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Abstract—Regression testing in very large software ecosystems
is notoriously costly, requiring computational resources that even
large corporations struggle to cope with. Very large ecosystems
contain thousands of rapidly evolving, interconnected projects
where client projects transitively depend on library projects.
Regression test selection (RTS) reduces regression testing costs
by rerunning only tests whose pass/fail behavior may flip after
code changes. For single projects, researchers showed that class-
level RTS is more effective than lower method- or statement-level
RTS. Meanwhile, several very large ecosystems in industry, e.g.,
at Facebook, Google, and Microsoft, perform project-level RTS,
rerunning tests in a changed library and in all its transitive
clients. However, there was no previous study of the comparative
benefits of class-level and project-level RTS in such ecosystems.

We evaluate RTS opportunities in the MAVEN Central open-
source ecosystem. There, some popular libraries have up to
924589 clients; in turn, clients can depend on up to 11190
libraries. We sampled 408 popular projects and found that 202
(almost half) cannot update to latest library versions without
breaking compilation or tests. If developers want to detect these
breakages earlier, they need to run very many tests. We compared
four variants of class-level RTS with project-level RTS in MAVEN

Central. The results showed that class-level RTS may be an order
of magnitude less costly than project-level RTS in very large
ecosystems. Specifically, various class-level RTS variants select,
on average, 7.8%–17.4% of tests selected by project-level RTS.

I. INTRODUCTION

Very large software ecosystems are becoming more com-

mon in both industry and in the open-source community. A

very large ecosystem contains thousands of rapidly evolving,

interconnected projects where client projects transitively de-

pend on library projects. Examples of such ecosystems in

industry include those at Facebook, Google, and Microsoft,

where many software projects typically reside in a monolithic

repository and clients are built and tested against latest library

versions whenever the library changes. Open-source ecosys-

tems also exist for popular programming languages—e.g.,

MAVEN Central for Java [1], NPM for JavaScript [2], NUGET

for .Net [3], CRAN for R [4], RUBYGEMS for Ruby [5], PYPI

for Python [6], etc.—even if the source code is not centralized

in one monolithic repository.

Regression testing [7], [8], [9], [10], [11], [12], [13], [14],

[15] is notoriously expensive [16], [17] in very large software

ecosystems but still valuable to quickly detect whether library

changes break some clients. Several large proprietary software

organizations have developed regression testing systems, e.g.,

Facebook’s Buck [18], Google’s TAP [16], [19], and Mi-

crosoft’s CloudBuild [17]. When a library changes, the tests in

the library, and, ideally, the tests in all its clients, are rerun to

check for regressions. Even in open-source ecosystems, which

lack the centralized governance and regression testing systems

that these companies have, regression testing of client code

after library changes can be highly beneficial: (i) clients’ tests

can test library code in ways that library developers did not

foresee, (ii) library developers can more quickly see if their

changes break some popular clients, (iii) client developers

can more quickly discover how library changes break their

code (even if they choose not to upgrade to the latest library

version), and (iv) client developers might find it easier to

incrementally update their code as libraries evolve.

Regression test selection (RTS) [13], [20], [21], [22], [23],

[24], [25], [26], [27], [28], [29] aims to reduce the cost

of regression testing by rerunning only tests whose pass/fail

behavior may flip due to the code changes. An RTS technique

works by tracking test dependencies on an old code version.

Then, only tests for which some dependency changed are rerun

in the new code version. RTS techniques vary in the granularity

at which they select tests and compute test dependencies, e.g.,

at statement, block, method, class, or project levels. Tracking

test dependencies can be done statically or dynamically.

There is a gap between the research on RTS, which so

far mostly evaluated individual projects, and RTS practiced

in several very large software ecosystems in industry, e.g.,

at Facebook, Google, and Microsoft. Specifically, researchers

showed that, for individual projects, class-level RTS can be

more beneficial than RTS only at lower granularities, e.g.,

method-level [28], [29], [30]. Meanwhile, regression testing

systems for very large ecosystems (e.g., Buck, CloudBuild,

and TAP) perform project-level RTS. Yet, no prior study com-

pared class-level and project-level RTS in very large software

ecosystems. Section II shows via examples some benefits that

class-level RTS can provide over project-level RTS. While

these benefits would be ideally evaluated in industry, we

cannot easily access the proprietary systems and code.

In this paper, we evaluate RTS opportunities by comparing

class-level with project-level RTS in the MAVEN Central open-

source ecosystem. There, popular libraries have up to 924589

clients; in turn, clients depend on up to 11190 libraries.

This underapproximates the number of clients because we

only count clients deployed in MAVEN Central. To show that
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MAVEN Central libraries evolve in a way that breaks clients,

we first conducted a small formative study on a sample of

408 popular GitHub Java projects released in MAVEN Central

for which we could successfully run tests. 202 projects (i.e.,

almost half) could not update to the latest versions of their

libraries because some libraries broke the clients’ compilation,

some broke tests, and some broke both. While not all libraries

care about breaking all clients and not all clients want to

update to the latest library versions, developers who do care

about detecting such breakages earlier could benefit from a

regression testing system in the MAVEN Central ecosystem.

Some Apache projects started an effort on Gump [31], but

MAVEN Central has no widely used regression testing system.

Our comparison of class-level and project-level RTS in

MAVEN Central showed that class-level RTS can be an order

of magnitude cheaper than project-level RTS in very large

ecosystems. We compared four variants of class-level RTS

with project-level RTS; MAVEN Central projects are Jar files,

so we use “Jar” and “project” interchangeably. We refer to

the project-level RTS as JJ: it computes both dependencies

and changes at the Jar granularity. When a library changes,

JJ reruns all tests in the library and all tests in all the

library’s transitive clients. JJ mimics what companies with an

abundance of resources do for RTS, but even these companies

have reported the increasing costs of JJ [16], [19], [32]. The

question we ask is how much could be saved by lower-

granularity, class-level RTS.

We compared project-level RTS against four class-level

RTS variants that all track dependencies at the class level

but differ in whether they track changes at the class or Jar

level, and whether they compute dependencies statically or

dynamically. We used Java projects that release Jars in MAVEN

Central and keep source code in GitHub. We performed the

comparison on 13961 change sets in 168 libraries that have

test Jars and a total of 580876 clients. The results for this

very large software ecosystem showed that class-level can be

much cheaper than project-level. Specifically, various class-

level RTS variants select, on average, only 7.8%–17.4% of

the tests that project-level RTS selects.

This paper makes the following contributions:

⋆ Comparison of RTS Techniques at Scale: We are the first

to empirically compare RTS techniques at class and project

levels of granularity of dependencies and changes for both

static and dynamic RTS techniques at scale.

⋆ Empirical Evaluation: Our study is the largest study so

far of RTS for open-source projects. We compare five RTS

techniques using 13961 change sets in 168 projects while

performing RTS in 580876 clients in MAVEN Central.

⋆ Formative Study: We show that client-library breakages

occur in the MAVEN Central ecosystem. Almost half of 408

clients in our formative study cannot safely update to their

libraries’ latest versions, and 41.3% of breakages manifested

as test failures. Yet, library developers have no good way to

test whether their changes break clients.

The scripts we used for this work are available online at

http://mir.cs.illinois.edu/issre2018.zip
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Fig. 1. Two test dependency levels for alibaba.druid: Jar shown by
solid edges and Class shown by dashed edges

II. MOTIVATING EXAMPLES

We provide three examples to (i) illustrate the benefits that

class-level can provide over project-level RTS, (ii) motivate

the need for better regression testing in very large open-source

ecosystems, and (iii) show that regression testing is critical in

very large ecosystems, even for seemingly harmless changes.

A. Potential Benefits of Class-Level over Project-Level RTS

Consider alibaba.druid [33], which is is an impor-

tant library released in MAVEN Central [34]—it has 52

direct clients in MAVEN Central. alibaba.druid is also

a client of many libraries, depending directly on 46 li-

braries. At the time of our study, alibaba.druid de-

pends on hibernate-core version 5.1.0 but the latest

version of hibernate-core is 5.2.4. All alibaba.druid

tests pass with hibernate-core 5.1.0 but one test

(HibernateCRUDTest) fails with hibernate-core 5.2.4.

The alibaba.druid and hibernate-core developers were

likely unaware of this failure right after the change broke

the test. If alibaba.druid developers decide to update

hibernate-core, they will have to handle this issue, at

which point it is too late for hibernate-core developers to

reconsider their change from 5.1.0 to 5.2.4. Had the developers

been immediately informed about the impact of the library

change on the client, they may have made different decisions.

Regression testing can help to detect such breakages earlier.

Figure 1 shows both project-level and class-level test

dependencies from alibaba.druid to hibernate-core.

Solid arrows show project-level test dependencies and

dashed arrows show class-level dependencies. At the

project level, if hibernate-core changes, all 1912

test classes in alibaba.druid will be rerun. In con-

trast, only two test classes in alibaba.druid can reach

hibernate-core; HibernateCRUDTest (shown as T2) di-

rectly accesses three hibernate-core classes (H1, H2,

H3), while DruidConnectionProviderTest (T1) uses

DruidConnectionProvider (A1) which implements three

hibernate-core interfaces (H4, H5, H6). At most two tests

(T1 and T2) could be selected through Class dependencies for

any change to hibernate-core. In fact, we ran class-level



1 public static Setter create(Field f, Object bean) {
2 + if (Modifier.isFinal(f.getModifiers()))
3 + throw new IllegalStateException(...);
4 if(f.gettype().isarray())
5 return new arrayfieldsetter(bean,f);

Fig. 2. Code change in commit 6e11f89d in ARGS4J

RTS on 107 commits and found that usually only one test (T2)

gets selected (three hibernate-core interfaces were stable

and did not change, so T1 did not get selected). For some com-

mits, zero tests were selected (changes in hibernate-core

were not reachable from classes H1–H6). This example shows

that class-level RTS can substantially reduce the number of

tests run, compared with project-level RTS.

B. Need for Regression Testing in Open-Source Ecosystems

Guava is a popular open-source library for creating and

manipulating several collection types. Guava is maintained by

Google and is partially mirrored publicly on GitHub. Guava’s

GitHub commit 73e382 [35] modifies 170 files; this commit

accumulates several internal commits that are exported as a

single public commit. Accumulated commits are common in

some open-source repositories that mirror proprietary projects.

Google runs the TAP regression-testing system, which tests

all Guava changes against all its clients that are internal to

Google but does not test Guava against clients external to

Google. Commit 73e382 breaks Square OkHttp, an open-

source client that depends on Guava. While Google developers

may have expected this commit to break some clients, they

likely did not know how many external clients would break.

Moreover, they likely did not know that some client(s) will

break right after they changed a subset of the 170 files in a

small internal commit. Google could afford to run some im-

portant external clients on the TAP system. However, the open-

source ecosystem has no regression testing system like TAP

to quicker detect library changes that break some clients. Our

formative study (Section III) shows that breakages do occur

in the MAVEN Central open-source ecosystem, so developers

may want to run regression testing across projects.

C. All Changes Should be Regression Tested in the Ecosystem

Figure 2 shows an example change in ARGS4J [36]. ARGS4J

is a fairly popular library; its artifacts in MAVEN Central

have 17006 direct and indirect clients (and potentially many

more clients that are not deployed to MAVEN Central). The

change in Figure 2 modifies the Setter object to throw an

IllegalStateException if a Setter is created for a final

field. Before this change, a different exception was thrown.

Adding a new exception seems innocuous, but it breaks

at least one ARGS4J client, Google Closure Templates, a

project in our formative study (Section III). We first found

that updating the ARGS4J version from 2.0.23, the version

declared in the Google Closure Templates build file, to 2.33

breaks a Google Closure Templates test. We then used git

bisect to find the specific commit between these two ARGS4J

versions that breaks the Google Closure Templates test. Had

ARGS4J developers been aware of this issue, they may have

reconsidered making the change, or they may have informed

the Google Closure Templates developers to update their code.

D. Improving Regression Testing in Very Large Ecosystems

In an open-source ecosystem, developers may choose to run

tests from multiple projects after code changes, e.g., they may

run the tests of a library that changed and the tests of some/all

of its clients. The goal is to test that the library changes do not

break the clients, which is hopefully reflected as test failure(s)

in the client tests. The sooner library developers discover

test failure(s) in the clients’ tests, the better they may decide

how to proceed. We envision that library developers would

select clients that are relevant to run (e.g., they may choose

to run only tests in “important” clients), or client developers

may choose to run their own tests whenever one of their

libraries changes. It is up to developers to decide how to

handle information on failing tests. Library developers may

decide to create a patch script to apply on all the breaking

clients when possible; alternatively, they may decide to revert

changes to avoid breaking (important) clients or may inform

clients that changes break some tests. Client developers may

refine their code to handle library changes. Facebook’s Buck,

Google’s TAP, and Microsoft’s CloudBuild users already get

such timely information. Open-source developers should also

get similar information. This paper evaluates RTS techniques

that can provide such information faster, improving regression

testing in open-source ecosystems as well as in proprietary

systems like Buck, CloudBuild, and TAP.

III. FORMATIVE STUDY

The goal of our formative study is to quantify how often

library updates break clients’ compilation or tests in MAVEN

Central. If breakages do not happen, there would be no need to

test clients when libraries change. If breakages do happen, they

can be detected quicker with RTS run for the entire ecosystem.

We do not assume that all libraries care about all clients or

that all clients need to always update to the latest library

versions. In fact, researchers already showed that library devel-

opers make backwards-incompatible changes [10], [37], [38]

and that clients do not always update [37], [39], [40]. However,

if libraries and clients care about breakages, obtaining more

precise information about such breakages more frequently

and cheaply can be highly beneficial for decision making

by both library and client developers. Knowing the precise

number of (important) clients that a library change breaks

can help to better decide whether to proceed with the change.

Dually, client developers may benefit from knowing whether

each library change breaks their code to decide whether to

incrementally co-evolve their code (if breakages occur), or

ignore the update (if no breakages occur).

For our study, we used GitHub Java projects that use

MAVEN, the most popular build system for Java. Many prior

projects [37], [38], [39], [40], [41], [42], [43], [44], [45], [46]

studied the impact of library updates on clients, e.g., stale



dependencies, but we are the first to perform such a study with

a view to evaluate RTS opportunities in a very large software

ecosystem. Section VIII discusses specific differences between

our formative study and these related studies. In brief, we

consider both compilation and test failures of clients, and not

just statically computed metrics [10], [47], [48], [49].

Our formative study analyzes the staleness in MAVEN

Central and the breakages it causes from three perspectives

of (i) dependencies as pairs of client and library, (ii) clients,

and (iii) libraries. We answer the following research questions:

RQ1 (Dependency View): How common are stale depen-

dencies, i.e., a newer version of the library is available,

among Maven-based projects? RQ1.1 How often would clients

break if updated? RQ1.1.1 How often would updates break

compilation? RQ1.1.2 How often would updates break tests?

RQ2 (Client View): How many projects use stale dependen-

cies, i.e., do not use the latest version of a library available?

RQ2.1: How often can clients not be updated to latest versions

of their libraries? RQ2.2: How often do updates break client

compilation? RQ2.3: How often do updates break client tests?

RQ3 (Library View): How many unique libraries cannot

be updated to the latest version? RQ3.1: How many unique

libraries break client compilation? RQ3.2: How many unique

libraries break client tests?

Our formative study considers 408 projects selected from

among the most popular 3000 GitHub Java projects. All

3000 projects contain a pom.xml file in their root directories,

indicating that they likely use MAVEN. The 408 projects in

our corpus are those that remain after filtering out projects

that we could not build, or for which some tests fail on the

latest version at the time of our study. We excluded projects

with failing tests as those may indicate instability or mis-

configuration on our end. These 408 projects have a total

of 12231 direct dependencies. We ran all formative study

experiments on an Ubuntu 16.04 VM with Oracle Java 8_u121.

For each project in our corpus, we first check whether the

project has any stale dependency, i.e., whether the project

depends on a library that has some newer version released

in MAVEN Central. We use MAVEN’s versions plugin

to check for stale dependencies. Specifically, the command

mvn versions:display-dependency-updates finds

all (direct) dependencies with newer versions released

in MAVEN Central. Additionally, the command mvn

versions:display-property-updates handles the case

where projects use build properties (similar to variables) to

declare dependency versions.

Table I summarizes the results of our formative study. The

number of stale dependencies (6828) is larger than the num-

ber of non-stale dependencies (5403), which answers RQ1:

6828 (55.8%) dependencies, pairs of client and library, are

stale, i.e., a library has a newer version. It also answers RQ2:

375 (91.9%) of 408 projects have at least one stale dependency.

The high percentage shows that even popular projects do not

always update their libraries to the latest version.

For each project with some stale dependency, we first update

at once all the dependencies to their latest possible versions,

TABLE I
FORMATIVE STUDY RESULTS

RQ Statistic Abs Relative(%)

Non-Stale Dependencies 5403 44.2%
RQ1 Stale Dependencies 6828 55.8%
RQ1.1 Breaking Updates 812 11.8%
RQ1.1.1 Compilation Breaking Updates 476 58.6%
RQ1.1.2 Test Breaking Updates 336 41.3%

Projects in Corpus 408 n.a.

RQ2 Projects with Stale Dependencies 375 91.9%
RQ2.1 Non-updateable Projects 202 53.9%
RQ2.2 Compilation-Breaking Projects 176 46.9%
RQ2.3 Tests-Breaking Projects 101 26.9%

RQ3 Unique Libraries 2133 n.a.

RQ3.1 Compilation-Breaking Libraries 320 15.0%
RQ3.2 Tests-Breaking Libraries 239 11.2%

to mimic a global update of all dependencies. After the global

update, we recompile and run all the tests for the project. If

compilation or tests fail, then some library update broke the

client. We get the answer for RQ2.1: out of 375 projects with

at least one stale dependency, 202 (53.9%) cannot trivially

update all their dependencies to the latest version because

either compilation or tests break. The fact that more than

half of projects with stale dependencies cannot update their

dependencies shows that updating is non-trivial. (Note: 202

may underestimate projects that we could not update; even if

a project compiles and passes tests with the update, it may

still break for scenarios not covered by tests.)

For 202 projects that failed our global updates, we roll back

the global updates, update each dependency one by one, and

run the tests. We find that several dependencies can inde-

pendently break each project’s compilation or tests. RQ1.1:

812 (11.8%) of the stale dependencies break the projects

when updated; RQ1.1.1: 476 (58.6%) of dependencies cause

compilation failure; RQ1.1.2: 336 (41.3%) of dependencies

cause test failures in their clients. While 11.8% is a relatively

low percentage of stale dependencies that break the projects, at

least one such dependency affects more than half the projects,

53.9%. Breakdowns of compilation and test failures per project

also have high percentages; RQ2.2: 176 (46.9%) of projects

with stale dependencies have at least one dependency that

breaks the project compilation when updated; RQ2.3: 101

(26.9%) of these projects have at least one dependency that

breaks at least one project’s test when updated.

Finally, we analyzed breakages from the view of libraries.

After all, even if a large number of dependencies break, and a

large number of projects are affected, all the issues could, in

theory, stem from just a tiny number of widely used libraries.

For RQ3: our corpus has 2133 unique libraries. In MAVEN,

libraries are uniquely identified by GAV triples: group, artifact,

and version. For RQ3, we count a library as unique based on

the pair of group and artifact. We found that a significant

percentage of libraries break their clients when updated to

the latest version; RQ3.1: 320 (15.0%) of the libraries break

compilation in at least one client; RQ3.2: 239 (11.2%) of the

libraries break at least one test in at least one client.

In sum, we quantified the breakages that occur for library

updates in very large ecosystems like MAVEN Central. Im-



portantly, 41.3% of breakages manifested as test failures in

clients, offering opportunities for regression testing to help

quicker detect such cases for library-client pairs that care about

breakages. The updates that break tests could be detected even

quicker and cheaper using RTS rather than running all tests.

Semantic Versioning. One concern is whether the break-

ages we identify are intentional or not, and whether library

developers are already aware that many of their changes

are backwards-incompatible. One approach to answer this

question would be to ask developers, but this approach would

be hard to scale in practice. An approach that developers

use to signal when a change in a library is intended to

break backwards compatibility is semantic versioning [50].

Projects that follow semantic versioning indicate backwards-

incompatible changes by changing the major version number;

new features and other backwards-compatible changes would

only modify the minor version number, while small changes

(which still maintain backwards compatibility) would change

only the patch number.

While our study did not aim to evaluate whether projects use

semantic versioning or not, our findings generally confirm the

findings of Raemaekers et al. [51] that many projects do not

follow semantic versioning. For example, hibernate-core’s

backwards-incompatible change that broke alibaba.druid

was only a minor version change form 5.1.0 to 5.2.4. Similarly,

the change in ARGS4J that broke Google Closure Templates

was also a minor change from version 2.0.23 to 2.33. While

the fact that developers introduced backwards incompatibility

in changes to only the minor version does not unequivocally

show they were not aware that the changes are backwards-

incompatible, it illustrates a gap in even being able to iden-

tify whether a change is or is not backwards compatible.

Ecosystem-level testing of clients could even assist developers

into following semantic versioning more rigorously.

IV. CHOOSING LIBRARIES, CLIENTS, AND CHANGES

This section describes how we set up our experiments to

compare class- and project-level RTS in the MAVEN Central

open-source ecosystem. An important objective of our evalu-

ation is to identify a large number of libraries, clients, code

changes, and tests so that the results are more representative

of very large software ecosystems. Therefore we needed to

(1) identify popular libraries in MAVEN Central for which

we can map release versions to GitHub changes, (2) identify

clients for these libraries, and (3) evaluate how many library

and client tests would have been selected by each technique

after real code changes. Section IV-A describes how we

identified libraries. Section IV-B describes how we identified

clients. Section IV-C describes how we performed RTS.

A. Finding Popular Libraries with GitHub Changes

Mapping from Libraries to Source code is Challenging.

For our experiments, we need to identify libraries that have

(1) code changes on GitHub, and (2) many clients with tests.

Meeting both requirements is challenging because the data

for each is in different stores of information, and we need

to map the information from these stores. The best place

to identify libraries with code changes is in open-source

repositories like GitHub [52] but such repositories do not store

data in ways that make it easy to identify the libraries’ clients.

One can easily find the libraries on which a client depends

(e.g., “mvn dependency:list” lists all dependencies—Jar

files that a Maven-based project transitively depends on),

but one cannot easily find all clients of a library. More so,

mapping dependencies which are listed as Jar files to GitHub

repositories is not trivial, and mapping to specific commits

that produced the Jar files is even harder. On the other hand,

MAVEN Central is a great place to identify clients for libraries

but it does not map Jars to source code repositories. Due

to these challenges, we had to map the information stored

between MAVEN Central and GitHub.

Mapping from GitHub to MAVEN Central is Better. When

identifying evolving libraries for use in our experiments, we

mapped from GitHub data about the libraries to MAVEN Cen-

tral data. In theory, one can map data from either repository

to the other in either direction. In practice, however, we found

three reasons why identifying the source-code repository for

a randomly selected MAVEN Central Jar can be less optimal,

even when the pom.xml file contains a URL for the repository.

First, the Jar may be old and its repository may not exist

because the project was discontinued, is private, or was moved

to another repository altogether. Second, even if a repository

is found, it could be using a different or older version-control

system (e.g., SVN or CVS). Third, an old Jar can mean that

code changes for that project are not representative of modern

software development best practices. Researchers have studied

how commit patterns differ between centralized and distributed

version-control systems [53].

Process for Selecting Evolving Libraries. Given the afore-

mentioned challenges, we selected libraries for our experi-

ments using the following process: (i) select an initial set

of projects based on GitHub popularity, (ii) map GitHub

repositories to MAVEN Central Jar files that were likely built

from these repositories, and (iii) map the GitHub commits to

the MAVEN Central Jar versions.

(i) Selecting an Initial Set of GitHub Projects. We started

from the top 3000 Java projects on GitHub (ranked by the

number of stars and forks) which contain a pom.xml file in

the root directory. We chose Maven because it is still the most

popular build system for Java, many projects that use Maven

release their Jars on MAVEN Central, and our tool-chain was

developed to work with Maven.

(ii) Mapping GitHub Repositories to MAVEN Central

Jars. It is extremely tedious to read through thousands of

pom.xml files from GitHub to find which of them produced

each Jar. We automated this by attempting to build Jars from

each GitHub repository, using the command, mvn install

-DskipTests. The build command succeeded for only 1901

of the 3000 top projects. Out of these, a few projects do not

create Jars, and some projects created Jars but did not put

them in the local cache where most MAVEN projects typically

install their Jars. For projects that installed successfully to





experiments, we explored alternatives along three RTS aspects:

(i) change computation, (ii) test dependency computation, and

(iii) analysis of test dependencies to find affected tests.

Granularity of Code Changes and Test Dependencies.

Changes and test dependencies can be computed at different

granularity, e.g., statements, methods, classes, Jars, etc. Unlike

most prior RTS studies that track changes and dependencies at

the same granularity, we use variants of RTS techniques that

track changes and dependencies at different granulates. For

example, one RTS technique tracks class-level dependencies

but computes changes at the Jar level. Tracking changes at

the Jar level means that when any class in a Jar changes,

the RTS technique select tests as if all classes in the Jar;

it trades lower change-computation time for over-selection.

The over-selection induced by Jar level change computation

is unlikely to make it beneficial for individual projects, but

could still be beneficial in large ecosystems because analysis

results can be cached. Tracking changes at smaller granularity

than the dependency granularity would give the same results

as tracking changes at the same granularity as the analysis,

because changes need to be projected on the dependencies.

Computing Test Dependencies. Test dependencies can be

computed statically or dynamically, at class or project (i.e.,

Jar) granularity. Class-level dependencies are classes that each

test depends on, while Jar-level dependencies computation

involves discovering all test-containing Jars that can reach a Jar

containing a changed class. Techniques that statically compute

test dependencies typically analyze compile-time information

to extract a class- or project-level dependency graph. Statically

computing dependencies at the Jar level requires knowledge

of each project’s dependencies. At Facebook, Google and

Microsoft, each Jar (also called targets, modules, or nodes)

explicitly declares in its build file, all Jars that it depends

on. Similarly in MAVEN Central, each Jar declares its Jar-

level dependencies in the pom.xml file. By parsing infor-

mation from these build files, one can statically construct

a Jar-level dependency graph. Techniques that dynamically

compute class-level test dependencies require to instrument

test executions to record all classes that each test invokes

as its dependencies. Therefore, in this paper, we compare

RTS techniques along three dimensions of test dependency

computation: (i) statically at the Jar level, (ii) statically at the

class level, and (iii) dynamically at the class level. Note that

statically computed project-level dependencies are accurate, as

declared in the build files. However, statically computed class-

level dependencies can be incomplete as the analysis could

miss dependencies that can only be reached via reflection [29].

Computing Affected Tests. RTS involves analyzing depen-

dencies against the changes to compute affected tests. This

analysis is always done statically, regardless of the granularity

of changes and dependencies, and whether dependencies are

computed statically or dynamically. Affected tests refers to

the set of tests which have at least one dependency that

changed. When dependencies are computed statically from a

dependency graph (class or Jar level), reachability analysis

on the dependency graph is used to analyze the dependencies

against the changes [20], [23], [29]. In our experiments, a test

is affected if its node can transitively reach a node for any

changed class (or the Jar containing a changed class) in the

dependency graph. The intuition for the cost savings obtained

from running only affected tests is that code changes typically

affect a small portion of the code. Therefore the set of affected

tests is typically only a fraction of all tests.

V. EXPERIMENTAL SETUP

RTS Techniques Studied. In our RTS experiments we com-

pared project-level and class-level RTS in the MAVEN Central

ecosystem. For brevity, we refer to the RTS techniques that

we evaluated as JJ, CC_st, CJ_st, CC_dyn and CJ_dyn.

The first letter means Class- or Jar-level dependency tracking,

and the second letter means Class- or Jar-level granularity

for computing changes. st means static dependency tracking;

dyn means dynamic dependency tracking. JJ is similar to

the project-level RTS performed at Facebook, Google, and

Microsoft. JJ builds Jar-level dependencies from pom.xml files

and computes changes at the Jar level. CC_st and CJ_st are

two variants of static class-level RTS. They track dependencies

at the Class level and compute changes at the Class and Jar

level respectively. CC_dyn and CJ_dyn are two variants of

dynamic RTS. They track dependencies at the Class level and

compute changes at the Class and Jar level respectively.

Finding Changes. Section IV-A describes how we selected

commits for evolving libraries from GitHub. For each Java

file changed in a commit, we first had to find which bytecode

(.class) files in the corresponding MAVEN Central Jars could

have changed. We approximate changed .class files as those

whose names match the changed Java files, or are inner classes

thereof. We may have missed additional classes in the changed

Java file which do not share the same name. We projected the

class-level changes that we so computed to the Jar level in the

following way: if a .class file in a Jar changed, we consider

all classes in that Jar as changed.

Computing Test Dependencies. We computed test dependen-

cies (i) statically at the Jar level, (ii) statically at the class

level, and (iii) dynamically at the class level. Computing test

dependencies statically at the Jar level was trivial after con-

structing the Jar-level dependency graph of MAVEN Central

Jars. Dependencies for a test Jar in the MAVEN Central graph

are simply all GAVs that it can transitively reach. To compute

static class-level test dependencies, we used the class firewall

algorithm [20] on all Jars for all (i) libraries that we identified

in Section IV-A, (ii) clients of these libraries, obtained from

our MAVEN Central graph, and (iii) released test Jars on

MAVEN Central that can transitively reach any of the libraries

in our MAVEN Central graph. For each library, we first find

all class-level dependencies for each class and construct a

class-level dependency graph (CLDG). Nodes in the CLDG

are classes and edges represent uses or inheritance. Next,

we combine the library’s CLDG with the CLDGs of all its

transitive clients plus CLDGs for all test Jars that transitively

reach the library’s node in the MAVEN Central graph. Finally,

the class-level dependencies of each test class are all classes







et al. [54] compared class- and module-level RTS within

individual projects; we compared class- and project-level RTS

across projects, in a very large ecosystem. We are the first to

evaluate statically and dynamically computed dependencies at

the class level for RTS at ecosystem scale.

Open-Source Environments and Compatibility. Raemaekers

et al. [51] study binary compatibility in MAVEN Central to

determine whether binary releases follow semantic versioning,

i.e., only major version releases may break compatibility.

They found that, in practice, releases do not follow semantic

versioning. Our work is complementary: we show how library

developers could use RTS to cheaper run clients’ tests.

Kalra et al. [14] propose POLLUX, a system that advises

whether clients can update to a newer library version. POL-

LUX compares traces and test outcomes from running tests in

both the old and new library versions. POLLUX analysis is

only from the perspective of the clients; we are concerned with

both clients and libraries. Further, our goal is to quantify how

much class- vs. project-level RTS can benefit large ecosystems.

Zhou and Walker [15] observed that some very popular

libraries sometimes removed some API, then restored it before

finally marking it as deprecated. Their hypothesis is that

library developers realized after removing the API that some

clients were still using the API. It would have been better

if these library developers had a way to quicker and cheaper

check if removing APIs would break clients.

Mezzetti et al. [55] proposed type-regression testing to

check that changes to types in library APIs do not break clients

in NPM. They found breakages in minor and patch versions of

projects that follow semantic versioning. Their work focuses

on finding regressions due to changed types in an ecosystem

for a dynamically typed language; we study opportunities for

RTS to speed up regression testing in an ecosystem for Java.

Studies of Open-Source Environments. Other studies have

been based on large repositories containing many project arti-

facts. Specifically, Vargas-Baldrich et al. [56] proposed Sally,

a learning-based technique for tagging (assigning keywords to

software artifacts) Maven-based projects. They compared the

Sally results with the set of manually assigned tags for a

subset of projects on mavenrepository.com and SourceForge.

Also, Mitropoulos et al. [57] have provided a data-set about

projects obtained from Maven Central, and show results of

statically analyzing these projects with FindBugs. Hilton et

al. [58] study the usage of continuous integration (CI) in

open-source GitHub projects and find that popular projects

use CI, with overall CI usage increasing. Our RTS can enable

enhancing CI to run the client tests in addition to the projects’

own tests; our results show potential benefits of running class-

level vs. project-level RTS. Raemaekers et al. [48] study

MAVEN Central and provide many metrics (with regards to

size, inter-dependencies, and versions) but do not consider the

problem of running tests against clients.

Inter-Project Regression Testing. There has been a lot of

work on building systems that perform regression testing

across projects in industry. Companies have built practical

systems that perform RTS at the equivalent of Jar level, e.g.,

Facebook’s Buck [18], Google’s TAP [16], [19], and Mi-

crosoft’s CloudBuild [17]. CloudBuild addressed several scal-

ability challenges in distributing test runs, caching analyses,

and results. Google reported on their pre-submit methodology

of testing software to enforce, before merging the changes into

the repository, that all tests of all clients pass [32]. Dosinger

et al. [59] describe a system to perform regression testing

among projects by setting up a network of communicating

CI servers that notify dependent projects’ CI whenever there

is a change and run all the tests in the dependent project.

CRAN [4] has a regression testing system which ensures that

any new release of a library passes its own tests as well as the

tests of all its clients [38]. Similarly, NPM has a tool, called

dont-break [60], to ensure that new library changes do not

break clients [55]. All these systems motivate our research on

evaluating RTS opportunities in open-source ecosystems, and

especially the opportunities for class-level RTS to improve on

the project-level RTS that these systems currently employ.

IX. CONCLUSION AND FUTURE WORK

We evaluated RTS opportunities at the scale of MAVEN

Central, the largest ecosystem for Java. Our formative study

showed that half of the libraries we analyze may benefit from

early and frequent running of tests not only in libraries but

also in all their clients. We investigated five RTS techniques,

spanning several granularities at both the dependency tracking

and change computation level, which can reduce the costs to

run clients’ tests for evolving changes in libraries. The results

showed that finer-grained, class-level techniques can select an

order of magnitude fewer tests than coarser-grained, project-

level techniques currently used in industry: static class-level

RTS selects 7.8%–10.5% of tests, and dynamic class-level RTS

selects 8.4%–17.4% of tests.

Our empirical study has implications for both practice and

research. We show that client-library breakages do occur at

the ecosystem level, and we show that finer-grained RTS

techniques offer opportunities to make ecosystem-scale RTS

more tractable. Our results motivate further research on RTS

at scale in very large (open-source) ecosystems, including

building practical systems that can work at this scale. Potential

future work includes: (1) evaluating the end-to-end time of

class-level RTS to analyze changes, select affected tests, and

run them rather than just measuring test-selection ratios as

done in this paper; (2) investigating techniques for culprit

finding—at this scale, it will be critical to efficiently find

root cause(s) of test failures, beyond just reporting that tests

fail; and (3) investigating opportunities to prioritize or select

important clients to test rather than all clients.
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