
The Generalized Poisson-Binomial Distribution and the

Computation of Its Distribution Function

Man Zhang and Yili Hong
Department of Statistics

Virginia Tech
Blacksburg, VA 24061, USA

Narayanaswamy Balakrishnan
Department of Mathematics and Statistics

McMaster University
Hamilton, ON, L8S 4K1, Canada

February 10, 2018

Abstract

The Poisson-binomial distribution is useful in many applied problems in engineering,

actuarial science, and data mining. The Poisson-binomial distribution models the dis-

tribution of the sum of independent but non-identically distributed random indicators

whose success probabilities vary. In this paper, we extend the Poisson-binomial distri-

bution to a generalized Poisson-binomial (GPB) distribution. The GPB distribution

corresponds to the case where the random indicators are replaced by two-point random

variables, which can take two arbitrary values instead of 0 and 1 as in the case of ran-

dom indicators. The GPB distribution has found applications in many areas such as

voting theory, actuarial science, warranty prediction, and probability theory. As the

GPB distribution has not been studied in detail so far, we introduce this distribution

first and then derive its theoretical properties. We develop an efficient algorithm for

the computation of its distribution function, using the fast Fourier transform. We test

the accuracy of the developed algorithm by comparing it with enumeration-based exact

method and the results from the binomial distribution. We also study the computational

time of the algorithm under various parameter settings. Finally, we discuss the factors

affecting the computational efficiency of the proposed algorithm, and illustrate the use

of the software package.

Key Words: Actuarial Science; Discrete Distribution; Fast Fourier Transform;

Rademacher Distribution; Voting Theory; Warranty Cost Prediction.

1

1 Introduction

Consider a sequence of n independent and identically distributed (iid) random indicators,

I1, . . . , In ∼ Bernoulli(p), where p is the success probability. The distribution of the sum,
∑n

k=1
Ik, is well known as the binomial distribution. The cumulative distribution function

(cdf) and probability mass function (pmf) of the binomial distribution can be easily computed

and closed-form expressions are available. When Ik’s are non-identically distributed (i.e.,

Ik ∼ Bernoulli(pk), k = 1, . . . , n, with different probabilities pk), the sum,
∑n

k=1
Ik, is

distributed as the Poisson-binomial distribution. The Poisson-binomial distribution can be

considered as a generalization of the binomial distribution (e.g., Hong 2013).

Even though the Poisson-binomial distribution is applicable in a wide range of areas in-

cluding engineering, actuarial science, and data mining, a more general distribution is often of

interest in practice. To motivate the need for this new distribution, we provide the following

examples:

• In voting theory (e.g., Alger 2006), each voter may vote in favor of a candidate with

different probabilities. In some settings, some voters may be in a more powerful position than

others, for example, a voter may have two votes. The interest here is in the total number of

votes that is in favor of the candidate. The general question that is of interest is about the

distribution of the total number of votes in favor of the candidate;

• In warranty cost prediction (e.g., Hong and Meeker 2013), suppose there is a batch of

units in the field and their failure probabilities within one year are different from unit to unit.

If one unit fails, the company needs to cover a certain amount of expenses and these expenses

may be different from unit to unit. The total expense is of interest in this case, and we are

naturally interested here in the distribution of the total expenses;

• In actuarial science (e.g., Pitacco 2007), the amount of insurance payout is related to the

payout to each customer and the payout probabilities. The distribution of the total amount

of payout is generally of interest;

• In probability theory, the Rademacher distribution is defined as the distribution of a

random variable which has 50% chance of being either +1 or −1 (Montgomery-Smith 1990).

The Rademacher series is defined as a weighted sum of a series of independent Rademacher

random variables (Cheng and Duncan 2014). The distribution of the Rademacher series is of

interest (e.g., Dilworth and Montgomery-Smith 1993).

To solve the problems mentioned in the above examples, we consider here a Generalized

Poisson-Binomial (GPB) distribution. Define n two-point random variables as follows:

Ek =

{

ak, with probablity 1− pk;

bk, with probability pk,
(1)

2

where ak < bk are constants and k = 1, · · · , n. Ek is called a two-point random variable as

its support is on two points {ak, bk}. Note that Ek can take two arbitrary values instead of 0

and 1 as in the case of a random indicator. Using Ik, Ek can be written as

Ek = ak(1− Ik) + bkIk.

By properly specifying the values of ak and bk, the problems mentioned in the above examples

can be solved by finding the distribution of the sum X =
∑n

k=1
Ek. In regard to the voting

example, each voter may vote with different probabilities favoring the candidate and some of

their votes may weigh more than others. Then, X corresponds to the weighted sum of votes

that are in favor of the candidate. We now formally define the GPB distribution.

Definition 1 Consider n two-point random variables E1, . . . , En as defined in (1). The ran-

dom variable of interest is the sum of the n two-point random variables given by

X =
n∑

k=1

Ek. (2)

The generalized Poisson-binomial (GPB) distribution is defined as the distribution of X in (2).

Clearly, when all ak = 0 and all bk = 1, X reduces to X =
∑n

k=1
Ik, which follows the

Poisson-binomial distribution.

The contribution of this paper is the introduction of the new GPB distribution, and the

investigation of its theoretical properties. We further develop an efficient algorithm for the

computation of its distribution function, implement the algorithm in an R package, and pro-

vide an illustration for practitioners. The computation of the cdf, however, is non-trivial.

There is no existing algorithm that can efficiently compute the cdf, despite the usefulness of

the distribution in practice. Although a similar algorithm as in Hong (2013) is used for com-

puting the cdf of the Poisson-Binomial distribution, our paper focuses on a broader picture by

introducing this new distribution, studying its theoretical properties, and then carrying out a

comparison of different algorithms for computing the distribution function.

The rest of this paper is organized as follows. Section 2 describes the theoretical properties

of the GPB distribution. Section 3 discusses the development and implementation of the

algorithm for the computation of the distribution function. Section 4 covers the validation

of the proposed algorithm, while Section 5 provides an illustration of the algorithm. Finally,

Section 6 presents some concluding remarks.

2 Theoretical Properties of the Distribution

In this section, we establish some theoretical properties of the GPB distribution. The mean

and variance of the distribution is presented in the following lemma.

3

Lemma 1 Let X be a random variable that follows the GPB distribution. Then, the mean

and variance of X are as follows:

µ =
n∑

k=1

ak +
n∑

k=1

pk(bk − ak) and σ2 =
n∑

k=1

pk(1− pk)(bk − ak)
2.

The proof of this lemma is trivial and so we omit it.

We now consider the cdf of X , which is defined as

F (x) = Pr(X ≤ x).

Let I = (I1, . . . , In). Note that Ik takes values in {0, 1}. Thus, the support of the random

vector I is

B = {0, 1} × · · · × {0, 1} × · · · × {0, 1}
︸ ︷︷ ︸

n times

.

The number of elements in B is clearly 2n. Let r = (r1, · · · , rk, · · · , rn) be an element in B.
The support of X is

X =

{

x : there exists at least one r ∈ B such that x =
n∑

k=1

ak(1− rk) + bkrk

}

.

To illustrate the set X , we provide the following example.

Example 1 Let I1 ∼ Bernoulli(p1), I2 ∼ Bernoulli(p2) and I3 ∼ Bernoulli(p3) be three

independent random indicators with success probabilities p1 = 0.1, p2 = 0.2 and p3 = 0.3,

respectively. The values of ak’s and bk’s are specified as a1 = 1, a2 = 2, a3 = 3 and b1 = 2, b2 =

3, b3 = 4. The support of random vector (I1, I2, I3) is

B = {(0, 0, 0), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1), (0, 1, 0), (0, 1, 1), (0, 0, 1)}.

The support of X =
∑3

k=1
ak(1 − Ik) + bkIk is X = {6, 7, 8, 9}. For example, r = (0, 0, 0)

yields x = 6, and similarly r = (0, 0, 1) yields x = 7.

We have the following theorem for the calculation of the pmf and the cdf of the GPB

distribution.

Theorem 1 Let r ∈ B and Sx be a set of r such that x =
∑n

k=1
ak(1 − rk) + bkrk. Let

a =
∑n

k=1
ak and b =

∑n

k=1
bk. The pmf ξx can be calculated as

ξx = Pr(X = x) =
∑

r∈Sx

n∏

k=1

prkk (1− pk)
1−rk , a ≤ x ≤ b.

The cdf can then be calculated as F (x) =
∑

u≤x ξu.

4

Note that
∏n

k=1
prkk (1−pk)

1−rk gives the probability Pr(I = r). Thus, the result inTheorem 1

is essentially based on enumeration. To illustrate Theorem 1, we provide the following

example.

Example 2 Under the setting of Example 1, the Sx set corresponding to each value x is

obtained as

S6 ={(0, 0, 0)}, S7 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}
S8 ={(1, 1, 0), (1, 0, 1), (0, 1, 1)}, S9 = {(1, 1, 1)}.

The pmf is then calculated as

ξ6 = Pr(X = 6) = 0.9× 0.8× 0.7 = 0.504,

ξ7 = Pr(X = 7) = 0.1× 0.8× 0.7 + 0.9× 0.2× 0.7 + 0.9× 0.8× 0.3 = 0.398,

ξ8 = Pr(X = 8) = 0.1× 0.2× 0.7 + 0.1× 0.8× 0.3 + 0.9× 0.2× 0.3 = 0.092,

ξ9 = Pr(X = 9) = 0.1× 0.2× 0.3 = 0.006.

Note that the enumeration based method can be computationally infeasible for large n

(e.g., when n > 30). When n = 30, 230 is around one billion. Thus, a computationally

efficient method is very much needed, which will be presented in the next section.

3 Computation of Distribution Function

For the development of the algorithm, we restrict ak and bk to be integers. We will discuss

non-integer cases later in Section 5. Let

ξj = Pr(X = j + a), j = 0, · · · , m,

be the pmf ofX , where a =
∑n

k=1
ak, b =

∑n

k=1
bk, andm = b−a. The objective is to compute

the pmf ξj, j = 0, · · · , m. A computationally efficient algorithm is based on the characteristic

function (CF) of X . The following theorem shows two ways of obtaining the CF of X .

Theorem 2 Let X be a random variable that follows the GPB distribution. Let a =
∑n

k=1
ak

and b =
∑n

k=1
bk. Let ξj = Pr(X = j+a) be the pmf of X, where j = 0, · · · , m and m = b−a.

By the definition of CF, it can be obtained from the pmf as

ϕ(t) = E[exp(itX)] =
m∑

j=0

ξj exp[it(j + a)], (3)

5

where i =
√
−1. Alternatively, the CF can be calculated by using the fact that X is defined as

an independent sum (i.e., X =
∑n

k=1
ak(1− Ik) + bkIk). In particular,

ϕ(t) = E

{

exp

[

it

n∑

k=1

ak(1− Ik) + bkIk

]}

=

n∏

k=1

[(1− pk) exp(itak) + pk exp(itbk)] . (4)

The formula in (3) involves ξj which is to be computed, while the formula in (4) involves the

product of n complex numbers which can be directly computed from ak’s, bk’s, and pk’s. Thus,

the formula in (4) possesses some computational advantages. To develop the computational

algorithm, we link (3) and (4), and obtain

m∑

j=0

ξj exp(itj) = exp[−ita]

n∏

k=1

[(1− pk) exp(itak) + pk exp(itbk)] . (5)

Let xl = exp[−iωla]
∏n

k=1
[(1− pk) exp(iωlak) + pk exp(iωlbk)], where ω = 2π/(m+ 1). Note

that xl is a complex number that can be represented as xl = ul + vli. We substitute t = ωl

into (5) and obtain a set of m+ 1 equations

1

m+ 1

m∑

j=0

ξj exp(iωlj) =
1

m+ 1
xl, l = 0, 1, · · · , m. (6)

According to Bracewell (2000), the left hand side of (6) is the inverse discrete Fourier transform

of the sequence (ξ0, ξ1, · · · , ξm), which can be recovered by applying the discrete Fourier

transform (DFT) to both sides of (6). Thus, we can compute the pmf ξj as

ξj =
1

m+ 1

m∑

l=0

exp(−iωlk)xl, j = 0, 1, · · · , m. (7)

Because there are efficient algorithms to do the DFT, the right hand side of (7) can be com-

puted efficiently. We call this method as the DFT-CF algorithm. Note that Hong (2013) used

a similar algorithm to compute the cdf of the Poisson-binomial distribution. The algorithm in

this paper deals with the GPB, which is a different distribution and involves more complicated

calculations.

The technical details of computing the xl’s are shown in the appendix. We provide the

following example to illustrate the calculation of xl and ξj for a small n.

Example 3 We consider four random indicators I1 ∼ Bernoulli(p1), I2 ∼ Bernoulli(p2), I3 ∼
Bernoulli(p3) and I4 ∼ Bernoulli(p4), where p1 = 0.1, p2 = 0.2, p3 = 0.3 and p4 = 0.4. We set

the ak’s to be a1 = 1, a2 = 1, a3 = 1, a4 = 1, and the bk’s to be b1 = 1, b2 = 2, b3 = 3, b4 = 4.

Under this setting, the support of X is X = {4, 5, 6, 7, 8, 9, 10}. Also, we have a = 4, b = 10

and m = 6. The values of xl and ξj are listed in Table 1.

Formally, we describe the DFT-CF algorithm as follows, which is used to compute the pmf

ξj, for j = 0, 1, · · · , m.

6

Table 1: A numerical example illustrating the DFT-CF algorithm.

X l xl = ul + vli j ξj
4 0 1.0000 + 0.0000i 0 0.336
5 1 0.0652 + 0.1822i 1 0.084
6 2 0.2928− 0.1218i 2 0.144
7 3 0.3180 + 0.1874i 3 0.260
8 4 0.3180− 0.1874i 4 0.056
9 5 0.2928 + 0.1218i 5 0.096
10 6 0.0652− 0.1822i 6 0.024

The DFT-CF Algorithm:

1. We first assign x0 = 1. Then, we compute the real and imaginary parts of xl by using

the formulae in (8) in the appendix, l = 1, . . . [m/2], and [·] is the ceiling function;

2. We compute the real and imaginary parts of xl by using the formula ul = um+1−l and

vl = −vm+1−l, l = [m/2] + 1, . . . , m;

3. We then apply the fast Fourier transform (FFT) algorithm to the sequence (x0/(m +

1), x1/(m+ 1), . . . , xn/(m+ 1)) to obtain (ξ0, ξ1, . . . , ξm).

The DFT-CF algorithm has been implemented in C and it can be called from R. We also

wrap the major functions into an R package GPB (Hong and Zhang 2016). The use of the R

package will be illustrated in Section 5.

4 Algorithm Validation

This section focuses on the validation of the developed algorithm.

4.1 Accuracy Comparison with an Exact Method

We develop an enumeration-based algorithm to compute the exact cdf of the GPB distribution

based on the theoretical formula in Section 2. Then, we use the maximum absolute error

(MAE) and the total absolute error (TAE) as accuracy metrics by comparing the cdf calculated

with the DFT-CF algorithm with that computed from the enumeration-based method for

different values of n, ak, bk and pk. The maximum absolute error (MAE) is defined as

MAE = max
x

|F (x)− Fenum(x)|,

7

Table 2: Accuracy of the DFT-CF algorithm compared with the enumeration method.

n a b min(pk) max(pk) MAE TAE
10 10 20 0.01 0.50 6.7× 10−16 4.4× 10−14

10 10 20 0.50 0.99 7.3× 10−16 2.8× 10−15

10 10 20 0.01 0.99 9.4× 10−16 3.8× 10−15

10 10 50 0.01 0.50 6.7× 10−16 4.4× 10−14

10 10 50 0.50 0.99 7.3× 10−16 2.8× 10−15

10 10 50 0.01 0.99 9.4× 10−16 3.8× 10−15

10 50 100 0.01 0.50 6.7× 10−16 4.4× 10−14

10 50 100 0.50 0.99 7.3× 10−16 4.6× 10−15

10 50 100 0.01 0.99 9.4× 10−16 4.5× 10−15

20 20 40 0.01 0.50 4.4× 10−16 4.1× 10−15

20 20 40 0.50 0.99 6.7× 10−16 4.1× 10−14

20 20 40 0.01 0.99 1.3× 10−15 1.1× 10−14

20 40 100 0.01 0.50 4.4× 10−16 4.1× 10−15

20 40 100 0.50 0.99 6.7× 10−16 4.1× 10−14

20 40 100 0.01 0.99 1.3× 10−15 1.1× 10−14

20 100 200 0.01 0.50 4.4× 10−16 4.1× 10−15

20 100 200 0.50 0.99 6.7× 10−16 4.1× 10−14

20 100 200 0.01 0.99 1.3× 10−15 1.1× 10−14

while the total absolute error (TAE) is defined as

TAE =
b∑

x=a

|F (x)− Fenum(x)|,

where F (x) is the cdf computed by using the DFT-CF algorithm and Fenum(x) is the cdf

computed by using the enumeration formula in Section 2.

The accuracy test results are shown in Table 2 for different parameter settings for n, ak, bk

and p. All computations were done on Linux 64-bit server with Intel Xeon CPU (E5-2680,

2.50GHz) and 263 GB RAM. Due to the complex enumeration calculation, the exact method

can only handle at most 30 random indicators (i.e., n = 30) under the capacity of the computer

server. Table 4 shows the accuracy of the cdf calculated with the DFT-CF algorithm for various

values of n, ak, bk and p. The MAE are generally less than 5 × 10−15 and the TAE are less

than 5 × 10−14 for the DFT-CF algorithm, when n is less than 20. Overall, the results show

that the DFT-CF algorithm can accurately compute the cdf of the GPB distribution.

4.2 Accuracy Comparison with the Binomial Distribution

To test the accuracy of the DFT-CF algorithm for large values of m and n, we compare the

cdf computed by the DFT-CF algorithm with that of the binomial distribution. As mentioned

8

earlier, the binomial distribution is a special case of the GPB distribution when all pk’s are

the same, and ak = 0, bk = 1 for all n random indicators. Thus, in this comparison setting,

we let pk = p to be the same, and ak = 0, bk = 1; that is,

X =
n∑

k=1

ak(1− Ik) + bkIk =
n∑

k=1

Ik.

The exact pmf of X can be calculated from the binomial distribution as

Pr(X = x) =

(
n

x

)

px(1− p)n−x.

Here again, the MAE and TAE are used as accuracy metrics, which are given by

MAE = max
x

|F (k)− Fbin(k)|, and TAE =

n∑

x=0

|F (x)− Fbin(x)|,

where F (x) is the cdf computed by the DFT-CF algorithm and Fbin(x) is the cdf computed

using the binomial distribution function implemented in R (2016). The accuracy test results

are shown in Table 3 with different parameter settings for n, ak, bk and p. Basically, the TAE

and MAE accumulates as n, p and ak, bk increases. When n is less than 10,000, the MAE is

within 1 × 10−12 and TAE is under 1 × 10−8. The results in Table 3 show that the DFT-CF

algorithm can accurately compute the cdf for large n. With no efficient algorithm available for

computing the GPB distribution, the proposed method provides an important and efficient

way to model the GPB distribution in real-life applications.

4.3 Computational Efficiency

The computational time of the DFT-CF algorithm is mostly determined by n and m. Note

thatm = b−a =
∑n

k=1
bk−

∑n

k=1
ak. We first consider the computational time when n is large.

We choose 10 different success probability p’s from [0.01, 0.99], and for different values of n

and m, we set pk = p, ak = 0, bk = m/n for all n indicators. The time for calculating the entire

cdf using the DFT-CF algorithm is averaged across 10 different values for p. The averaged

computing time is shown in Table 4. The unit of the computational time is in seconds.

Figure 1 visualizes the results in Table 4. Both the x-axis and y-axis are on log-scales. Each

line indicates the average computational time for a specific n, where n = 10, 100, 1,000 and

10,000. Figure 1 shows that as n increases, the computational time increases exponentially.

The computational time is negligible (less than 10 milliseconds) when n ≤ 100. When n is fixed

at 10, 100, 1,000 and 10,000, the general average computational time increases as m increases.

However, there are minor drops in computational time even whenm increases to large numbers.

These drops may be caused by the computational complexity of the FFT algorithm, which

9

Table 3: Accuracy of the DFT-CF algorithm compared with the binomial distribution, with

a = 0, and b = n.

n p MAE TAE n p MAE TAE
10 0.01 8.9× 10−16 3.9× 10−15 2,000 0.01 2.9× 10−14 2.3× 10−11

10 0.50 4.4× 10−16 1.6× 10−15 2,000 0.50 1.4× 10−13 1.1× 10−10

10 0.90 6.7× 10−16 3.2× 10−15 2,000 0.90 4.2× 10−13 3.4× 10−10

20 0.01 4.4× 10−16 4.7× 10−15 5,000 0.01 1.3× 10−13 3.2× 10−10

20 0.50 7.1× 10−16 6.3× 10−15 5,000 0.50 4.3× 10−13 6.4× 10−10

20 0.90 1.9× 10−15 1.8× 10−14 5,000 0.90 7.1× 10−13 1.1× 10−9

50 0.01 2.0× 10−15 5.3× 10−14 10,000 0.01 4.2× 10−13 1.8× 10−9

50 0.50 2.9× 10−15 5.2× 10−14 10,000 0.50 1.1× 10−12 3.2× 10−9

50 0.90 3.5× 10−15 5.3× 10−14 10,000 0.90 1.6× 10−12 4.6× 10−9

100 0.01 1.4× 10−14 5.7× 10−13 20,000 0.01 6.9× 10−13 3.6× 10−9

100 0.50 1.9× 10−15 3.7× 10−14 20,000 0.50 2.7× 10−12 1.7× 10−8

100 0.90 7.4× 10−15 2.7× 10−13 20,000 0.90 5.4× 10−12 3.9× 10−8

200 0.01 7.8× 10−15 8.8× 10−13 50,000 0.01 3.1× 10−12 6.7× 10−8

200 0.50 5.3× 10−15 4.9× 10−13 50,000 0.50 9.8× 10−12 1.3× 10−7

200 0.90 3.0× 10−14 1.9× 10−12 50,000 0.90 1.6× 10−11 1.8× 10−7

500 0.01 2.4× 10−14 5.0× 10−12 100,000 0.01 5.7× 10−12 2.0× 10−7

500 0.50 2.4× 10−14 5.5× 10−12 100,000 0.50 1.6× 10−11 3.4× 10−7

500 0.90 6.7× 10−14 1.7× 10−11 100,000 0.90 4.3× 10−11 1.2× 10−6

1,000 0.01 5.2× 10−14 2.1× 10−11

1,000 0.50 5.8× 10−14 2.0× 10−11

1,000 0.90 1.8× 10−13 7.5× 10−11

10

Table 4: Average computational time in seconds for the DFT-CF algorithm over p for different

choices of n and m.

m
n

10 100 1,000 10,000

10 0.000
20 0.000
50 0.000
100 0.000 0.000
200 0.000 0.001
500 0.000 0.001

1,000 0.001 0.003 0.023
2,000 0.001 0.005 0.045
5,000 0.006 0.017 0.118
10,000 0.004 0.024 0.225 2.228
20,000 0.009 0.049 0.452 4.456
50,000 0.084 0.183 1.191 11.207
100,000 0.652 0.809 2.837 22.786
200,000 0.160 0.552 4.579 44.933
500,000 110.423 103.886 112.395 250.482

1,000,000 7.406 8.973 28.826 232.975
2,000,000 3765.094 1751.390 3753.482 2657.690
5,000,000 211.050 221.361 339.458 1358.968
10,000,000 26850.920 14401.410 26927.20 18215.330

depends on the factorization of (m + 1). The DFT-CF algorithm can complete the required

computation within five minutes when n ≤ 10,000 and m ≤ 1,000,000. As n exceeds 10,000

and m exceeds 1,000,000, the DFT-CF algorithm requires more than five minutes. Overall,

the DFT-CF algorithm shows reasonable computational efficiency.

11

1e+01 1e+03 1e+05 1e+07

1e
−0

6
1e

−0
3

1e
+0

0
1e

+0
3

m

Ti
m

e
in

 S
ec

on
ds

n=10
n=100
n=1000
n=10000

Figure 1: Average computational time of the DFT-CF algorithm for different choices of n and

m. The x-axis and y-axis are both on the log-scale.

12

5 Illustrations

5.1 The Software Package

The DFT-CF algorithm has been implemented in the R package GPB, Hong and Zhang

(2016), which can be downloaded from the Comprehensive R Archive Network (http://cran.r-

project.org/). The R functions for computing the cdf, pmf, quantile function and random

number generation are all available in the R package. For example, the function pgpb() takes

pk’s, ak’s and bk’s as input parameters and computes the cdf of the distribution. See the

following R code for reference:

library(GPB)

pgpb(kk=6:9,pp=c(0.1,0.2,0.3),aval=c(1,2,3),bval=c(2,3,4),

wts=c(1,1,1))

Here, kk is x (i.e., the values for which the cdf needs to be evaluated), pp is the vector of pk’s,

aval is the vector of ak’s, bval is the vector of bk’s, and wts is the vector of weights for pk’s.

5.2 Computational Tips

There are a few tips that need to be given in the use of the algorithm. One can use the

weights option to speed up the computing when the pk’s are all the same. For example, if

there are 1,000 random indicators with the same p, instead of replicating the same random

indicator 1,000 times, one can specify wts=1,000. The use of wts argument will speed up the

computing process due to the way the implementation of the algorithm has been made.

The proposed algorithm can be slow in cases when n and m are extremely large. In some

cases, the problem can be eased by taking out the greatest common divisor of ak’s and bk’s.

For example, when k = 1, 2, . . . , 10, ak = 10, 20, . . . , 100, and bk = 100, 200, . . . , 1,000, the cdf

is equivalent to the cdf when ak = 1, 2, . . . , 10 and bk = 10, 20, . . . , 100, with a multiplier of

10 for the support values. Thus, by taking out the greatest common divisor, we can reduce

the computational time especially when m is large and the common divisors between ak’s and

bk’s are large. See the following R code for reference:

pgpb(kk=seq(10,100,by=10), pp=c(.1, .2, .3), aval=c(10,20,30),

bval=c(20,30,40), wts=c(1,1,1))

pgpb(kk=1:10, pp=c(.1, .2, .3), aval=c(1,2,3), bval=c(2,3,4),

wts=c(1,1,1))

Although the algorithm is developed based on cases when both ak and bk are integers,

it can be applied to non-integer cases by multiplying powers of 10 to convert decimal digits

13

to integers. For example, if ak = {0.5, 1.5, . . . , 9.5}, bk = {1, 2, . . . , 10}, and cdf needs to be

computed at x = 50.5, then we can multiply the set of ak, bk and x by 10. The cdf value is

the same as being computed at x = 505 with ak = {5, 15, . . . , 95} and bk = {10, 20, . . . , 100}.
Note that the multiplication by powers of 10 increases m and correspondingly increases the

computational time. However, this process can extend the proposed algorithm to the cases of

non-integer numbers. See the following R code for reference:

aval=seq(0.5,9.5,by=1)*10

bval=seq(1,10,by=1)*10

pgpb(kk=50.5*10,pp=seq(0.1,0.5,length.out=10),aval=aval,

bval=bval,wts=rep(1,10))

6 Concluding Remarks

In this paper, we introduce the GPB distribution and derive some of its theoretical properties.

We develop an efficient DFT-CF algorithm to compute the cdf of the GPB distribution. We

demonstrate that the proposed algorithm is accurate in terms of error as compared to an

enumeration-based exact method and the binomial distribution in a special case. We further

show the computational efficiency and the limitation of the DFT-CF algorithm in numerical

analysis for different settings of n and m. The DFT-CF algorithm is generally accurate (with

the TAE under 1×10−8) and computationally efficient (less than five minutes for computing)

when n is less than 10,000. The DFT-CF algorithm can be extended to non-integer numbers

as well. The proposed method has been implemented in an R package named GPB.

From probability theory, the pmf of the sum of two discrete random variables can be found

by using convolution. From the definition in (2), X is defined as an independent sum of Ek’s.

Because the pmf of Ek is simple, one possible way to find the pmf of X is to sequentially apply

the convolution. For example, one can find the pmf of E1+E2 by using the convolution of the

pmf of E1 and E2. Then, one can find the pmf of E1+E2+E3 by using the convolution of the

pmf of E1+E2 and E3. When n andm are large, this process can also be very time consuming.

However, it will be an interesting topic to investigate in the future research how such a method

compares the method developed here in terms of accuracy as well as computational time.

In Section 1, we mention several possible areas of applications for the GPB distribution.

However, the applications of the GPB distribution are much broader. For example, it can

be useful in econometrics (e.g., Duffie, Saita, and Wang 2007), data mining (e.g., Tang and

Peterson 2011), bioinformatics (e.g., Niida et al. 2012), renewable energy (Bossavy, Girard,

and Kariniotakis 2013), and survey sampling (e.g., Chen and Liu 1997), in which cases there

are costs associated with random indicators with different success probabilities. The imple-

14

mentation of the developed algorithm in R makes it convenient for the practitioners.

Acknowledgments

The authors thank the editor, an associate editor, and one referee, for their valuable comments

on an earlier version of this manuscript which led to this improved one. The authors acknowl-

edge Advanced Research Computing at Virginia Tech for providing computational resources.

The work by Hong was partially supported by the National Science Foundation under Grant

CNS-1565314 to Virginia Tech.

A Technical Details

In this appendix, we give the technical details of the calculation of xl, l = 0, 1, . . . , m, which

are essential in the DFT-CF algorithm. We use the same process as in Hong (2013). However,

the formulas are different due to different distribution settings. Note that xl is a complex

number, which is represented as xl = ul + ivl with real part ul and imaginary part vl. From

(6), we have

xl =
m∑

j=0

ξj exp(iωlj)

that holds for l = 0, 1, · · · , m. When l = 0,

x0 =

m∑

j=0

ξj exp(iω0j) =

m∑

j=0

ξj exp(0) =

n∑

k=0

ξk = 1,

because ξj is pmf summing up to one. In general, we denote |z| as the modulus and Arg(z)

as the principal value of the argument of a complex number z. Let

z0l = cos(−ωla) + i sin(−ωla),

zkl = [(1− pk) cos(ωlak) + pk cos(ωlbk)] + i[(1− pk) sin(ωlak) + pk sin(ωlbk)].

For l 6= 0, we obtain

xl = exp

[
n∑

k=0

log(zkl)

]

= exp

(
n∑

k=0

log {|zkl| exp[iArg(zkl)]}
)

= exp

[
n∑

k=0

log (|zkl|)
]{

cos

[
n∑

k=0

Arg(zkl)

]

+ i sin

[
n∑

k=0

Arg(zkl)

]}

.

In this case, |z0l| = 1, Arg[z0l] = atan2 {sin(−ωla), cos(−ωla)}, and

|zkl| =
{
[(1− pk) cos(ωlak) + pk cos(ωlbk)]

2 + [(1− pk) sin(ωlak) + pk sin(ωlbk)]
2
} 1

2 ,

Arg[zkl] = atan2 {[(1− pk) sin(ωlak) + pk sin(ωlbk)], [(1− pk) cos(ωlak) + pk cos(ωlbk)]} .

15

Here, the output of the atan2(y, x) function is arctan(y/x) if x > 0; π + arctan(y/x) if y ≥ 0

and x < 0; −π + arctan(y/x) if y < 0 and x < 0; π/2 if y > 0 and x = 0; −π/2 if y < 0 and

x = 0; and 0 if y = 0 and x = 0. Let zl = exp [
∑n

k=0
log (|zkl|)]. We obtain formulas for ul

and vl as

ul = zl cos

[
n∑

k=0

Arg(zkl)

]

and vl = zl sin

[
n∑

k=0

Arg(zkl)

]

, l = 1, . . . , m. (8)

In addition, note that all ξj’s are real numbers and exp[iω(m+1)j] = 1. Thus, the conjugate

of xl, l = 1, . . . , m, is

xl = ul − ivl =
m∑

j=0

ξj exp(−iωlj) =
m∑

j=0

ξj exp[iω(m+ 1− l)j] = xm+1−l = um+1−l + ivm+1−l.

We obtain ul = um+1−l and vl = −vm+1−l for l = 1, . . . , m, which means we can save half of

the computing time by only computing the first half of the sequence (i.e., l = 1, . . . [m/2]).

References

Alger, D. (2006). Voting by proxy. Public Choice 126 (1), 1–26.

Bossavy, A., R. Girard, and G. Kariniotakis (2013). Forecasting ramps of wind power

production with numerical weather prediction ensembles. Wind Energy 16, 51–63.

Bracewell, R. (2000). The Fourier Transform & Its Applications (Third ed.). Singapore:

McGraw-Hill.

Chen, S. X. and J. S. Liu (1997). Statistical applications of the Poisson-binomial and con-

ditional Bernoulli distributions. Statistica Sinica 7, 875–892.

Cheng, M. C. N. and J. F. R. Duncan (2014). Rademacher Sums and Rademacher Series,

pp. 143–182. Berlin, Heidelberg: Springer.

Dilworth, S. J. and S. J. Montgomery-Smith (1993). The distribution of vector-valued Rad-

macher series. Annals of Probability 21, 2046–2052.

Duffie, D., L. Saita, and K. Wang (2007). Multi-period corporate default prediction with

stochastic covariates. Journal of Financial Economics 83, 635–665.

Hong, Y. (2013). On computing the distribution function for the Poisson bionomial distri-

bution. Computational Statistics and Data Analysis 59, 41–51.

Hong, Y. and W. Q. Meeker (2013). Field-failure predictions based on failure-time data

with dynamic covariate information. Technometrics 55, 135–149.

16

Hong, Y. and M. Zhang (2016).GPB: Generalized Poisson Binomial Distribution. R package

version 1.0.

Montgomery-Smith, S. J. (1990). The distribution of Rademacher sums. Proceedings of the

American Mathematical Society 109, 517.

Niida, A., S. Imoto, T. Shimamura, and S. Miyano (2012). Statistical model-based testing

to evaluate the recurrence of genomic aberrations. Bioinformatics 28, i115–i120.

Pitacco, E. (2007). Mortality and longevity: A risk management perspective. In IAA Life

Colloquium, Stockholm, available at

http://www.actuaries.org/LIFE/Events/Stockholm/Pitacco.pdf.

R Development Core Team (2016). R: A Language and Environment for Statistical Com-

puting. Vienna, Austria: R Foundation for Statistical Computing.

Tang, P. and E. A. Peterson (2011). Mining probabilistic frequent closed itemsets in un-

certain databases. In Proceedings of the 49th ACM Southeast Conference (ACMSE),

Kennesaw, GA, pp. 86–91.

17

