
4746 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 8, AUGUST 2019

Theoretical Bounds and Constructions of Codes
in the Generalized Cayley Metric

Siyi Yang , Student Member, IEEE, Clayton Schoeny , Student Member, IEEE,

and Lara Dolecek , Senior Member, IEEE

Abstract— Permutation codes have recently garnered substan-
tial research interest due to their potential in various applications,
including cloud storage systems, genome resequencing, and flash
memories. In this paper, we study the theoretical bounds and
constructions of permutation codes in the generalized Cayley
metric. The generalized Cayley metric captures the number of
generalized transposition errors in a permutation and subsumes
previously studied error types, including transpositions and
translocations, without imposing restrictions on the lengths and
positions of the translocated segments. Based on the so-called
breakpoint analysis method proposed by Chee and Vu, we first
present a coding framework that leads to order-optimal construc-
tions, thus improving upon the existing constructions that are
not order-optimal. We then use this framework to also develop
an order-optimal coding scheme that is additionally explicit and
systematic.

Index Terms— Permutation codes, systematic permutation
codes, generalized Cayley distance, block permutation distance,
order-optimality.

I. INTRODUCTION

GENERALIZED transposition errors are encountered in
various applications, including cloud storage systems,

genome resequencing, and flash memories. Cloud storage
applications such as Dropbox, OneDrive, iTunes, Google play,
etc., are becoming increasingly popular, since they help man-
age and synchronize data stored across different devices [2].
When items to be synchronized across are ordered, e.g., in a
play list, changes on one device can be viewed as trans-
positions in the permutation on the other device. In DNA
resequencing, released genomes consist of collections of
unassembled contigs (a contig is an ordered list of genes in the
corresponding genome [3]), whose organizations evolve over
time by undergoing rearrangement operations. Gene order in a
chromosome is subject to rearrangements including reversals,
transpositions, translocations, block-interchanges, etc. [3], [4].
Generalized transpositions are also encountered in flash mem-
ories that utilize rank modulation, a representation in which
cells store relative ranks of their charge levels as a permutation.
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Charge leakage across cells can then be viewed as a sequence
of transpositions in the stored permutation. Errors encountered
in the applications described above can be appropriately
modeled by the generalized Cayley metric for permutation
codes, introduced by Chee and Vu, that captures the number
of generalized transpositions between two permutations [5].

Permutation codes in the Kendall-τ metric and the Ulam
metric, along with codes in the Levenshtein metric have been
recently actively studied, in [6]–[13],respectively. Generalized
transposition errors subsume transpositions and translocations
that the Kendall-τ metric and Ulam metric capture, and
in particular no restrictions are imposed on the positions
and lengths of the translocated segments as in these two
metrics. Codes in the generalized Cayley metric were first
studied in [5] using the breakpoint analysis, wherein a coding
scheme is constructed based on permutation codes, previously
introduced in [10], in the Ulam metric. Let N be the length
of the codewords, and t be the maximum number of errors
in the generalized Cayley metric. While the coding scheme
proposed in [5] is explicitly constructive and implementable,
the interleaving technique used inevitably incurs a noticeable
redundancy of �(N), without even considering the number
of errors that the code is able to correct. As we show later,
the best possible redundancy of a length-N code that corrects
t generalized transposition errors is �(t log N). When t is
o( N

log N ), the gap between the redundancy of the existing codes
based on interleaving and the optimal redundancy increases
with N , thus motivating the need to introduce other techniques
that are not based on interleaving. We say a length-N code that
corrects t generalized transposition errors is order-optimal if
the redundancy is �(t log N).

In order to obtain codes in the generalized Cayley metric
that are order-optimal, we present a coding method that is
not based on interleaving. The main idea of our coding
scheme is to map each permutation of {1, 2, · · · , N} to a
unique characteristic set in the Galois field Fq , where q is
a prime number such that N2 − N < q < 2N2 − 2N
and N is the codelength. We prove that the knowledge of
the boundaries of the unaltered segments is sufficient for
recovering the permutation from its modified version, obtained
through generalized transpositions. We exploit the fact that the
symmetric difference of the characteristic sets of two distinct
permutations corresponds to these boundaries. Given that the
number of such boundaries is linearly upper bounded by the
number of generalized transpositions, it is sufficient to find
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permutations with corresponding characteristic sets on Fq that
have large enough set differences to ensure the desired error
correction property. Our proposed method provides a sufficient
condition for ensuring the lower bound on the cardinalities of
these set differences, which in turn ensures a large enough
minimum distance of the resulting code, while the code is
order-optimal. Using this approach, we further develop a
systematic scheme that is also order-optimal.

The rest of this paper is organized as follows. In Section II,
we introduce the basic notation and properties for the general-
ized Cayley metric and the so-called block permutation metric,
which is introduced for metric embedding. In Section III,
we define the notion of error-correcting codes in these two
metrics and derive useful upper and lower bounds on their
optimal rates. We prove the optimal rate to be 1−� ( t

N

)
, and

use these results to guide the construction of order-optimal
codes. In Section IV, we present a method for constructing
permutation codes in the generalized Cayley metric. We assign
to each permutation of length N a syndrome with elements
chosen from a Galois field Fq , where q is a prime number
such that N2 − N < q < 2(N2 − N). We prove that the
permutations with the same syndrome constitute a codebook,
and we prove that the largest one is order-optimal. Based on
this method, we then develop a construction for order-optimal
systematic permutation codes in the generalized Cayley metric
in Section V. In Section VI, we prove that the rates of
our proposed codes are higher than those of existing codes
based on interleaving, namely, our coding scheme is more
rate efficient when N is sufficiently large and t = o

(
N

log N

)
.

Lastly, we conclude and summarize our main contributions in
Section VII.

II. MEASURE OF DISTANCE

A. Notation

In this paper, we denote by [N] the set {1, 2, · · · , N}. We let
SN represent the set of all permutations on [N], where each
permutation σ : [N] → [N] is a bijection between [N] and
itself. The symbol � denotes the composition of functions.
Specifically, σ �π denotes the composition of two permutations
σ , π ∈ SN , i.e., (σ � π) (i) = σ (π (i)), ∀ i ∈ [N]. We assign a
vector (σ (1), σ (2), · · · , σ (N)) to each permutation1 σ ∈ SN .
Under this notation, we call e = (1, 2, · · · , N) the identity per-
mutation. Additionally, σ−1 is the inverse permutation of σ .
The subsequence of σ from position i to j , i ≤ j , is written as
σ [i ; j ] � (σ (i), σ (i + 1), · · · , σ ( j)). The symbol � refers to
the symmetric difference of two sets. Let GCD (·) and LCM (·)
be the greatest common divisor and the least common multiple,
respectively. The symbol ≡ denotes ‘congruent modulo’.

B. Generalized Cayley Distance

A generalized transposition φ (i1, j1, i2, j2) ∈ SN , where
i1 ≤ j1 < i2 ≤ j2 ∈ [N], refers to a permutation that is
obtained from swapping two segments, e [i1, j1] and e [i2, j2],

1We note that this is different from the cycle notation typically used in
algebra.

of the identity permutation [5],

φ (i1, j1, i2, j2) � (1, · · · , i1 − 1, i2, · · · , j2,

j1 + 1, · · · , i2 − 1, i1, · · · , j1, j2 + 1, · · · , N) . (1)

Denote the set of all permutations that represent one gen-
eralized transposition on any permutation of length N by TN .
For a given π ∈ SN and φ (i1, j1, i2, j2) ∈ TN , the per-
mutation obtained from swapping the segments π [i1; j1] and
π [i2; j2] is exactly π � φ, i.e., the permutation,

(π(1), · · · , π(i1 − 1), π(i2), · · · , π( j2), π( j1 + 1),

· · · , π(i2−1), π(i1), · · · , π( j1), π( j2+1), · · · , π(N)) . (2)

Example 1. Let π = (3, 5, 6, 7, 9, 8, 1, 2, 10, 4) ∈ S10. Let
the underlines mark the subsequences that are swapped by
φ(2, 5, 7, 8) = (

1, 7, 8, 6, 2, 3, 4, 5, 9, 10
)
. Then, for π =(

3, 5, 6, 7, 9, 8, 1, 2, 10, 4
)
, we have:

π � (φ(2, 5, 7, 8)) = (
3, 1, 2, 8, 5, 6, 7, 9, 10, 4

)
.

Definition 1. (Generalized Cayley Distance, cf. [5]) The gen-
eralized Cayley distance dG(π1, π2) is defined as the minimum
number of generalized transpositions that are needed to obtain
the permutation π2 from π1, i.e.,

dG(π1, π2) � min
d

{∃ φ1, φ2, · · · , φd ∈ TN , s.t.,

π2 = π1 � φ1 � φ2 · · · � φd}. (3)

Remark 1. (cf. [5]). For all π1, π2, π3 ∈ SN , the generalized
Cayley distance dG satisfies the following properties:

1) (Symmetry) dG(π2, π1) = dG(π1, π2).
2) (Left-invariance) dG(π3 � π1, π3 � π2) = dG(π1, π2).
3) (Triangle Inequality) dG(π1, π3) ≤ dG(π1, π2) +

dG(π2, π3).

Notice that the generalized Cayley distance dG between
two permutations is hard to compute, which makes it difficult
to construct codes in the generalized Cayley metric. The
common method to address the difficulty of specifying the
distances between permutations is metric embedding, where
one finds another metric that is computable and is of the
same order of magnitude as the original metric. We therefore
seek to construct codes under the new metric, the so-called
block permutation distance to be introduced next, and use this
construction to specify codes under dG .

C. Block Permutation Distance

We say a permutation π ∈ SN is minimal2 if and only if
no consecutive elements in π are also consecutive elements in
the identity permutation e, i.e.,

∀ 1 ≤ i < N, π(i + 1) 	= π(i)+ 1. (4)

The set of all minimal permutations of length N is denoted
by DN . Next, we define the block permutation distance as
follows.

2We note that this is different from the usual notion of minimal permutation
specified in group theory.
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Definition 2. The block permutation distance dB (π1, π2)
between two permutations π1, π2 ∈ SN is equal to d if

π1 = (ψ1, ψ2, · · · , ψd+1) ,

π2 = (
ψσ(1), ψσ(2), · · · , ψσ(d+1)

)
, (5)

where σ ∈ Dd+1, ψk = π1
[
ik−1 + 1 : ik

]
for some 0 = i0 <

i1 · · · < id < id+1 = N, and 1 ≤ k ≤ d + 1.

Note that the block permutation distance between permuta-
tions π1 and π2 is d if and only if (d + 1) is the minimum
number of blocks the permutation π1 needs to be divided
into in order to obtain π2 through a block-level permutation.
Here by block-level permutation we refer to partitioning the
original permutation π1 into multiple blocks and permuting
these blocks.

Example 2. Let π1 = (3, 5, 6, 7, 9, 8, 1, 2, 10, 4), π2 =
(3, 1, 2, 8, 5, 6, 7, 9, 10, 4). Define ψi , 1 ≤ i ≤ 4, and σ as
follows,

ψ1 = (3), ψ2 = (5, 6, 7, 9), ψ3 = (8), ψ4 = (1, 2),

ψ5 = (10, 4), σ = (1, 4, 3, 2, 5).

Then,

π1 = (ψ1, ψ2, ψ3, ψ4, ψ5) ,

π2 = (
ψσ(1), ψσ(2), ψσ(3), ψσ(4), ψσ(5)

)
, (6)

and thus, dB(π1, π2) = 4, since σ is minimal. This example
is in accordance with Definition 2.

Lemma 1. The block permutation distance dB also satisfies
the properties of symmetry and left-invariance, which are
defined in Remark 1.

Proof. We suppose π1, π2 ∈ SN such that
dB(π1, π2) = d . Then, there exist σ ∈ Sd+1, and
ψ1, ψ2, · · · , ψd+1 such that π1 = (ψ1, ψ2, · · · , ψd+1)
and π2 = (

ψσ(1), ψσ(2), · · · , ψσ(d+1)
)
.

To prove the symmetry property, we define ψ 

i = ψσ(i) for

1 ≤ i ≤ d + 1, and σ 
 = σ−1. Then, σ 
 ∈ Dd+1, and

π2 = (
ψ 


1, ψ


2, · · · , ψ 


d+1

)
,

π1 =
(
ψ 

σ 
(1), ψ



σ 
(2), · · · , ψ 


σ 
(d+1)

)
,

thus, dB(π2, π1) = d = dB(π1, π2).
To prove the left-invariance property, suppose the length

of ψi is li and let ψi = (ψi (1), ψi (2), · · · , ψi (li )) for all
1 ≤ i ≤ d + 1. For a given π3 ∈ SN , we define ψ̃i =
(π3 (ψi (1)) , π3 (ψi (2)) , · · · , π3 (ψi (li ))), for 1 ≤ i ≤ d + 1.
Then,

π3 � π1 =
(
ψ̃1, ψ̃2, · · · , ψ̃d+1

)
,

π3 � π2 =
(
ψ̃σ (1), ψ̃σ (2), · · · , ψ̃σ (d+1)

)
.

Therefore, dB(π3 � π1, π3 � π2) = d = dB(π1, π2).
Note that Definition 2 is an implicit representation of dB .

Next, we seek to characterize dB explicitly.

Definition 3. The characteristic set A(π) for any π ∈ SN is
defined as the set of all consecutive pairs in π , i.e.,

A(π) � {(π(i), π(i + 1)) |1 ≤ i < N}. (7)

Recall that e refers to the identity permutation.

Definition 4. The block permutation weight wB (π) is
defined as the number of consecutive pairs in π that do
not belong to A(e) (wB is exactly the number of so-called
breakpoints in [5]), i.e.,

wB (π) � |A(π) \ A(e)|. (8)

Lemma 2 and Remark 2 state explicit representations of the
block permutation distance dB by the characteristic set and the
block permutation weight, respectively, and will be used later
in the paper to establish our main result.

Lemma 2. For all π1, π2 ∈ SN ,

dB(π1, π2) = |A(π2) \ A(π1)| = |A(π1) \ A(π2)|. (9)

Proof. The proof is in Appendix A.

Remark 2. From Lemma 2 and Definition 4, it is obvious that

wB (π) = dB(e, π) = dB(π, e). (10)

For all π1, π2 ∈ SN , it follows immediately from the
left-invariance property of dB and (8) that

dB (π1, π2) = wB

(
π−1

1 � π2

)
. (11)

In Example 3, we show how to compute the block permu-
tation distance of two permutations from their characteristic
sets, as it is indicated in Lemma 2.

Example 3. For π1, π2 specified in Example 2,

A(π1) = {(3, 5), (5, 6), (6, 7), (7, 9), (9, 8),

(8, 1), (1, 2), (2, 10), (10, 4)},
A(π2) = {(3, 1), (1, 2), (2, 8), (8, 5), (5, 6),

(6, 7), (7, 9), (9, 10), (10, 4)}.
Therefore,

|A(π1) \ A(π2)| = |{(3, 5), (9, 8), (8, 1), (2, 10)}|
= 4 = dB(π1, π2).

This example is in accordance with Lemma 2.

D. Metric Embedding

The generalized Cayley distance is difficult to compute,
whereas the block permutation distance can be computed
efficiently. Therefore, it is easier to check whether two dis-
tinct candidate codewords in a codebook meet the minimum
requirement on the block permutation distance, than it is to
check whether they meet the minimum requirement on the
generalized Cayley distance. In light of this observation, in the
next section, we apply metric embedding to transform the
problem of code design in dG into that in dB , which is easier
to deal with, using the following results.

Lemma 3. For all π1, π2 ∈ SN , the following inequality
holds,

wB (π1 � π2) ≤ wB (π1)+wB (π2) . (12)

Proof. The proof is in Appendix B.
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Remark 3. It follows immediately from equation (11) and
Lemma 3 that the block permutation distance satisfies the
triangle inequality, i.e., ∀ π1, π2, π3 ∈ SN ,

dB(π1, π3) ≤ dB(π1, π2)+ dB(π2, π3). (13)

From Lemma 3 and the definitions of the generalized Cayley
metric and the block permutation metric, we observe the
following relation between dB and dG . This result is used
later in Section IV.

Lemma 4. For all π1, π2 ∈ SN , the following inequality
holds,

dG (π1, π2) ≤ dB (π1, π2) ≤ 4dG (π1, π2) . (14)

Proof. To prove the upper bound, we consider two arbitrary
permutations π1, π2 ∈ SN , and let k = dG(π1, π2). We know
from definitions of a generalized transposition and the block
permutation weight that for any generalized transposition φ ∈
TN (recall that TN is defined at the beginning of Section II-B
as the set of all permutations that represent a generalized
transposition in permutations of length N), the following
inequality holds,

wB (φ) ≤ 4. (15)

From the definition of the generalized Cayley metric and
dG(π1, π2) = k, it follows that for some φ1, φ2, · · · , φk ∈ TN ,

π2 = π1 � φ1 � φ2 · · · � φk .

Then, from Lemma 3 and (15),

dB (π1, π2) = wB

(
π−1

1 � π2

)

= wB (φ1 � φ2 � · · · � φk)

≤
k∑

i=1

wB (φi )

≤ 4k = 4dG (π1, π2) .

The upper bound is proved.
The lower bound is trivially attained when π1 = π2. When

π1 and π2 are distinct, it follows that dB(π1, π2) = d for
some positive integer d . Then, according to the definition
of the block permutation distance, there exists a minimal
permutation σ (minimal permutation is defined in Section II-C
as a permutation where no consecutive elements in σ are
also consecutive elements in the identity permutation) and a
partition {ψi }d+1

i=1 of π1 such that, π1 = (ψ1, ψ2, · · · , ψd+1),
and π2 = (

ψσ(1), ψσ(2), · · · , ψσ(d+1)
)
.

Next, suppose l0 is the smallest index l such that σ(l) 	= l,
1 ≤ l ≤ d + 1 (the assumption that π1 	= π2 ensures the
existence of l0). Let k0 = σ−1(l0), then k0 > l0. Let φ1
represent the generalized transposition that swaps the subse-
quences

(
ψσ(l0), ψσ(l0+1), · · · , ψσ(k0−1)

)
and ψσ(k0) = ψl0 in

π2. Let π(1)2 = π2 � φ1 and σ (1) = (1, 2, · · · , l0, σ (l0), σ (l0 +
1), · · · , σ (k0 − 1), σ (k0 + 1), · · · , σ (d + 1)). Then,

π
(1)
2 = (

ψσ(1)(1), ψσ(1)(2), · · · , ψσ(1)(d+1)

)
.

If π(1)2 = π1, then π1 = π2 � φ1. Otherwise let l1 be the
smallest index l such that σ (1)(l) 	= l, 1 ≤ l ≤ d + 1, then
l1 > l0 holds true.

Following this procedure, one can find a series of general-
ized transpositions φ1, φ2, · · · , φm , 1 ≤ m ≤ d , sequentially,
such that π2 � φ1 � φ2 � · · · � φm = π1. Suppose φ1, φ2, · · · , φi

are found for some i , 1 ≤ i ≤ d . Let π(i)2 = π2 � φ1 � φ2 �
· · · � φi = (

ψσ(i)(1), ψσ(i) (2), · · · , ψσ(i)(d+1)

)
. If π(i)2 = π1,

then π1 = π2 � φ1 � φ2 � · · · � φi , and we have established
the desired composition. Otherwise, we let li be the smallest
index such that σ (i)(li ) 	= li . Suppose ki = (

σ (i)
)−1

(li ), and it
follows that ki > li . Denote the generalized transposition that
swaps the subsequences

(
ψσ(i)(li ), ψσ(i)(2), · · · , ψσ(i) (ki −1)

)

and ψσ(i)(ki )
= ψli in π(i)2 by φi+1. Let π(i+1)

2 = π
(i)
2 � φi+1,

and σ (i+1) = (1, 2, · · · , li , σ
(i)(li ), σ

(i)(li + 1), · · · , σ (i)(ki −
1), σ (i)(ki + 1), · · · , σ (i)(d + 1)). Then,

π
(i+1)
2 = (

ψσ(i+1)(1), ψσ(i+1)(2), · · · , ψσ(i+1)(d+1)
)
.

Finally, one finds the smallest integer m such that
π
(m)
2 = π1. In this procedure, l0, · · · , lm−1 are obtained

sequentially, where 1 < l0 < l1 < · · · < lm−1. We also know
that lm−1 ≤ d , otherwise if lm−1 = d + 1, then σ (m−1)(i) = i
holds true for all 1 ≤ i ≤ d , and σ (m−1)(d +1) 	= d +1, which
leads to a contradiction. Therefore, d ≥ lm−1 > · · · > l0 ≥ 1,
which implies that m ≤ d . Note that π1 = π2 � φ1 � · · · � φm ,
from which dG(π1, π2) ≤ m ≤ d = dB(π1, π2) follows. The
lower bound is proved.

III. THEORETICAL BOUNDS ON THE CODE RATE

A subset CG (N, t) of SN is called a t-generalized Cayley
code if it can correct t generalized transposition errors. Any
t-generalized Cayley code has the minimum generalized Cay-
ley distance dG,min ≥ 2t + 1. Similarly, a subset CB (N, t)
of SN is called a t-block permutation code if its minimum
block permutation distance dB,min ≥ 2t + 1. For any permu-
tation code C ⊂ SN , denote the rate of C by R(C). Then,
the following equation holds true,

R(C) = log|C (N, t)|
log N ! . (16)

In the remainder of this paper, the logarithm base is always
2 unless it is explicitly specified with a different base.

Let CG,opt (N, t) and CB,opt (N, t) be t-generalized Cayley
codes and t-block permutation codes with the optimal
rates, denoted by RG,opt(N, t) and RB,opt(N, t), respectively.
We next derive the lower bounds and the upper bounds of
RG,opt (N, t) and RB,opt (N, t).

For each π ∈ SN , we define the generalized Cayley ball
BG(N, t, π) of radius t centered at π to be the set of all
permutations in SN that have a generalized Cayley distance
from π not exceeding t . We know from the left-invariance
property of dG that the cardinality of BG(N, t, π) is indepen-
dent of π ; we denote |BG(N, t, π)| as bG(N, t). The block
permutation ball BB(N, t, π) and the corresponding ball-size
bB(N, t) are similarly defined.

We derive the lower and upper bounds of bB(N, t) and
bG(N, t) in the following two lemmas, respectively. We build
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on these results and Lemma 7 to compute the bounds of the
rates of optimal codes in dG and dB , proving that the optimal
redundancy is �( t

N ) in both of the two metrics.

Lemma 5. For all N ∈ N
∗, t ≤ N − √

N − 1, bB(N, t) is
bounded by the following inequality:

t∏

k=1

(N − k) ≤ bB(N, t) ≤
t∏

k=0

(N − k). (17)

Proof. The proof is in Appendix C.

Lemma 6. For all N ∈ N
∗, t ≤ min{N − √

N − 1, N−1
4 },

bG(N, t) is bounded as follows:

t∏

k=1

(N − k) ≤ bG(N, t) ≤
4t∏

k=0

(N − k). (18)

Proof. The proof is in Appendix D.
As the metrics dB and dG both satisfy the triangle inequal-

ity, the cardinalities of the optimal codes CB,opt(N, t) and
CG,opt(N, t) are bounded as follows,

N !
bB(N, 2t)

≤ |CB,opt (N, t)| ≤ N !
bB(N, t)

,

N !
bG(N, 2t)

≤ |CG,opt (N, t)| ≤ N !
bG(N, t)

. (19)

According to [14, eqs. (1) and (2)], for all N ∈ N
∗,

N ! = √
2πN N+1/2e−N · erN , (20)

where

1

12N + 1
< rN <

1

12N
. (21)

From (20) and (21), Lemma 7 follows.

Lemma 7. For all N ∈ N
∗, it follows that

(N + 1

2
) log N−( log e)N <

N∑

n=1

log n

< (N + 1

2
) log N − (log e)N + 2.

We now state the main result of this section.

Theorem 1. For any t, N ∈ N
∗, t ≤ min{N −√

N − 1, N−1
4 }

and N ≥ 9, the optimal rates RB,opt (N, t) , RG,opt (N, t)
satisfy the following inequalities,

1 − c · 2t + 1

N
≤ RB,opt (N, t) ≤ 1 − t

N
,

1 − c · 8t + 1

N
≤ RG,opt (N, t) ≤ 1 − t

N
, (22)

where c = 1 + 2 log e
log N .

Proof. From (16) and (19), it follows that

1 − log bB(N, 2t)

log N ! ≤ RB,opt(N, t) ≤ 1 − log bB(N, t)

log N ! ,

1 − log bG(N, 2t)

log N ! ≤ RG,opt(N, t) ≤ 1 − log bG(N, t)

log N ! .

(23)

By applying Lemma 5 and Lemma 7 to (23), when
min{N − √

N − 1, N−1
4 } ≥ t ≥ 1 and N ≥ 9, it follows

that

RB,opt(N, t) ≥ 1 −
log

[
2t∏

k=0
(N − k)

]

log N !
> 1 − (2t + 1) log N

(N + 1
2 ) log N − (log e)N

> 1 − (2t + 1) log N

N(log N − log e)

> 1 − 2t + 1

N

(
1 + 2 log e

log N

)
, (24)

and

RB,opt(N, t)

≤ 1 −
log

[
t∏

k=1
(N − k)

]

log N !

= 1 −
1
2

t∑

k=1
(log(N − k)+ log(N − t − 1 + k))

log N !
≤ 1 −

t
2 log ((N − 1)(N − t))

(N + 1
2 ) log N − (log e)N + 2

≤ 1 −
t
2 log

(
(N − 1)(N − N−1

4 )
)

(N + 1
2 ) log N − (log e)N + 2

≤ 1 −
t
2 log

(
N2

2

)

(N + 1
2 ) log N − (log e)N + 2

≤ 1 − t (log N − 1
2 )

N log N − 1
2 N

= 1 − t

N
. (25)

Similarly, by applying Lemma 6 and Lemma 7 to (23), when
min{N − √

N − 1, N−1
4 } ≥ t ≥ 1 and N ≥ 9, it follows that

RG,opt(N, t) ≥ 1 −
log

[
min{8t,N−1}∏

k=0
(N − k)

]

log N !
> 1 − (8t + 1) log N

(N + 1
2 ) log N − (log e)N

> 1 − (8t + 1) log N

N log N − (log e)N

> 1 − 8t + 1

N

(
1 + 2 log e

log N

)
, (26)

and

RG,opt(N, t) ≤ 1 −
log

[
t∏

k=1
(N − k)

]

log N !
≤ 1 − t

N
. (27)

The theorem is proved.
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Inequalities (24)-(27) indicate that R = 1−� ( t
N

)
is the rate

of the t-generalized Cayley codes and the t-block permutation
codes that are order-optimal.

IV. NON-SYSTEMATIC PERMUTATION CODES IN

THE GENERALIZED CAYLEY METRIC

We studied the optimal rates of t-generalized Cayley Codes
and t-block permutation codes in the previous section. We now
seek constructions of order-optimal codes in these metrics.
We know from Lemma 4 that any 4t-block permutation code
is also a t-generalized Cayley code. In the sequel, we thus
focus on the construction of order-optimal t-block permutation
codes, which is sufficient for obtaining order-optimal general-
ized Cayley codes.

In Section IV-A, we present a construction of order-optimal
t-block permutation codes (Theorem 2). We then develop a
decoding scheme for the proposed codes in Section IV-B.

A. Encoding Scheme

Denote the set of all ordered pairs of non-identical ele-
ments from [N] by P; then |P| = N2 − N . Suppose q
is a prime number such that q ≥ |P|. From Bertrand’s
postulate [15], one can always find a prime number q such that
|P| ≤ q ≤ 2|P|.

Let υ : P → Fq be an arbitrary injection from P to Fq ,
where Fq is a Galois field of order q . Let P(Fq) represent the
set of all the subsets of Fq with cardinality N − 1. We define
an injection ν : SN → P(Fq) as follows:

ν(π) � {υ(p)|p ∈ A(π)}. (28)

Then, ν is invertible, namely, one is able to compute π based
on ν(π).

We then define a class of functions α(q,d) : SN → F
2d−1
q ,

as follows:

α(q,d)(π) � (α1, α2, · · · , α2d−1) , (29)

where
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

α1 ≡ ∑

b∈ν(π)
b mod q,

α2 ≡ ∑

b∈ν(π)
b2 mod q,

...

α2d−1 ≡ ∑

b∈ν(π)
b2d−1 mod q.

(30)

The following Algorithm 1 describes the main steps of the
proposed encoding scheme, the correctness of which can be
verified by Lemma 8 and Theorem 2.

The following Lemma 8 states that the cardinality of the
symmetric difference of ν(π1), ν(π2) for any two distinct
permutation π1, π2 ∈ SN is greater than 2d if their syndromes
α(q,d)(π1) and α(q,d)(π2) are identical. Therefore, their block
permutation distance is greater than d based on Lemma 2. This
lemma will be repeatedly used in the rest of the paper for the
constructions of order-optimal permutation codes in the block
permutation distance.

Algorithm 1 Encoding Scheme
Input:

Minimum block permutation distance: 2t + 1;
Codelength: N ;
Alphabet size: q , where q is a prime number such that
N2 − N ≤ q < 2(N2 − N);

Output:
Codebook C of a t-block permutation code;

1: For each π ∈ SN , compute A(π), ν(π), and its syndrome
α(q,2t)(π) (α(q,2t)(π) ∈ F

4t−1
q ), sequentially, where

A(π), ν(π), α(q,d) are defined in Definition 3, (28), (29)
and (30), respectively;

2: For each α ∈ F
4t−1
q , denote the set consisting of all

permutations with the syndrome α by Cα(N, t);
3: Find α such that Cα(N, t) is of the maximum cardinality;
4: return C = Cα(N, t).

Lemma 8. For all π1, π2 ∈ SN such that π1 	= π2,
if α(q,d)(π1) = α(q,d)(π2), then,

|ν(π1)�ν(π2)| > 2d. (31)

Proof. The proof is in Appendix E.
Note that the function α(q,2t) induces a map from SN

to F
4t−1
q and divides SN into q4t−1 subsets based on their

syndromes α = (α1, α2, · · · , α4t−1). We next prove that each
such subset is a t-block permutation code, which is stated as
the following theorem.

Theorem 2. For all α ∈ F
4t−1
q , suppose:

Cα(N, t) = {π |π ∈ SN , α
(q,2t)(π) = α}, (32)

where α(q,2t) is defined in (29) and (30). Then ∀ π1, π2 ∈
Cα(N, t), π1 	= π2, the following inequality holds,

dB(π1, π2) ≥ 2t + 1. (33)

Proof. Let d = 2t in Lemma 8 and Lemma 2. Then,

dB(π1, π2) = 1

2
|A(π1)�A(π2)|

= 1

2
|ν(π1)�ν(π2)|

>
1

2
(2 · 2t) = 2t, (34)

where � refers to the symmetric difference of sets.

Example 4. Suppose N = 10, t = 2, q = 97 > 102 − 10.
Define υ(i, j) for all i 	= j ∈ [10] as follows:

υ(i, j) = 10(i − 1)+ j − 1.

Let π1 = (10, 9, 8, 7, 6, 5, 4, 3, 2, 1), and
π2 = (9, 6, 5, 8, 2, 4, 7, 3, 10, 1). Suppose α =
(83, 28, 80, 77, 40, 3, 88). Then,

α(q,2t)(π1) = α(q,2t)(π2) = α.

Observe that dB(π1, π2) = 8 > 4 = 2t . This example is in
accordance with Theorem 2.
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Theorem 2 implies that {Cα(N, t) : α ∈ F
4t−1
q } is a

partition of SN , where each component Cα(N, t) is a t-block
permutation code indexed by α. Suppose Cαmax(N, t) is the
one with the maximal cardinality, whose syndrome is αmax.
It follows from the Pigeonhole Principle that:

|Cαmax(N, t)| ≥ N !
|F4t−1

q | = N !
q4t−1 . (35)

Denote the rate of Cαmax(N, t) by R(C1). Given that N2 −
N = |P| ≤ q < 2|P| = 2N2 − 2N < 2N2, it follows from
Lemma 7 that for N > e2 (note that here e refers to the base
of the natural logarithm),

R(C1) ≥ 1 − 4t log q

log N ! > 1 − 8t log N + 4t

log N !
> 1 − 8t (log N + 1

2 )

(N + 1
2 ) log N − (log e)N

> 1 − 8t

N

(
log N + 1

2

log N − log e

)

= 1 − 8t

N

[

1 +
1
2 + log e

log N

(
1 + log e

log N − log e

)]

> 1 − 8t

N

(
1 + 2 log e + 1

log N

)
. (36)

Then, Cαmax(N, t) is an order-optimal t-block permutation
code.

B. Decoding Scheme

In Section IV-A, we map each permutation π ∈ SN to a
unique set ν(π) ∈ P(Fq) as defined in equation (28), where
N2 − N ≤ q ≤ 2N2 − 2N and P(Fq) represents the set
consisting of all subsets of Fq with cardinality N −1. Suppose
the transmitter sends π ∈ SN and the receiver receives π 
,
where dG(π, π


) ≤ t . In the decoding scheme, our objective
is to compute ν(π) from the a priori α and the received
permutation π 
. The strategy is, for each set B ∈ P(Fq),
map B to a polynomial f (X; B) defined as follows:

f (X; B) �
∏

b∈B

(X + b) . (37)

We call f (X; B) the characteristic function of set B .
All the polynomials as well as the polynomial operations
are defined on Fq . Let a B

i , 0 ≤ i ≤ N − 1, represent the
coefficients of X N−1−i in f (X; B). Then, a B

0 = 1.
Given the a priori agreement on the codebook, i.e., the

choice of α, and the received permutation π 
, the value of the
first 4t coefficients of f (X; B), f (X; B 
) can be computed,
where B = ν(π) and B 
 = ν(π 
), as we shall shortly show.
We then use these coefficients to derive ν(π). This coding
strategy bears resemblance to that proposed in [16], the key
difference being that the coefficients of the polynomials we
discussed are partially known, thus making our decoding
scheme more complicated, whereas those in [16] are fully
known.

Note that a B
i , 1 ≤ i ≤ N − 1, in (38) is the i -th elementary

symmetric polynomial of the elements in B . Also note that

the i -th component αi , 1 ≤ i ≤ 4t − 1, of the value α =
α(q,2t)(π) is exactly the i -th power sum of the elements in
B = ν(π). We know from Newton’s identities [17] that there
exists a bijection between the (4t − 1) power sums and the
first (4t − 1) elementary symmetric polynomials of elements
in B , as described below:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a B
0 = 1,

a B
1 = α1,

a B
2 = 2−1(a B

1 α1 − α2),

a B
3 = 3−1(a B

2 α1 − a B
1 α2 + α3),

...

a B
4t−1 = (4t − 1)−1(a B

4t−2α1 − a B
4t−3α2 + · · · + α4t−1).

(38)

Denote a B
i , a B 


i by ai , a

i , 0 ≤ i ≤ N − 1, respectively,

for simplicity. Let r(B) = (a1, a2, · · · , a4t−1), r(B 
) =
(a


1, a

2, · · · , a


4t−1). The receiver uses the a priori α to com-
pute r(B) and to derive r(B 
) from B 
, where B = ν(π) and
B 
 = ν(π 
). Note that π can be computed from B = ν(π)
since ν is an injection from SN to P(Fq). Thus the objective
is to compute B from r(B), r(B 
), and B 
.

Suppose D1 = B \ B 
, D2 = B 
 \ B , D3 = B ∛ B 
. Let
f1 = f (X; B) and f2 = f (X; B 
). Then,

g1(X) = f1

GC D( f1, f2)
=
∏

b∈D1

(X + b),

g2(X) = f2

GC D( f1, f2)
=
∏

b∈D2

(X + b),

g3(X) = GC D( f1, f2) =
∏

b∈D3

(X + b). (39)

Notice that g1, g2, g3 uniquely determine f1, f2, so they
are sufficient for computing π . We next seek to compute
g1, g2, g3 from r(B) and f2 = g2 ·g3, from which f1 = g1 ·g3
can be determined. Let (h1, h2) = (Xt−k g2, Xt−k g1), where
k = deg g1 = deg g2 = |D1| = |D2| ≤ t . Then (h1, h2) satisfy
h1 · f1 = h2 · f2. We will also prove later in Theorem 3 that
g1, g2, g3 can be computed from an arbitrary nonzero solution
(h1, h2) of h1 · f1 = h2 · f2. Therefore, any nonzero solution
to h1 · f1 = h2 · f2 is sufficient for computing π . Also notice
that the first 4t coefficients of h1 · f1 and h2 · f2 uniquely
determine r(B) and r(B 
), respectively, by (38), if h1, h2 are
known. In order to compute g1, g2, g3, it is sufficient to find
h1 and h2, both of degree t , such that the first 4t coefficients
of h1 · f1 and that of h2 · f2 are equal, i.e., the following
inequality holds,

deg(h1 · f1 − h2 · f2) < N − 3t . (40)

For each c ∈ F
2t
q , suppose

c = (
c1, · · · , ct ,−c


1, · · · ,−c

t

)T
, (41)

and define the polynomials h1(c), h2(c) of degree t as follows,

h1(c) � Xt + c1 Xt−1 + c2 Xt−2 + · · · + ct ,

h2(c) � Xt + c

1 Xt−1 + c


2 Xt−2 + · · · + c

t . (42)
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Algorithm 2 Decoding Algorithm
Input:

Syndrome: α;
Received sequence: π 
;

Output:
Estimated codeword: π̂ ;

1: Compute the coefficients {a

i}4t−1

i=1 of f2 and B 
 from π 
;
2: Compute the coefficients of {ai }4t−1

i=1 of f1 from α by
Newton’s identities;

3: Compute A and b using (43) and (44);
4: Find a nonzero solution c to Ac = b, c = (

c1, · · · , c2t
)T ;

5: Compute h1 = Xt + c1 Xt−1 + c2 Xt−2 + · · · + ct , h2 =
Xt − ct+1 Xt−1 − ct+2 Xt−2 − · · · − c2t ;

6: Compute h = gcd(h1, h2), v1 = h2
h , v2 = h1

h ;
7: Let the set of negative roots of v1 and v2 be V1 and V2,

respectively;
8: Compute π̂ = ν−1

(
V1 ∜ (B 
 \ V2)

)
, where ν is defined

in (28);
9: return π̂ .

Define

A =⎛

⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎝

1 0 · · · 0 1 0 · · · 0

a1 1
. . .

... a

1 1

. . .
...

...
...

. . . 0
...

...
. . . 0

at−1 at−2 · · · 1 a

t−1 a


t−2 · · · 1
...

...
. . .

...
...

...
. . .

...
a4t−2 a4t−3 · · · a3t−1 a


4t−2 a

4t−3 · · · a


3t−1

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎠

,

(43)

and

b = (
a


1, · · · , a

4t−1

)T − (
a1, · · · , a4t−1

)T
. (44)

The following Algorithm 2 describes the decoding algorithm
of the code constructed in Section IV-A. The correctness of
this algorithm is proved by Lemma 9 and Theorem 3.

Lemma 9 presents an equivalent linear equation to find
a solution that satisfies (40), and Theorem 3 shows how to
compute π from this intermediate value.

Lemma 9. Suppose A ∈ F
(4t−1)×(2t)
q , b ∈ F

4t−1
q are defined

in (43) and (44), respectively. Consider the following equation
defined on Fq:

Ac = b. (45)

For any vector c ∈ F
2t
q , c is a nonzero solution to (45) if

and only if (h1(c), h2(c)) is a nonzero solution to (40).

Proof. The proof is in Appendix F.

Theorem 3. Let c be an arbitrary nonzero solution to (45),
and h1 = h1(c), h2 = h2(c). Denote h, v1, v2 by the following
equations,

h = GCD(h1, h2), v1 = h2

h
, v2 = h1

h
. (46)

Suppose V1, V2 are the sets of the additive inverses of roots
of v1, v2, respectively. Then π can be computed from the
following equation:

π = ν−1 (V1 ∜ (B 
 \ V2
))
.

Recall B 
 = ν(π 
), where ν is defined in (28).

Proof. Note that B = ν(π) and ν is an injection, so we only
need to prove that B = V1 ∜ (B 
 \ V2

)
. From (39), it follows

that

h1 · f1 − h2 · f2 = (h1 · g1 − h2 · g2) · g3,

where deg g3 = |B ∛ B 
| ≥ N − 1 − t . From Lemma 9, (40)
holds true, which means that deg(h1 · g1 − h2 · g2) · g3 =
deg(h1 · f1 − h2 · f2) < N − 3t . If h1 · f1 	= h2 · f2, then
N − t − 1 < N − 3t and thus t = 0, h1 = h2 = 0. Therefore
for any nonzero pair of h1 and h2,

h1 · f1 = h2 · f2.

We know from (46) that

v2 · f1 = v1 · f2,

where GCD(v1, v2) = 1. Let v2| f2 and v1| f1. Then,

f1

v1
= f2

v2
= f.

Suppose V3 is the set of the additive inverses of roots of f .
Then V1 ∜ V3 = B , V2 ∜ V3 = B 
, thus B = V1 ∜ V3 =
V1 ∜ (B 
 \ V2

)
.

Note that V1, V2 computed in Theorem 3 are exactly iden-
tical to D1, D2 described before (39), respectively.

Example 5. Suppose the sender transmits the permutation
π1 = (2, 4, 7, 3, 5, 1, 8, 6, 9, 10) ∈ Cα(10, 2), where α =
(16, 0, 86, 44, 61, 9, 49), and the receiver recives π 
 =
(8, 6, 9, 10, 5, 1, 2, 4, 7, 3) ∈ S10. In the encoding scheme,
q = 97 > 102 − 10, and for all i, j ∈ [10], i 	= j ,

υ(i, j) = 10(i − 1)+ j − 1.

The receiver applies Newton’s identities [17] to compute
r(B) = (16, 31, 0, 42, 54, 94, 59) from α, and then derives
r(B 
) = (80, 64, 83, 10, 72, 22, 26) from B 
 = ν(π 
) =
{75, 58, 89, 94, 40, 1, 13, 36, 62}. Then

A =

⎛

⎜
⎜
⎝

1 16 31 0 42 54 94
0 1 16 31 0 42 54
1 80 64 83 10 72 22
0 1 80 64 83 10 72

⎞

⎟
⎟
⎠

T

,

b = (
64 33 83 65 18 25 64

)T
. (47)

Notice that c = (
95, 94, 66, 26

)
is a solution to Ac = b.

Therefore h1 = X2 + 95X + 94 = (X + 1)(X + 94),
h2 = X2 + 31X + 71 = (X + 24)(X + 7). The receiver then
knows that V1 = {24, 7}, V2 = {1, 94}. Therefore ν(π) =
B = V1 ∜ (B 
 \ V2) = {13, 36, 62, 24, 40, 7, 75, 58, 89}. It fol-
lows that A(π) = {(2, 4), (4, 7), (7, 3), (3, 5), (5, 1), (1, 8),
(8, 6), (6, 9), (9, 10)}. From the definition of the characteristic
set in Definition 4, the receiver is able to decode π from A(π)
as π̂ = (2, 4, 7, 3, 5, 1, 8, 6, 9, 10).
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V. SYSTEMATIC PERMUTATION CODES IN

THE GENERALIZED CAYLEY METRIC

In this section, we discuss systematic permutation codes.
Specifically, in Section V-A, we present an explicit coding
scheme for systematic permutation codes in the general-
ized Cayley metric, and in Section V-B, we provide the
decoding scheme for this construction. We refine our con-
struction to ensure order-optimality, which we then discuss
in Section V-C.

A. Encoding Scheme

Let messages be permutations in SN . In systematic per-
mutation codes, the codewords are permutations of length
N + M . We derive each codeword σ ∈ SN+M from a
message π ∈ SN by sequentially inserting components N +1,
N + 2, · · · , N + M into π , in the positions specified by a
sequence S = (s1, s2, · · · , sM ), where S is determined by the
syndrome α(q,2t)(π) defined in (29) and (30). Our key result is
established in Theorem 4, where we present the construction
of systematic permutation codes. We start the discussion by
presenting a collection of definitions and lemmas to support
our main result.

Definition 5. For any permutation π ∈ SN and the integer
i ∈ N, where 1 ≤ s ≤ N, let E(π, s) be a permutation in
SN+1 derived by inserting the element N +1 after the element
s in π , i.e.,

E(π, s) � (π(1), · · · , π(k), N + 1, π(k + 1), · · · , π(N)) ,
where k = π−1(s). We call E(π, s) the extension of π on the
extension point s.

Consider a sequence S = (s1, s2, · · · , sM ), where sm ∈ [N]
for all 1 ≤ m ≤ M. The extension E(π, S) of π on the
extension sequence S is a permutation in SN+M derived from
inserting the elements N + 1, · · · , N + M sequentially after
the elements s1, · · · , sM in π , i.e.,

E(π, S) � E(E(· · · E(E(π, s1), s2) · · · , sM−1), sM ).

Note that in Definition 5, the elements s1, · · · , sM in the
extension sequence S are not necessarily distinct. If different
symbols are sequentially inserted after the same element, then
they are all placed right after this element in descending order,
as shown in Example 6.

Example 6. Suppose π = (1, 4, 5, 7, 6, 2, 3), I = (4, 1, 2, 2),
then

E(π, I ) = (1, 9, 4, 8, 5, 7, 6, 2, 11, 10, 3) .

Based on the definition of the extensions, Algorithm 3
describes the major steps of our encoding scheme. The cor-
rectness of this scheme is proved later by Lemma 10 and
Theorem 4.

Definition 6 presents the notion of the jump points of the
extensions of two permutations. Then Lemma 10 states that
the block permutation distance between two extensions is
strictly larger than that of their original permutations if and
only if the extension point of one of them is a jump point.

Algorithm 3 Encoding Scheme
Input:

Information sequence: π ∈ SN ;
Number of additional symbols: K ;
Minimum block permutation distance: 2t + 1;

Output:
Codeword: σ (σ ∈ SN+K );

1: Compute the syndrome α = α(q,2t)(π) of π , which is
defined in (29);

2: Compute the extension sequence S = ϕ(α), where ϕ is a
function such that the image of ϕ is a t-auxiliary set of
length K in the range [N], as defined in Definition 9;

3: Compute σ = E(π, S), according to Definition 5;
4: return σ .

Based on this result, we further introduce the notion of jump
index and jump set in Definition 7. As shown in Remark 4,
the block permutation distance of two permutations in SN is
lower bounded by the sum of that of their extensions and the
cardinality of the jump set.

Definition 6. Let π1, π2 ∈ SN , s1, s2 ∈ [N]. We note that for
any k ∈ [N], πi (k) refers to the k-th element of πi , i ∈ {1, 2}.
Suppose E(π1, s1), E(π2, s2) are two arbitrary extensions of
π1 and π2, respectively, where π1, π2 ∈ SN , π1(k1) = s1 and
π2(k2) = s2. Then s1 is called a jump point of E(π1, s1)
with respect to E(π2, s2), if s1 	= s2 and at least one of the
following conditions is satisfied:

1) k1 = N or k2 = N;
2) k1, k2 < N, and π1(k1 + 1) 	= π2(k2 + 1).

Lemma 10. Let π1, π2 ∈ SN , s1, s2 ∈ [N]. For any two
extensions E(π1, s1) and E(π2, s2), if s1 is a jump point of
E(π1, s1) with respect to E(π2, s2), then

dB(E(π1, s1), E(π2, s2)) > dB(π1, π2), (48)

else

dB(E(π1, s1), E(π2, s2)) = dB(π1, π2). (49)

Proof. The proof is in Appendix G.
In the following Example 7, we provide examples of jump

points that satisfy the two conditions indicated in Definition 6.
We also provide an example of an extension point that is not
a jump point.

Example 7. Suppose π = (1, 5, 7, 2, 3, 6, 4), π 
 = (2, 3, 1,
5, 7, 6, 4), s1 = 4, s


1 = 5, s2 = 5, s

2 = 6, s3 = 3, s


3 = 7.
Then,

σ1 = E(π, s1) = (1, 5, 7, 2, 3, 6, 4, 8) ,

σ 

1 = E(π 
, s


1) = (2, 3, 1, 5, 8, 7, 6, 4) ,

σ2 = E(π, s2) = (1, 5, 8, 7, 2, 3, 6, 4) ,

σ 

2 = E(π 
, s


2) = (2, 3, 1, 5, 7, 6, 8, 4) ,

σ3 = E(π, s3) = (1, 5, 7, 2, 3, 8, 6, 4) ,

σ 

3 = E(π 
, s


3) = (2, 3, 1, 5, 7, 8, 6, 4) .
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Given that dB(π, π

) = 2, we observe that

dB(σ1, σ


1) = 4 > dB(π, π


), and s1 is a jump point;

dB(σ2, σ


2) = 5 > dB(π, π


), and s2 is a jump point;

dB(σ3, σ


3) = 2 = dB(π, π


), and s3 is not a jump point.

Notice that s1 is a jump point that satisfies the first condition
in Definition 6, and s2 is a jump point that satisfies the second
condition. This example is consistent with Lemma 10.

We know from Lemma 10 that the block permutation
distance between the resulting codewords cannot be smaller
than that of their original messages. Recall that Theorem 2
indicates that permutations with the same syndrome result in
codewords having the block permutation distance of at least
2t + 1. Therefore, it suffices to show that the permutations
with different syndromes are mapped to codewords that are
sufficiently far apart under the block permutation distance;
Lemma 11 establishes a property that ensures that this con-
dition is satisfied. We then use this result in Theorem 4 to
present the construction of systematic permutation codes.

Definition 7. Let π1, π2 ∈ SN , s1, s2 ∈ [N]. Sup-
pose E(π1, S1) and E(π2, S2) are extensions of π1
and π2 on extension sequences S1 and S2, respec-
tively, where π1, π2 ∈ SN , S1 = (

s1,1, s1,2, · · · , s1,M
)

and S2 = (
s2,1, s2,2, · · · , s2,M

)
. Then, for any m ∈

[M], m is called a jump index of E(π1, S1) and
E(π2, S2) if s1,m is a jump point of E(E(π1, J1,m−1), s1,m)
with respect to E(E(π2, J2,m−1), s2,m), where J1,m−1 =(
s1,1, s1,2, · · · , s1,m−1

)
, J2,m−1 = (

s2,1, s2,2, · · · , s2,m−1
)
.

Define the jump set F(π1, π2, S1, S2) as the set of all jump
indices of E(π1, S1) and E(π2, S2).

Remark 4. Let π1, π2 ∈ SN , s1, s2 ∈ [N]. For any extensions
E(π1, S1), E(π2, S2) of π1, π2 on extension sequences S1, S2,
respectively, it is obvious from Definition 7 and Lemma 10 that

dB(E(π1, S1), E(π2, S2))≥dB(π1, π2)+|F(π1, π2, S1, S2)|.
(50)

Here F(π1, π2, S1, S2) is the jump set defined in Definition 7.

In the following Example 8, we provide an example of how
to identify the jump indices and compute the jump set. This
example satisfies inequality (50).

Example 8. Continuing with the values of π , π 
 specified in
Example 7, let S = (4, 6, 7) and S
 = (5, 6, 5). Then,

σ0 = π = (1, 5, 7, 2, 3, 6, 4) ,

σ 

0 = π 
 = (2, 3, 1, 5, 7, 6, 4) ,

σ1 = E(σ0, s1) = (1, 5, 7, 2, 3, 6, 4, 8) ,

σ 

1 = E(σ 


0, s

1) = (2, 3, 1, 5, 8, 7, 6, 4) ,

σ2 = E(σ1, s2) = (1, 5, 7, 2, 3, 6, 9, 4, 8) ,

σ 

2 = E(σ 


1, s

2) = (2, 3, 1, 5, 8, 7, 6, 9, 4) ,

σ3 = E(σ2, s3) = (1, 5, 7, 10, 2, 3, 6, 9, 4, 8) ,

σ 

3 = E(σ 


2, s

3) = (2, 3, 1, 5, 10, 8, 7, 6, 9, 4) .

It follows immediately that

dB(σ0, σ


0) = 2,

dB(σ1, σ


1) = 4 > dB(σ0, σ



0), and 1 is a jump index;

dB(σ2, σ


2) = 4 = dB(σ1, σ



1), and 2 is not a jump index;

dB(σ3, σ


3) = 5 > dB(σ2, σ



2), and 3 is a jump index.

According to Definition 7, F(π, π 
, S, S
) = {1, 3}. More-
over, dB(σ3, σ



3) = 5 > 4 = dB(π, π


) + |F(π, π 
, S, S
)|,
which is in accordance with equation (50).

Next we prove in Lemma 11 that the right hand side of
equation (50) can be lower bounded by the cardinality of the
so-called Hamming set. The Hamming set of S1 with respect to
S2 is defined in the following Definition 8. Based on this result,
we present a construction of systematic t-block permutation
codes in Theorem 4 with the help of a so-called t-auxiliary
set that is defined in Definition 9.

Definition 8. For any sequences v1, v2 of integers with
length M, where v1 = (

v1,1, v1,2, · · · , v1,M
)

and v2 =(
v2,1, v2,2, · · · , v2,M

)
, define the Hamming set of v1 with

respect to v2 as follows,

H (v1, v2) � {v1,m |v1,m 	= v2,m,m ∈ [M]}. (51)

We note that dH refers to the Hamming distance throughout
this paper.

Remark 5. It is obvious that dH (v1, v2) ≥ |H (v1, v2)|.
Additionally, for any three sequences v1, v2, v3 of integers,
the following triangle inequality holds true:

|H (v1, v3)| ≤ |H (v1, v2)| + |H (v2, v3)|. (52)

Lemma 11. Let π1, π2 ∈ SN , s1, s2 ∈ [N]. For any extensions
E(π1, S1), E(π2, S2) of π1, π2 on extension sequences S1, S2,
respectively, it follows that

dB(E(π1, S1), E(π2, S2)) ≥ |H (S1, S2)|. (53)

Proof. The proof is in Appendix H.

Example 9. Continuing on with the numerical values of
π, π 
, S, S
 as in Example 8, we conclude that, H (S, S
) =
{4, 7}, m(4) = 1, m(7) = 3. Then it follows that dB(σ, σ


) =
5 > 2 = |H (S, S
)|, which is in accordance with the above
Lemma 11.

Definition 9. Consider a set A(N, K , t) ⊂ [N]K . We call
A(N, K , t) a t-auxiliary set of length K in range [N] if for
any c1, c2 ∈ A(N, K , t), c1 	= c2, |H (c1, c2)| ≥ 2t + 1 holds.

Theorem 4. For any t-auxiliary set A(N, K , t) with cardi-
nality that is no less than q4t−1, suppose ϕ : α(q,2t)(SN ) →
A(N, K , t) is an arbitrary injection, where q is a prime
number such that N2 − N < q < 2(N2 − N) and the
syndrome α(q,2t) is defined in (29) and (30). Then, the set
Csys

B (N, K , t) = {E(π, ϕ �α(q,2t)(π))|π ∈ SN } is a systematic
t-block permutation code.

Proof. It is clear by the choice of E(π, S) that Csys
B (N, K , t)

is systematic. For any two messages π1, π2 ∈ SN , denote
their corresponding codewords by σ1 = E(π1, ϕ �α(q,2t)(π1))
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and σ2 = E(π2, ϕ � α(q,2t)(π2)), respectively. Suppose α1 =
α(q,2t)(π1), α2 = α(q,2t)(π2), S1 = ϕ(α1) and S2 = ϕ(α2).
Then σ1 = E(π1, S1), σ2 = E(π2, S2). Consider the following
two cases:

1) α1 = α2. According to Theorem 2, dB(π1, π2) > 2t
in this case. Then Lemma 10 implies that dB(σ1, σ2) ≥
dB(π1, π2) ≥ 2t + 1.

2) α1 	= α2. In this case, S1, S2 ∈ A(N, K , t) and S1 	= S2.
Then from Definition 9, |H (S1, S2)| ≥ 2t + 1. Therefore,
from Lemma 11, dB(σ1, σ2) ≥ |H (S1, S2)| ≥ 2t + 1.

From the above discussion, dB(σ1, σ2) ≥ 2t + 1 is always
true, which means that Csys

B (N, K , t) is indeed a systematic
t-block permutation code.

B. Decoding Scheme

Based on the construction and the notation in Theorem 4,
suppose the sender sends a codeword σ = E(π, ϕ �α(q,2t)(π))
through a noisy channel and the receiver receives a noisy
version σ 
, where dB(σ, σ


) ≤ t .
In this section, we prove in the forthcoming Lemma 12

that the extension sequence S of the codeword E(π, S) is
decodable given that dB(σ, σ


) ≤ t , from which the syndrome,
defined in (29) and (30), of the transmitted information π can
be derived.

For convenience, we introduce the following definition of
the truncation and use it throughout this subsection.

Definition 10. For any permutation σ ∈ SN+1 and an integer
u ∈ [N + 1], denote T (σ, u) to be the sequence derived by
removing the element u from σ , i.e.,

T (σ, u) � (σ (1), σ (2), · · · , σ (k − 1), σ (k + 1), · · · , σ (N)) ,
(54)

where k = σ−1(u).
Then, for any permutation σ ∈ SN+M and a set U ⊂

[N + M], denote the truncation T (σ,U) of σ on set U to
be the sequence derived by removing the elements contained
in U = {u1, u2, · · · , u|U |} from σ , i.e.,

T (σ,U) � T (T (· · · T (T (σ, u1), u2) · · · , u|U |−1), u|U |).
(55)

Note that in Definition 10, the ordering of u1, · · · , u|U |
has no impact on the value of T (σ,U). The following is an
example of the truncation of a permutation.

Example 10. Suppose σ = (1, 4, 5, 2, 3, 9, 8, 6, 7), U =
{4, 5, 9}, then

T (σ,U) = (1, 2, 3, 8, 6, 7) .

The following Algorithm 4 describes the decoding algorithm
of the code constructed in Theorem 4. The correctness of this
algorithm is proved by Lemma 12.

Our decoding scheme has two major steps. Recall that
α(q,2t) is defined in (29) and (30) as the syndrome of π .
The first step is to derive the syndrome α̂ = α(q,2t)(π)
of π = T (σ, {N + 1, · · · , N + K }), from the received
permutation σ 
. The second step is to apply Algorithm 2

Algorithm 4 Decoding Algorithm
Input:

Received sequence: σ 
;
Number of additional symbols: K ;
Minimum block permutation distance: 2t + 1;

Output:
Estimated information sequence: π̂ ;

1: Compute π 
 = T (σ 
, {N + 1, · · · , N + K }), according to
Definition 10;

2: Find S
 such that σ 
 = E(π 
, S
), where E(π, S) is defined
in Definition 5;

3: Find Ŝ ∈ Img(ϕ) such that H (Ŝ, S
) ≤ t , where H is
defined in Definition 8, and ϕ is specified in Theorem 4;

4: Compute α̂ = ϕ−1(Ŝ);
5: Let α̂, π 
 be the inputs of Algorithm 2 and obtain π̂ ;
6: return π̂ .

to the pair of inputs, the syndrome α̂ and the subsequence
π 
 = T (σ 
, {N + 1, · · · , N + K }), and compute π .

Note that it is sufficient to compute the sequence S in order
to derive the syndrome α̂. Lemma 12 proves the sufficiency
of obtaining the sequence S from S
, where S is the extension
sequence of π in σ , by showing that the cardinality of
the Hamming set H (S, S
) does not exceed t , provided that
dB(σ, σ


) ≤ t . Therefore, from (52) and Definition 9, we are
able to obtain an estimate Ŝ of S from S
 since each t-auxiliary
set A(N, K , t) has the property that the cardinalities of
Hamming sets constructed from its pairwise distinct elements
are at least 2t + 1. The syndrome α̂ is then uniquely derived
from Ŝ.

Lemma 12. Consider an arbitrary σ ∈ C = {E(π, ϕ �
α(q,2t)(π))|π ∈ SN }, for C defined in Theorem 4 (then
σ ∈ SN+K ). Suppose there is a σ 
 such that dB(σ, σ


) ≤ t .
Let S = ϕ � α(q,2t)(π) and π 
 = T (σ 
, [N + 1 : N + K ]).
Suppose σ 
 is the extension of π 
 on the extension sequence
S
, i.e., σ 
 = E(π 
, S
). Then,

H (S, S
) ≤ t . (56)

Proof. Suppose S = (s1, s2, · · · , sK ), S
 = (
s


1, s

2, · · · , s


K

)
.

Then, according to Theorem 4, S ∈ A(N, K , t). Let
M = {m|sm 	= s


m , 1 ≤ m ≤ K }. For all m ∈
M, it follows from Definition 6 that there exist subse-
quences of σ, σ 
: pm = (sm , nk(m), nk(m)−1, · · · , n1, N +
m) and p


m = (s

m , n


k
(m), n

k
(m)−1, · · · , n


1, N + m), where
k(m), k 
(m) ∈ [K ], n1, n2, · · · , nk(m), n


1, n

2, · · · , n


k(m)
 ∈
[N + 1 : N + K ]. Note that sm 	= s


m , which means that
(sm, nk(m), nk(m)−1, · · · , n1) 	= (s


m, n

k
(m), n


k
(m)−1, · · · , n

1).

Let

i(m) = min
1≤i≤min{k(m),k
(m)}

ni 	=n

i

i.

Then ni(m) 	= n

i(m) and ni(m)−1 = n


i(m)−1, where we let
n0 = n


0 = N + m if i(m) = 1.
Recall the notion of characteristic sets in Definition 3.

We know that (ni(m), ni(m)−1) ∈ A(σ ) and (n

i(m), n


i(m)−1) ∈
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A(σ 
). These two conditions along with the fact that ni(m) 	=
n


i(m) and ni(m)−1 = n

i(m)−1 imply that (ni(m), ni(m)−1) ∈(

A(σ ) \ A(σ 
)
)

for all m ∈ M. Notice that for all sm ∈ {sm :
m ∈ M} = H (S, S
), the associated subsequences pm start
with different sm and they do not overlap, which indicates that
the pairs (ni(m), ni(m)−1) are distinct. Then |A(σ ) \ A(σ 
)| ≥
|H (S, S
)|, which is equivalent to H (S, S
) ≤ dB(σ, σ


) ≤ t .

From Lemma 12, the receiver first computes π 
 =
T (σ 
, {N+1, · · · , N+K }) and derives the extension sequence
S
 such that σ 
 = E(π 
, S
). Then, the receiver decodes
Ŝ = ϕ � α(q,2t)(π) ∈ A(N, K , t) from S
 such that
|H (S
, Ŝ)| ≤ t and derives α̂ from Ŝ. From Lemma 10,
dB(π, π


) ≤ dB(σ, σ

) ≤ t follows. Then, the receiver can

apply Algorithm 2 to compute π̂ from π 
 and α̂ reliably. The
decoding scheme for the systematic t-block permutation code
C constructed in Theorem 4 is then complete.

C. Order-Optimal Systematic t-Block Permutation Codes

Theorem 4 presents the construction of systematic t-block
permutation codes with K redundant symbols based on a
t-auxiliary set A(N, K , t). When N is sufficiently large and K
is relatively small compared to N , the code rate is 1 −�( K

N ),
which is not necessarily order-optimal. In this section, based
on the upcoming Lemma 13 and Theorem 5, we provide an
explicit construction of a t-auxiliary set of length K = 56t in
Theorem 6, from which we are able to explicitly construct an
order-optimal permutation code by Theorem 4.

Lemma 13. For all k, N ∈ N
∗, k > 3, N > k2, consider

an arbitrary subset Y ⊂ [k], where |Y | = M < k,
Y = {i1, i2, · · · , iM }, then

LCM (N + i1, N + i2, · · · , N + iM) > N M− k
2 . (57)

Proof. The proof is in Appendix I.

Theorem 5. For all N, k, d ∈ N
∗, N > k2, k > 3, define a

function β(q,d,k) : F
d
q → [N + 1] × [N + 2] × · · · × [N + k]

as follows:

β(q,d,k)(x) =
(
β
(q,d,k)
1 (x), β(q,d,k)2 (x), · · · , β(q,d,k)k (x)

)

� (γ (x) mod (N + 1), γ (x) mod (N + 2),

· · · , γ (x) mod (N + k)), (58)

where x = (x1, x2, · · · , xd) ∈ F
d
q , γ (x) �

d∑

i=1
xi qi−1. Then ∀

x1, x2 ∈ F
d
q , x1 	= x2,

dH (β
(q,d,k)(x1), β

(q,d,k)(x2)) >
k

2
− d(2 + logN 2). (59)

Proof. For arbitrary x1, x2 ∈ F
d
q , x1 	= x2, let β(q,d,k)(x1) =

(β1,1, β1,2, · · · , β1,k), β(q,d,k)(x2) = (β2,1, β2,2, · · · , β2,k).
Let Z = {i : β1,i = β2,i , 1 ≤ i ≤ d}, then
dH (β

(q,d,k)(x1), β
(q,d,k)(x2)) = k − |Z | = k − M , where

M = |Z |.

Suppose Z = {i1, i2, · · · , iM }. Let γ1 = γ (x1),
γ2 = γ (x2). According to the definition of β(q,d,k) in (58),

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

γ1 ≡ γ2 mod (N + i1)
γ1 ≡ γ2 mod (N + i2)

...
γ1 ≡ γ2 mod (N + iM ).

Then,

γ1 ≡ γ2 mod LCM (N + i1, N + i2, · · · , N + iM ) .

Given that x1, x2 ∈ F
d
q , x1 	= x2, then γ1 	= γ2. From

Lemma 13, it follows that

|γ1 − γ2| ≥ LCM (N + i1, N + i2, · · · , N + iM ) > N M− k
2 .

(60)

Moreover, the condition x1, x2 ∈ F
d
q , x1 	= x2 implies that

0 ≤ γ1, γ2 < qd and γ1 	= γ2. Therefore,

|γ1 − γ2| < qd . (61)

According to (60) and (61), N M− k
2 < |γ1 − γ2| < qd <

(2N2)d is true, which means that M − k
2 < d(2 + logN 2).

Therefore M < k
2 + d(2 + logN 2), and then

dH (β1,β2) = k − M > k − (
k

2
+ d(2 + logN 2))

= k

2
− d(2 + logN 2).

The theorem is proved.

Example 11. Let k = 7, N = 50, d = 1, q = 2503,
x1 = (280), x2 = (1008), then γ1 = 280, γ2 = 1008, and

β1 = (280 mod 51, 280 mod 52, · · · , 280 mod 57)

= (25, 20, 15, 10, 5, 0, 52),

β2 = (1008 mod 51, 1008 mod 52, · · · , 1008 mod 57)

= (39, 20, 1, 36, 18, 0, 39).

Then dH (β1,β2) = 5 > k
2 − d(2 + logN 2), which is in

accordance with Theorem 5.

Based on Theorem 5, we provide an explicit construction
of a t-auxiliary set A(N, 56t, t) in the following Theorem 6.

Theorem 6. For all N, k, t ∈ N
∗, k ≥ 28t , k < �√N − 1

2�.
Suppose F

4t−1
q = {x1, x2, · · · , xq4t−1}, where q is a prime

number such that N2 − N < q < 2N2 − 2N. For any
s ∈ [

q4t−1
]
, suppose xs = (x1, x2, · · · , x4t−1), let cs =

(c1, c2, · · · , c2k), β(q,4t−1,k)(xs) = (β1, β2, · · · , βk) for all
1 ≤ i ≤ k, where cs is defined as follows:

⎧
⎨

⎩

c2i = (i − 1)� N
k � + 1 + (

βi mod � N
k �) ,

c2i−1 = (i − 1)� N
k � + 1 +

⌊
βi

� N
k �
⌋
.

(62)

Then A(N, 2k, t) = {cs : s ∈ [
q4t−1

]} is a t-auxiliary set
with cardinality q4t−1.
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Proof. Without loss of generality, we prove the statement
for x1, x2 ∈ F

4t−1
q , x1 	= x2, let β1 = β(q,4t−1,k)(x1),

β2 = β(q,4t−1,k)(x2). Then, according to Theorem 5,

dH (β1,β2) >
k

2
− (4t − 1)(2 + logN 2)

>
k

2
− (12t − 3) >

28t

2
− 12t = 2t .

In equation (62), let mi = (i − 1)� N
k � + 1. Notice that

(c2i−1 − mi )� N
k � + (c2i − mi ) = βi , for 1 ≤ i ≤ k. Given

βi ≤ N + k for all 1 ≤ i ≤ k, and k < �√N − 1
2�, it follows

that

⌊ N

k

⌋2

>

(
N

k
− 1

)2

≥
(

N√
N − 3

2

− 1

)2

>

(√
N + 3

2
− 1

)2

=
(√

N + 1

2

)2

> N + √
N > N + k ≥ βi .

Therefore, (c2i−1 − mi , c2i − mi ) is exactly the � N
k �-ary rep-

resentation of βi , for all 1 ≤ i ≤ k.
Suppose β1 = (β1,1, β1,2, · · · , β1,k) and β2 =

(β2,1, β2,2, · · · , β2,k). Let Y = {i : β1,i 	= β2,i , 1 ≤ i ≤ k},
then |Y | = dH (β1,β2). Notice that for all i ∈ Y , β1,i 	= β2,i ,
then either c1,2i−1 − mi 	= c2,2i−1 − mi or c1,2i − mi 	=
c2,2i − mi , which means that

|H (c1, c2) ∛ {c1,2i−1, c1,2i }| ≥ 1, i ∈ Y. (63)

Notice that (i − 1)� N
k � < c1,2i−1, c1,2i ≤ i� N

k �, and
therefore,

{c1,2i−1, c1,2i } ∛ {c1,2i 
−1, c1,2i 
 } = ∅, ∀ 1 ≤ i < i 
 ≤ k.

(64)

From (63) and (64),

|H (c1, c2)| =
k∑

i=1

|H (c1, c2) ∛ {c1,2i−1, c1,2i }|

≥
∑

i∈Y

|H (c1, c2) ∛ {c1,2i−1, c1,2i }|

≥
∑

i∈Y

1 = |Y | = dH (β1,β2) > 2t .

From Definition 9, A(N, k, t) is indeed a t-auxiliary set.

Remark 6. Suppose we use k = 28t in Theorem 6 to
construct a t-auxiliary set A(N, 56t, t). Then the code
Csys

B (N, 56t, t) constructed using Theorem 4 based on this
A(N, 56t, t) is an order-optimal systematic t-block permuta-
tion code.

VI. COMPARISON OF CARDINALITY OF THE CODEBOOKS

In Section IV, we constructed a t-generalized Cayley code
CG(N, t) = Cα(N, 4t). Let the cardinality of CG(N, t) be
AG(N, t). In [5], a t-generalized Cayley code with cardinality
AρgC (N, t) was constructed. We next compare in Lemma 14
the logarithms of the cardinalities of these two codes, which
reflects the redundancy in terms of bits. We show that the

proposed scheme requires a smaller number of redundant bits
than its counterpart presented in [5] for sufficiently large N
and t = o( N

log N ).
Lemma 14. log|AG(N, t)| > log|AρgC (N, t)| when t <

N
(16 log N+8) for sufficiently large N.

Proof.
We know from [12, Appendix A] that:

log|AρgC(N, t)| ≤ N log N − (2 + log e)N + O
(
(log N)2

)
.

(65)

Also,

log|AG(N, t)|
> log N ! − (16t (2 log N + 1))

>

(
N + 1

2

)
log N − (log e)N − 16t (2 log N + 1). (66)

Then,

log|AG(N, t)| − log|AρgC(N, t)|
>

(
N + 1

2

)
log N − (log e)N − 16t (2 log N + 1)

−
(

N log N − (2 + log e)N + O
(
(log N)2

))

= 1

2
log N + 2N − 16t (2 log N + 1)+ O

(
(log N)2

)
(67)

for sufficiently large N and t < N
(16 log N+8) .

From the above discussion, our proposed code in Section IV
indeed has a higher rate than the interleaving-based code for
sufficiently large N and t = o

(
N

log N

)
.

Based on Remark 6 in Section V, we presented a con-
struction of systematic t-generalized Cayley code C 


G(N, t) =
Csys

B (N, 56 · 4t, 4t) = Csys
B (N, 224t, 4t) with cardinality

A

G(N, t).
In the next Lemma 15, we compare the logarithm of

A

G(N, t) with that of AρgC (N, t).

Lemma 15. A

G(N, t) > AρgC(N, t) when t <

min{ N
112 log N ,

1
112�√N − 1

2�} for sufficiently large N.

Proof. We know from Lemma 7 that:

log|A

G(N, t)| > (N + 1

2
) log N − (log e)N − 224t log N.

(68)

Then it follows from (68) and (65) that

log|A

G(N, t)| − log|AρgC(N, t)|

>

(
N + 1

2

)
log N − (log e)N − 224t log N

−
(

N log N − (2 + log e)N + O
(
(log N)2

))

= 1

2
log N + 2N − 224t log N + O

(
(log N)2

)
. (69)

for sufficiently large N and t < min{ N
112 log N ,

1
112�√N − 1

2�}.
From the above discussion, our proposed systematic code

indeed has a higher rate than the interleaving-based code, for
sufficiently large N and t = o

(
N

log N

)
, in the generalized

Cayley distance.
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VII. CONCLUSION

The generalized Cayley metric is a distance measure that
generalizes the Kendall-tau metric and the Ulam metric.
Interleaving was previously shown to be convenient in con-
structions of permutation codes in the generalized Cayley
metric. However, interleaving incurs a noticeable rate penalty
such that the constructed permutation codes cannot be order-
optimal. In this paper, we presented a framework for con-
structing order-optimal permutation codes that does not require
interleaving. Based on this framework, we then presented
an explicit construction of systematic permutation codes
from so-called extensions of permutations. We further pro-
vided a systematic construction that is order-optimal. Lastly,
we proved that our proposed codes are more rate efficient
than the existing coding schemes based on interleaving for
sufficiently large N and t = o

(
N

log N

)
.

APPENDIX A
PROOF OF LEMMA 2

Lemma 2. For all π1, π2 ∈ SN ,

dB(π1, π2) = |A(π2) \ A(π1)| = |A(π1) \ A(π2)|.
Proof. According to the symmetry property of the block
permutation distance, it is sufficient to prove dB(π1, π2) =
|A(π1) \ A(π2)|.

Suppose π1, π2 ∈ SN such that dB(π1, π2) = d . Then,
there exists σ ∈ Sd+1, ψ1, ψ2, · · · , ψd+1, such that π1 =
(ψ1, ψ2, · · · , ψd+1) and π2 = (

ψσ(1), ψσ(2), · · · , ψσ(d+1)
)
.

Suppose ψk = π1
[
ik−1 + 1 : ik

]
for 1 ≤ k ≤ d + 1, where

0 = i0 < i1 · · · < id < id+1 = N . Then (π1(i), π1(i + 1)) ∈
(A(π1) \ A(π2)) if and only if i ∈ {i1, · · · , id }. Therefore,
|A(π1) \ A(π2)| = |{i1, · · · , id}| = d .

APPENDIX B
PROOF OF LEMMA 3

Lemma 3. For all π1, π2 ∈ SN , the following inequality
holds,

wB (π1 � π2) ≤ wB (π1)+wB (π2) .

Proof. For π ∈ SN , define B(π) as follows,

B(π) � {i |π(i + 1) 	= π(i)+ 1, 1 ≤ i < N}.
Then, for all i ∈ B(π), (π(i), π(i + 1)) /∈ A(e). Therefore,

B(π) = {i |(π(i), π(i + 1)) ∈ (A(π) \ A(e)) , 1 ≤ i < N},
which indicates that

|B(π)| = |A(π) \ A(e)| = wB(π). (70)

Let B1 = B(π1), B2 = B(π2), B3 = B(π1 � π2). Then ∀
i ∈ B3,

π1 (π2(i + 1)) 	= π1 (π2(i))+ 1.

Therefore, i must satisfy at least one of the conditions below:

{π2(i + 1) 	= π2(i)+ 1}, or

{π2(i) = k and π1(k + 1) 	= π1(k)+ 1}. (71)

Equation (71) means that either i ∈ B2 or π2(i) ∈ B1 is
true for all i ∈ B3. Then the function f : (B3 \ B2) → B1
specified by f (i) � π2(i) is an injection, which implies that

|B3| = |B3 \ B2| + |B3 ∛ B2| ≤ |B1| + |B2|. (72)

Apply (70) to (72), we obtain the following inequality:

wB (π1 � π2) ≤ wB (π1)+wB (π2) .

APPENDIX C
PROOF OF LEMMA 5

Lemma 5. For all N ∈ N
∗, t ≤ N − √

N − 1, bB(N, t) is
bounded by the following inequality:

t∏

k=1

(N − k) ≤ bB(N, t) ≤
t∏

k=0

(N − k).

Proof. Denote the number of permutations of length N
with block permutation weight m by F(m), then bB(N, t) =

t∑

m=0
F(m).

We know that F(0) = 1, and from [18, eq. (3)], for all
1 ≤ m ≤ t ,

F(m) =
(

N − 1

m

)
m!

m∑

k=0

(−1)m−k (k + 1)

(m − k)! . (73)

Let ak = (k+1)
(m−k)! , 0 ≤ k ≤ m, 1 ≤ m ≤ t . Then, m +

1 = am > am−1 = m > am−2 > · · · > a0 > 0. Therefore,
the following inequalities hold true,

a2k − a2k−1 + · · · + a0 = a0 +
k∑

i=1

(a2i − a2i−1) > 0,

a2k−1 − a2k−2 + · · · − a0 =
k∑

i=1

(a2i−1 − a2i−2) > 0.

For 1 ≤ m ≤ t , define Am as follows,

Am =
m∑

k=0

(−1)m−k (k + 1)

(m − k)! .

Then, A1 = 1 and for 2 ≤ m ≤ t ,

Am = m + 1 − (am−1 − am−2 + · · · + (−1)m−1a0) < m+1,

Am = m + 1 − m + (am−2 − am−3 + · · · + (−1)ma0) > 1.

(74)

According to (73) and (74), for all 1 ≤ m ≤ t ,
(

N − 1

m

)
m! ≤ F(m) <

(
N − 1

m

)
(m + 1)!.

To derive the upper bound of the ballsize bB(N, t), we first
find an upper bound of F(m), 1 ≤ m ≤ t , as follows,

F(m) ≤
(

N − 1

m

)
(m + 1)! = (m + 1) ·

m∏

k=1

(N − k).
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For t ≤ N − √
N − 1, it follows that i ≤ N − √

N − 1 for all
1 ≤ i ≤ t . Therefore, for all 1 ≤ i ≤ t ,

(N − i − 1)2 ≥ (N − (N − √
N))2 = N > i + 1.

Then,

bB(N, t) =
t∑

i=0

F(i)

≤ 1 +
t∑

i=1

(i + 1) ·
i∏

k=1

(N − k)

= 1 +
t∑

i=1

(N − (N − i − 1)) ·
i∏

k=1

(N − k)

= 1 +
t∑

i=1

(
i∏

k=0

(N − k)−
i+1∏

k=1

(N − k)

)

=
t∏

k=0

(N − k)−
t∑

i=2

(
i+1∏

k=1

(N − k)−
i−1∏

k=0

(N − k)

)

− (N − 1)(N − 2)+ 1

=
t∏

k=0

(N − k)−
t∑

i=2

(
i−1∏

k=1

(N − k)

)

((N − i)(N − i − 1)− N) − ((N − 1)(N − 2)− 1)

=
t∏

k=0

(N − k)−
t∑

i=2

(
i−1∏

k=1

(N − k)

)

(
(N − i − 1)2 − i − 1

)
− ((N − 1)(N − 2)− 1)

≤
t∏

k=0

(N − k).

Similarly, for the lower bound, the following inequality
holds true.

bB(N, t) =
t∑

i=0

F(i) ≥ 1 +
t∑

i=1

i∏

k=1

(N − k) >
t∏

k=1

(N − k).

The lemma is proved.

APPENDIX D
PROOF OF LEMMA 6

Lemma 6. For all N ∈ N
∗, t ≤ min{N − √

N − 1, N−1
4 },

bG(N, t) is bounded as follows:

t∏

k=1

(N − k) ≤ bG(N, t) ≤
4t∏

k=0

(N − k).

Proof. The upper bound is obtained from replacing t by 4t
in (17) and utilizing (14). Note that π ∈ BG(N, t, e) implies
that dG(π, e) ≤ t . Then from (14), dB(π, e) ≤ 4dG(π, e) ≤ 4t
holds true, which means that π ∈ BB(N, 4t, e). Therefore,
BG(N, t, e) ⊆ BB(N, 4t, e), which implies that bG(N, t) ≤
bB(N, 4t). From (17) we will get the upper bound.

Similarly, (14) also implies that BB(N, t, e) ⊆ BG(N, t, e),
which means that bB(N, t) ≤ bG(N, t). From (17) the lower
bound follows immediately. The lemma is proved.

APPENDIX E
PROOF OF LEMMA 8

Lemma 8. For all π1, π2 ∈ SN such that π1 	= π2,
if α(q,d)(π1) = α(q,d)(π2), then,

|ν(π1)�ν(π2)| > 2d.

Proof. Let B1 = ν(π1), B2 = ν(π2). We prove the statement
by contradiction. If the lemma is not true, i.e., |B1�B2| ≤ 2d ,
then k = |D1| = |D2| ≤ d , where D1 = B1\B2, D2 = B2\B1.
Suppose D1 = {x1, x2, · · · , xk}, D2 = {xk+1, xk+2, · · · , x2k}.
Then, α(q,d)(π1) = α(q,d)(π2) is equivalent to the following
equations.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x1 + · · · + xk = xk+1 + · · · + x2k,

x2
1 + · · · + x2

k = x2
k+1 + · · · + x2

2k,
...

x2d−1
1 + · · · + x2d−1

k = x2d−1
k+1 + · · · + x2d−1

2k .

(75)

From (75), it follows that
⎛

⎜
⎜⎜
⎜
⎜
⎝

1 1 · · · 1
x1 x2 · · · x2k

x2
1 x2

2 · · · x2
2k

...
...

. . .
...

x2d−1
1 x2d−1

2 · · · x2d−1
2k

⎞

⎟
⎟⎟
⎟
⎟
⎠

y = 0,

where y = (y1, y2, · · · , y2k)
T , and

yi =
{

1, 1 ≤ i ≤ k,

−1, k < i ≤ 2k.

Given that 2k ≤ 2d , the above equation implies that
⎛

⎜
⎜
⎜⎜
⎜
⎝

1 1 · · · 1
x1 x2 · · · x2k

x2
1 x2

2 · · · x2
2k

...
...

. . .
...

x2k−1
1 x2k−1

2 · · · x2k−1
2k

⎞

⎟
⎟
⎟⎟
⎟
⎠

y = 0. (76)

Denote the Vandermonde matrix in equation (76) by U.
Then y is in the nullspace of U. Therefore, U is singular,
which implies that the determinant of U is equal to 0 in Fq ,
i.e.,

0 = det U =
∏

1≤i< j≤2k

(
xi − x j

)
. (77)

As q is a divisor of 0, q should also be a divisor of the right
hand side of equation (77), which implies that ∃ i 	= j ∈ [2k]
such that q|(xi − x j ). Then xi = x j on Fq , and we must have
xi ∈ D1, x j ∈ D2 or xi ∈ D2, x j ∈ D1, which implies that
xi , x j ∈ D1 ∛ D2, a contradiction.

APPENDIX F
PROOF OF LEMMA 9

Lemma 9. Suppose A ∈ F
(4t−1)×(2t)
q , b ∈ F

4t−1
q are defined

in (43) and (44), respectively. Consider the following equation
defined on Fq:

Ac = b.
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For any vector c ∈ F
2t
q , c is a nonzero solution to (45) if

and only if (h1(c), h2(c)) is a nonzero solution to (40).

Proof. Suppose

f1 = X N−1 + a1 X N−2 + · · · + a4t−1 X N−4t + g1,

f2 = X N−1 + a

1 X N−2 + · · · + a


4t−1 X N−4t + g2. (78)

Additionally, suppose

h1 · f1 = X N+t−1 + sN+t−2 X N+t−2 + · · · + s0,

h2 · f2 = X N+t−1 + s

N+t−2 X N+t−2 + · · · + s


0.

Then, from (78) and (42), it follows that
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sN+t−2 = a1 + c1,

sN+t−3 = a2 + c1a1 + c2,
...

sN−1 = at + c1at−1 + · · · + ct ,
...

sN−3t = a4t−1 + c1a4t−2 + c2a4t−3 + · · · + ct a3t−1.

Similarly, we also have
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s

N+t−2 = a


1 + c

1,

s

N+t−3 = a


2 + c

1a


1 + c

2,

...

s

N−1 = a


t + c

1a


t−1 + · · · + c

t ,

...

s

N−3t = a


4t−1 + c

1a


4t−2 + c

2a


4t−3 + · · · + c

t a



3t−1.

Then (40) is true iff si = s

i for all N − 3t ≤ i ≤ N + t − 2,

which is equivalent to the following equation:
⎛

⎜⎜
⎜
⎜
⎜
⎜
⎜⎜
⎝

1
a1 1
...

...
. . .

at−1 at−2 · · · 1
...

...
. . .

...
a4t−2 a4t−3 · · · a3t−1

⎞

⎟⎟
⎟
⎟
⎟
⎟
⎟⎟
⎠

⎛

⎜
⎜
⎜
⎝

c1
c2
...

ct

⎞

⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎝

a1
a2
...

a4t−1

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎝

1
a


1 1
...

...
. . .

a

t−1 a


t−2 · · · 1
...

...
. . .

...
a


4t−2 a

4t−3 · · · a


3t−1

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎠

⎛

⎜
⎜
⎜
⎝

c

1

c

2
...

c

t

⎞

⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎝

a

1

a

2
...

a

4t−1

⎞

⎟
⎟
⎟
⎠
. (79)

We note that (79) is equivalent to (45).

APPENDIX G
PROOF OF LEMMA 10

Lemma 10. Let π1, π2 ∈ SN , s1, s2 ∈ [N]. For any two
extensions E(π1, s1) and E(π2, s2), if s1 is a jump point of
E(π1, s1) with respect to E(π2, s2), then

dB(E(π1, s1), E(π2, s2)) > dB(π1, π2),

else

dB(E(π1, s1), E(π2, s2)) = dB(π1, π2).

Proof. Let σ1 = E(π1, s1) and σ2 = E(π2, s2). Recall the
notion of characteristic sets in Definition 3. Suppose A(π1),
A(π2), A(σ1), A(σ2) are the characteristic sets of π1, π2, σ1,
σ2, respectively. According to Lemma 2,

dB(π1, π2) = |A(π1) \ A(π2)|,
dB(σ1, σ2) = |A(σ1) \ A(σ2)|. (80)

Let k1 = π−1
1 (s1), k2 = π−1

2 (s2), then π1(k1) = s1 and
π2(k2) = s2. If 1 ≤ k1, k2 < N , let π1(k1 + 1) = j1 and
π2(k2 + 1) = j2.

Suppose first s1 is a jump point, then consider the following
cases.

1) s1 	= s2 and either k1 = N or k2 = N .

a) k1 = k2 = N . In this case, A(σ1) = A(π1)∜{(s1, N +
1)}, A(σ2) = A(π2)∜{(s2, N +1)}. Therefore, A(σ1)\
A(σ2) = (A(π1) \ A(π2)) ∜ {(s1, N + 1)}. From (80),
dB(σ1, σ2) = dB(π1, π2)+ 1 follows.

b) k1 = N 	= k2. In this case, A(σ1) =
A(π1) ∜ {(s1, N + 1)}, A(σ2) = (A(π2) \ {(s2, j2)}) ∜
{(s2, N + 1), (N + 1, j2)}. Therefore, A(σ1) \ A(σ2) =
(A(π1) \ (A(π2) \ {(s2, j2)})) ∜ {(s1, N + 1)},
which means ((A(π1) \ A(π2)) ∜ {(s1, N + 1)}) ⊆
(A(σ1) \ A(σ2)). From (80), it follows that
dB(σ1, σ2) ≥ dB(π1, π2)+ 1.

c) k2 = N 	= k1. Following the same logic in the
previous case, dB(σ1, σ2) ≥ dB(π1, π2)+ 1 holds true.

2) s1 	= s2, k1, k2 	= N . Since s1 is a jump point, j1 	= j2.

a) In this case, A(σ1) = (A(π1) \ {(s1, j1)}) ∜ {(s1, N +
1), (N + 1, j1)}, A(σ2) = (A(π2) \ {(s2, j2)}) ∜
{(s2, N + 1), (N + 1, j2)}. Therefore, the equation
(((A(π1) \ A(p2)) \ {s1, j1}) ∜ {(s1, N + 1), (N +
1, j1)}) ⊆ (A(σ1) \ A(σ2)) follows. From (80),
dB(σ1, σ2) ≥ dB(π1, π2)+ 1.

If s1 is not a jump point, then consider the following cases.

1) s1 = s2 and either k1 = N or k2 = N .

a) k1 = k2 = N . In this case, A(σ1) = A(π1) ∜
{(s1, N + 1)}, A(σ2) = A(π2) ∜ {(s1, N + 1)}. There-
fore, A(σ1) \ A(σ2) = A(π1) \ A(π2). From (80),
dB(σ1, σ2) = dB(π1, π2) follows.

b) k1 = N 	= k2. In this case, A(σ1) = A(π1) ∜
{(s1, N + 1)}, A(σ2) = (A(π2) \ {(s1, j2)})∜{(s1, N +
1), (N + 1, j2)}. Therefore, A(σ1) \ A(σ2) = A(π1) \
(A(π2) \ {(s1, j2)}) = A(π1) \ A(π2). From (80),
it follows that dB(σ1, σ2) = dB(π1, π2).

c) k2 = N 	= k1. Follow the same logic in the previous
case, dB(σ1, σ2) = dB(π1, π2) holds true.

2) k1, k2 	= N . Since s1 is not a jump point, either s1 = s2
or j1 = j2 must be satisfied.

a) s1 = s2 and j1 = j2. In this case, A(σ1) =
(A(π1) \ {(s1, j1)})∜{(s1, N+1), (N+1, j1)}, A(σ2) =
(A(π2) \ {(s1, j1)})∜{(s1, N +1), (N +1, j1)}. There-
fore, A(σ1) \ A(σ2) = A(π1) \ A(π2). From (80),
dB(σ1, σ2) = dB(π1, π2) follows.



4762 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 8, AUGUST 2019

b) s1 = s2 and j1 	= j2. In this case, A(σ1) =
(A(π1) \ {(s1, j1)})∜{(s1, N+1), (N+1, j1)}, A(σ2) =
(A(π2) \ {(s1, j2)})∜{(s1, N +1), (N +1, j2)}. There-
fore, A(σ1) \ A(σ2) = ((A(π1) \ A(π2)) \ {(s1, j1)}) ∜
{(N + 1, j1)}. From (80), it follows that dB(σ1, σ2) =
dB(π1, π2).

c) s1 	= s2 and j1 = j2. Follow the same logic as indi-
cated in the previous case, dB(σ1, σ2) = dB(π1, π2)
holds true.

The lemma is proved.

APPENDIX H
PROOF OF LEMMA 11

Lemma 11. Let π1, π2 ∈ SN , s1, s2 ∈ [N]. For any extensions
E(π1, S1), E(π2, S2) of π1, π2 on extension sequences S1, S2,
respectively, it follows that

dB(E(π1, S1), E(π2, S2)) ≥ |H (S1, S2)|.
Proof. For all i ∈ H (S1, S2), let

m(i) = min{m : s1,m = i, s2,m 	= i}. (81)

Suppose J1,m(i)−1 = (s1,1, s1,2, · · · , s1,m(i)−1), J2,m(i)−1 =
(s2,1, s2,2, · · · , s2,m(i)−1). Let σm(i)−1

1 = E(π1, J1,m(i)−1) and
σ

m(i)−1
2 = E(π2, J2,m(i)−1). Recall the definition of the jump

set F(π1, π2, S1, S2) in Definition 7. Consider the following
two cases:

1) If m(i) ∈ F(π1, π2, S1, S2), then s1,m(i) = i is
a jump point of E(σm(i)−1

1 , s1,m(i)) with respect to
E(σm(i)−1

2 , s2,m(i)).
2) If m(i) /∈ F(π1, π2, I1, I2), then i is not a jump point

of E(σm(i)−1
1 , s1,m(i)) with respect to E(σm(i)−1

2 , s2,m(i)).
Let k 


1 = (σ
m(i)−1
1 )−1(s1,m(i)), k1 = π−1

1 (s1,m(i)),
k 


2 = (σ
m(i)−1
2 )−1(s2,m(i)), k2 = π−1

2 (s2,m(i)), then
σ

m(i)−1
1 (k 


1) = π1(k1) = s1,m(i) and σ
m(i)−1
2 (k 


2) =
π2(k2) = s2,m(i). Given that s1,m(i) is not a jump point
and s1,m(i) 	= s2,m(i), it follows from Definition 6 that
k1, k2 	= N+m(i)−1 and σm(i)−1

1 (k 

1+1) = σ

m(i)−1
2 (k 


2+
1) must be true. Let j = σ

m(i)−1
1 (k 


1 +1) = σ
m(i)−1
2 (k 


2 +
1). From (81), π1(k1 + 1) = π2(k2 + 1) = j ∈ [N]
holds, otherwise N < j < N + m(i) is inserted after i
in π1 and is not inserted after i in π2, a contradiction.
Then (i, j) ∈ A(π1), (s2,m(i), j) ∈ A(π2) and s2,m(i) 	= i .
Therefore (i, j) ∈ (A(π1) \ A(π2)).

Suppose J = {i |m(i) /∈ F(π1, π2, S1, S2), i ∈ H (S1, S2)},
then from the above discussion:

|F(π1, π2, S1, S2)| ≥ |H (S1, S2) \ J |,
dB(π1, π2) = |A(π1) \ A(π2)| ≥ |J |.

And from Lemma 10, it follows that

dB(E(π1, S1), E(π2, S2)) ≥ dB(π1, π2)+ |F(π1, π2, S1, S2)|
≥ |H (S1, S2) \ J | + |J |
≥ |H (S1, S2)|.

The lemma is proved.

APPENDIX I
PROOF OF LEMMA 13

Lemma 13. For all k, N ∈ N
∗, k > 3, N > k2, consider

an arbitrary subset Y ⊂ [k], where |Y | = M < k, Y =
{i1, i2, · · · , iM }, then

LCM (N + i1, N + i2, · · · , N + iM ) > N M− k
2 .

Proof. For all r, n ∈ N
∗, it follows from [19, eq. (13)] that

gr (n) = GCD(r !, (n + r)gr−1(n)), (82)

where for all r ∈ N, n ∈ N
∗,

gr(n) = n(n + 1) · · · (n + r)

LCM(n, n + 1, · · · , n + r)
. (83)

From (82) and (83), the following statement holds true,

gr (n)|r !, ∀r, n ∈ N
∗, (84)

which implies that

n(n + 1) · · · (n + r)

LCM(n, n + 1, · · · , n + r)
≤ r !. (85)

Let n = N + 1, r = k − 1 in (85). Then, for all N, k ∈ N
∗,

LCM (N + 1, N + 2, · · · , N + k)

≥ (N + 1)(N + 2) · · · (N + k)

(k − 1)! . (86)

Let [k] \ Y = { j1, j2, · · · , jk−M }. Notice that

LCM (N + 1, N + 2, · · · , N + k)

= LCM(LCM (N + i1, N + i2, · · · , N + iM ) ,

LCM (N + j1, N + j2, · · · , N + jk−M ))

≤
[

k−M∏

s=1

(N + js)

]

LCM (N + i1, N + i2, · · · , N + iM ) .

(87)

From equation (86) and (87),

LCM (N + i1, N + i2, · · · , N + iM )

≥ LCM(N + 1, N + 2, · · · , N + k)
k−M∏

s=1
(N + js)

≥ (N + 1)(N + 2) · · · (N + k)

(k − 1)!
k−M∏

s=1
(N + js)

=

M∏

s=1
(N + is)

(k − 1)! >
N M

k! .

From Lemma 7, for all k > 3 and N > k2,

N M

k! >
N M

2(k+ 1
2 ) log k−k+2

>
N M 2k−2

kk+1 ≥ N M

kk
> N M− k

2 .

The lemma is proved.
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