=1 eXp[IB(xmalx - X )]
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where f1 ;18 the mean time to failure (MTTF) at use condition x, . Thus, the failure time

distribution can be derived based on the general ADDT model as follows.

texp(as)

'

f
F,(t)=P(T <t)=P(y,<D,)=® e’;p(ﬁs) 120, (19)

where the failure time 7 is equivalent to the degradation measurement at time ¢ . The function

®(-) is the cdf of the standard normal distribution. The quantile function can then be calculated

as the inverse of the cdf which the & quantile is 7, = FT’l (o) .

IV.  SIMULATION STUDY
We conduct a simulation study to investigate the performance of the developed parameter
estimation method. In the simulation study, temperature is used as the acceleration factor. We use
two types of temperature settings: (1) M =3 temperature levels at 50°C, 65°C, and 80°C and (2)
M =6 temperature levels at 30°C, 40°C, 50°C, 60°C, 70°C, and 80°C. There are N =35
measuring times set as 8, 25, 75, 130, and 170 days.

The data are simulated from the following parametric model:

Y(t)=¢&,+& exp(&x )t + €, (20)

where x;, =—11,605/(Temp, +273.15) and Temp, denotes the " temperature level. The

parameters of the parametric model are set as (&, &, &)=, —-3.5 0.3) , and

(0, p)=(0.02, 0).
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Figure 2. The simulated response under the two settings

Simulated responses based on these settings are shown in Figure 2. Using algorithm 1, we get the

estimated parameters listed in Table 1 and the fitted degradation results as shown Figure 3.

Table 1: The estimation results under specific settings

A

o B
M=3, N=5 0.9052 2.3571
M=6, N=5 -0.0157 -1.5122
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Figure 3. The fitted degradation paths of simulated data

We calculate the Mean Squared Error (MSE) and AIC values of the proposed general

ADDT model, and compared with the semiparametric model in Xie, et al. [21]. Specifically, the

MSE values are calculated as

MSE(y)=E((Y()-Y())").

Table 2 shows the simulation results of the two semiparametric models when the data are simulated

using parametric model.

Table 2. Comparison of results with different two settings

MSE AIC
General ADDT (M=3, N=5) 4.3869x10™ -418.5742
Semiparametric model (M=3, N=5) 2.1314x107° -385.3262
General ADDT (M=6, N=5) 8.8380x10™* -586.2078
Semiparametric model (M=6, N=5) 9.2530x10° -584.6612
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It can be seen from Table 2 that the general ADDT model we proposed has smaller MSE
and AIC values compared to the semiparametric model, indicating that the new model outperforms

the existing semiparametric method under different settings.

We further the simulation study to analyze the performance of the General ADDT model
under the use condition. The temperature of use condition is set to be 20°C. The simulated data is
based on the first setting which is M =3 temperature levels at 50°C, 65°C, 80°C and N =5
measuring times set as 8, 25, 75, 130, and 170 days. Simulated responses based on these settings

are shown in Figure 4 and the fitted degradation results as shown Figure 5.

—-e— 20C

Strength (Newtons)

0.8

0.6

18 25 75 130 180
I T T T
0 50 100 150

Time (Hours)
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Figure 4. The simulated response under use condition 20°C
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Figure 5. The fitted degradation paths by using two models under use condition

We calculate the MSE values of the fitted degradation paths under use condition and the result
are showed in Table 3. It can be seen in Table 3 that the general ADDT model proposed in this

paper outperforms the existing semiparametric method.

Table 3. Comparison of results at use condition

General ADDT (M=3, N=5) Semiparametric model (M=3, N=5)

MSE 2.1042x107* 2.4131x10™*

Based on the existing simulated results, we further our experiments. For each simulated
dataset, the MTTF at 30°C (considered as the normal use condition) for each simulated dataset by
using the true parametric model, the semiparametric model [21], and the proposed general ADDT
model. The mean, bias, standard derivation (SD), and root MSE of the MTTF for all the three

different models are summarized in the following Table 1. The results in Table 1 show that the
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estimated mean of MTTF using the general ADDT model is closer to the true value, and general
ADDT method has a smaller bias, SD and RMSE of the MTTF estimation than the semiparametric
model [21]. So the proposed general ADDT model outperforms the existing semiparametric model
[21].

Table 4. Comparison of mean, bias, SD, and root MSE of MTTF estimation using the true
model, the semiparametric model in [21], and the general ADDT model

Model Mean Bias SD RMSE
True Model 82.60 0.01 2.99 2.99
Semiparametric model 82.77 0.16 4.22 422
General ADDT model 82.70 0.11 3.56 3.56

V. CASE STUDY
Two real-life case studies are conducted to demonstrate the proposed ADDT model. In each
case study, we also demonstrate the advantages of the proposed model by comparing its
performance with the parametric model and an existing semi-parametric model in the literature.
1. The adhesive formulation K data
An ADDT of the adhesive formulation K is conducted to estimate the lifetime of a certain
kind of adhesive that has a new formulation with a new additive compound to help enhance the
performance. The adhesive’s viscidity would decrease over time till failure. During the ADDT
process, the temperature is the acceleration factor and is set at three levels: 40°C, 50°C and 60°C.
First, ten samples were tested at nominal temperature as baseline units. Next, for each temperature,
30 samples are placed and measured at different times to obtain the degradation paths of the
material. The strength of the adhesive is measured in Newtons. Figure 6 shows the raw data of the

Adhesive Formulation K.
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Figure 6. Measurement of adhesive formulation K data at different temperature settings

The parametric model used to describe the adhesive formulation K data is

¥;(1) =10g(90) + &, (1-exp{-¢, expl&, (x, —x,)It}) + &, (22)
where Y(r) is the strength of adhesive formulation K in log-Newtons at time ¢,
x, =—11,605/ (Temp, +273.15) , x,=-11, 605/(50 + 273.15) , and &€ ~ N(0,0°) . The
estimates of the model parameters are «fo = —0.9978, fl = 0.4091, §2 = 0.8371, and 6 = 0.0501.
For the general ADDT model, the parameter estimates are & = 0.0631, f=1.5510.

Figure 7(a) shows the scatterplot of the parametric model and the Figure 7(b) is the fitted

degradation path using the proposed general ADDT model.
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Figure 7. Fitted degradation paths of the Adhesive Formulation K data

Table 4 shows the log-likelihood and AIC values of the proposed general ADDT model, compared

with the parametric model and the existing semiparametric model in Xie, et al. [21]. As the general

ADDT model has a smaller AIC value, the new model outperforms the existing models.

Table 5. Comparison of the general ADDT model and the existing semiparametric model

Loglik df AIC
Parametric model 158.950 4 -309.901
Semiparametric model 162.607 8 -309.213
General ADDT 171.932 9 -325.864
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2. The polymer Y data

Tsai, et al. [16] studied the Polymer Y data measured from a type of new polymer material
exposed to an alkaline environment at elevated temperatures. Three temperatures were chosen:
Temp, =50 °C, Temp, =65 °C, and Temp, =80 °C. At each of the selected temperatures, 25
coupons were destructively tested to assess their initial tensile strength. Then, 5 coupons were

tested at selected measurement times to assess degradation. Figure 8 shows the data of the Polymer

Y.
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o
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£ i |
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]
40
8 25 75 130 180
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Figure 8. The observed points of polymer Y

In Tsai, et al. [16], a parametric model is used to describe the mechanical process of the

polymer material in ADDT:

y,(t)= e +&,t>0; o, =exp(y, +

7/2 ), ﬁ, =exp(%+ 7/4

)- (23)
273.15+Temp, 273.15+Temp,

Here, y.(7), the strength of polymer Y, is the ratio of the tensile strength to the original strength

under stress Temp, at time t. When the ratio is less than a pre-defined failure level, the material is
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considered to have failed. The parameters &, and [, are fixed and unknown and ¢ is the error
term. The estimates for the parametric model are
P=-5.22, y, =1462.42, 5=15.12, ¥, =-6160.68, 0 =0.02. For the general ADDT model, the
parameters are estimated as & = 0.1057, f=1.4218.

Figure 9(a) shows the scatterplot of the parametric model and Figure 9(b) represents the fitted

degradation path using the general ADDT model.
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Figure 9. Fitted degradation paths of the Polymer Y data

Table 5 shows the log-likelihood and the AIC values of the proposed general ADDT model
compared with the parametric model and the existing semiparametric model in the literature. As

the general ADDT model has a smaller AIC value, the new model outperforms the existing models.
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Table 6. Comparison of the general ADDT model and the existing semiparametric model

Loglik df AIC
Parametric model 189.1715 5 -368.343
Semiparametric model 195.1065 5 -380.213
General ADDT 201.560 6 -391.120

VI.  CONCLUSION AND FUTURE WORK

In this article, we developed a new general model for analyzing ADDT data. The degradation
path is modeled using the B-spline and includes both location and scale parameters to describe the
acceleration factor effect. We developed methods to select the optimal number and location of
interior knots of B-splines based on AIC values. We also developed an MLE method based on
self-adaptive differential evolution to estimate the model parameters.

We implement a simulation study and a case study to assess the performance of the developed
methods. The results show that the proposed model performs well in fitting degradation paths. We
also compare the proposed model to the existing parametric and semiparametric ADDT model.
Both the simulation results and the real-world case studies show that the proposed model
outperforms the existing models in terms of model-fitting. Compared to the existing models, the
newly proposed model’s is more general and flexible to describe complex relationships between

the response and the acceleration factors.

The newly proposed model can be applied to a wide range of applications. An interesting future

research topic would be using the model as a basis for optimal test planning. Also, we can assess

26



the performance of the model using other types of nonparametric methods, such as cubic splines

or wavelets, which are also applied widely in the engineering and science research fields. In

addition, this research only focuses on ADDT data; a similar model could be developed for RMDT

data or other similar data types.

Acknowledgment

The authors thank the Associate Editor and the referees for their valuable comments that helped

to improve this article. The work by Hong was partially supported by the National Science
Foundation under Grants CNS-1565314 to Virginia Tech.

[1]

(2]

(3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]

[12]

References

Z.-S. Ye, Y. Wang, K.-L. Tsui, and M. Pecht, "Degradation data analysis using Wiener
processes with measurement errors," IEEE Transactions on Reliability, vol. 62, pp. 772-
780, 2013.

W. Si, Q. Yang, and X. Wu, "A physical-statistical model of overload retardation for crack
propagation and application in reliability estimation," IIE Transactions, vol. 48, pp. 347-
358, 2016.

W. Si, Q. Yang, X. Wu, and Y. Chen, "Reliability analysis considering dynamic material
local deformation," Journal of Quality Technology, vol. 50, pp. 1-14, 2018.

G. Whitmore and F. Schenkelberg, "Modelling accelerated degradation data using Wiener
diffusion with a time scale transformation," Lifetime data analysis, vol. 3, pp. 27-45, 1997.
J.-C. Lu, J. Park, and Q. Yang, "Statistical inference of a time-to-failure distribution
derived from linear degradation data," Technometrics, vol. 39, pp. 391-400, 1997.

W. Nelson, "Analysis of performance-degradation data from accelerated tests," IEEE
Transactions on Reliability, vol. 30, pp. 149-155, 1981.

V. Crk, "Reliability assessment from degradation data," in Reliability and Maintainability
Symposium, 2000. Proceedings. Annual, 2000, pp. 155-161.

D.-G. D. Chen, Y. Lio, H. K. T. Ng, and T.-R. Tsai, "Statistical Modeling for Degradation
Data," ed: Springer, 2017.

W. Nelson, "Accelerated Life Testing: Statistical Models Test Plan and Data Analysis," J.
Wiley, New York, USA, 1990.

C. J. Lu and W. O. Meeker, "Using degradation measures to estimate a time-to-failure
distribution," Technometrics, vol. 35, pp. 161-174, 1993.

W. Q. Meeker, L. A. Escobar, and C. J. Lu, "Accelerated degradation tests: modeling and
analysis," Technometrics, vol. 40, pp. 89-99, 1998.

N. Gorjian, L. Ma, M. Mittinty, P. Yarlagadda, and Y. Sun, "A review on degradation
models in reliability analysis," in Engineering Asset Lifecycle Management, ed: Springer,
2010, pp. 369-384.

27



[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]
[22]

[23]

[24]

[25]

[26]
[27]
(28]
[29]
[30]

[31]

W. Meeker, Y. Hong, and L. Escobar, "Degradation Models and Analyses," Encyclopedia
of Statistical Sciences, 2011.

Z. Xu, Y. Hong, and R. Jin, "Nonlinear general path models for degradation data with
dynamic covariates," Applied Stochastic Models in Business and Industry, vol. 32, pp. 153-
167, 2016.

Y. Shi, L. A. Escobar, and W. Q. Meeker, "Accelerated destructive degradation test
planning," Technometrics, vol. 51, pp. 1-13, 2009.

C.-C. Tsai, S.-T. Tseng, N. Balakrishnan, and C.-T. Lin, "Optimal design for accelerated
destructive degradation tests," Quality Technology & Quantitative Management, vol. 10,
pp- 263-276, 2013.

H. Lim and B.-J. Yum, "Optimal design of accelerated degradation tests based on Wiener
process models," Journal of Applied Statistics, vol. 38, pp. 309-325, 2011.

S.-L. Jeng, B.-Y. Huang, and W. Q. Meeker, "Accelerated destructive degradation tests
robust to distribution misspecification," IEEE Transactions on Reliability, vol. 60, pp. 701-
711, 2011.

X. Xiao and Z. Ye, "Optimal design for destructive degradation tests with random initial
degradation values using the Wiener process," IEEE Transactions on Reliability, vol. 65,
pp- 1327-1342, 2016.

L. Hong, Z. Ye, and X. Zhao, "Investigating the necessity of acceleration in a degradation
test," in Industrial Engineering and Engineering Management (IEEM), 2016 IEEE
International Conference on, 2016, pp. 546-550.

Y. Xie, C. B. King, Y. Hong, and Q. Yang, "Semiparametric Models for Accelerated
Destructive Degradation Test Data Analysis," Technometrics, pp. 1-13, 2017.

X. He and P. Shi, "Monotone B-spline smoothing," Journal of the American Statistical
Association, vol. 93, pp. 643-650, 1998.

A. K. Qin, V. L. Huang, and P. N. Suganthan, "Differential evolution algorithm with
strategy adaptation for global numerical optimization," I[IEEE Transactions on
Evolutionary Computation, vol. 13, pp. 398-417, 2009.

D. Goldfarb and A. Idnani, "A numerically stable dual method for solving strictly convex
quadratic programs," Mathematical Programming, vol. 27, pp. 1-33, 1983.

M. C. Meyer, "A simple new algorithm for quadratic programming with applications in
statistics," Communications in Statistics-Simulation and Computation, vol. 42, pp. 1126-
1139, 2013.

J. H. Friedman and B. W. Silverman, "Flexible parsimonious smoothing and additive
modeling," Technometrics, vol. 31, pp. 3-21, 1989.

X. He and P. Shi, "Bivariate tensor-product B-splines in a partly linear model," Journal of
Multivariate Analysis, vol. 58, pp. 162-181, 1996.

C. Kooperberg and C. J. Stone, "Logspline density estimation for censored data," Journal
of Computational and Graphical Statistics, vol. 1, pp. 301-328, 1992.

P. Shi and G. Li, "Optimal global rates of convergence of B-spline M-estimates for
nonparametric regression," Acta Mathematica, New Ser, 1992.

S. Portnoy, "Local asymptotics for quantile smoothing splines," The Annals of Statistics,
vol. 25, pp. 414-434, 1997.

C. J. Stone, "Optimal global rates of convergence for nonparametric regression," The
Annals of Statistics, pp. 1040-1053, 1982.

28



