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Predictive Risk Analytics for Weather-Resilient
Operation of Electric Power Systems

Payman Dehghanian , Member, IEEE, Bei Zhang, Member, IEEE, Tatjana Dokic , Student Member, IEEE,
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Abstract—Day-to-day operation of the electricity grid gener-
ation, transmission, and distribution is environmentally driven
and closely dependent on evolving weather patterns. This pa-
per introduces several new weather-driven analytics for accurate
spatial–temporal electricity generation forecasts, asset health and
reliability assessment, probabilistic load forecasts, and electricity
market simulations. A new risk metric is suggested, which ac-
counts for the weather hazards, grid vulnerability, and financial
consequences in the face of changing weather patterns and asso-
ciated meteorological predictions over time. New mitigation for-
mulations for power system topology control through transmission
line switching for fast and timely recovery of the weather-caused
electricity outages are suggested. The proposed decision support
tool enables the operators to predictively evaluate the high-risk
weather threats and consequently plan on how to safeguard the
grid when exposed to forecasted weather-driven incidents. The ef-
ficiency of the proposed toolset is illustrated by application to a
part of the IEEE 73-Bus test system.

Index Terms—Weather, forecast, risk, decision making, topology
control, vulnerability, mitigation.

I. INTRODUCTION

T
HE Electricity grid is vulnerable to various threats: out-

dated flexibility of the system, aged assets, volatile weather

patterns, and cyber-physical security threats. With the rapid de-

ployment of intermittent renewable generation, growing demand

to ensure a higher quality electricity to end customers, and inten-

sified public focus and regulatory oversights, there is an urgent

need to enrich the power delivery infrastructure resilience as

well as to reduce and mitigate such threatening risks [1]–[3].

It has been clear over the past couple of years that further

considerations beyond the classical reliability-oriented view are

required for keeping the lights on at all times. This is evidenced

by an increase in catastrophic weather-caused grid outages, such
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Fig. 1. Weather-dependent outages in the US within 1992–2012 [2].

as thunderstorms, hurricanes, heavy rain, etc. as shown in Fig. 1.

As the leading cause of power outages in the United States, a

total of 178 weather disasters occurred from 1980’s to 2014

in the US alone, 8 of which occurred in 2014, with the overall

damages exceeding the US $1 trillion [1]–[5]. Various industries

were halted for hours, if not days, and dozens of people in need

of special health care lost their lives due to sustained loss of

electricity and inability to swiftly restore the power [3]–[6].

Numerous researchers have studied the impact of environ-

mental factors and weather variations on various aspects of

power system operation, studying: different techniques for

weather-driven wind and solar generation forecasts in [7]–[10];

robust models for electricity market simulations considering

weather uncertainties in [11]–[13], and electricity market deci-

sion making risks and operational concerns in [14]–[16]; impact

of weather variations and weather-caused overloading condi-

tions on reliability of the electric assets over time in [17]–[19];

advanced models for weather-driven load forecasts in [20]–[22];

technologies on early warning systems for prediction of disas-

trous weather outages in [23]–[25]; and resiliency assessment

of the grid in the face of severe climate change and adverse

weather conditions in [26]–[28], among others.

Different from the previous studies, our paper addresses (a) a

weather-driven technique based on spatial-temporal correlations

for both non-renewable and renewable generation as well as de-

mand forecasts, (b) a Neural Network framework for weather-

driven assessment of the asset health and reliability over time,

(c) a weather-driven framework and probabilistic modeling for

the wholesale electricity market simulations to account for the

grid vulnerabilities in exposure to continuous weather changes,
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(d) a new risk metric and predictive risk map to be presented

to operators at every hour aiming at improving preparedness in

response to weather-driven risks and environmental threats, and

(e) a corrective optimization toolset suggesting risk-based miti-

gation strategies based on the network topology control through

transmission line switching to alleviate the critical weather-

driven risks across the grid.

The remainder of the paper is structured as follows. The

proposed analytics, revealing the system and equipment sus-

ceptibility to weather changes in generation, transmission, and

distribution levels of power systems, are introduced in detail in

Section II. Section III is devoted to a new risk-based analytical

framework to quantify the system operation risk in exposure to

weather threats. Section IV suggests a mitigation decision opti-

mization in the face of extreme weather conditions. Numerical

case studies are conducted in Section V followed by conclusions

in Section VI.

II. WEATHER-DRIVEN ANALYTICAL FRAMEWORKS IN

ELECTRIC POWER SYSTEMS

A. Electricity Generation: Weather Impacts Modeling

Forecasts of the electricity generated through variable renew-

ables such as wind and solar are closely driven by measured

and modeled historical and real-time meteorological and envi-

ronmental factors. Numerous techniques and prediction models

have been proposed in the literature on accurate forecast of

wind power in different time scales: immediate-short-term (8-

hour-ahead), short-term (day-ahead), and long-term (multiple

days-ahead) [10], [29]. In Most of the proposed wind prediction

techniques for cost-effective grid operations, environmental dy-

namics of temperature is utilized. Various weather-data driven

techniques for prediction of solar generation are proposed and

extensively studied in the literature [7]–[9], [30]. While most

of the suggested forecasting techniques have been driven solely

based on the local meteorological measurements, the spatial cor-

relations of solar sites are also considered in a few studies [7],

[10]. Such studies revealed that the forecast accuracy could be

significantly improved when spatial correlations are considered.

The conventional sources of electricity generation are also

directly or indirectly affected by the continuous weather vari-

ations. Temperature, pressure, precipitation, etc. are among

the influential factors on the supply of hydroelectric produc-

tion through a shift in the inflow of water. The capacity and

efficiency of thermal coal-fired generating units are also af-

fected by the cooling water temperature. Besides, the temper-

ature influences the generation efficiency due to the Carnot’s

theorem [16].

1) Modeling Weather Impacts on Coal-Fired Thermal Power

Generation: A new data-driven statistical technique to manage

the weather-driven prediction of generation capacity and effi-

ciency for system coal-fired thermal generating units is pro-

posed. The proposed training process aims to provide the con-

ditional probability distribution P (y|X) of a certain parameter,

where y is the focused output to be predicted and can be capacity

and/or efficiency of the thermal units and X = [x1 , x2 , . . . , xn ]
can be the possible factors that may affect the output y. Here,

Fig. 2. Illustration of the sampling process for weather-driven capacity and
efficiency prediction of thermal generating units as well as the electrical load.

the X vector contains a set of weather inputs acquired from

weather forecasts, e.g., water discharge, temperature, humidity,

precipitation, wind speed, and gauge height. Statistical methods

are adopted and samples are taken to estimate the output prob-

ability distributions. Not only are the outputs corresponding to

the exact input X, but also those within a range of X ± ∆x
are sampled. Such considerations are taken into account as (1)

errors exist in the weather inputs and it is, therefore, inaccurate

to sample solely the outputs with the exact input X; (2) exact

input X may not exist in the historical dataset, and thus, the

data around a particular point are employed to approximate the

corresponding output.

The sampling process is briefly illustrated in Fig. 2. If

the goal is to predict the probability distribution of the out-

put with a set of measured (or recorded) inputs(P1 , Q1 , R1),
the historical data for which the inputs are within

the range of [P1 − σ1 × P1 , P1 + σ1 × P1 ], [Q1 − σ2 ×
Q1 , Q1 + σ2 × Q1 ] , [R1 − σ3 × R1 , R1 + σ3 × R1 ] where

σ1 , σ2 and σ3 are relatively small values are sampled. In the

case of higher number of inputs, the cube will turn into a hyper-

cube. Note that the bigger the σ is, the larger the sampling space

will be, leading to a more accurate forecast with the expense

of higher computational burden. When there is enough histori-

cal data available, even a small value of σ will result in many

sample points. In such circumstances, selection of σ should be

carefully done. In order to efficiently compromise the computa-

tional burden and output accuracy, we ensured here that at least

100 samples exist within each selected cube in Fig. 2.

The sampled data are utilized to assess the probability dis-

tribution using certain distribution fitting techniques. In this

study, the outputs are assumed to follow the normal probability

distributions. While the approach is generic enough to accom-

modate any other variation of the normal distribution (such as

a wider-tailed family of distributions with greater robustness

as an alternative to the normal distributions [31]) as well as

other non-Gaussian family of distributions (e.g., Weibull, etc.)

[32]–[34], this assumption is supported by multiple reasons: (a)

it is easy to work with mathematically and computationally (e.g.,

the summation of normal distributions is still a normal one, and

the marginal distribution of multivariate normal distribution is

also a normal); (b) in many practical cases, the methods devel-

oped using such theory works quite well even when the distribu-
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tion is not normal. According to Central Limit Theorem (CLT),

with the increase in the sample size (sufficiently large), the dis-

tribution of the random variables approaches the normal distri-

bution irrespective of the shape of the original distribution [35].

Due to the fact that the sample size of the considered random

variables are large enough, normal distribution can be reason-

ably adopted; (c) the normal distribution maximizes information

entropy, i.e., the measure of the uncertainty associated with a

random variable, among all distributions with known mean and

variance [35].

Employing the method of moments, the normal distribution

parameters are approximated through samples’ mean µ′ and

standard deviation σ′. The approximate probability distribu-

tion can be then obtained denoted as P ′(y|X) ∼ N(µ′, σ′). The

mean value µ′ of a sample can be adopted to predict the sin-

gle output value corresponding to a certain input X. Therefore,

the sensitivity relationship between the output and certain input

xi can be easily characterized by having other input variables

fixed and running the single value prediction while changing

the value of xi in a certain range. The slope of the resulting

graph denotes the sensitivity of the output to the certain input

xi of interest. Rather than predicating a single-value output, it

would be very helpful to provide information on how vulnera-

ble a generating capacity or efficiency is under certain weather

conditions X. Suppose an output and input relationship is ex-

pressed by y = R(X). The sensitivity index corresponding to a

certain input vector Z = [z1 , z2 , . . . , zn ] can be defined as the

total differential of R(X) at the point Z, as defined in (1.a).

dy =
∂y

∂x1
|x=z · ∆x1 +

∂y

∂x2
|x=z · ∆x2 + . . .

+
∂y

∂xn
|x=z · ∆xn (1.a)

Since the exact relation R(X) may not be clearly known in

many cases, numerical techniques, such as the one in (1.b), is

employed to approximate the total differential in (1.a).

dy ≈
(
µ′

x=[z1 +∆z1 ,z2 ...zn ] − µ′
x=[z1 −∆z1 ,z2 ...zn ]

)

+
(
µ′

x=[z1 ,z2 +∆z2 ...zn ] − µ′
x=[z1 ,z2 −∆z2 ...zn ]

)

+ . . . +
(
µ′

x=[z1 ,z2 ... zn +∆zn ] − µ′
x=[z1 ,z2 ... zn −∆zn ]

)

(1.b)

where, µ′
x=[z1 +∆z1 ,z2 ...zn ] denotes the mean value of the sam-

ples around the input vector Z.

2) Modeling Weather Impacts on Solar Power Genera-

tion Forecast: A probabilistic graphical data-driven model, the

Gaussian Conditional Random Field (GCRF), is suggested to

predict the solar generation output. The model is generic to

be applied, with minor adjustments, to forecast of other types

of renewables (e.g., wind). The proposed technique can well

exploit the correlations among output variables, resulting in sig-

nificant improvements in the prediction accuracy. Besides, its

Gaussian characteristics furnish the inference and improve the

learning efficiency [36]. The GCRF model provides a proba-

bilistic framework for exploiting complex dependence structure

among output variables, which can help model both the spa-

Fig. 3. Spatial-temporal correlations in the proposed GCRF model.

tial and temporal correlations among different solar generation

stations (see Fig. 3). The primary goal of this model is to discover

the conditional distribution P (Y|X) through a large volume of

historical data, with which the output variables can be efficiently

predicted. Y = [yt
1 , y

t
2 , . . . , y

t
N ]T is the forecasted solar output

in multiple stations (1 to N) at the next time interval t; X rep-

resents the historical solar measurements in different stations,

as (2):

X = [xt − 1
1 , xt − 2

1 , . . . , xt−m 1
1 , xt − 1

2 , xt − 2
2 , . . . , xt−m 2

2 ,

. . . , xt − 1
N , xt − 2

N , . . . , xt−mN

N ] (2)

The conditional distribution P (Y|X) is expressed in (3):

P (Y|X) =
1

Z(X,α,β)

exp×

⎛

⎝
N∑

i=1

Φ(α, yi ,X)+
∑

j �=i

Ψ(β, yi , yj ,X)

⎞

⎠

(3)

where Φ(α, yi ,X) is called the association potential that links

the output variable yi to the input vector X; Ψ(β, yi , yj ,X) is

the interaction potential that correlates the two output variables

yi and yj [37]; The Φ and Ψ are approximated by linear combi-

nations of pre-determined feature functions with corresponding

parameters α and β, as denoted in (4.a) and (4.b).

Φ(α, yi ,X) =
∑

k∈K

αkfk (yi ,X) (4.a)

Ψ(β, yi , yj ,X) =
∑

l∈L

βlgl (yi , yj ,X) (4.b)

α and β are the parameters to be determined through training

of the historical data. If the feature functions fk and gl are defined

in quadratic forms, as shown in (5) and (6), the association

potential Φ and interaction potential Ψ would also be quadratic

functions of Y.

fk (yi ,X) = −(yi − Rk (X))2 , k = 1, . . . , K (5)
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gl (yi , yj ,X) = −e
(l)
ij S

(l)
ij (X) (yi − yj )

2
(6.a)

e
(l)
ij =

{
1 (i, j) ∈ Gl

0 otherwise
(6.b)

where, Gl is the graph which imposes the relation between the

output variables yi and yj . S
(l)
ij (X) is the function representing

similarity between outputs yi and yj . And Rk (X) is a single

prediction of yi based on the input variables X. Under this

scenario, the conditional probability distribution P (Y|X) turns

into a multivariate Gaussian distribution P (Y|X) ∼ N(µ, γ),
where µ is the mean vector and γ is the covariance matrix. The

P (Y|X) can be eventually rewritten in (7.a) and (7.b).

P (Y|X) =
1

Z(X,α,β)

× exp

⎛

⎝
−

∑N
i=1

∑K i

k=1 αk (yi − Rk (X))2−
∑
i,j

∑
l∈L

βle
(l)
ij (X) (yi − yj )

2

⎞

⎠

(7.a)

P (Y|X) =
1

(2π)N/2 |γ|1/2

× exp

(
−

1

2
(Y − µ)Tγ−1 (Y − µ)

)
(7.b)

where, γ−1 = 2(Q1 + Q2) and Q1 , Q2 are expressed in (8.a),

(8.b).

Q1ij =

{∑
k∈K i

αk i = j
0 i �= j

(8.a)

Q2ij =

{∑
k

∑
l∈L i

βle
(l)
ik S

(l)
ik (X) i = j

−
∑

l∈L i
βle

(l)
ij S

(l)
ij (X) i �= j

(8.b)

and µ = γ.b in (7.b), and b can be calculated in (9).

bi = 2

(
∑

k∈K

αkRk (X)

)
(9)

To obtain the conditional probability distributions, the pa-

rameters αk and βl need to be determined since fk (yi ,X) and

gl(yi , yj ,X) are both pre-determined. Such parameters can be

learnt through maximizing the conditional log-likelihood of the

training sets, as denoted in (10.a) and (10.b), which can be

achieved by the application of the gradient descent algorithm.

L (α, β) =
∑

log P (Y |X ) (10.a)

(
α̂, β̂

)
= arg max

α,β
(L (α,β)) (10.b)

In our application, the temporal correlations are characterized

by the autoregressive model, as described in (11); and the spatial

features are correlated to the distance among different solar

stations, as shown in (12).

Φ(α, yi ,X) = −αi

[
yi −

(
ci +

p i∑

m=1

ϕi,m yt − m
i

)]2

(11)

Ψ(β, yi , yj ,X) = −βij

[
1

Dij
2 (yi − yj )

2

]
(12)

where, pi is chosen to be 10 taking into account the previous

10 historical measurements; and ϕi,m is the coefficient for the

Autoregressive (AR) model; Dij is the physical distance be-

tween solar stations i and j. Detailed information on the model,

training and interference process can be found in [36]. Since the

model is of Gaussian nature, µ can be assessed and employed

as the forecasted output value. Moreover, according to mul-

tivariate Gaussian distribution characteristic, i.e., its marginal

distribution over a subset of random variables is also a Gaussian

distribution, the probability distribution of yi can be obtained

in (13):

P (yi |X ) ∼ N (µi , γii) (13)

B. Weather-Driven Model for Electricity Demand Forecast

The electricity demand is also dependent on the time of

the day, season, and other weather factors as the electricity

consumers’ behavior is mostly driven by ambient temperature

followed by dew point temperature, clouds, precipitation, and

winds. There have been numerous studies on the impact of

weather on the electric load behavior and load forecast analy-

sis [20]–[22]. In this paper, the data-driven technique proposed

earlier [see Fig. 2] is utilized for load forecasts. Accordingly,

the weather factors considered in this paper for accurate load

forecast are the heating degree days (HDD), cooling degree days

(CDD), temperature, dew point, and wind speed as well as the

corresponding load measures over time. Both the probability

distribution of the demand at time t, and the sensitivity of the

output to the corresponding input variables can be assessed.

C. Weather-Driven Asset Health and Reliability Modeling

Most of the grid infrastructures have been designed and oper-

ated since long ago and there is large population of equipment

(e.g., transformers, circuit breakers, overhead lines, etc.) with

the age of over 25–40 years in service today. Assessing the

influence of continuous exposure of the grid assets to weather

variations over time is a challenge. Some are located and op-

erated under normal climate conditions and some are exposed

to especial weather conditions (e.g., dust, sand, salt deposits,

humidity, frequent storms, etc.). Sudden changes in tempera-

ture and other prevailing weather conditions would also affect

the equipment stress and loading, revealing a higher risk to the

safe and reliable operation of the grid. As a result, predictive

indicators on the weather-driven performance and reliability of

equipment would be desirable.

1) Modeling Weather Impacts on Health Measures of Trans-

formers: The purpose of transformer condition assessment is

to detect and quantify its long-term degradation and remaining
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Fig. 4. FFANN framework proposed for transformer health assessment.

life-time. In order to investigate how the reliability and health

performance of transformers can be influenced by continuous

exposure to weather factors, online asset monitoring data from

both electrical and oil testing sensors/monitors as applicable,

historical data on transformer loadings, as well as the aging

data and corresponding weather information are utilized within

a proposed artificial neural network (ANN) mechanism. The

developed feed-forward ANN (FFANN) can quantify the health

condition of transformers over time as illustrated in Fig. 4. As

it can be seen in Fig. 4, the proposed FFANN is composed of

many computing elements, called neurons, all working in par-

allel and are connected by weights. Such weights, adapted via

a learning process, encode the knowledge of the network. An

input unit represents raw information that is fed into the network

and connected to an output layer through one or more layers,

called hidden layers [38], [39]. It is commonly known that the

number of hidden layers may be selected through trial and error

to enhance the predication accuracy. The input layer of the pro-

posed framework consists of 20 neurons, where, ItL,k is the load

current, Wt
k is the paper water content, At

k is the acidity level,

Vt
BD,k is the break down voltage, FFAt

k is the Furan content in

insulating oil, θt
k is the loss angle factor, TSt

k is the total solids

in insulating oil, Tt
k is the top oil temperature, γt

k is the age, τ t

is the ambient temperature, ηt is the atmospheric pressure, µt is

the humidity level, and δt is the dust level factor of transformer

k at time t. The output layer consists of one neuron, ranging

between [0, 1] and representing the health index for the trans-

former: 1 denoting a brand new transformer and 0 associated

with one in a poor reliability condition. The health index is a

dynamic reliability measure and can be updated over time as

new data arrives.

2) Modeling Weather Impacts on Transmission Lines: The

electrical towers and insulating systems are more likely to fail

over time than the overhead lines themselves [40]. Wooden poles

begin to rot in 40 years of continuous service, and steel towers

would corrode, mostly driven by the weather and environmental

drivers. The severe temperature rise/fall is directly governing

the loading of the transmission lines, resulting in an extra heat

of the conductors. Such incidents may lead to an unpredicted

sag condition of the transmission line, which in some cases,

could come in contact with the surrounding environment such

as trees and other facilities, resulting in a fault and risk to elec-

tric safety. In this study, an online health index for transmission

lines is employed, obtained quantitatively through a combina-

tion of the condition monitoring data for some line assemblies

(e.g., insulators, conductors, etc.) and the inspection data and

human judgment for some other elements (e.g., foundations,

tower structures, auxiliaries, etc.) [18], [40].

The impact of weather is not solely limited to the mal-

operation or failure of the line assemblies. For instance, tem-

perature variations would result in different resistance values

of overhead transmission lines which can significantly affect

the maximum power capacity, available transfer capability of

the line, accuracy of power flows, state estimation, and other

power system applications. Additionally, the impact of short-

term weather variations (and for example wind speed) on the

ampere capacity of transmission lines and the dynamic line rat-

ing can also be investigated and integrated into the proposed risk

analytics [41]–[44]. In this study, different resistance values for a

transmission line in different operation hours are assumed since

the line resistance is a direct function of predicted temperature

as demonstrated in (14) [40]:

RT1
= RT0

[1 + α (T1 − T0)] (14)

where, α = 0.0039 [C]−1 is the temperature coefficient for the

aluminum, and RT1
and RT0

are the line resistance values in

temperature T1 and T0 , respectively.

D. Weather-Driven Model for Electricity Market Simulations

With environmentally-driven generation pattern and load pro-

file at each hour, the electricity market performance would also

be affected by weather variations. The results of the introduced

models for the impact assessment of weather factors on the

loads, generations, and transmission assets are fed into an elec-

tricity market simulation framework (the generation and load

forecasts are inserted in the form of probability distributions)

to realize how such weather considerations would affect the

wholesale electricity market performance. The unit commitment

model is utilized to optimally dispatch the generating units in

a given operation time frame. The model is formulated in (15)

with various system and security constraints in (16),

minf =
∑

i∈G

T∑

t=t0

(
CGip

t
Gi +CRSip

t
RS i +CU is

t
U i + CDis

t
Di

)

(15)

∑

i∈G

pt
Gi = P t

L , t = 1, 2, . . . , T (16.a)

∑

i∈G

pt
RS i ≥ Dt

RS , t = 1, 2, . . . , T (16.b)

P t
Gi + P t

RS i ≤ xt
GiP

max
Gi , i ∈ G, t = 1, 2, . . . , T (16.c)
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xt
GiP

min
Gi ≤ P t

Gi ≤ xt
GiP

max
Gi , i ∈ G, t = 1, 2, . . . , T (16.d)

0 ≤ P t
RS i ≤ Pmax

Gi , i ∈ G, t = 1, 2, . . . , T (16.e)

xt
Gi − xt − 1

Gi ≤ st
U i , i ∈ G, t = 1, 2, . . . , T (16.f)

xt − 1
Gi − xt

Gi ≤ st
Di , i ∈ G, t = 1, 2, . . . , T (16.g)

xt
Gi , s

t
U i , s

t
Di ∈ {0, 1}, i ∈ G, t = 1, 2, . . . , T (16.h)

P t
Gi − P t − 1

Gi ≤ Ri∆t, i ∈ G, t = 1, 2, . . . , T (16.i)

P t − 1
Gi − P t

Gi ≤ Ri∆t, i ∈ G, t = 1, 2, . . . , T (16.j)

− F ≤ H · Pt
G ≤ F, t = 1, 2, . . . , T (16.k)

where CGi and CRSi are, respectively, the generation and re-

serve costs for generating unit i; P t
Gi and P t

RS i are, respectively,

the output power of generator i at time t in energy and reserve

markets; CU i and CDi are, respectively, the start-up and shut-

down costs of generator i; st
U i and st

Di are the start-up and

shut-down status variables of generator i at time t; H is the dis-

tribution factor matrix; and F is the vector of the transmission

line flow limits. Equation (16.a) reflects the energy balance in

which P t
L is the net load demand at time t; reserve requirement

is presented in (16.b) in which Dt
RS is the reserve demand at

time t. The generation limits of generating units are enforced

in (16.c)–(16.e), and xt
Gi indicates their on/off states at time t.

Meanwhile, the on/off states of generating units have to meet the

constraints in (16.f)–(16.h) and ramping constraints are enforced

in (16.i) and (16.j), where Ri is the ramp rate of generating unit

i. Transmission line constraints are expressed in (16.k).

As the inputs to the suggested electricity market model are

in the forms of probability distributions (of demand and gener-

ation), the Point Estimate Method (PEM) is adopted to approx-

imate the probability distribution of the market outputs (e.g.,

price, system cost, etc.). Different from the Monte Carlo simu-

lations, which randomly selects the input data and need a huge

number of simulation records, the PEM method systematically

selects some particular input data to simulate the final output.

Therefore, the computation burden drastically decreases. Sup-

pose the relationship between the electricity market inputs and

outputs is expressed as in (17).

F = g(Y) (17)

For each input to the electricity market model, suppose a

normal probability distribution is assigned and its mean and

standard deviation are expressed as µ′ and δ′, respectively. Using

the 2-PEM technique, two points are selected for each random

input variable using (18.a)–(18.c), where m is the total number

of random input variables.

yi,k = µ′
i + ζi,k · δ′i , k = 1, 2 (18.a)

ζi,k =
λi,3

2
+ (−1)3 − k

√

m +

(
λi,3

2

)2

, k = 1, 2

(18.b)

λi,3 =
E

[
(yi − µ′

i)
3
]

δ′3i
(18.c)

The mean value of the output parameter j can be calculated

through (19.a)–(19.c).

E(Fj ) ≈

m∑

i=1

2∑

k=1

wi,k · gj (µ′
1 , µ

′
2 , . . . , µ

′
i , . . . , µ

′
m ) (19.a)

wi,k =
1

m
(−1)k ζi,3−k

θi
(19.b)

θi = 2

√

m +

(
λi,3

2

)2

(19.c)

Accordingly, the standard deviation of the output parameter j

can be obtained using (20.a) and (20.b).

E(F 2
j ) ≈

m∑

i=1

2∑

k=1

wi,k · [gj (µ′
1 , µ

′
2 , . . . , µ

′
i , . . . , µ

′
m )]

2

(20.a)

δF j =
√

E(F 2
j ) − [E(Fj )]

2
(20.b)

When considering the impacts of weather factors on trans-

mission lines and transformers, not only may the temperature-

sensitive characteristics of such equipment change, but also they

might not be available at all times due to the weather-driven

system operational constraints. Therefore, the topology of the

system may change accordingly, and an islanding condition

may occur. In such circumstances, the Unit Commitment (UC)

model will be conducted in each island separately to ensure the

generation and load balance.

III. WEATHER-DRIVEN RISK METRIC FOR POWER SYSTEM

The risk assessment framework is proposed as follows:

Rt
sys =

∑

k∈K

⎛

⎝P t
k [T ].

∑

q∈Q

(
P t

k [Eq |T ].Ct
k (Eq )

)
⎞

⎠ (21)

where Rt
sys is the State of Risk for the system (or equipment)

at time t; P t
k [T ] is the Hazard, i.e., the probability of an ex-

treme weather condition k with the threat intensity T at time

t; P t
k [Eq |T ] is the Vulnerability, i.e., the probability of an ab-

normal condition Eq in system (or component) performance in

the face of the hazardous condition; and Ct
k (Eq ) is the Worth

of Loss, i.e., an estimate of the consequential financial losses.

The proposed risk measure is defined as a stochastic process

referenced in time and space:

Rt
sys(x, t) =

∑

k∈K

⎛

⎝
P t

k [T (x, t)].
∑
q∈Q

(P t
k [Eq (x, t) |T (x, t)].Ct

k (Eq (x, t))

⎞

⎠

(22)

where, x represents the spatial parameter (longitude and latitude)

and t reflects the temporal parameter obtained via GPS.

The hazard in the proposed risk model represents the proba-

bility of hazardous weather conditions that may affect the elec-

tricity grid operation at a given time. It is directly driven by

the weather forecasts and is spatio-temporally correlated with

various points in time and locations across the grid.
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The vulnerability reflects the probability that a weather-driven

hazardous condition will cause an event or undesirable state in

the electricity grid. Such disorders may include the shortage in

capacity and efficiency of the electricity generation by impacting

the renewables, reliability of the grid equipment either through

forced outages (faults) or stressful overloading conditions, elec-

tricity market violations, and unexpected load responses.

In the case where an undesirable condition in the grid is

experienced in the face of a severe weather condition, the ex-

pected impact on the grid operation, in terms of economic loss,

would be quantified as consequence. The consequences can be

different depending on the user preference in various opera-

tion levels of the grid. The imposed outage cost, if the adverse

weather condition leads to an electricity outage, or economic

impact of operation adjustments in mitigation of grid violations

can be quantified as the economic consequence. The total im-

posed costs corresponding to the failure of equipment i at time

t, Ct
k (Ei), is quantified in (23):

Ct
k (Ei) = Ct

CM,i +
∑

d∈D

(
Ct

LR,i + Ct
CIC,i

)
(23)

The first monetary term in (23) is fixed and highlights the

corrective maintenance cost to fix the damaged equipment. This

cost, which in some cases can include the replacement cost

of the equipment, also embraces the cost of labor, maintenance

tools and materials. The second term (variable cost) includes the

lost revenue cost imposed to the electric utility (Ct
LR,i) and the

interruption costs imposed to the interrupted customers (Ct
CIC,i).

The former cost function highlights the utility’s lost revenue due

to its inability to sell power during the replacement or corrective

maintenance interval and can be quantified using (24) [45].

Ct
LR,i =

∑

d∈D

(
λ

t
d .EENSt

d,i

)
(24)

where, λ
t
d is the electricity price ($/MWh.) at load point d;

EENSt
d,i is the expected energy not supplied (MWh.) at load

point d due to the failure of equipment i at time t. Here, the

EENS index of reliability is calculated through the probabilistic

analytical state enumeration method [45] by solving the fol-

lowing optimization problem (25) subject to a set of system

constraints in (26):

min
i∈H

∑

d∈D

(
ILt

n,i = P t
dn

− P t, supplied
dn ,i

)
(25)

∑

g∈I n
G U

P t
g −

∑

m

VnVm (Gnm cos δnm + Knm sin δnm )

− P n
d = 0, ∀n (26.a)

∑

g∈I n
G U

Qt
g −

∑

m

VnVm (Gnm sin δnm − Knm cos δnm )

− Qn
d = 0, ∀n (26.b)

Pjnm = VnVm (Gnm cos δnm + Knm sin δnm )

− Gnm V 2
n , ∀j (26.c)

Qjnm = VnVm (Gnm sin δnm − Knm cos δnm )

+ V 2
n (Knm − ksh

nm ), ∀j (26.d)

P 2
jnm + Q2

jnm ≤ (Smax
j )2 , ∀j (26.e)

δmin
n ≤ δn ≤ δmax

n , ∀n ∈ N (26.f)

V min
n ≤ Vn ≤ V max

n , ∀n ∈ N (26.g)

(P t
g − rdn,t

g )ξt
g ,i ≤ P t

g ,i ≤ (P t
g + rup,t

g )ξt
g ,i , ∀g ∈ G

(26.h)

Qmin
g ξt

g ,i ≤ Qt
g ,i ≤ Qmax

g ξt
g ,i , ∀g ∈ G (26.i)

0 ≤ rt
g ≤ min (rmax

g ,∆g ), ∀g ∈ GR (26.j)

0 ≤ rdn,t
g ≤ min (rdn,max

g ,∆dn
g ), ∀g ∈ IGUR

(26.k)

P t
g + rt

g ≤ Pmax
g , ∀g ∈ GR (26.l)

Pmin
g ≤ P t

g − rdn,t
g , ∀g ∈ IGUR

(26.m)

∑

g∈IGU,Zm

rup,t
g ≥ Rup,t

Zm
, ∀m (26.n)

∑

g∈IGU,Zm

rdn,t
g ≥ Rdn,t

Zm
, ∀m (26.o)

0 ≤ ILt
n,i ≤ P t

dn
, ∀n ∈ N,∀i ∈ H (26.p)

The optimization engine is formulated based on the Alter-

nating Current (AC) power follow model for higher accuracy.

Without loss of generality, the DC power flow model can also

be approached if the computational requirements mandate [45].

Here, up to the third order of system contingencies are taken into

account in the state enumeration technique utilized to evaluate

the system reliability. At each contingency state, the optimiza-

tion problem in (25) tries to minimize the total curtailed load

during each contingency state i. As it can be seen in (25), the

load outage at each load point is calculated by taking the differ-

ence of the actual demand and the supplied load following the

contingency event. In order to reduce the simulation runtime, a

risk-based contingency screening strategy is employed that first

prioritizes the contingencies based on the product of their oc-

currence probability and consequence (i.e., the interrupted load)

and then neglects the low-risk contingencies. Constraints (26.a),

(26.b) represent two sets of Nb non-linear nodal active and re-

active power balancing equations. Network constraints (26.c),

(26.d) represent branch active and reactive power flow limits

measured at bus n in direction towards bus m. The inequality

constraints (26.e) consist of two sets of Nl apparent power flow

limits corresponding to the “from” and “to” ends of each branch.

Constraints (26.f), (26.g) reflect equality upper and lower limits

on all bus voltage phase angles and magnitudes. Supply con-

straints are presented in (26.h), (26.i) that enforce the output of

generating unit g to zero if it gets disconnected in the outage

event i. If a generating unit g is available, the change of its active

power output is limited to the predetermined margins. Outage

of generating units in an outage event i is modeled through a

vector of binary variables, ξt
g ,i , with 1 denoting the availability

of components and 0 otherwise. Constraints (26.j), (26.k) reflect
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the reserve for each generating unit that must be positive and

limited above by a reserve offer quantity as well as the physical

ramp rate of the unit (∆g). Constraint (26.l), (26.m) enforce that

the total amount of energy plus upward reserve of the generating

unit does not exceed its capacity and the amount of energy minus

downward reserve of the generating unit is limited to its min-

imum capacity. Constraints (26.n), (26.o) ensure that enough

capacity is procured according to the reserve requirements in

each region. Constraint (26.p) ensures that the interrupted load

is less than the total demand at bus n.

Probability and duration of each contingency state i are calcu-

lated in (27) by employing the availability of online components

(y) and unavailability of the failed ones (x) [45]; in particular,

πi is obtained in (27.a) by multiplying the availability of online

components and unavailability of the failed ones in a contin-

gency state i; and τ t
i is calculated in (27.b) using the failure

rates of online components and repair rates of the failed ones

in a given contingency state. Note that in all the above calcu-

lations, the common two-state Markov model for each system

component is considered [45], [46].

πi =
∏

x∈ΩX

νx

(γx + νx)
×

∏

y∈ΩY

γy

(γy + νy )
(27.a)

τ t
i =

⎛

⎝
∑

x∈X

γx +
∑

y∈Y

νy

⎞

⎠
−1

, ∀i ∈ H (27.b)

where, ν and γ are the failure rate and repair rate of equipment.

The EENS index of reliability is calculated in (28):

EENSt
d,i =

∑

i∈H

πt
i .τ

t
i .IL

t
d,i, ∀d ∈ D (28)

The third variable term in the cost function (23) highlights the

customer interruption costs due to an electricity outage event i

at time t and is calculated through (29) [46]:

Ct
CIC,i =

∑

d∈D

EENSt
d,i .VOLLd (29)

where VOLL is the value of the lost load and represents the unit

interruption cost for various customer sectors at a given load

point. VOLL is directly correlated to the outage duration and is

determined through historical data and customer surveys [46].

IV. WEATHER-DRIVEN MITIGATION STRATEGY: NETWORK

TOPOLOGY CONTROL

As the grid keeps being exposed and vulnerability to weather-

driven natural disasters (severe storms, hurricanes, etc.), re-

search on enhancing the grid resilience in the face of such high

impact low probability (HILP) events has been intensified over

the past few years [47], [48]. Both “long-term” and “short-term”

strategies for enhancing the grid resilience against the extreme

conditions have been addressed in the literature [3]. The grid

structural resilience is primarily focused toward deployment

of the “grid hardening” plans through reinforcement, preven-

tive maintenance of the critical assets, vegetation management,

efficient allocation of flexible energy resources (e.g., storage

units), etc. The operational resilience is targeted through fast

emergency response and remedial actions, defensive islanding,

use of the micro-grids, etc. While the strategies above can be

individually or collectively approached for enhancing the grid

resilience, we are utilizing the network topology switching to

mitigate the weather-driven risks across the grid.

The network topology control through transmission line

switching offers the system operators a greater control in the

flow of power. It is realized through harnessing the built-in flex-

ibility of the network topology by temporarily removing lines

from service [49]–[51]. By relying on the existing infrastructure

and available generation resources with minimum additional

costs, the proposed framework aims at safeguarding the grid

by quickly and iteratively recovering from the consequences

of weather-driven events (e.g., outages, congestions, grid viola-

tions, etc.) and realizing an enhanced grid operational resilience.

The suggested framework is intended to be used as a predictive

tool in operational planning timeframe.

A. Objective 1: Load Outage Recovery

If a hazardous weather event is forecasted as a result of which

some load outages occur, the following optimization would be

called in advance to mitigate the contingency.

max

(
LSĠ∪K̇ −

∑

∀n∈N

un

)
(30)

Subject to:

θmin ≤ θn − θm ≤ θmax , ∀k(m,n) ∈ K (31.a)
∑

∀k(n,..)

Pk −
∑

∀k(..,n)

Pk +
∑

∀g(n)

Pg = dn − un ∀n ∈ N

(31.b)

Pmin
k (1 − sk ) ≤ Pk ≤ Pmax

k (1 − sk ) ∀k ∈ K̂ (31.c)

Bk (θn − θm ) − Pk + sk .Mk ≥ 0 ∀k ∈ K̂ (31.d)

Bk (θn − θm ) − Pk − sk .Mk ≤ 0 ∀k ∈ K̂ (31.e)

Pmin
k .sk ≤ Pk ≤ Pmax

k .sk ∀k ∈ K̄ (31.f)

Bk (θn − θm ) − Pk + (1 − sk ).Mk ≥ 0 ∀k ∈ K̄ (31.g)

Bk (θn − θm ) − Pk − (1 − sk ).Mk ≤ 0 ∀k ∈ K̄ (31.h)

max
{
Pmin

g , P v
g − τrg

}
≤ Pg ≤ min

{
Pmax

g , P v
g + τrg

}

∀g ∈ G\Ġ (31.i)

0 ≤ un ≤ dn , ∀n ∈ N (31.j)

Pk = 0, k ∈ K̇ (31.k)

Pg = 0, g ∈ Ġ (31.l)

si = 0, ∀i ∈ T (31.m)
∑

∀k∈K \K̇

sk = 1 (31.n)

sk ∈ {0, 1} , ∀k ∈ K\K̇ (31.o)
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Fig. 5. The overall structure of the proposed framework for weather-resilient operation of the electricity grid.

Fig. 6. Performance comparison of the suggested GCRF model with other known solar forecast techniques with and without missing data scenarios.

The above optimization model is a mixed integer linear pro-

graming problem based on the DCOPF formulation. The pri-

mary decision variables in the above optimization formulation

are sk and un , where sk determines the switching action of

line k (0: no switch; 1: switch) and un denotes the unfulfilled

demand at bus n in case of a contingency. The objective (30)

is to maximize the load outage recovery corresponding to the

weather-driven contingency set Ġ ∪ K̇; The algorithm followed

to solve the optimization model is the Binary Switching Tree

(BST) algorithm that iteratively finds the best line to switch and

the optimal time-constrained generator re-dispatch until either

the entire system demand is satisfied or a pre-specified stop-

ping criterion is met. As a result, it provides multiple switching

operations and corresponding re-dispatch actions to iteratively

improve the load outage recovery. Additional details on the

BST algorithm employed to solve this optimization problem

can be found in [49]. Constraint (31.a) sets the angle difference

range of the adjacent buses. The node balance constraints with
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Fig. 7. Probability density function of thermal generation efficiency with the
temperature input ranging from 17 °F to 100 °F.

modifications to account for partial demand fulfillment at each

bus are presented in (31.b). Constraints (31.c) and (31.f) set

the capacity limits of in service (k ∈ K̂) and out of service

(k ∈ K̄) transmission lines, while constraints (31.d), (31.e),

(31.g), and (31.h) determine the power flow through the lines.

The re-dispatch constraints for the online generating units are

characterized in (31.i), where P v
g denotes the generator dispatch

at node v. Constraints (31.j) set the bounds for unmet demand

variable un at each bus. The line and generating unit outages

are reflected in constraints (31.k) and (31.l), respectively. Con-

straints (31.m)–(31.o) are devised in addition to several other

considerations, to be able to generate several topology control

solutions per contingency (outage scenario) that would further

improve the objective function, if subsequently implemented in

a sequence. The benefit (the amount of Load Outage Recovery)

obtained by the developed optimization model is attributed to

both the switching actions and the 10-minute re-dispatch. Also,

the topology control solutions should pass the AC feasibility

and stability checks to be selected as the candidates for final

implementation [49].

B. Objective 2: Congestion Relief

If price spikes are forecasted due to transmission congestions,

the topology control scheme is called to relieve the transmission

congestion, for which the objective is formulated in (32).

max
∑

∀g∈G\
.
G

cgPg (32)

Without loss of generality, the constraints modeled earlier

for load outage recovery are mostly valid for congestion-relief

topology control scheme, with some minor changes. First, since

there is no load outage, unmet demand variables un .are no

longer needed. Thus, un in constraint (31.b) and the entire con-

straint (31.j) should be removed. Second, instead of keeping

track of the outage recovery percentage, one has to calculate

and record the flow (or voltage) violations at each branch (or

Fig. 8. Diurnal weather impacts on (a) system overall cost; (b) electricity
market price; and (c) congestion probability of transmission lines.

Fig. 9. Risk map generated for the studied system in face of normal weather
conditions at hour 10.

node) corresponding to each new topology control solution gen-

erated.

The overall framework is generally demonstrated in Fig. 5.

The proposed scheme leads to a more resilient electricity grid in

the face of weather changes, prevents considerable financial and

environmental losses, and reduces the risks to electric safety.

V. NUMERICAL CASE STUDIES

A modified section of the IEEE 73-bus test system is em-

ployed to investigate the applicability of the suggested frame-

work, for which the one-line diagram is availble in [52]. This

transmission system contains 24 nodes, 17 load points, and

33 generating units connected by 38 transmission lines and 5
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Fig. 10. (a) Hazard and (b) risk maps generated for the studied system in face of a severe weather condition at hour 10.

Fig. 11. Optimal topology control mitigation solutions (#1, #2, #3) and their impact on mitigating the imposed weather-driven risk at hour 10.

autotransformers at two voltage levels of 230 kV and 138 kV

[51]. The loads are assumed to follow the pattern corresponding

to the zone EKPC of the PJM system and all the employed data

for various analyses are summarized in [52].

While the system power generation mostly comes from coal-

fired thermal generating units, ten solar generating units are

assumed to be located at buses 20 and 23 with the overall pene-

tration rate equal to 5% of the total system generation capacity.

The generated power through solar panels is forecasted in an

hourly basis using the suggested GCRF model [(2)–(13)] for a

24 hour time interval. The performance of the proposed fore-

casting model is illustrated in Fig. 6 and is compared, in terms of

root mean square error (RMSE), to other known techniques. As

it can be realized from Fig. 6(a) and (b), the suggested weather-

driven solar forecasting technique based on the GCRF model is

more accurate than the other techniques even in cases of missing

input data in several weather stations.

Regarding the coal-fired thermal generating units, Fig. 7 il-

lustrates the result of probability density functions for the gen-

eration efficiency of the generating unit at bus 14, calculated

through (1) based on the available historical data, when tem-

perature is ranging from 17 °F to 100 °F, humidity is 90%,

precipitation is 0 (inches), gauge height is 3.42 (m) and water

discharge is 6990 (f3/sec.).

A. Case Study 1: Normal Weather Projection

With the forecasted load and generation at each hour, the

electricity market simulations are conducted. The system over-

all costs are illustrated in Fig. 8(a) where two scenarios, with

(S2) and without (S1) considering the transmission equipment

health indices and weather-driven line flow limits, are presented

for thestudied 24-hour period. The impact of weather variations

on the energy price specifically on buses 9 and 18, as an example,

is shown in Fig. 8(b) where the LMP at bus 9 is observed more

sensitive to weather variations over time; the weather-driven

congestion probability of highly-vulnerable transmission lines

are presented in Fig. 8(c). From Fig. 8, one can conclude that

(1) the impact of weather variations on the electricity market

is not only time-variant, but also space-variant; (2) some buses

and transmission lines are particularly more sensitive to un-

certainties imposed by weather. The risk map associated with

projection of the forecasted weather hazard and calculated vul-

nerabilities is demonstrated in Fig. 9 for hour 10. The system

operation risks in face of a normal weather condition at this

hour are generally within the tolerable limits. Indicators for

clearing prices at each load point and the electricity market

clearance failure probability are also presented. The procedure

above is repeated at each hour as the weather forecasts and sys-

tem responses to such variations, and hence, the risk map varies

hourly.

B. Case Study 2: Severe Weather Projection

In this case study, a severe weather regime at hour 10 is

projected in the network. The weather-driven hazard map is il-

lustrated in Fig. 10(a) where a part of the system is predicted

to be exposed to a storm event. The developed risk-based an-

alytical framework is simulated in this case, the system vul-

nerabilities in terms of electricity market failure probability,

electricity prices at each load point, and the transmission line

congestion probabilities are quantified, and the resulted risk

map is illustrated in Fig. 10(b). It can be seen that as a re-

sult of this severe weather event, the congestion probabilities,

and consequently the electricity prices at the mid-east part of

the system, increase and two transmission lines (TL#92 con-

necting buses 58 to 59 and TL#93 connecting buses 58 to 60)

would be out of service (denoted in blue) as a result of which

61.6 MW load outage occurs. The proposed corrective topology

control optimization framework is simulated and three optimal
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TABLE I
TOPOLOGY CONTROL MITIGATION SOLUTIONS IN RESPONSE TO THE

FORECASTED WEATHER CONTINGENCY: TL#92 AND TL#93 CONTINGENCY

topology change solutions (denoted in dashed lines) are sug-

gested as mitigation actions (see Fig. 11). Additional details on

switching solutions in response to the forecasted contingency

are tabulated in Table I. The three optimal topology control

solutions include a one-line (line 86 [bus54–bus58]) switching

action as well as a two-line (line 105 [bus64–bus67] and line 95

[bus58–bus62]) and a three-line (line 72 [bus53–bus56], line

77 [bus49–bus50], and line 99 [bus35–bus41]) switching se-

quences all accompanied by a 10-min generation re-dispatch at

each level. In case the solutions are composed of a sequence of

switching actions, the sequence should be implemented in order

to incrementally improve the load outage recovery and achieve

the expected benefit eventually. With the changes that the op-

timal topology control solutions impose to the power flow and

vulnerability indices, a considerable recovery of the outage in

a timely manner can be realized leading to an improved system

resilience in dealing with the aftermath of the HILP incidents.

Note that the benefit (the amount of Load Outage Recovery) ob-

tained by the developed optimization model is attributed to both

the switching actions and the 10-minute re-dispatch. Specifi-

cally, if one were to perform only an optimal re-dispatch to

recover as much interrupted load as possible (with no change in

the network topology), the load outage recovery would be ap-

preciably less. The updated risk maps accommodating each of

the proposed mitigation solutions are demonstrated in Fig. 11,

where it can be seen that different recovery plans migrate the

system to a different operating condition with different levels of

risk indicator. The system operator is provided with several re-

covery solutions and can make a final decision on which solution

to implement eventually.

VI. CONCLUSION

In this paper, continuous weather-driven analytics for accu-

rate spatial-temporal electricity generation forecasts were for-

mulated and implemented for both renewable and conventional

power generation based on the Gaussian Conditional Random

Filed (GCRF) approach. It was numerically demonstrated that

the proposed weather-driven forecasting method outperforms

the traditional techniques. Employing the probabilistic load

and generation forecasts, the electricity market simulation is

conducted considering the weather-driven health and reliabil-

ity status of transmission equipment over time. The spatial-

temporal impact of weather variations on the energy price across

the grid was quantified and comprehensively analyzed on a

24-bus part of the test system. The developed algorithms are in-

tegrated into a risk-based analytical framework where the elec-

tricity grid operation vulnerability can be quantified in face of

the adverse high impact low probability (HILP) hazards from

meteorological predictions. A risk-based mitigation support tool

based on corrective topology switching for load outage recov-

ery was suggested where numerical results demonstrated that

the proposed risk map and mitigation strategies could signifi-

cantly help in fast and timely recovery of the weather-caused

electricity outages by only harnessing the network built-in flex-

ibility with minimum additional costs. The suggested decision

support tool set enables the operators to predictively evaluate

the high-risk weather hazards and consequently plan on how to

safeguard the grid when exposed to such forecasted threats.

Future research may include application of advanced stochas-

tic tools for the proposed modules and focuses on other risk

mitigation strategies (e.g., micro grid and storage units).
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