
Techniques for Evolution-Aware Runtime Verification

Owolabi Legunsen, Yi Zhang, Milica Hadzi-Tanovic, Grigore Roşu, Darko Marinov

Department of Computer Science, University of Illinois at Urbana-Champaign, IL 61801, USA

{legunse2,yzhng173,milicah2,grosu,marinov}@illinois.edu

Abstract—Runtime Verification (RV) can help find bugs by
monitoring program executions against formal properties. De-
velopers should ideally use RV whenever they run tests, to find
more bugs earlier. Despite tremendous research progress, RV still
incurs high overhead in (1) machine time to monitor properties
and (2) developer time to wait for and inspect violations from test
executions that do not satisfy the properties. Moreover, all prior
RV techniques consider only one program version and wastefully
re-monitor unaffected properties and code as software evolves.

We present the first evolution-aware RV techniques that re-
duce RV overhead across multiple program versions. Regression
Property Selection (RPS) re-monitors only properties that can be
violated in parts of code affected by changes, reducing machine
time and developer time. Violation Message Suppression (VMS)
simply shows only new violations to reduce developer time; it
does not reduce machine time. Regression Property Prioritization
(RPP) splits RV in two phases: properties more likely to find bugs
are monitored in a critical phase to provide faster feedback to
the developers; the rest are monitored in a background phase.

We compare our techniques with the evolution-unaware (base)
RV when monitoring test executions in 200 versions of 10 open-
source projects. RPS and the RPP critical phase reduce the
average RV overhead from 9.4× (for base RV) to 1.8×, without
missing any new violations. VMS reduces the average number of
violations 540×, from 54 violations per version (for base RV) to
one violation per 10 versions.

Index Terms—runtime verification, regression testing, software
evolution, specifications, software testing.

I. INTRODUCTION

Runtime Verification (RV) [4], [10], [11], [16], [21], [33],

[34], [37], [43], [58] is a technique for monitoring program

executions against formal properties. A property is a logical

formula over a set of events, e.g., method calls; intuitively, it

captures developers’ intent on correct API usage [76]. An RV

tool takes a program, program inputs (e.g., tests), and proper-

ties. The tool instruments the program based on the properties

so that executing the instrumented program generates events

and creates monitors to listen to events and check properties.

The outputs are violation messages (violations for short) which

report that the execution violated some property at a code

location. RV helped find many bugs but induces high runtime

overhead in executing the instrumented program instead of the

uninstrumented program, and some violations do not indicate

true bugs but are false alarms [52], [76].

All prior RV techniques considered only a single program

version, but software evolves over multiple versions. Devel-

opers should ideally use RV whenever they run tests, to find

more bugs earlier in the development process. However, as

software evolves, rerunning traditional, evolution-unaware RV

(base RV) has unnecessarily high overhead: machine time

can be wasted on repeatedly checking unchanged code, and

developers can repeatedly see the same violations (even if

they want to handle some violations later, they have no way to

suppress those violations). It is therefore important to develop

techniques that can reduce RV overhead—in both machine

and developer time—during software evolution. This paper

presents compelling evidence that taking software evolution

into account can significantly reduce RV overhead across

multiple program versions.

A. Techniques

We present three evolution-aware RV techniques: regres-

sion property selection (RPS), violation message suppression

(VMS), and regression property prioritization (RPP). RPS,

VMS, and RPP focus RV (and its users) on changed parts of

code and new violations that are generated. RPS can reduce

RV overhead in machine time and developer time, VMS can

reduce the overhead in developer time but not machine time,

and RPP can reduce time to see results for most critical

properties, e.g., those historically more likely to find bugs.

RPS re-monitors only properties that can be violated in parts

of code affected by changes, i.e., either directly changed or in-

directly affected; these code parts may generate new events due

to changes. Our current implementation of RPS re-monitors

only properties whose events can come from affected classes.

We focused on class-level RPS following recent evolution-

aware techniques which showed greater overall benefits of

performing analysis at class level than at finer granularity

levels like methods or statements [9], [26], [51], [88].

VMS by itself re-monitors all properties in a new code

version, but shows only new violations that were not in the old

version. VMS collects violations from both versions and com-

putes a mapping of code between new and old versions. VMS

then filters out violations of the same property that occurred on

the likely equivalent locations in both versions. VMS makes it

easier to focus on new violations, and developers can decide

whether to inspect only new or also old violations.

RPP partitions RV into two phases: it monitors some

properties in the critical phase—so called because it is on the

developer’s critical path from the moment of submitting code

changes to getting the results—and monitors the remaining

properties in the background phase. RPP reduces time to get

feedback on critical properties but still monitors all properties.

Developers select critical properties, e.g., those that helped find

bugs or those for heavily-used APIs, etc. In our evaluation,

critical properties become those that were previously violated.

1
Copyright 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in

any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new

collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works

We define safety and precision for evolution-aware RV

techniques (Section III-A): an evolution-aware RV technique is

safe if it does not miss a new violation, and precise if it shows

only new violations. We develop two strong RPS variants that

are safe under certain assumptions. We also develop 10 weak

RPS variants that can trade some safety for more efficiency,

i.e., reduced overhead. RPS variants differ in what properties

they select and where they instrument the selected properties.

B. Results

We compared RPS, VMS, and RPP with base RV using

161 properties on 200 versions of 10 open-source projects (20

versions per project). The results showed that our evolution-

aware RV techniques can substantially reduce the runtime

overhead and number of violations shown, compared to base

RV. We compute the runtime overhead and the number of

shown violations per version, then average across versions of

a project and then across all projects.

Base RV has average runtime overhead of 9.4×, showing

54 violations per version. The two strong RPS variants have

runtime overhead of 7.5× and 7.9×, showing 37 and 42

violations. The 10 weak RPS variants have runtime overhead

of 2.5×–7.5×, showing 21–37 violations. Surprisingly, all

weak RPS variants were safe in our experiments although they

can be unsafe in theory. Our manual inspection showed why:

all new violations happened due to changes whose effects were

in the classes considered affected by all weak RPS variants.

VMS has negligible extra runtime overhead and reduces

the number of violations shown by two orders of magnitude

relative to base RV; VMS shows, on average, 0.1 new violation

per version, while base RV shows 54 violations per version.

RPP’s critical phase overhead is 1.8× (when combined with

RPS), and our analysis of RPP showed that about 76% of base

RV overhead goes into monitoring unviolated properties.

C. Contributions

This paper makes the following contributions:

⋆ Evolution-Aware RV Techniques. We are the first to realize

the RPS idea [53] and additionally propose VMS and RPP.

⋆ RPS Variants. We develop two strong RPS variants, and 10

weak RPS variants that trade some safety for efficiency.

⋆ Results. RPS and RPP reduced base RV overhead from

9.4× to as low as 1.8×, and VMS showed two orders of

magnitude fewer violations than base RV.

II. RUNNING EXAMPLE

Our running example is necessarily detailed to show the

specifics of RV that evolution-aware RV techniques exploit,

and to highlight differences between the RPS variants in later

sections. We illustrate properties, how evolution-unaware base

RV works in the JavaMOP [40], [43], [58] tool used in our

experiments, and violations.

A. Examples of Monitored Properties

In our running example, we use the three properties in

figures 1a–1c, written in JavaMOP syntax [38]; they helped

find several confirmed bugs [52]. Properties have three parts:

(1) events: relevant method calls or field accesses, (2) a spec-

ification: logical formula over the events, and (3) a handler:

action to take when events match (or violate) the specification.

Collections_SynchronizedCollection (CSC): CSC checks

that code synchronizes on a synchronized Collection

before iterating over it [18]. Not synchronizing on such

Collection before iterating “may result in non-deterministic

behavior” [17]. CSC defines four events in lines 3–10 of

Fig. 1a: (1) sync (lines 3–4) occurs when Collections.sy

nchronizedCollection is called to create a Collection,

c, (2) syncMk (lines 5–6) occurs when c.iterator is called

to obtain an Iterator i in a thread that holds the lock on c,

(3) asyncMk (lines 7–8) occurs when c.iterator is called

without first locking on c, and (4) access (lines 9–10) occurs

when accessing i from a thread that does not hold c’s lock.

When sync occurs, JavaMOP creates a monitor object to listen

for CSC events (hence the creation event keywords).

CSC’s specification (line 11 of Fig. 1a) is an Extended

Regular Expression which matches if the code either (1) cre-

ates c (sync event) and obtains i without first locking on c

(asyncMk event), or (2) creates c (sync event) and obtains i

from a thread that locks on c (syncMk event) but accesses i

from a thread that does not lock on c (access event). When

a CSC monitor receives an event that causes its specification

to match, its handler (line 12) is invoked. The handler can

be any code, but most properties, including CSC, just print a

violation to warn developers of a potential bug.

StringTokenizer_HasMoreElements (STHME): STHME

checks that getting tokens from StringTokenizer, st, is

only done after checking that st has more elements [82].

STHME (Fig. 1b) defines two events: (1) hasnexttrue

(lines 2–4) occurs when st.hasMoreElements or st.ha

sMoreTokens is invoked and returns true, and (2) next

(lines 5–7) occurs when st.nextElement or st.nextToken

is invoked. The STHME specification (line 8) is a past-time

LTL formula [57] stating that a next event on st must be

preceded by a hasnexttrue event on st. When the STHME

specification does not hold, line 9 prints a violation.

URLDecoder_DecodeUTF8 (URLD): URLD checks that

URLs are decoded from UTF-8, to avoid producing incompati-

ble URLs [83], [84]. URLD’s only event, decode (lines 2–5 in

Fig. 1c), occurs if URL is decoded with non-UTF-8 encoding.

The handler on line 6 prints a violation on each decode event.

B. Base RV, Causes of Overhead, and Property Violations

We describe the example Java code in Fig. 1d and violations

that occur when JavaMOP is used to monitor its execution

against the CSC, STHME, and URLD properties. The example

code is hypothetical, created to illustrate our techniques.

Example Code: Fig. 1d shows five classes—A, B, C, D, and

E—and two versions—line 11 in the old version is replaced

with line 12 in the new version. A.a() concatenates the string

2

1 Collections_SynchronizedCollection(Collection c, Iterator i) {

2 Collection c;

3 creation event sync after() returning(Collection c):

4 call(* Collections.synchronizedCollection(Collection)){ this.c = c;}

5 event syncMk after(Collection c) returning(Iterator i) :

6 call(* Collection+.iterator()) && target(c) && Thread.holdsLock(c){}

7 event asyncMk after(Collection c) returning(Iterator i):

8 call(* Collection+.iterator()) && target(c) && !Thread.holdsLock(c){}

9 event access before(Iterator i) :

10 call(* Iterator.*(..)) && target(i) && !Thread.holdsLock(this.c){}

11 ere: (sync asyncMk) | (sync syncMk access)

12 @match{ RVMLogging.out.println(/*violation message*/); }}

(a) Collections_SynchronizedCollection (CSC) property

1 StringTokenizer_HasMoreElements(StringTokenizer s) {

2 event hasnexttrue after(StringTokenizer s) returning(boolean b):

3 (call(boolean StringTokenizer.hasMoreTokens()) ||

4 call(boolean StringTokenizer.hasMoreElements())) && target(s) && b{}

5 event next before(StringTokenizer s):

6 (call(* StringTokenizer.nextToken()) ||

7 call(* StringTokenizer.nextElement())) && target(s){}

8 ltl: [](next => (*) hasnexttrue)

9 @violation { RVMLogging.out.println(/*violation message*/); }}

(b) StringTokenizer_HasMoreElements (STHME) property

1 URLDecoder_DecodeUTF8() {

2 event decode before(String enc) :

3 call(* URLDecoder.decode(String, String)) && args(*, enc) {

4 if (enc.equalsIgnoreCase("utf-8") || enc.equalsIgnoreCase("utf8"))

5 return;

6 RVMLogging.out.println(/*violation message*/); }}

(c) URLDecoder_DecodeUTF8 (URLD) property

1 class A {

2 String a(List i, String sep) {

3 String o = "";

4 for (Object a : i) {

5 o += a.toString() + sep;

6 } return o; }}

7

8 class B extends A {

9 String b(List l) {

10 String i;

11 - i = a(l, " ");

12 + i = a(Collections.synchronizedList(l), " ");

13 return i.trim(); }

14 Boolean flag() { return true; }}

15

16 class C {

17 String c(List<String> l) {

18 B b = new B(); D d = new D();

19 String s = b.b(l);

20 return d.d(s, b.flag()) + ": " + s; }}

21

22 class D {

23 String d(String s, boolean flag) {

24 StringTokenizer t = new StringTokenizer(s);

25 String out = "";

26 if (flag) {

27 if(t.hasMoreTokens()){out = t.nextToken();}

28 } else { out = t.nextToken(); }

29 return out; }}

30

31 class E {

32 void e(String u, String e) throws Exception {

33 D d = new D(); assert(!u.isEmpty());

34 String url = d.d(u, false);

35 if (url.startsWith("https")) {

36 String s = URLDecoder.decode(url, e);

37 System.out.print(s); }}}

(d) Example evolving code

Fig. 1: Example properties and evolving code that we use to illustrate base RV and evolution-aware RV techniques

1 public class TC {

2 @Test public void testC() {

3 B b = new B(); C c = new C(); D d = new D();

4 List<String> l1 = Arrays.asList("1", "2");

5 assert(b.b(l1).equals("1 2"));

6 assert(c.c(l1).equals("1: 1 2"));

7 assert(d.d("1 2", false).equals("1")); } }

8

9 public class TE {

10 @Test public void testE() throws Exception {

11 E e = new E(); String u = "https://bing.com";

12 assert(e.e(u + " b", "ISO-8859-1").equals(u)); } }

Fig. 2: Tests for code in Fig. 1d

representation of all elements in its input List. B extends A

and B.b() invokes A.a() to get a string representation of the

input List, which it then trims to remove leading or trailing

white space. C.c() first invokes B.b() to obtain a string

representation of its input List, which it prints after prefixing

with the first sub-string, obtained from D.d(). D.d() tokenizes

the input string and returns the first token; for performance

reasons, it only checks that the input string has more than one

token if its caller sets flag (e.g., the caller may already ensure

non-emptiness). E.e() decodes an encoded HTTPS URL from

a string after ensuring the string is not empty and invoking

D.d() to get the first sub-string.

Monitoring and Causes of RV Overhead: We use the code

in Fig. 1d to describe three RV concepts: instrumentation,

monitor creation, and event/violation handling. Let us consider

what happens when the tests in Fig. 2 are run on the old ver-

sion of Fig. 1d. During class loading, JavaMOP instruments all

statements in classes A through E that can generate events men-

tioned in the properties. The instrumentation causes events to

be triggered during execution. Example instrumentation points

in Fig. 1d include (1) before creating an Iterator on line 4

which may trigger CSC events, (2) after hasMoreTokens and

before nextToken on line 27, and before line 28, which may

all trigger STHME events, and (3) before line 36 which may

trigger URLD events. At runtime, monitors are created to listen

for and handle events. In the old version, only STHME and

URLD monitors are created; creation event for CSC never

occurs because List l on line 11 is not a synchronized

Collection. One STHME monitor is created when the first

relevant event occurs on each StringTokenizer; only one

URLD monitor is created at the start of execution (unlike CSC

and STHME, URLD has no parameters). Base RV induces

high runtime overhead due to managing very many monitors,

and dispatching even more events to monitors [42], [58],

e.g., with base RV, one project in our evaluation with 78

thousand lines of code created over 232 million monitors,

which received almost 3 billion events.

Violations: When events occur that match or violate a

monitor’s specification, the violation handler prints a violation,

3

Specification Collections_SynchronizedCollection has been violated on line B.b(B
.java:11). Documentation for this property can be found at https://
runtimeverification.com/monitor/annotated−java/__properties/html/java/util/
Collections_SynchronizedCollection.html

A synchronized collection was accessed in a thread−unsafe manner.

Fig. 3: An example property violation

like in Fig. 3. A violation contains the violated property

name, the location (i.e., fully qualified class name, method,

source file name, and line number) of the last event that

caused the violation, a URL for the property definition, and

a sentence describing the violation. These help developers to

reason whether a property violation is a true bug or false alarm.

We distinguish between violation instances, the list of viola-

tions, and the set of violations. Violation instances repeat, e.g.,

if property-violating code is in a loop or executed by multiple

tests. We map violation instances of the same property that

occur at the same location to the same violation. Developers

may prefer to only see violations, but seeing all violation

instances can help in debugging. Running tests in Fig. 2 on old

version of Fig. 1d generates two violations from three violation

instances. Lines 7 and 12 in Fig. 2 cause two instances of a

STHME violation by executing t.nextToken on line 28 of

Fig. 1d without calling t.hasMoreTokens. Line 12 in Fig. 2

causes one instance of a URLD violation by executing line 36

of Fig. 1d to decode a non-UTF-8 encoded URL. It can be time

consuming to inspect/debug violations [52]. We next discuss

evolution-aware RV techniques which aim to reduce runtime

overhead of RV and show fewer violations as software evolves.

III. EVOLUTION-AWARE RV TECHNIQUES

We describe our evolution-aware RV techniques which

leverage software evolution to reduce the runtime overhead

of base RV across multiple program versions and to focus

developers on new violations after a change. Base RV (illus-

trated through the example in Section II) is evolution-unaware.

For example, running base RV on the new version of code

in Fig. 1d would re-monitor all available properties and re-

incur the entire overhead wastefully because the code change

does not affect (i.e., alter the behavior of) all classes, e.g., E is

unaffected. Further, properties whose events are only generated

from unaffected classes cannot have any new violations after

the code change. Finally, it may be desirable to monitor on the

developer’s critical path, from when they launch tests to when

they see the test results, only properties that are more likely

to find bugs than others, e.g., based on a project’s history.

Section III-A defines safety and precision, two notions that

we use in this paper to analyze and measure the quality of

our evolution-aware RV techniques. Section III-B describes

RPS, our technique to re-monitor only properties that can

have new violations after a code change, and also includes

our definition of affected classes and how RPS uses affected

classes to select the subset of properties to re-monitor in a new

program version. Section III-C describes various RPS variants.

Sections III-D and III-E describe our other two evolution-

aware RV techniques, VMS and RPP, respectively. RPS, VMS,

and RPP can be used separately or together, and we illustrate

them throughout this section using the example from Fig. 1.

A. Safety and Precision

Safety measures loss in violation-finding (and thus potential

bug-finding) ability. Precision measures minimality. We define

safety and precision relative to base RV and relevant viola-

tions. In this paper, relevant violations are new violations—

violations that are in the new version, but not in the old

version, after accounting for violations that merely changed

line numbers in the code. Definition 1 allows developers to

plug in other notions of relevant violations.

Definition 1. Relevant Violation: Relevant violations for an

evolution-aware RV technique are those due to the changes.

Definition 2. Safety: An evolution-aware RV technique is safe

if it finds all relevant violations that base RV finds.

Definition 3. Precision: An evolution-aware RV technique is

precise if it finds only relevant violations that base RV finds.

B. Regression Property Selection (RPS)

RPS reduces accumulated base RV overhead by re-

monitoring only properties that can be violated in parts of

code affected by changes [53]. For RPS to be useful, its

end-to-end time (i.e., time to select properties plus time to re-

monitor selected properties) must be less than base RV time.

Thus, we consider changes and affected parts of code at the

class-level granularity, which was more effective than only

finer-granularity levels (e.g., statements or methods) for other

evolution-aware techniques [26], [51], [88]. The reason is that

the analysis at the class level achieved a better balance of

efficiency (class-level analysis is faster than analyses at finer

granularity) and precision (class-level analysis may capture

more than necessary because it is coarser grained).

The notion of affected classes is central to RPS, because it

relates code changes with the properties. Intuitively, a property

should be re-monitored only if its events can be generated

from some class affected by the code change. That is, affected

classes are those that can generate events that lead to new

violations after code changes. Conversely, a class that is

unaffected by a change cannot generate an event that leads

to a new violation. Formally, RPS variants compute affected

classes as those that satisfy some of the following conditions,

which capture when a class may generate events that lead to

new violations after a code change:

Definition 4. Affected Class: For RPS, a class C is affected

by a change if (1) C changed, (2) C transitively depends (via

inheritance or use) on a class that changed, or (3) a class that

satisfies (1) or (2) can pass objects to C.

Condition 3 captures classes whose control flow may change

(leading to new events and violations) if received objects

change. For example, in Fig. 1d, D does not depend on the

changed class (B) or its transitive dependents (C and TC); if

only B.flag() changes to return false on line 14, then the

4

“else” branch on line 28, instead of the “then” branch on

line 27 will execute, leading to a STHME violation.

Definition 5. Regression Property Selection (RPS): A tech-

nique to select and re-monitor, in a new program version, only

properties that may have new violations.

RPS has four steps: (1) construct a class dependency graph

(CDG) from the new program version, (2) find affected classes,

(3) select properties, and (4) re-monitor selected properties.

Definition 6. Class Dependency Graph (CDG): A graph that

has a node for each class in the program, and an edge from

class C to class C′ if C depends on C′ via inheritance or use.

B AC

DE

TC

TE

Fig. 4: Class dependency graph (CDG) for Figures 1d and 2.

Edges mean “depends on”; the changed class is colored

Step 1: RPS constructs the CDG in Fig. 4 for the new version

of the code in Fig. 1d and the tests in Fig. 2.

Step 2: Strong RPS computes affected classes from the CDG

as affected(∆) = ∆ ◦ (E−1)∗ ◦ E∗, where ∆ is the set of

changed and new classes, E is the set of edges in the CDG,
∗ is the reflexive and transitive closure, ◦ is the relational

image, and −1 is the inverse relation. affected(∆) captures the

three conditions in Definition 4. In our example, ∆ = {B};

only B changed (Condition 1). ∆ ◦ (E−1)∗ = {B, C, TC};

TC and C transitively depend on ∆ (Condition 2). Lastly,

affected(∆) = {A, B, C, D, TC}; A and D may generate new

events due to changes to B or the interaction of C with B

(Condition 3). E, TE /∈ affected(∆) since they cannot generate

new events. Although elided in our example due to space

limits, newly added classes are in ∆, so RPS re-monitors

properties that may be violated in newly added classes.

Steps 3 and 4: RPS re-monitors only CSC and STHME in

the new version. No (new) events for URLD are generated

in affected(∆). So, RPS saves the time to re-monitor URLD

(if both tests are run), and developer time for (re-)inspecting

URLD violations. Any URLD violations must be in E and

cannot be new violations, because E 6∈ affected(∆).
Discussion of RPS: If a property was not instrumented

into the old version, but code changes can cause it to be

violated in affected(∆), RPS selects it, e.g., CSC is selected

by strong RPS. Two CSC violation instances occur in the new

version in Fig. 1d; lines 4–6 iterate over the synchronized

Collection initialized on line 12 without locking on it,

matching the left disjunct in CSC’s specification (line 11,

Fig. 1a), so the handler (line 12) prints the violation in Fig. 3.

Base RV does not consider changes, dependencies, or

classes that generate events for each property. After each

change (e.g., from line 11 to line 12 in Fig. 1d), base RV re-

monitors all properties and shows old and new violations. In

our example, base RV shows three violations: the two STHME

and URLD violations from the old version, plus the new CSC

violation. RPS shows only the old STHME violation, plus the

new CSC violation. Note that RPS by itself is not precise;

it does not show only new violations. Showing only new

violations is the goal of VMS (Section III-D).

C. RPS Variants

RPS determines (1) what properties to select and (2) where

in the program to instrument selected properties. The strong

RPS described in Section III-B is safe under certain assump-

tions: it selects to re-monitor all properties for which events

can be generated from all affected classes (“what”), and

instruments them throughout the program (“where”), including

third-party libraries and even unaffected classes. However, that

strong RPS variant is imprecise (it may instrument and monitor

selected properties in unaffected classes). We describe here a

second, more precise strong RPS variant. Weak RPS variants

trade some safety for further overhead reduction. Weak RPS

variants differ in what affected classes they use for selecting

properties and where they instrument selected properties.

Strong RPS Safety Assumptions: Strong RPS is safe under

the following assumptions: (1) the CDG is complete, (2) there

are no test order dependencies [8], [29], [89], and (3) dynamic

language features, e.g., reflection and classloading, do not

introduce additional CDG edges.

Notation: Subscripts distinguish how affected classes are

computed. ps1 computes affected1(∆) = ∆◦(E−1)∗◦E∗ (Def-

inition 4). ps2 computes affected2(∆) = ∆ ◦ ((E−1)∗ ∪ E∗),
which consists of only classes that either depend transitively

on ∆ (dependents) or ∆ transitively depends on (dependees);

affected2 is more unsafe than affected1 because it omits condi-

tion 3 from Definition 4 to not include classes, e.g., D in Fig. 4,

that may generate new events because they receive objects

from dependents of ∆. ps3 relaxes Definition 4 even further by

omitting condition 3; it computes affected3(∆) = ∆◦(E−1)∗,

i.e., only dependents of ∆.

Once the corresponding set of affected classes (affected(∆))
has been used to select the properties to re-monitor (namely

properties whose events may be generated from affected(∆)),
we obtain more variants by choosing “where” to instrument

the selected properties. We can reduce where to instrument

the selected properties, in order to obtain more reduction of

base RV overhead, at two levels: (1) do not instrument the

selected properties in unaffected classes in the program but

still instrument all third-party library classes loaded into the

JVM, and (2) do not instrument the selected properties in any

third-party library class.

For the first level of instrumentation reduction, we use the

superscript c to show that unaffected classes in the program

(i.e., complement of affected(∆)) are not instrumented: psc1
excludes (affected1)

c, psc2 excludes (affected2)
c, and psc3 ex-

cludes (affected3)
c. To see the benefit of not instrumenting

affected(∆)c, consider ps1 and psc1, which are both safe.

psc1 is safe because unaffected classes cannot generate any

new events or alter the sequence of events for the selected

5

TABLE I: “What” properties RPS variants select

What ps1 ps2 ps3
properties in ∆ 3 3 3

properties in dependents of ∆ 3 3 3

properties in dependees of ∆ 3 3 7

properties in dependees of dependents of ∆ 3 7 7

TABLE II: “Where” RPS variants instrument properties

Where (i ∈ {1, 2, 3}) psi psc
i

psℓ
i

pscℓ
i

affected(∆) 3 3 3 3

affected(∆)c 3 7 3 7

third-party library classes 3 3 7 7

ps1, psc1

ps2

ps3

psc2

psc3

psℓ1

psℓ2

psℓ3

pscℓ1

pscℓ2

pscℓ3

ps1

ps2

ps3

psc1

psc2

psc3

psℓ1

psℓ2

psℓ3

pscℓ1

pscℓ2

pscℓ3

Fig. 5: Lattices of RPS variants. Left lattice ordered by “less

safe than”. Right lattice ordered by “more efficient than”

properties, so they cannot have new violations. However, psc1
can be more efficient and more precise (i.e., show fewer old

violations) than ps1 if selected properties can generate events

from classes in (affected1)
c. For example, in the CDG of

Fig. 4, if a selected property p can generate events from

B∈affected1 and E∈(affected1)
c, and tests TC and TE are run,

psc1 can save the time to monitor p in E. (Note that when safety

assumptions of strong RPS do not hold, ps1 is safer than psc1;

by instrumenting selected properties in unaffected classes, ps1
can find some violations that psc1 miss.) On the other hand, not

instrumenting affected(∆)c can make weak RPS variants more

unsafe—an weak RPS variant that instruments all classes has

a chance to find some violations from instrumented classes

that are not in the computed affected(∆).

The second level of instrumentation reduction does not

instrument any third-party library class. We denote weak RPS

variants that exclude all third-party library classes with ℓ in the

superscript. For example, pscℓ3 means that affected3 is used to

select properties, classes in (affected3)
c are not instrumented,

and third-party library classes are also not instrumented. psℓ3
means that affected3 is used to select properties and only third-

party library classes are not instrumented. In sum, we evaluate

strong RPS (ps1, psc1) and 10 weak RPS variants: ps2, ps3,

psc2, psc3, psℓ1, psℓ2, psℓ3, pscℓ1 , pscℓ2 , and pscℓ3 . Tables I and II

distinguish RPS variants in terms of what part of the CDG is

used for selecting properties, and where the selected properties

are instrumented; 3 means inclusion, and 7 means exclusion.

Efficiency/Safety Tradeoff: Weak RPS variants trade some

safety for lower runtime overhead. Fig. 5 shows two lattices

of RPS variants; lower variants can be less safe (left lattice) but

more efficient (right lattice) than higher ones. ps2 computes

{A, B, C, TC} as affected2. D is not in affected2, so ps2 can

miss new STHME violations, e.g., when changing only true

to false on line 14 in Fig. 1d—ps2 does not even re-monitor

STHME for this change. If such cases are rare, then ps2 can

be safe but have lower overhead than strong RPS. In general,

ps2 can be unsafe if there is data flow to classes that are

not dependents or dependees of ∆. ps3 computes affected3
as {B, C, TC}—dependents of ∆—which includes neither ∆’s

dependees, e.g., A, nor dependees of ∆’s dependents, e.g., D.

Therefore, ps3 can be more unsafe than ps2, e.g., if A changes

such that a new violation results from events that are local

to A, ps2 will find that new violation, but ps3 will not find

it. Technique psc3 could miss new violations that psc2 finds. In

fact, psc3 misses the new CSC violation after the change in

Fig. 1d; it selects to re-monitor CSC but does not instrument

A, so asyncMk is not triggered. Excluding third-party library

classes from instrumentation can also be unsafe, e.g., if A or

D are third-party library classes. Weak RPS variants that do

not instrument affected(∆)c can be faster but safe if changes

only lead to new violations in ∆ and its dependents. Lastly,

for weak RPS, false alarms can result from excluding classes

from instrumentation. For example, if the STHME property’s

hasnexttrue event is triggered from a third-party library

class that is not instrumented, and the next event is triggered

in affected(∆), a violation will occur even though the program

satisfies the STHME property

D. Violation Message Suppression (VMS)

VMS improves base RV by showing only new violations.

Showing only new violations right after a change is more ef-

fective than showing old plus new violations to get developers

to act—they are still in the mental context of the change and

are the ones who can best address new violations [65].

Definition 7. Violation Message Suppression (VMS): A tech-

nique to show, in a new program version, only new violations

that did not occur in an old version.

Base RV shows three violations in the new version of

the example in Fig. 1d: line 4 (two instances), line 28 (two

instances), and line 36 (one instance). The latter two were

in the old version, and their line numbers did not change.

(More generally, VMS does not simply check equality of line

numbers but builds a likely mapping between old and new

line numbers based on code context.) In the new version, VMS

shows only the violation on line 4, instead of showing all three.

VMS can be used with RPS to reduce the old violations shown

by RPS. Running RPS on new version of Fig. 1d will show

two violations (lines 4 and 28); VMS shows only one (line 4).

VMS’ inputs are the violations from the old and new

versions, plus the source files in both versions. Each violation,

v = 〈p, c, l〉, contains a triple of the property name (p) that

was violated, and the class (c) and line number (l) of the last

event that violated the property. Let V1 and V2 be the set of

violations from monitoring the old version (P1) and the new

6

version (P2), respectively. VMS computes Vnew, the set of new

violations that are in P2 but not in P1. VMS does not simply

compute V2\V1 that may report many old violations for which

only the line numbers changed. Using only line numbers to

match statements in two code versions performs poorly [75].

For each class Cδ ∈ ∆, where ∆ is the set of changed

classes (including newly added and renamed classes), VMS

first creates a mapping, MCδ
, from line numbers in the

source file of Cδ in P2 to line numbers with the likely same

statement in the corresponding source file in P1. Each line

number in P2 maps to at most one line number in P1; some

line numbers in P2 may not be in MCδ
. Note that MCδ

is likely (i.e., not exact) as it is based on simple syntactic

and not semantic equivalence; the latter is rather challenging

and does not scale currently [28], [56]. MC is identity if

C did not change. Then, V∆

new= ∪Cδ∈∆ VMS(V1,V2,MCδ
),

where VMS(V1,V2,MCδ
)={〈p,Cδ, l〉∈V2 | ∄l′∈MCδ

(l) ∨
〈p,Cδ,MCδ

(l)〉/∈V1}. Let ∆′ be the set of unchanged classes.

New violations in ∆′ are V∆
′

new= ∪C∈∆′ VMS(V1,V2,MC).
Vnew = V∆

new ∪ V∆
′

new is the output of VMS. V∆
′

new is non-empty

when interactions with changed classes cause new violations

in ∆′, or when test non-determinism i.e., “flakiness” [7], [9],

[30], [58], [79] leads to non-determinism during monitoring.

Discussion of VMS: VMS can save developer time for

inspecting violations but slightly increases machine time, e.g.,

VMS increases time by <1% in our experiments. As we

showed with our example, VMS can further reduce violations

shown by RPS.

E. Regression Property Prioritization (RPP)

Developers may be more interested in violations of critical

properties than other violations, e.g., violations of properties

that previously helped find bugs may be more critical. RPP

partitions RV into two phases: a critical phase and a back-

ground phase. After a code change, the critical phase immedi-

ately re-monitors (manually or automatically selected) critical

properties and provides results to developers. The background

phase separately re-monitors other properties. Developers get

delayed feedback if non-critical properties are violated. RPP

allows (manually or automatically) moving properties between

the phases as properties become more or less critical during

software evolution. To evaluate RPP, we consider previously

violated properties as critical. RPP is inspired by regression

test prioritization [22], [36], [78], [81], [87], but we are first to

propose RPP for reducing RV overhead as software evolves.

Discussion of RPP: The benefit of RPP is to remove the re-

monitoring of non-critical properties from developers’ critical

path (from the moment of submitting code changes to the

moment of getting feedback). RPP’s disadvantage is that it

delays the time for developers to get feedback if non-critical

properties are violated. RPS and VMS can be used with RPP—

RPP merely first runs some subset of selected properties.

IV. IMPLEMENTATION

We present our implementation of RPS, VMS, and RPP.

A. Regression Property Selection (RPS)

Building CDG, Computing Changes and Affected Classes:

We used STARTS [51], [54] to build CDGs, compute ∆, find

affected(∆) in P1, and persist checksums of classes in P1

to disk. The checksums are used to compute the classes that

changed between P1 and P2. STARTS is a publicly available

regression test selection (RTS) tool that implements most of

these steps. By default, STARTS computes affected3, which

suffices for RTS [47], [51], [54], [66], but is not sufficient

for strong RPS. We extended STARTS to compute affected1
and affected2. We chose STARTS because it is static and

fast—it requires neither test runs nor code instrumentation

to find dependencies among classes, or compute affected(∆).
We monitor test executions, so using a dynamic technique to

compute dependencies or affected(∆) would incur additional

overhead. Also, instrumentation performed by a dynamic

technique could interfere with JavaMOP instrumentation.

Monitoring: We used JavaMOP [43], [58] to monitor test

executions against formal properties. JavaMOP is publicly

available [40], uses AspectJ for load-time instrumentation, and

allows monitoring many properties in one execution. JavaMOP

was used in several RV studies [10], [20], [37], [52], [53],

[58], [72], [74]. In each version, we follow publicly available

instructions [39] to build and attach a JavaMOP agent [64]

with selected properties to the JVM that executes tests.

Selecting Properties to Re-monitor: The properties re-

monitored are those for which affected(∆) can generate events.

To select properties, we first used the AspectJ compiler to

very quickly and statically weave all available properties into

affected(∆), and record properties whose aspects get weaved.

If aspects from a property do not get weaved into any class in

affected(∆), its events cannot be generated from affected(∆)
at runtime. Time to select properties is part of RPS end-to-

end time, so we optimized static weaving to be as fast as

possible—only 3.3s on average in our experiments.

B. Violation Message Suppression (VMS)

VMS implementation is straightforward: (1) take violations

from P1 and P2, (2) remove violations generated in P2 if line

mapping can map the same violation to a likely corresponding

line number in P1 (after taking care of renames), and (3) report

any remaining violations generated in P2 as likely new viola-

tions. Our line mapping extends the jDiff utility of jEdit [41],

a Java implementation of Myers’ classic algorithm [61].

C. Regression Property Prioritization (RPP)

We considered critical properties to be those that were

violated in the project’s history. In the first version of each

project, there is no history, so there is a choice to monitor

all properties in either the critical or background phase. It

is not clear which of these choices is better; monitoring all

properties in the either phase for the first version unfairly

increases its average overhead. Therefore, we split properties

into critical and background phases after the first version,

depending on whether they were violated in the first version.

We do not include the first version when computing the

7

TABLE III: Projects in our study

Name #Test KLOC Tests[s] tmop/ttests

commons-dbcp 26 20.1 56.5 2.0

imglib2 74 44.2 11.3 3.7

commons-lang 130 69.5 22.4 3.9

jackson-core 79 31.7 11.2 5.6

commons-io 96 29.2 106.5 5.8

commons-math 432 180.4 93.6 6.4

imaging 63 37.6 18.4 6.4

javapoet 17 7.9 10.7 7.2

stream-lib 24 8.4 127.1 12.2

opentripplanner 126 78.7 55.1 40.5

X 106.7 50.7 51.3 9.4

10
1

10
2

10
3

Test time without JavaMOP, ttests (s)

0

10

20

30

40

Ja
va
M
O
P
O
ve
rh
ea
d
(t

m
op
/t

te
st
s
)

Fig. 6: Test time vs. base RV overhead for several projects

average overheads of each phase. From the second version

onward, if a property gets violated in the background phase,

our RPP implementation moves it to the critical phase in the

next version. We leave it as future work to investigate criteria

for moving properties which have not been violated after a

while from the critical phase back to the background phase.

V. EVALUATION

We list our research questions, describe our experimental

setup, and answer the research questions.

A. Research Questions

We answer the following research questions: RQ1: How

much does RPS reduce the machine time overhead of base

RV? RQ2: How many violations does VMS show and how

safe are RPS variants? RQ3: How much does RPP reduce

time for developers to get feedback on critical properties?

B. Experimental Setup

Projects: Table III shows 10 open-source, Maven-based Java

projects from GitHub used in our study, 9 of which we also

used in prior work [51], [54], [80]. #Test is average number

of test classes used (we skipped very few test classes from

6 projects due to problems with JavaMOP instrumentation),

KLOC is average thousands of lines of code, Tests[s] is aver-

age test time, and tmop/ttests is average base RV overhead.

Properties: We used 161 manually written properties found to

be good in our prior study [52]. The properties were written to

formalize Java APIs [50], [58] and are publicly available [70].

Versions: We started from a recent commit in each project

and went back into the history, to select 20 commits/versions

where (1) at least one .java file changed, (2) all tests pass

without JavaMOP, and (3) all tests pass with JavaMOP.

Running Experiments: We wrote scripts to automate running

tests, collect violations and measure time for three configura-

tions on each version: (1) without JavaMOP, (2) with base RV,

and (3) with each evolution-aware RV technique. For RPS,

the most common case is that .java file changes modify

the bytecode, so properties may need to be re-monitored. If

.java file changes do not modify bytecode, we skip tests (no

re-monitoring); time is only spent to check for changes. If

changes affect bytecode, but no properties are selected to be

re-monitored, all tests are run without JavaMOP, and the end-

to-end time is the time to compute changes, find affected(∆),
check if properties need re-monitoring, and run tests.

C. RQ1: Overhead reduction from RPS

We present RV overhead in multiples (×), as the ratio

tmop/ttests, where tmop is time with JavaMOP and ttests is time

without JavaMOP. We first show on a sample of 89 projects

whether the high overhead induced by base RV can be seen

in open-source projects with short- (<10s), medium- (10s–

300s), and long-running (>300s) tests. These 89 projects were

sampled from our prior studies [51], [52], [54], [80] and from

the Apache continuous integration server. Fig. 6 plots ttests

(x-axis, log scale, in seconds) vs. tmop/ttests (y-axis). Projects

in all three categories exhibit high overhead, so high base RV

overhead is not a fixed cost that is more pronounced in projects

with shorter-running tests. Squares show projects in this study.

We did not evaluate our techniques on the other projects

because (1) tmop − ttests is too small for RPS to be beneficial,

(2) test-running times are high for long-running projects which

requires more resources than we have to evaluate them, or

(3) we could not get 20 versions that satisfy our criteria.

Solid bars in Fig. 7 show average runtime overhead of base

RV (BL) and the RPS variants (ps) discussed in Section III-C.

All overheads are computed from end-to-end time including

time for analysis, running tests, and monitoring test executions.

The results show several points. First, all RPS variants reduced

the average base RV overhead, which is 9.4×. Strong RPS

variants, ps1 and psc1, have 7.9× and 7.5× overhead, respec-

tively. As expected, weak RPS variants with fewer classes in

affected(∆) achieve more reduction. pscℓ3 is the most efficient

weak RPS variant, with 2.5× overhead. Second, comparing BL

and BLℓ shows that base RV spends about 36% of overhead

on third-party library code: (BL−BLℓ)/BL. Since psc1 is safe

under certain assumptions, and, as we show in Section V-D,

excluding unaffected and third-party library classes was safe

in our experiments, pscℓ1 may, in general, achieve the best

efficiency/safety tradeoff among weak RPS variants.

We also evaluated how much regression test selection

(RTS) [14], [23], [24], [26], [27], [31], [51], [77], [87], [88]

8

REFERENCES

[1] C. Allan, P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins,
O. Lhoták, O. de Moor, D. Sereni, G. Sittampalam, and J. Tibble. Adding
trace matching with free variables to AspectJ. In OOPSLA, 2005.

[2] M. Arnold, M. Vechev, and E. Yahav. QVM: An efficient runtime for
detecting defects in deployed systems. In OOPSLA, 2008.

[3] H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-based runtime
verification. In VMCAI, 2004.

[4] H. Barringer, D. Rydeheard, and K. Havelund. Rule systems for run-time
monitoring: from Eagle to RuleR. In RV, 2007.

[5] H. Barringer, D. Rydeheard, and K. Havelund. Rule systems for run-time
monitoring: from Eagle to RuleR. JLC, 20(3), 2010.

[6] N. E. Beckman and A. V. Nori. Probabilistic, modular and scalable
inference of typestate specifications. In PLDI, 2011.

[7] J. Bell and G. Kaiser. Unit test virtualization with VMVM. In ICSE,
2014.

[8] J. Bell, G. E. Kaiser, E. Melski, and M. Dattatreya. Efficient dependency
detection for safe Java test acceleration. In ESEC/FSE, 2015.

[9] J. Bell, O. Legunsen, M. Hilton, L. Eloussi, T. Yung, and D. Marinov.
DeFlaker: Automatically detecting flaky tests. In ICSE, 2018.

[10] E. Bodden. MOPBox: A library approach to runtime verification. In RV

Tool Demo, 2011.

[11] E. Bodden, L. Hendren, P. Lam, O. Lhoták, and N. A. Naeem. Collab-
orative runtime verification with Tracematches. In RV, 2007.

[12] E. Bodden, L. J. Hendren, and O. Lhoták. A staged static program
analysis to improve the performance of runtime monitoring. In ECOOP,
2007.

[13] E. Bodden, P. Lam, and L. Hendren. Finding programming errors earlier
by evaluating runtime monitors ahead-of-time. In FSE, 2008.

[14] L. Briand, Y. Labiche, and S. He. Automating regression test selection
based on UML designs. IST, 51(1), 2009.

[15] D. Chen, Y. Zhang, R. Wang, X. Li, L. Peng, and W. Wei. Mining
universal specification based on probabilistic model. In SEKE, 2015.

[16] F. Chen and G. Roşu. Towards monitoring-oriented programming: A
paradigm combining specification and implementation. In RV, 2003.

[17] Collections. https://docs.oracle.com/javase/8/docs/api/java/util/
Collections.html#synchronizedCollection-java.util.Collection-.

[18] Collections_SynchronizedCollection. http://fsl.cs.illinois.
edu/annotated-java/__properties/html/java/util/Collections_
SynchronizedCollection.html.

[19] V. Dallmeier, N. Knopp, C. Mallon, S. Hack, and A. Zeller. Generating
test cases for specification mining. In ISSTA, 2010.

[20] N. Decker, J. Harder, T. Scheffel, and D. Schmitz, Malteand Thoma.
Runtime monitoring with union-find structures. In TACAS, 2016.

[21] M. B. Dwyer, R. Purandare, and S. Person. Runtime verification in
context: Can optimizing error detection improve fault diagnosis? In RV,
2010.

[22] S. G. Elbaum, G. Rothermel, S. Kanduri, and A. G. Malishevsky.
Selecting a cost-effective test case prioritization technique. SQJ, 12(3),
2004.

[23] E. Engström, P. Runeson, and M. Skoglund. A systematic review on
regression test selection techniques. IST, 2010.

[24] E. Engström, M. Skoglund, and P. Runeson. Empirical evaluations of
regression test selection techniques: a systematic review. In ESEM, 2008.

[25] M. Gabel and Z. Su. Online inference and enforcement of temporal
properties. In ICSE, 2010.

[26] M. Gligoric, L. Eloussi, and D. Marinov. Practical regression test
selection with dynamic file dependencies. In ISSTA, 2015.

[27] T. L. Graves, M. J. Harrold, J.-M. Kim, A. Porter, and G. Rothermel. An
empirical study of regression test selection techniques. In ICSE, 1998.

[28] A. Gyori, S. K. Lahiri, and N. Partush. Refining interprocedural change-
impact analysis using equivalence relations. In ISSTA, 2017.

[29] A. Gyori, A. Shi, F. Hariri, and D. Marinov. Reliable testing: detecting
state-polluting tests to prevent test dependency. In ISSTA, 2015.

[30] A. Gyori, A. Shi, F. Hariri, and D. Marinov. Reliable testing: Detecting
state-polluting tests to prevent test dependency. In ISSTA, 2015.

[31] M. J. Harrold, J. A. Jones, T. Li, D. Liang, A. Orso, M. Pennings,
S. Sinha, S. A. Spoon, and A. Gujarathi. Regression test selection for
Java software. In OOPSLA, 2001.

[32] K. Havelund, D. Peled, and D. Ulus. First order temporal logic
monitoring with BDDs. In FMCAD, 2017.

[33] K. Havelund and G. Rosu. Monitoring Java programs with Java
PathExplorer. In RV, 2001.

[34] K. Havelund and G. Rosu. Monitoring programs using rewriting. In
ASE, 2001.

[35] K. Havelund and G. Rosu. Synthesizing monitors for safety properties.
In TACAS, 2002.

[36] K. Herzig, M. Greiler, J. Czerwonka, and B. Murphy. The art of testing
less without sacrificing quality. In ICSE, 2015.

[37] S. Hussein, P. Meredith, and G. Roşu. Security-policy monitoring and
enforcement with JavaMOP. In PLAS, 2012.

[38] JavaMOP4 Syntax. http://fsl.cs.illinois.edu/index.php/JavaMOP4_
Syntax.

[39] JavaMOPAgent Documentation. https://github.com/runtimeverification/
javamop/blob/master/docs/JavaMOPAgentUsage.md.

[40] JavaMOP4. http://fsl.cs.illinois.edu/index.php/JavaMOP4.

[41] jEdit JDiff Plugin. http://plugins.jedit.org/plugins/?JDiffPlugin.

[42] D. Jin, P. O. Meredith, D. Griffith, and G. Roşu. Garbage collection for
monitoring parametric properties. In PLDI, 2011.

[43] D. Jin, P. O. Meredith, C. Lee, and G. Roşu. JavaMOP: Efficient
parametric runtime monitoring framework. In ICSE Demo, 2012.

[44] D. Jin, P. O. Meredith, and G. Roşu. Scalable parametric runtime
monitoring. Technical report, Computer Science Dept., UIUC, 2012.

[45] M. Karaorman and J. Freeman. jMonitor: Java runtime event specifica-
tion and monitoring library. In RV, 2004.

[46] I. Krka, Y. Brun, and N. Medvidovic. Automatic mining of specifications
from invocation traces and method invariants. In FSE, 2014.

[47] D. C. Kung, J. Gao, P. Hsia, J. Lin, and Y. Toyoshima. Class firewall,
test order, and regression testing of object-oriented programs. JOOP,
8(2), 1995.

[48] C. Le Goues and W. Weimer. Specification mining with few false
positives. In TACAS, 2009.

[49] C. Lee, F. Chen, and G. Roşu. Mining parametric specifications. In
ICSE, 2011.

[50] C. Lee, D. Jin, P. O. Meredith, and G. Roşu. Towards categorizing and
formalizing the JDK API. Technical report, Computer Science Dept.,
UIUC, 2012.

[51] O. Legunsen, F. Hariri, A. Shi, Y. Lu, L. Zhang, and D. Marinov. An
extensive study of static regression test selection in modern software
evolution. In FSE, 2016.

[52] O. Legunsen, W. U. Hassan, X. Xu, G. Rosu, and D. Marinov. How
good are the specs? a study of the bug-finding effectiveness of existing
Java API specifications. In ASE, 2016.

[53] O. Legunsen, D. Marinov, and G. Roşu. Evolution-aware monitoring-
oriented programming. In ICSE NIER, 2015.

[54] O. Legunsen, A. Shi, and D. Marinov. STARTS: STAtic Regression Test
Selection. In ASE, 2017.

[55] C. Lemieux, D. Park, and I. Beschastnikh. General LTL specification
mining. In ASE, 2015.

[56] F. Logozzo, S. K. Lahiri, M. Fähndrich, and S. Blackshear. Verification
modulo versions: Towards usable verification. In PLDI, 2014.

[57] LTL Plugin4 Input Syntax. http://fsl.cs.illinois.edu/index.php/LTL_
Plugin4_Input_Syntax.

[58] Q. Luo, Y. Zhang, C. Lee, D. Jin, P. O. Meredith, T. F. Şerbănuţă, and
G. Roşu. RV-Monitor: Efficient parametric runtime verification with
simultaneous properties. In RV, 2014.

[59] P. Meredith, D. Jin, F. Chen, and G. Roşu. Efficient monitoring of
parametric context-free patterns. In ASE, 2008.

[60] P. Meredith and G. Roşu. Efficient parametric runtime verification with
deterministic string rewriting. In ASE, 2013.

[61] E. W. Myers. An O(ND) difference algorithm and its variations.
Algorithmica, 1(1), 1986.

[62] A. C. Nguyen and S.-C. Khoo. Extracting significant specifications from
mining through mutation testing. In ICFEM, 2011.

[63] H. A. Nguyen, R. Dyer, T. N. Nguyen, and H. Rajan. Mining
preconditions of APIs in large-scale code corpus. In FSE, 2014.

[64] java.lang.instrument. http://docs.oracle.com/javase/7/docs/api/java/lang/
instrument/package-summary.html.

[65] P. W. O’Hearn. Continuous reasoning: Scaling the impact of formal
methods. In LICS, 2018.

[66] A. Orso, N. Shi, and M. J. Harrold. Scaling regression testing to large
software systems. In FSE, 2004.

[67] M. Pradel, P. Bichsel, and T. R. Gross. A framework for the evaluation
of specification miners based on finite state machines. In ICSM, 2010.

[68] M. Pradel and T. R. Gross. Automatic generation of object usage
specifications from large method traces. In ASE, 2009.

11

[69] M. Pradel and T. R. Gross. Leveraging test generation and specification
mining for automated bug detection without false positives. In ICSE,
2012.

[70] FSL Specification Database. https://runtimeverification.com/monitor/
propertydb.

[71] R. Purandare, M. B. Dwyer, and S. Elbaum. Monitor optimization via
stutter-equivalent loop transformation. In OOPSLA, 2010.

[72] R. Purandare, M. B. Dwyer, and S. Elbaum. Optimizing monitoring of
finite state properties through monitor compaction. In ISSTA, 2013.

[73] G. Reger, H. Barringer, and D. Rydeheard. A pattern-based approach
to parametric specification mining. In ASE, 2013.

[74] G. Reger, H. C. Cruz, and D. Rydeheard. MarQ: Monitoring at runtime
with QEA. In TACAS, 2015.

[75] S. P. Reiss. Tracking source locations. In ICSE, 2008.
[76] M. P. Robillard, E. Bodden, D. Kawrykow, M. Mezini, and T. Ratchford.

Automated API property inference techniques. TSE, 39(5), 2013.
[77] G. Rothermel and M. J. Harrold. A safe, efficient regression test

selection technique. TOSEM, 6(2), 1997.
[78] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold. Test case

prioritization: An empirical study. In ICSM, 1999.
[79] A. Shi, A. Gyori, O. Legunsen, and D. Marinov. Detecting assumptions

on deterministic implementations of non-deterministic specifications. In
ICST, 2016.

[80] A. Shi, A. Gyori, S. Mahmood, P. Zhao, and D. Marinov. Evaluating

test-suite reduction in real software evolution. In ISSTA, pages 84–94,
2018.

[81] A. Srivastava and J. Thiagarajan. Effectively prioritizing tests in
development environment. In ISSTA, 2002.

[82] StringTokenizer_HasMoreElements. http://fsl.cs.illinois.edu/
annotated-java/__properties/html/java/util/StringTokenizer_
HasMoreElements.html.

[83] URLDecoder_DecodeUTF8. https://runtimeverification.com/monitor/
annotated-java/__properties/html/java/net/URLDecoder_DecodeUTF8.
html.

[84] W3recommendation. https://www.w3.org/TR/html40/appendix/notes.
html#non-ascii-chars.

[85] A. Wasylkowski and A. Zeller. Mining temporal specifications from
object usage. In ASE, 2009.

[86] Q. Wu, G. Liang, Q. Wang, T. Xie, and H. Mei. Iterative mining of
resource-releasing specifications. In ASE, 2011.

[87] S. Yoo and M. Harman. Regression testing minimization, selection and
prioritization: A survey. STVR, 22(2), 2012.

[88] L. Zhang. Hybrid regression test selection. In ICSE, 2018.
[89] S. Zhang, D. Jalali, J. Wuttke, K. Muslu, W. Lam, M. D. Ernst, and

D. Notkin. Empirically revisiting the test independence assumption. In
ISSTA, 2014.

[90] H. Zhong, L. Zhang, T. Xie, and H. Mei. Inferring resource specifica-
tions from natural language API documentation. In ASE, 2009.

12

