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A B S T R A C T

The overall efficiency of an extreme-scale supercomputer largely relies on the performance of its
network interconnects. Several of the state of the art supercomputers use networks based on the
increasingly popular Dragonfly topology. It is crucial to study the behavior and performance of
different parallel applications running on Dragonfly networks in order to make optimal system
configurations and design choices, such as job scheduling and routing strategies. However, in
order to study these temporal network behavior, we would need a tool to analyze and correlate
numerous sets of multivariate time-series data collected from the Dragonfly’s multi-level hierar-
chies. This paper presents such a tool–a visual analytics system–that uses the Dragonfly network
to investigate the temporal behavior and optimize the communication performance of a super-
computer. We coupled interactive visualization with time-series analysis methods to help reveal
hidden patterns in the network behavior with respect to different parallel applications and system
configurations. Our system also provides multiple coordinated views for connecting behaviors
observed at different levels of the network hierarchies, which effectively helps visual analysis
tasks. We demonstrate the effectiveness of the system with a set of case studies. Our system and
findings can not only help improve the communication performance of supercomputing applica-
tions, but also the network performance of next-generation supercomputers.
c© 2018 Published by Elsevier B.V. on behalf of Zhejiang University and Zhejiang University Press.

This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The advancement of supercomputing technology is crucial to
many scientific studies and engineering designs because these
studies and designs increasingly rely on large scale simulations.
A powerful, massively-parallel supercomputer enables scien-
tists to employ more sophisticated models to simulate complex
phenomena or processes at a greater level of detail and accu-
racy. While the attempt to build the fastest supercomputers has
been very actively pursued (Strohmaier et al.), it is also im-
portant to understand how to fully utilize the potential of a su-
percomputer. High-radix, low-diameter, hierarchical networks
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based on the Dragonfly topology are popular choices for build-
ing modern and next-generation high performance computing
(HPC) systems. Such hierarchical networks effectively connect
over ten thousand compute nodes for large-scale distributed and
parallel computing. At U.S. Department of Energy’s National
Laboratories, several new systems (e.g., Cori (NERSC, 2016b)
at NERSC, Trinity (Los Alamos National Laboratory, 2016)
at Los Alamos/Sandia, and Theta (Argonne Leadership Com-
puting Facility, b) at Argonne) deploy Dragonfly-based net-
works (Kim et al., 2008a) with some variations. To maximize
the efficiency of these systems, effective methods and tools are
needed for analyzing and studying the behaviors and perfor-
mance of these networks. Random or adaptive routing is usu-
ally used with these networks in order to reduce network con-
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gestion and improve system performance (Jain et al., 2014).
However, hierarchies in the network coupled with adaptive
routing make performance analysis a challenging task. Conven-
tional performance analysis tools cannot provide the sufficient
support for analysis and exploration of large-scale hierarchical,
high performance communication networks.

Most of the previous studies on Dragonfly-based net-
works (Jain et al., 2014; Jiang et al., 2009; Won et al., 2015;
Yang et al., 2016) focus on analyzing the structural characteris-
tics of network performance using statistical analysis. However,
they do not analyze the temporal behavior of the network, which
is also important for gaining insights on optimizing application
performance and improving network design.

In this paper, we present a visual analytics system that we
have developed for understanding the complex temporal behav-
iors of Dragonfly-based networks. The strength of the system is
to support interactive analysis of large scale multivariate time-
series that are collected from different types of network entities
(e.g., network links and terminals). The basis of the support
is to provide a set of time-series clustering methods for ana-
lyzing different performance metrics and variables, and in ad-
dition, integrate these methods with interactive visualizations
for exploring the behavior of complex, hierarchical, high per-
formance communication networks. In addition, by utilizing a
time-series segmentation method, our system provides succinct
summaries of network traffic from long time-series. The com-
binations of these analysis methods, visualizations, and interac-
tions allows the user to understand the behavior of complicated
networks. We demonstrate the effectiveness of our system with
several case studies, in which we analyze the network behav-
iors collected from the simulation of two parallel applications
on Theta (Argonne Leadership Computing Facility, b)—the su-
percomputer operated at the U.S. Argonne National Laboratory.
We show that the visual analysis capability of our system leads
to a better understanding of complex temporal behaviors caused
by different communication patterns on the Dragonfly-based
networks, as well as identifying performance bottlenecks.

2. Background and Related Work

Our visual analytics system is designed to visualize and ana-
lyze the temporal behaviors and performance of large scale net-
works. We mainly consider supercomputers with hierarchical
structures, such as different variations of the Dragonfly-based
networks. In this section, we briefly introduce the Dragonfly
networks and describe the related work on visual analytics.

2.1. Large-Scale Hierarchical Networks for HPC

Multi-level, fully connected networks, such as the Dragonfly
topology (Kim et al., 2008b), provide large bisection bandwidth
and a low network diameter to efficiently connect more than ten
thousands compute nodes. Such networks are promising op-
tions for building exascale systems. Fig. 1 shows an example
of the Dragonfly network using the Cray XC (Cray Inc.) con-
figuration. It is a hierarchical topology composed of multiple
groups that are fully connected by all-to-all global links. Each
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Fig. 1: The Dragonfly configuration used by Theta. All groups are fully con-
nected by global links to form a two-level network (left). The routers in each
group are also fully connected by local links (center). Each router is connected
to multiple terminals (right).

group has routers arranged in rows and columns, which are con-
nected by green and brown local links, respectively. Each router
is connected to multiple terminals. Dragonfly-based networks
typically use adaptive routing to reduce network congestion.
When transferring packets between terminals in two different
groups with no network congestion detected, adaptive routing
uses the global links that directly connect the two groups. When
network congestion is detected, adaptive routing redirects pack-
ets to a randomly selected group and then forwards the packets
to the destination group.

2.2. Visual Analytics for Exploring Network Performance Data

Several analysis and visualization tools have been developed
in order to improve the performance of parallel applications.
Isaacs et al. (2014b) provide a comprehensive survey of per-
formance visualizations. General-purpose performance tools,
such as CrayPat (DeRose et al., 2007), HPCToolkit (Adhianto
et al., 2010), Scalasca (Geimer et al., 2010), Vampir (Nagel
et al., 1996), and TAU (Shende and Malony, 2006) can provide
graphical results for analyzing network performance. However,
the visualization methods used in these tools are not designed
for exploration of large hierarchical networks. For example,
they often use stacked timelines to show the performance of
each application process without scalable methods (e.g., aggre-
gation). In addition, while they do visualize the performance
data with physical locations of the processes, they do not re-
late the network metrics (e.g., traffics) to the physical network
topologies. Therefore, these tools lack either the scalability
needed for exploring large-scale networks or the capability to
analyze the complexity of hierarchical networks.

Researchers have developed visualizations for large and
complex networks. Current supercomputers often have low-
diameter interconnects enabling fast communications, for ex-
ample, the Dragonfly (Kim et al., 2008a), Slim Fly (Wolfe et al.,
2016), and fat tree (Leiserson, 1985) topologies. Several studies
focus on visualizing the physical node locations in these com-
plex networks. Landge et al. (2012) projected 3D torus net-
works on both 2D and 3D views in order to analyze network
traffics with the topological properties. McCarthy et al. (2014)
extended this 3D to 2D projection method for visualizing the
5D torus. Cheng et al. (2014) developed TorusVisND which can
be applied on any high-dimensional torus networks by utilizing
space-filling curve (Sagan, 1994) with a radial layout. In an ap-
proach used by Sigovan et al. (2013a), the specialized I/O com-
munication network is preserved in a radial node-link approach,
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while the communication patterns are visualized as heatmaps
along each edge which show some property such as latency,
message size, etc. Bhatele et al. (2016) analyzed Dragonfly-
based networks by using a radial layout and a matrix view to
show inter-group and intra-group links between the compute
nodes. Fujiwara et al. (2017) utilized node-link diagrams and
the matrix-based representations with hierarchical aggregation
techniques to visualize any type of network topologies. They
also provided algorithms for suggesting better routing and map-
ping, which can be used interactively. Li et al. (2017) developed
flexible visualization for analyzing the network performance on
the Dragonfly network. They applied data aggregation tech-
niques in order to provide the visualization scalability for large
scale networks. Also, their visualization can be customized
based on the user’s needs. However, the works above do not
provide sufficient methods for temporal analysis of network be-
haviors and performance.

On the other hand, several researchers have also studied tech-
niques for temporal analysis. With an animation based ap-
proach, Sigovan et al. (2013b) used an “animated scatterplot”
to analyze the temporal patterns in application execution. They
visualized not only the occurring events with animation, but
also event histories as an afterimage on a background. With
this method, we can see the trends from the relationships be-
tween previous events and current events. However, it is diffi-
cult to find the patterns of lengthy performance data with anal-
ysis methods that rely on animation. Isaacs et al. (2014a) vi-
sualized execution traces and event histories of parallel appli-
cations using logical time instead of physical time. Using log-
ical time allows the application developers to analyze the exe-
cution sequence from the program’s perspective. Muelder et al.
(2016) introduced the behavior lines for analyzing cloud com-
puting performance. These lines show an overview about the
behavioral similarity of multivariate time-varying performance
data. However, in contrast to the works mentioned above, these
methods do not provide information related with the physical
network topology. Compared with these methods, our system
supports analysis requiring both topological and temporal prop-
erties for large scale networks, including the Dragonfly-based
networks. Additionally, in order to help the user find important
patterns from the large communication data, our system inte-
grates the time-series analysis methods, including clustering,
dimensionality reduction, and change point detection.

2.3. Visualization for Time-Series Analysis
Including the temporal analysis methods for network perfor-

mance data as mentioned in Section 2.2, a large variety of tem-
poral visualizations have already been studied (Aigner et al.,
2011). Here, we only summarize the most relevant works.
Similar to ours, several studies use dimensionality reduction
methods to provide an overview of time-series data. For exam-
ple, Steiger et al. (2014) produced an overview for identifying
anomalies from sensor networks. They used time-series sim-
ilarity measures (including Euclidean distances and dynamic
time warping (Berndt and Clifford, 1994)) and then plotted
the similarities in a 2D plot with multi-dimensional scaling
(MDS) (Torgerson, 1952). This method focuses on the com-
parison of each entity’s (i.e., sensor’s) value over time. On the

other hand, some visualizations calculate the similarity of the
state of all entities at each time point and then show their tem-
poral differences. For example, Bach et al. (2016) visualized the
similarity of multivariate data between each time point by us-
ing MDS. Then, they visualized time differences between each
point with curved lines. van den Elzen et al. (2016) also applied
similar methods. Jäckle et al. (2016) introduced Temporal MDS
Plots. The major difference from the methods of Bach et al.
(2016); van den Elzen et al. (2016) is that Jäckle et al. (2016)
applied a sliding window to the temporal multivariate data in or-
der to obtain the similarity across multiple time points. One of
our components in the system applies a similar approach with
Steiger et al. (2014). However, our system is designed to com-
pare multiple network metrics with both structural and temporal
characteristics in addition to the integration of the time-series
analysis methods, as mentioned in Section 2.2. Bryan et al.
(2017) introduced Temporal Summary Images (TSIs), which is
designed for generating narrative visualizations. TSIs provides
data summaries from the time-series data from their timestep
selections. Inspired by this idea, we provide automatic sum-
maries of network metrics by utilizing the time-series segmen-
tation method.

3. Analytical Tasks and Design Requirements (DRs)

We first describe the analytical tasks required to understand
network behaviors. We then present the design requirements of
our system.

In order to fully utilize a supercomputing system, achieving
fast communications between compute nodes is crucial. The
system designers would need to select effective job allocation
and network routing strategies (Won et al., 2015; Yang et al.,
2016; Bhatele et al., 2016; Mubarak et al., 2017a) from a variety
of options. Therefore, understanding the impact of these strate-
gies to the network behaviors is a necessary task. On the other
hand, the application developers need to know where and how
communication bottlenecks occur while running their applica-
tions. For these tasks, communication data is typically collected
by using performance analysis tools, such as profiling and trac-
ing tools (Adhianto et al., 2010; Nagel et al., 1996; Shende
and Malony, 2006), or by running simulations (Mubarak et al.,
2017b). However, the obtained communication data is often
very large (order of gigabytes (NERSC, 2016a) or more). More-
over, these communications occur between thousands of com-
pute nodes connected by complex network topologies (e.g.,
high-dimensional torus (Adiga et al., 2005) and the Dragonfly
network (Kim et al., 2008a)). The researchers need to analyze
such complex data from temporal and topological (physical net-
work connection) aspects.

To help the above analytical tasks, our design requirements
are as follows: The system should

DR1 clearly display information related with the communica-
tion bottlenecks,

DR2 depict temporal network behaviors in order to find the
cause of the bottlenecks,
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DR3 provide visualizations for understanding communication
patterns in the context of the underlying physical net-
works, and

DR4 help the user identify the communication bottlenecks in
large scale data.

Our system is designed to satisfy these requirements. Under-
standing temporal network behaviors is especially a challenging
task due to the large scale data and complexity of the analysis.
To support this, our system effectively uses a variety of tech-
niques developed for time-series analysis.

4. Visualization Methodology

In order to meet the design requirements, we develop a visual
analytics system for 1) finding potential bottlenecks in the net-
works, 2) reviewing details of related information of the bottle-
necks, and 3) analyzing the causes of the bottlenecks from tem-
poral and topological perspectives. To achieve this, we use the
workflow of our visual analytical process as shown in Fig. 2.
Our visual analytics system shown in Fig. 3 consists of four
components for this analytical process. The four components
are: (a) behavior overview, (b) behavior detailed views, (c) be-
havior similarity views, and (d) topological views. Details of
communication data and each of these components will be ex-
plained in the following sections.

Fig. 2: The analytical flow of using the system. Each step involves one or more
views.

4.1. Communication Data

For describing the communication data, we use the Dragon-
fly network (Kim et al., 2008a), as shown in Fig. 1; however,
our visualization methods can be used for other network topolo-
gies. This can be achieved by changing the topological views
(Fig. 3(d)) according to the network topology in use. Typical
communication data collected from a supercomputing system
includes time-series of network traffics (i.e., the total amount
of data transferred on networks) for each network entity (e.g.,
a traffic for each global, local, and terminal link). In addition,
other metrics, such as saturation time (i.e., the total time dur-
ing which the buffers of the network channels are full), aver-
age packet latency (i.e., the average time for transferring each
packet), and average number of hops (i.e., how many hops each
packet has traversed in average) could be included in the data.
These data is typically collected by using tracing tools or sim-
ulations with a user-defined sampling rate. When collecting for
the saturation time metric, it is measured as the fraction of the
time that the buffers in the network channels are full. There-
fore, the saturation time will always either be shorter or the

same as the sampling rate. These metrics are useful to identify
the bottlenecks. The bottlenecks may arise due to multiple, si-
multaneous communications passing through the same network
links, or long-hop communications along congested links, or
both (Bhatele et al., 2016; Bui et al., 2015; Malakar and Vish-
wanath, 2017).

4.2. Behavior Overview (Fig. 3(a))

In order to help the user decide a time range of their inter-
est, the behavior overview shows one selected statistical metric
for each time point across time (DR1, DR4). Time points are
encoded in x-coordinates. As for y-coordinates, from the col-
lected dataset, the user can select a set of an entity of the net-
work (e.g., terminals, local links, or global links), a metric (e.g.,
network traffic, saturation, a number of hops of communication
routes), and a statistical measure (e.g., maximum value, mean
value, or standard deviation) as values for the y-direction. This
view is used for a time range selection with a single range se-
lector placed at the bottom to show more detailed information
in the other views. For instance, in Fig. 3(a), the time range
where the mean of the terminal traffics is increasing is selected
in our example.

4.3. Behavior Detailed Views (Fig. 3(b))

The behavior detailed views show the detailed information of
network behavior in the selected time range from the behavior
overview (DR1, DR2). Similarly with the behavior overview,
x- and y-coordinates represent time points and metric values re-
spectively. In this view, the user can select a subset of an entity
of the network and a metric. We decided to provide two views
since HPC researchers often want to compare the behaviors of
the different network entities (e.g., behaviors of terminals and
global links) or understand the relationship of cause and effect
in differing situations (e.g., how the network traffic affects the
network saturation time). Additionally, with just two views,
we can use a sufficient amount of window space to show the
detailed information. In Fig. 3(b), the network traffics on ter-
minals and global links are shown in the upper and lower views
respectively.

4.3.1. Clustering of Behaviors
Finding interesting patterns from the time-series that show

the network behaviors is not a trivial task because today’s lead-
ing supercomputers have many terminals and network links.
For instance, Theta at Argonne National Laboratory (Argonne
Leadership Computing Facility, b), which we simulated in our
case studies, has more than 3,000 terminals and 20,000 network
links. To help the user find the patterns, we apply time-series
clustering methods (Liao, 2005; Fu, 2011) for the network be-
haviors (DR1, DR2, DR4). We implement different clustering
methods and similarity measures as described below. Fig. 4
shows visualized results with/without the clustering methods.
The user can select a method based on the type of analysis they
need and the complexity of visualized data (e.g., a number of
network entities and time points).

Our system supports the Hartigan-Wong method (Hartigan
and Wong, 1979) as a k-means clustering, the partitioning
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Fig. 3: The user interface of the system, which contains four components: (a) the behavior overview, (b) the behavior detailed views, (c) the behavior similarity
views, and (d) the topological views. This example shows the network behaviors obtained by running the algebraic multigrid (AMG) solver application with 1,728
MPI ranks. (a) shows an overview of network behavior about the selected network entity and metric. (b) shows details of network behaviors in the selected time
range in (a). (c) shows the similarity of each time-series, as shown in (b), by using the dimensionality reduction method. In (d), summaries of the metrics of each
network entity in the selected time ranges with the network topology information. The visualization methods, which are introduced by Li et al. (2017), are used for
(d).

around medoids (PAM) as a k-medoids clustering (Kaufman
and Rousseeuw, 2009), and the complete-linkage clustering as a
hierarchical clustering. k-means clustering is the fastest method
within these options, with a time complexity of O(nk) (n is a
number of observations and k is a number of cluster centers). It
requires observations of l-dimensional vectors as inputs. Thus,
we use each time-series as one observation and each point’s
metric value will be used as an element of the vector. Also,
to avoid the initial centroid dependency, our system runs k-
means clustering multiple times with different initial centroid
seeds and then selects the best result. Fig. 4(a) and 4(b) show
examples of visualizations without and with k-means cluster-
ing respectively. While k-means clustering uses observations as
inputs, the other two clustering methods use dissimilarity be-
tween each observation as their inputs. Even though their com-
plexity (O(n2)) is worse than k-means, these clustering meth-
ods are useful for analysis since similarity measures developed
for the time-series can be applied. Our system supports three
similarity measures: Euclidean distance, dynamic time warping
(DTW) (Berndt and Clifford, 1994), and time warp edit distance
(TWED) (Marteau, 2009). Euclidean distance dE(x, y) between
two time-series x and y is calculated with

dE(x, y) =


l∑

i=1

(xi − yi)2



1
2

(1)

Here, l is the length of the time series, and xi and yi are the
ith element of the time series x and y, respectively. By being
categorized to the elastic similarity measures, DTW and TWED
have flexible matching in time. DTW measure (dDTW(x, y)) can
be obtained by calculating the accumulated cost with dynamic
programming:

dDTW(x, y) = Dl,l

Di, j = f (xi, y j) + min
{
Di, j−1,Di−1, j,Di−1, j−1

} (2)

for i = 1, · · · , l and j = 1, · · · , l. Matrix D is initialized with
Di, j = ∞ except for D0,0. D0,0 is initialized to D0,0 = 0. f (xi, y j)
is the local cost function. We use the square of the difference
between xi and y j (i.e., f (xi, y j) = (xi − y j)2). Similarly, TWED
metric (dTWED(x, y)) can also be calculated with dynamic pro-
gramming:

dTWED(x, y) = Dl,l

Di, j = min
{
Di, j + Γxy,Di−1, j + Γx,Di, j−1 + Γy

} (3)

for i = 1, · · · , l and j = 1, · · · , l, with

Γxy = f (xi, y j) + f (xi−1, y j−1) + 2ν|i − j|
Γx = f (xi, xi−1) + ν + λ

Γy = f (y j, y j−1) + ν + λ

(4)

We use f (xi, y j) = |xi − y j| for TWED. λ is a mismatch penalty
and ν is a stiffness parameter. Following the parameter choices
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(a) Without clustering (b) k-means clustering

(c) PAM with TWED (d) One cluster selected from (c)

Fig. 4: Time-series clustering results of the network traffic with different clus-
tering methods. Colors represent the clustering number where the lines be-
long to. (a) Without clustering, it is difficult to find important patterns. (b)
With k-means clustering, we can easily see the patterns. For example, the light
blue lines show that the corresponding traffics are high at the beginning and
after that they fall into low values. (c) With the partitioning around medoids
(PAM) (Kaufman and Rousseeuw, 2009) and the time-warped edit distance
(TWED) (Marteau, 2009), we can see different patterns from (b). For exam-
ple, as shown in (d), the cluster represented with light blue colors shows three
different peaks—all of which have the same behavior of first increasing traffic,
then decreasing and having low values afterwards. This shows that using clus-
tering methods with TWED is useful to detect these kinds of patterns as one
cluster.

used by Serra and Arcos (2014), we select λ = 0.01 and ν = 0.5
as the default parameters. While Euclidean distance is the sim-
plest and fastest way (complexity of O(l)) to calculate dissim-
ilarity of each time-series, DTW and TWED (complexity of
O(l2)) have performed better for classification of time-series
data according to current research (Serra and Arcos, 2014).
Fig. 4(c) and 4(d) show the results from PAM with TWED. Re-
fer to the work of Serra and Arcos (2014) for more details about
the differences between these three measures.

Additionally, when the user wants to cluster the network be-
haviors based on multiple metrics (e.g., global link traffic and
its saturation time), the clustering methods and similarity mea-
sures as stated above are also able to be used for multivariate
time-series inputs. In this case, the system processes all metrics
on a scale between 0 and 1. From these options, the user can
select a clustering method, the number of clusters, a similarity
measure, and a metric for clustering from the settings, placed
on the left-hand side of the behavior detailed views.

The cluster IDs are encoded with line colors as shown in
Figures 3 and 4. We select categorical colors, each of which
has enough saturation to recognize the differences of each color
line with a narrow width. When the same network entities are
selected in the upper and lower behavior detailed views, the
same color is used for the corresponding lines in order to con-
vey the relationships between two different metrics. Also, the
color scheme applied for each behavior detailed view is shared
with corresponding behavior similarity view, as described in the
next subsection. We have ensured that the views that show dif-
ferent information do not share the same colors in order to avoid
misleading the users (e.g., the behavior detailed views and the
topological views use different color schemes).

4.4. Behavior Similarity Views (Fig. 3(c))

The (dis)similarity of network behavior is visualized in the
behavior similarity views. The behavior similarity views sup-

plement the behavior detailed views. While the behavior de-
tailed views show network behaviors in detail, it is difficult to
convey the similarity of each behavior. The system provides
the clustering methods for classifying the behaviors; however,
it would not be enough in order to find the patterns that oc-
curred in the small set of network entities (e.g., outliers and
anomaly behaviors). Upper and lower behavior similarity views
shown in Fig. 3(c) show results obtained by applying the dimen-
sionality reduction for the behaviors visualized in the upper and
lower behavior detailed views respectively. From these views,
the user can identify clusters that would have not been detected
with the clustering method used in the behavior detailed views
(DR4).

4.4.1. Dimensionality Reduction of Behaviors
We apply the dimensionality reduction method to the dissim-

ilarities obtained by using the same similarity measures used
for the time-series clustering. Our system supports the clas-
sical multi-dimensional scaling (MDS) (Torgerson, 1952) and
t-Distributed Stochastic Neighbor Embedding (t-SNE) (Maaten
and Hinton, 2008). These dimensionality reduction methods
can use dissimilarities of observations as inputs. By using these
dimensionality reduction methods, we can place the similar be-
haviors close together. While the classical MDS is a linear
dimensionality reduction method and good for looking at the
global structure of the multi-dimensional data, t-SNE is a non-
linear dimensionality reduction method and useful to visualize
the local structure of the data. We set t-SNE as a default set-
ting since we designed the behavior similarity views to support
finding patterns that occurred in the small set of the network
entities. In order to apply t-SNE interactively, we use Barnes-
Hut t-SNE (Van Der Maaten, 2014) (while the complexity of the
original t-SNE is O(n2), this implementation has only O(n log n)
complexity). t-SNE has the perplexity as a tuning parameter,
which changes how the local structure affects the result. In gen-
eral, the perplexity is selected between 5 and 50 (Maaten and
Hinton, 2008). While we set 30 as a default value, the user can
change the value in the settings, placed on the left-hand side of
the behavior detailed views. Examples of visualizations with
different dimensionality methods are shown in Fig. 5.

Existing visualization methods (Muelder et al., 2016; Bach
et al., 2016; van den Elzen et al., 2016) depict the similarity of
all observations at each time point. However, our method can
summarize the similarity of each observation’s behavior across
time rather than at each time point. This method is more use-
ful when we want to find the similar behaviors rather than the
similar state of observations.

4.5. Topological Views

All the views described above depict the network behaviors
from their time-varying aspects. However, visualizing the con-
text of the underlying physical network is important in order
to understand the bottlenecks and its relation to them (Landge
et al., 2012; McCarthy et al., 2014; Cheng et al., 2014; Bhatele
et al., 2016; Fujiwara et al., 2017; Li et al., 2017). On the other
hand, exploring the full time series through such visualizations
is a time-consuming task. Therefore, we decide to apply the
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(a) Network traffics with clustering (b) t-SNE (c) MDS

(d) Network traffics after selection (e) t-SNE (f) MDS

Fig. 5: Examples of time-series dimensionality reduction. (a) shows network
traffics clustered with PAM with Euclidean distances. (b) and (c) are results
after dimensionality reduction with t-SNE and MDS respectively. When com-
pared to the clustering result in (a), we can find clusters of smaller size in t-SNE
and MDS, as indicated with green and pink arrows in (b) and (c). (d), (e), and
(f) show small clusters selected from (b). As shown with the green arrows in
(b), (e), and (f), MDS in (c) does not separate the small cluster from the light
blue cluster. From these, we can see that t-SNE detects local structure from the
data.

similar concept of the temporal summary images (TSIs) (Bryan
et al., 2017). Our topological views visualize summaries of
the network behaviors with the physical network information
during the automatically or manually selected segments (DR3,
DR4).

4.5.1. Segmentation of Behaviors
TSIs (Bryan et al., 2017) provide data summaries from the

time-series data by using their automatic timestep selections.
Since TSIs are developed for generating narrative visualiza-
tions (Segel and Heer, 2010), their timestep selections are more
focused on capturing changes in the visualizations. In our
case, our system should provide summaries that would help
the time-series analysis, not narrate it. Therefore, we apply
the change point detection, which is developed for time-series
analysis (Aminikhanghahi and Cook, 2017). We choose the
E-Divisive method (James and Matteson, 2015; Matteson and
James, 2014) because we want to detect multiple change points
for a set of time-series in a reasonable amount of time in order
to use it interactively. Fig. 6 shows an example of segmentation
with the E-Divisive method. Segments are visualized with the
range sliders placed at the bottom of the behavior detailed views
and lines with light gray color in the behavior detailed views.
The user is also allowed to adjust the segments manually by
using the sliders.

4.5.2. Visualization of Behavior Summaries
After segmentation of the time-series data, our system visu-

alizes the summaries of behaviors for the selected time ranges.
We calculate mean values for the metrics for each network en-
tity (e.g., the traffic for global links), then depict them with the

Fig. 6: An example of segmentation for the network behaviors. The E-Divisive
detects five segments from multiple lines.

Fig. 7: Radial view with concentric rings for visualizing Theta’s interconnect
network.

visualization method developed by Li et al. (2017). An exam-
ple of this visualization is shown in Fig. 3(d). Each alphabetical
label corresponds to the label placed in each segment. Each ra-
dial view provides a visual summary of the entire network for
the selected time range, showing the different traffics of the all
types of network links as heatmaps (brighter color means higher
traffic). The colors used on the views are the same as the col-
ors used to distinguish the type of network links, as described
in Fig. 1: blue for global links, green for row local links, and
brown for column local links. Each view shows the aggregated
metrics based on the structural and topological properties of the
network, as shown in Fig. 7. The ribbons at the center show the
aggregated global link traffic between all the groups in the net-
work. The inner ring of the radial view shows the aggregated
traffic for all of the row (green) local links. The outer ring shows
the aggregated traffic for all of the column (brown) local links.
The example in Fig. 3(d) shows network traffics on Theta (Ar-
gonne Leadership Computing Facility, b). Since Theta has 9
groups, each radial view has 9 corresponding partitions. Also,
each group on Theta has 96 routers, which are arranged in 16
rows and 6 columns. 16 sections of each group in the inner ring
(green) show the aggregated traffic on the row local links. 6
sections of each group in the outer ring (brown) represent the
aggregated traffic on the column local links. For example, the
view corresponding to the time range B has high traffics for all
row and column local links in group 0–3 (indicated with g0–
3). With the behavior detailed view in hand, by referring these
summaries together, we can correlate between the temporal and
structural behaviors.

4.6. User Interactions
Our system provides a rich set of user interactions to help

the user find the important patterns from large time-series data.
Many of the interaction are linked between multiple views.

Behavior overview: As already mentioned in Section 4.2,
the metric shown in the view can be selected by the settings
on the left. Also, the user can select the time range by using
the range slider placed at the bottom of the view. The behav-
ior detailed views (Fig. 3(b)) and the behavior similarity views
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(Fig. 3(c)) will be automatically updated after this selection. At
the same time, this updates the automatic segmentation in the
behavior detailed views, as described in Section 4.5.1.

Behavior detailed views: With the settings placed on the
left, the user can select a set of the network entity and its met-
ric, which will be visualized in the upper and lower views. Also,
the clustering method, the number of clusters, the similarity
measure, and the plot(s) used for clustering and segmentation
can be changed. The time ranges used for segmentation can
be changed by using the range sliders at the bottom. When the
user updates these settings, the behavior similarity views and
the topological views are also updated with the corresponding
settings.

As for selecting a subset of lines, our system provides three
methods. First, the user can apply filtering to the metric value
for each view from the settings. Second, the user can select
which clusters to visualize in the view from a context menu,
which will be displayed with right-mouse click. Additionally,
the system provides a freeform selection that selects intersected
lines with the freeform drawn by the user. After the freeform se-
lection, the user can filter out the unselected lines. These selec-
tions will update the corresponding element in the other views.
When the same network entity is shown in multiple views (e.g.,
the behavior detailed views show traffic and saturation of global
links), the corresponding lines will be also filtered out. In ad-
dition, when filtering out hierarchically lower levels of network
entities (e.g., terminals), in the other views, higher levels of
network entities (e.g., global links), which do not have any con-
nections to the said lower level entities, can be filtered out.

Behavior similarity views: The user can select the similar-
ity measures, the dimensionality reduction method, and the per-
plexity for t-SNE, as explained in Section 4.4.1, from the set-
tings placed on the left. As the MDS or t-SNE results may
contain cluttered regions, zooming and panning of the views
by using a mouse are supported to display certain regions more
clearly or to reduce overlapping of points. In addition, our sys-
tem provides a lasso selection for the user to select a subset of
points of their choice. Same as the behavior detailed views, the
user can filter out the unselected points. Then, the correspond-
ing visualization in the other views will be also updated.

4.7. Implementation
We implement the system with multiple programming lan-

guages and libraries. We use C++, Qt1, and OpenGL for the
visualizations of the behavior overview, the behavior detailed
views, and the behavior similarity views. In addition, by us-
ing RInside2 package, we embed R in C++ codes in order to
use analysis methods. As for the topological views, in order to
utilize the Web API developed by Li et al. (2017), we use Web-
Socket3 for sending the data and settings to the server. Then, we
visualize the received result in the Chromium browser4, which

1Qt, https://www.qt.io/, accessed: 2018-2-5
2RInside, https://cran.r-project.org/web/packages/RInside/,

accessed: 2018-2-5
3WebSocket, https://tools.ietf.org/html/rfc6455, accessed:

2018-2-5
4Chromium, https://www.chromium.org/, accessed: 2018-2-5

can be integrated into the Qt application. The Web API in the
work of Li et al. (2017) is developed with a combination of
HTML5, CSS, and JavaScript.

5. Case Studies

We demonstrate the effectiveness of our system by analyz-
ing the network behaviors and performance of parallel applica-
tions on the Dragonfly-based network. We focus on analyzing
the performance on Intel Knights Landing (Sodani et al., 2016)
based Cray XC40 (Cray Inc.) supercomputer, Theta (Argonne
Leadership Computing Facility, b), at Argonne National Labo-
ratory. Theta has 3,456 terminals (computer nodes) with each
having 64 cores. It serves as the forerunner to the CORAL
Aurora system (Argonne Leadership Computing Facility, a),
which will be the next leadership supercomputer built in Ar-
gonne National Laboratory. Theta has 9 Dragonfly groups with
each group having 96 routers arranged in a 16 × 6 matrix and
each router connecting to four terminals.

Since our case studies involve changing the network config-
uration and routing mechanism, it is expensive and difficult to
conduct such studies on Theta’s actual system. Therefore, we
use the CODES network simulation toolkit (Cope et al., 2011)
to model Theta’s Dragonfly networks. The simulation enables
a controlled environment where the performance of the job is
not impacted by external factors, such as communication inter-
ference or link failures. The simulation also provides a number
of metrics, such as link saturation, packet latency and number
of hops traversed. CODES employs the Rensselaer’s optimistic
simulation system (ROSS) (Carothers et al., 2002; Barnes Jr
et al., 2013), a high-performance, parallel discrete-event simu-
lator, that allows massive simulations to be run accurately at a
packet level detail. The CODES simulation of the Theta sys-
tem is validated to have a very high accuracy (Mubarak and
Ross, 2017; Mubarak et al., 2017c). The data we captured from
simulations is similar to the data collected from the real sys-
tem. Therefore, our system and methods can also be applied on
both data in the same manner. For the simulations, we collected
time-series metrics (traffic and saturation time) for all network
links (global, local, and terminal). For the terminals, in addition
to the traffic and saturation time, we collected packet latency
and an average number for hops traversed.

5.1. Case Study 1: Exploring Temporal Behaviors

In this case study, we analyze the performance of the alge-
braic multigrid (AMG) solver application with 1,728 MPI ranks
contiguously assigned to Theta’s terminals. AMG is part of un-
structured mesh physics packages (Yang et al., 2002), and it
has a 3D nearest neighbor communication pattern, which is one
of the traffic patterns that represent exascale workload behav-
iors (NERSC, 2016a). Although we know the communication
pattern of AMG at the application level, its temporal behaviors
when running on the Dragonfly network are unclear. Direct vi-
sualization of massive multivariate time-series using line charts
often results in a cluttered view, as shown in Fig. 4(a). By using
the time-series clustering method for our system, the terminals
are automatically clustered into different groups based on the
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Fig. 8: Network behaviors obtained by running the AMG solver application
with the adaptive routing and 1,728 MPI ranks contiguously assigned to Theta’s
terminals. (a) shows the mean traffics on the terminal links. (b) and (c) shows
traffics on the terminals and global links between the selected range in (a), re-
spectively. We can see that the pink and yellow clusters in (b) and the brown
cluster in (c) have heavy traffics.

(a) (b)

Fig. 9: Visualization of two clusters which have heavy traffics on the terminals
in Fig. 8(b). For each (a) and (b), traffics on the terminals and the global links
are shown in the upper and lower views respectively. (a) visualizes the pink
cluster, which depicts the first heavy traffics on the terminals. From (a), these
heavy traffics on the terminals involve heavy traffic on the global links which
is indicated with brown colors. (b) visualizes the yellow cluster, which depicts
the second heavy traffics on the terminals. When compared with (a), this cluster
mostly involves the orange traffics on the global links. This result in (b) shows
the adaptive routing helps reduce the communication bottlenecks.

traffic characteristics. We visualize the mean traffics on the ter-
minal links in Fig. 8(a). Then, we select a clear peak as seen
around the middle region with the time slider. The upper view
in Fig. 8(b) shows the details of the traffics in the selected range.
We cluster the result by using PAM with Euclidean distances as
the similarity measure. We can see that two clusters, visualized
with pink and yellow colors of the terminals, are generating
traffic bursts at two different time points: one burst shortly af-
ter the other one (Going further into detail, there are more than
1,500 terminal links in the two clusters. During the two peaks
from 35 msec to 40 msec, each terminal link has about 100
Kbytes of traffic in average, as observed from Fig. 8(b). There-
fore, the total traffic from the two clusters is approximately 30
Gbytes/sec around the peaks whereas the total traffic in low ac-
tivity periods is less than 10 Gbytes/sec.). This result shows that
our clustering method effectively reveals the temporal charac-
teristics of the AMG application workload on Theta’s network.

5.2. Case Study 2: Correlating Application and Network Per-
formance

Analyzing the effectiveness of routing strategies for a large-
scale complex network is challenging. From Case Study 1,

Fig. 10: The maximum saturation time on the global links visualized in
Fig. 8(c).

we found the two clusters of the terminals, which caused traf-
fic bursts at different time points. Such traffic bursts may also
cause network congestion on global and local links. To compare
traffics on the terminals and global links, we visualize these in
Fig. 8(b) and (c) respectively. From the result, we can see that
heavy traffics also may occur on global links, as shown with a
brown-colored cluster. Next, we use the provided user inter-
actions in order to select each cluster of the terminals (pink,
yellow) from the upper view. Then, we show only the related
global links on the lower view. As the results shown in Fig. 9,
two traffic bursts, indicated by the pink and yellow clusters,
cause heavy traffics on the global links. In addition to heavy
traffics, the global links have high saturation time, as shown in
Fig. 10. While the traffic bursts caused severe network conges-
tion, most of the traffic can go through the terminal and local
links, but they cannot be sent across the global links immedi-
ately via minimal routes. As adaptive routing redirects traffic to
the non-minimal routes on global links, the traffic on the global
links increases. As shown in Fig. 9(a), the first traffic burst
(pink) causes heavy traffics on the global links, which is mostly
related to the brown cluster. On the other hand, as shown in
Fig. 9(b), the second traffic burst (yellow) mostly relates to the
second cluster of global links (orange). Red and purple clusters
of global links are associated to both the pink and yellow clus-
ters of the terminals. These global links are mostly associated
with the minimal routes. Because adaptive routing uses indirect
paths due to network congestion, these global links have low
traffic. This case study shows the effectiveness of our system
by reviewing the temporal behaviors that relate to the applica-
tion and the routing strategy.

5.3. Case Study 3: Network Behavior When Using Many MPI
ranks

In this case study, we analyze the network performance of
Theta running the AMG application using 13,824 MPI ranks,
with each terminal running 4 MPI ranks using contiguous job
placement policy. First, we visualize the maximum saturation
time on the terminals in the behavior overview, as shown in
Fig. 11(a). Then, we select the range where we can see the
peaks of the maximum saturation time. In Fig. 11(b1) and (b2),
we show the traffics on global and column local links respec-
tively. PAM with Euclidean distances is applied for each view.
Additionally, in Fig. 11(d), in order to analyze this with the
topological information, we visualize the traffic of the entire
network using the radial views as we described in Section 4.5.2.
From these visualizations, while the first peaks of traffics on
both the global and local links (indicated the time range B)
relate to most of the links, as shown in B of Fig. 11(d), only
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Fig. 11: Network behaviors in the AMG application using 13,824 MPI ranks
with the adaptive routing. In (a), the maximum saturation time on terminals is
visualized. In (b1) and (b2), traffics on global and column local links are shown
respectively. We apply PAM with Euclidean distances as a clustering method
for each view. Also, t-SNE is used as a dimensionality reduction in (c1) and
(c2). In (d), network traffic summaries for each segment are detected by the
E-Divisive method. Ribbons, inner ring, and outer ring colors represent traffics
on global, row local, and column local links respectively. (e) shows network
traffic at each time point in the time range B.

limited links are utilized after these peaks (indicated the time
ranges C, D, E). With further investigations to analyze four time
intervals within the time range B (Fig. 11(e)), we noticed that
the workload on global links is imbalanced, as indicated by the
blue ribbons at the center of the radial views. These visualiza-
tions and analysis results indicate two directions to improve the
performance: (1) to find a way to utilize unused links in order
to reduce the traffics; (2) to use alternative job placement poli-
cies. Instead of contiguous job placement policy, a random job
placement policy that randomly allocate jobs to different groups
or routers can be used to distribute the workload for better load
balancing and utilization of the global links.

5.4. Case Study 4: Analyzing Differences of Communication
Patterns by Applications

While the previous three case studies is about the AMG ap-
plication, in this case study we analyze the network perfor-
mance and behaviors for running the multigrid application with
1,000 MPI ranks on Theta. Multigrid has a sparse and irregu-
lar communication pattern, which is used in massively parallel
block-structured adaptive mesh refinement (AMR) codes (Bell
et al., 2012). We focus on analyzing traffics and saturation times
on global links because network congestion of global links of-
ten causes bottlenecks in such communication patterns. As
shown in Fig. 12(a), we visualize the maximum value of satura-
tion time on global links in the behavior overview and then se-
lect a time range where the maximum value is increasing. Traf-
fics and saturation times on global links are displayed in the up-
per and lower behavior detailed views respectively (Fig. 12(b1)
and (b2)). Then, we cluster them by applying PAM with Eu-
clidean distances based on both traffics and saturation times

(i.e., using multivariate time-series clustering). We can see that
this clustering clearly reveals yellow traffics increase the maxi-
mum saturation times, as shown in Fig. 12(b1) and (b2), which
is a potential bottleneck. The analyst can use this information
to identify the source of performance problems, whether it is
due to job mapping, application behavior, or routing algorithm.
When using simulation, network designers can also tune differ-
ent parameters such as routing algorithms, link buffer sizes, and
bandwidth to see if these network bottlenecks can be reduced.

Through the case studies, we analyzed network behaviors
with adaptive routing and contiguous job allocation under the
different size of MPI ranks and applications. Also, we demon-
strated how we can find the potential bottlenecks. From the
analysis results, the application developer can consider the way
to improve the performance (e.g., changing mapping of MPI
ranks), while the system designer can consider further improve-
ments of routing and job allocation strategies (e.g., using ran-
dom job allocation).

6. Discussion and Limitations

One of our main contributions is summarizing and classify-
ing a large-scale time-series communication data. We discuss
our design choices related with this by comparing potential al-
ternatives. While we depict the network behaviors with two
views and time-series clustering methods, the behavior lines
used by Muelder et al. (2016) can be used for showing similar
information. Muelder et al. (2016) visualized cloud computing
performance data, which consists of about 10 attributes, with
their behavior lines. The behavior lines are useful to compare
the behavior similarity of network entities for each time points;
however, they cannot show the detailed values of the data. The
communication data that is analyzed with our system has a few
attributes (e.g., traffic and saturation time) in general. In this
case, comparing by using multiple windows is more effective
in order to see cause and effect at the same time. We demon-
strated the effectiveness of this design in Case Study 2 and 4.
As for the behavior similarity views, these views show the sim-
ilarity between each network entity’s behavior across time. In
contrast, other methods (Muelder et al., 2016; Bach et al., 2016;
van den Elzen et al., 2016) visualize the similarity of the state of
all entities at each time point. While the latter way is good for
summarizing the changes of the entire network behaviors for
each point, they cannot show the similarity between the behav-
iors of each network entity across time. Communication bot-
tlenecks often happen in specific network entities where traffic
concentration occurs. Therefore, understanding the similarity
between behaviors from each network entity is more important
than showing the similarity of entire behaviors.

Next, we discuss the limitations of this work. Even though
we have designed the system for a large scale network, which
has more than thousands of compute nodes, the scalability is-
sues in visualization and computation complexity could oc-
cur when we need to visualize a data larger than our current
scale. As for the visualization, the larger scale data would
make more cluttered lines and points in the behavior detailed
views and the behavior similarity views respectively. This prob-
lem could be solved by applying aggregation of the data (e.g.,
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Fig. 12: Network behaviors in the multigrid application using 1,000 MPI ranks with the adaptive routing. In (a), the maximum saturation time on global links is
visualized. In (b1) and (b2), traffics and saturation times on global links are shown respectively. We apply the multivariate time-series clustering by using PAM with
Euclidean distances based on both traffics and saturation times on the global links. Also, MDS is used as a dimensionality reduction in (c1) and (c2).

based on the similarity of their behaviors). While we did not
use edge bundling techniques (Zhou et al., 2013) to distin-
guish each behavior, such techniques could also reduce clutter.
From the run-time perspective of similarity calculation, cluster-
ing, dimensionality reduction, and segmentation, a visual ana-
lytics system needs to provide fast algorithms in order to ap-
ply them interactively. Thus, we carefully chose algorithms
based on their computational complexities and effectiveness for
classification (Liao, 2005; Fu, 2011; Serra and Arcos, 2014;
Aminikhanghahi and Cook, 2017). Because decreasing perfor-
mance is unavoidable for larger scale data, aggregation of the
data, as mentioned above, could help reduce the computation
cost. Also, we can consider algorithms that have lower com-
plexity, such as the Approximated-tSNE (Pezzotti et al., 2017).
Another limitation is the scope of identification of the bottle-
necks. In the case studies, we demonstrated how to identify
bottlenecks. As an example, Case Study 4 shows how we can
identity which traffics on global links relate to the long satura-
tion time. However, if the user needs to find the cause of bottle-
necks in more detail (e.g., why such high traffic even occurred),
then the user would need to analyze communication routes of
the messages (Fujiwara et al., 2017). Cooperating visualization
methods developed by Fujiwara et al. (2017) can be considered
as a further research direction.

7. Conclusions

We have designed a visual analytics system for understand-
ing the dynamic behavior of a large-scale supercomputer’s in-
terconnects. To assist the user’s analysis tasks, our system
provides views of the performance data at different levels of
granularity and also snapshots of the network traffic. While
many studies on Dragonfly networks focus only on analyzing
the topological properties, our work supports both the topolog-
ical and temporal analysis of network behaviors. To address
the challenges presented by the complexity of hierarchical net-
works to applying data mining techniques for analyzing mul-

tiple sets of multivariate time-series data, our system couples
time-series clustering methods with interactive visualizations to
correlate the performance metrics at different levels of the net-
work hierarchies. Our case studies have proven the effective-
ness of these integrated capabilities for network performance
analysis.

For future work, we plan to enhance our system in several
ways. Currently, the users of our system must manually choose
which clustering method and similarity metric they would want
to use. It is possible to automatically make these selections for
the users based on the data characteristics such as anomalies
found in the time series. We also plan to employ GPU comput-
ing to accelerate data processing and visualization calculations
such that our system can handle large and high-resolution data.
Finally, we plan to extend our system to support analyzing the
temporal behavior of job interference caused by different job
placement policies as well as analyzing the communication pat-
tern and congestion of the network.
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