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Spatially Dependent Transfer
Functions for Web Lateral
Dynamics in Roll-to-Roll
Manufacturing
Spatially dependent transfer functions for web span lateral dynamics which provide web
lateral position and slope as outputs at any location in the web span are derived in this
paper. The proposed approach overcomes one of the key limitations of the existing meth-
ods which provide web lateral position only on the rollers. The approach relies on taking
the Laplace transform with respect to the temporal variable of both the web span lateral
governing equation and the boundary conditions on the rollers, and solving the resulting
equations. A general web span lateral transfer function, which is an explicit function of
the spatial position along the span, is obtained first followed by its application to common
guide configurations. The approach also significantly simplifies the consideration of
shear (relevant to short spans), in addition to bending, which has been found to be diffi-
cult to handle in past studies. We first develop spatially dependent lateral transfer func-
tions by considering only bending which is relevant to most web handling situations, and
then add shear to the formulation and develop spatially dependent lateral transfer func-
tions that include both bending and shear. Results from model simulations and pertinent
discussions are provided. The spatially dependent transfer functions derived in this paper
are a significant improvement over existing lateral transfer functions and provide mecha-
nisms to analyze web lateral behavior within spans, study propagation of lateral distur-
bances, and aid in the development of closed-loop lateral control systems in emerging
applications that require precise lateral positioning of the web.
[DOI: 10.1115/1.4040216]

1 Introduction

In Roll-to-Roll (R2R) manufacturing, flexible materials called
webs are transported on rollers through processes (such as print-
ing, coating, heat treatment, lamination, etc.). Studies in the litera-
ture have mostly focused on modeling and control of moving
webs in the longitudinal or transport direction. In many applica-
tions, control of lateral web motion (motion perpendicular to the
transport direction and in the plane of the web) has been mostly
relegated to just keeping the web on rollers during transport.
Increased use of R2R manufacturing in recent years on a variety
of polymer materials under different processing conditions, in
both conventional products and emerging products in flexible
electronics, has led to additional requirements on the control of
lateral motion of the web. For example, in R2R printing where
multiple print cylinders are employed to sequentially print and
register patterns on the web [1], there have been stringent require-
ments on minimizing print registration in both longitudinal and
lateral directions.

There have been several studies on modeling the lateral behav-
ior of moving webs. The first seminal work on the topic was
reported by Shelton in his Ph.D. thesis in 1968 [2] and subse-
quently published in this journal [3,4]. Subsequent work in model-
ing and control of web lateral dynamics based on this treatment
was reported in Refs. [5–9]. For the purpose of deriving the gov-
erning equations of the web lateral position on rollers, the moving
web between two rollers is treated as a tensioned Euler–Bernoulli
beam. For most web materials, the web mass between two rollers
is negligible, i.e., the force due to acceleration of web mass is

negligible when compared to web tension. Thus, the lateral
motion of the web between two rollers is treated as the motion of
a static beam; and the web between two rollers is treated as a ten-
sioned beam. Four boundary conditions (web lateral position and
slope on each roller) are utilized to solve the fourth-order partial
differential equation describing the lateral motion of the web. A
key observation/principle is utilized to setup two of the boundary
conditions—a web approaching a roller aligns itself normal to the
axis of rotation of the roller. This is also well known in the belt
transport literature. This principle is utilized to setup two normal
entry conditions: web lateral velocity and acceleration in terms of
roller lateral velocity and acceleration, web entry angle at the
roller, and angle of the roller. Based on this approach, transfer
functions from the guide roller lateral position (input variable) to
the web lateral position on the roller (controlled or output vari-
able) are determined for various guide roller mechanisms, such as
the end-pivoted guide, center-pivoted guide, offset pivot guide
(OPG), remotely pivoted guide (RPG), etc. Figure 1 provides an
illustration of a web span with upstream (entry) and downstream
(exit) rollers and the definition of web wrap angle on a roller.

There are several limitations to the existing approach: (1) it pro-
vides a governing equation only for the lateral position behavior
on the roller and not for any position within the span and (2) it
does not the slope of the web which may contribute to the creation
of web lateral oscillations and their propagation to downstream
spans with web transport. Further, in the existing approach, the
solution (lateral position) of the lateral governing equation is
obtained by assuming constant downstream boundary conditions
(on the downstream roller of the span); subsequently, the time
derivative of the solution is used in the normal entry conditions to
determine the transfer function for the lateral position on the
roller. The purpose of the guide roller is to modify the down-
stream boundary conditions, and therefore, the assumption on the
downstream boundary conditions is counter to the notion that the
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axis of rotation and translation of the guide roller is utilized to
change the web boundary conditions on the roller. In this paper,
we address these issues and derive spatially dependent lateral
transfer functions that provide the web lateral position and slope
at any point in the web span and not just on the roller.

Our approach relies on taking the Laplace transform of the web
span lateral governing equation and the boundary conditions with
respect to the temporal variable. We consider the web lateral posi-
tion and slope on the upstream roller to the span as two boundary
conditions and the two normal entry conditions (for lateral velocity
and lateral acceleration) on the downstream roller as the other two
boundary conditions. The idea of incorporating the normal entry
conditions as boundary conditions has been considered in Ref. [6]
where the normal entry conditions are applied to a system modeled
using a dynamic beam equation; a two-dimensional Laplace trans-
form (for both spatial and temporal variables) was applied to the
dynamic beam equation which provides a solution to the beam
equation in the frequency domain. Due to the complexity of deter-
mining the inverse Laplace transform of the resulting solution, the
frequency domain solution was ignored and the spatial derivatives
in the beam model were discretized using a finite difference
method to obtain a set of ordinary differential equations for web
lateral response on the roller; a two-span system example was used
to illustrate the procedure. In our approach, we employ the Laplace
transform in the temporal variable not only for the beam governing
equation, but also for the two boundary conditions on the upstream
roller and the two normal entry conditions on the downstream
roller. This allows us to solve the resulting equations and obtain
spatially dependent lateral transfer functions. The application of
the Laplace transforms in the temporal variable for distributed
parameter systems is discussed in Ref. [10].

The contributions of the paper are summarized in the following.
First, we derive spatially dependent transfer functions for web lat-
eral dynamics where the output can be any point spatially along
the span. Further, we also derive transfer functions for web slope
as the output at any point in the span. This is important as one can
derive controllers to regulate lateral position at any point in the
span, and investigate strategies that minimize propagation of lat-
eral position and slope errors into the downstream spans. Second,
the derived spatially dependent transfer functions can be applied
to any guide configuration and specific transfer functions for those
guiding situations can be determined. Third, we incorporate shear
into the formulation by modifying the lateral governing equation

and normal entry conditions appropriately. We use the same
approach as before to derive the spatially dependent lateral trans-
fer functions that include both bending and shear. The pure bend-
ing case is relevant to long spans, i.e., spans with large web span
length to web width ratio, whereas the effect of shear is more
prevalent in short spans. Further, since the proposed approach
allows us to obtain not only position but also slope at any location
in the span, one need not use multiple sensors to determine the
position and slope of the web within the span as is done in some
existing studies.

The rest of the paper is organized as follows: In Sec. 2, we pro-
vide a discussion of the existing approach and its assumptions and
limitations. The spatially dependent transfer functions for the pure
bending case are derived, and application of the spatially depend-
ent lateral transfer function to specific guiding configurations is
given in Sec. 3. Inclusion of shear into the lateral governing equa-
tion and modification of the normal entry conditions are discussed
in Sec. 4; spatially dependent lateral transfer functions for lateral
position and slope for combined bending and shear are also given
in this section. Numerical simulations for different guiding config-
urations are discussed in Sec. 5. Concluding remarks and future
work are provided in Sec. 6.

2 Existing Approach and Assumptions

The governing equation for the web lateral dynamics is given
by Shelton [2]

EI
@4y x; tð Þ
@x4

� T
@2y x; tð Þ
@x2

¼ 0 (1)

The above-mentioned equation is similar to treating the web as a
tensioned Euler–Bernoulli static beam, i.e., the web between two
rollers is treated as a static beam by assuming the web mass to be
negligible. The general solution to this equation is given by

yðx; tÞ ¼ C1sinhðKxÞ þ C2coshðKxÞ þ C3xþ C4 (2)

where K2 ¼ T=EI. Four boundary conditions are utilized to obtain
the coefficients in the solution (2). These are typically assumed to
be the lateral position (y) and slope (@y=@x) at the two ends of the
web span, which are assumed to be known and given by

y 0; tð Þ ¼ y0 tð Þ; @y

@x
x; tð Þjx¼0 ¼ hw0 tð Þ;

y L; tð Þ ¼ yL tð Þ; @y

@x
x; tð Þjx¼L ¼ hwL tð Þ (3)

where the subscripts 0 and L are utilized to denote variables at the
entry and exit rollers, respectively, of the web span under consid-
eration. Note that these boundary conditions imply that both ends
of the tensioned beam (web span) are free.

The effect of the rollers on the lateral position of the web is
modeled as follows. Friction between the roller and web surfaces
is assumed to be adequate such that the web surface immediately
aligns perpendicular to the roller axis of rotation when it makes
contact with the roller. This observation is well known among
researchers in both the web handling and the belt transport com-
munities; this is typically referred to as the “normal entry rule” in
the web handling community. Figure 2 provides a line sketch
showing the relationship between the web slope and the lateral
displacement of the roller. The web lateral velocities and accelera-
tions are given by Shelton [2]

@yL tð Þ
@t
¼ v hL tð Þ � @y x; tð Þ

@x

����
x¼L

 !
þ @zL tð Þ

@t
(4)

@2yL tð Þ
@t2

¼ v2 @
2y x; tð Þ
@x2

����
x¼L

þ @
2zL tð Þ
@t2

(5)
Fig. 1 Web span consider for modeling
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Note that the normal entry rule is used as a mechanism by which a
guide roller can control the lateral position of the web via the rota-
tion and translation of the guide roller by an actuating mechanism.

The lateral web position response on a roller is analyzed for
two separate conditions: for fixed rollers (zL ¼ 0; hL ¼ 0) and
steering or guide rollers (zL 6¼ 0; hL 6¼ 0). The responses are com-
bined by assuming that the principle of superposition applies to
this situation. The governing equation for the evolution of the lat-
eral position for the two conditions is obtained as follows. First,
the second partial derivative of Eq. (2) with respect to x is substi-
tuted into Eq. (5). The resulting equation contains the web angle,
hwL, which is replaced by the slope term from the entry rule given
by Eq. (4). Taking the Laplace transform of the resulting equation
with respect to time results in the following lateral response at the
downstream roller due to various inputs [7]:

yL sð Þ ¼
� f3 KLð Þ

s
sþ f1 KLð Þ

s2

D Sð Þ y0 sð Þ þ
vf3 KLð Þ

s
D sð Þ

h0 sð Þ

þ
vf2 KLð Þ

s
D sð Þ

hL sð Þ þ
f3 KLð Þ

s
s

D sð Þ
z0 sð Þ þ

s2 þ f2 KLð Þ
s

s

D sð Þ
zL sð Þ

(6)

where s ¼ L=v; DðsÞ ¼ s2 þ ðf2ðKLÞ=sÞsþ ðf1ðKLÞ=s2Þ

Df ¼ KLsinhðKLÞ þ 2ð1� coshðKLÞÞ�;
f1ðKLÞ ¼ ðKLÞ2ðcoshðKLÞ � 1Þ=Df

f2ðKLÞ ¼ KL½KLðcoshðKLÞ � sinhðKLÞÞ�=Df ;

f3ðKLÞ ¼ KL½sinhðKLÞ � KL�=Df

Remark 2.1. This existing approach has several drawbacks: (1) it
provides the evolution of the lateral position only on the roller; it
does not provide lateral web position within the span. (2)
Although lateral position at the downstream roller is of interest,
this is assumed as a known boundary condition in the develop-
ment. (3) The normal entry conditions are used in an indirect man-
ner in the sense that the knowledge of the lateral position and
slope on the downstream roller are assumed to be known (result-
ing in the response at a specific location) and then these are
applied to the resulting solution to fit the normal entry conditions.

3 Spatially Dependent Transfer Functions

In the existing approach (summarized in Sec. 2), the effect of
the boundary conditions on web lateral behavior within the free
span is not clear. The “normal entry rule” is applied to introduce a
dynamical behavior on the roller and to obtain a relationship
between the lateral web position on the guide roller and the con-
trol action (guide roller motion). In this work, instead of assuming
the downstream boundary conditions for lateral position and slope
(at x¼ L) (whose evolution is of interest), the two normal entry
conditions are employed as downstream boundary conditions.
This allows for directly incorporating the effect of the roller into
the solution of the governing equation. Further, this also allows
for directly coupling the dynamic effects of the rollers with the
span lateral dynamics.

We define a free span as the length of material between two
rollers that is not wrapped on the rollers. For the upstream roller,
we establish the boundary conditions for the span at the exit of the
region of wrap of the upstream roller. Due to the application of

Fig. 2 Web behavior at roller entry (normal entry condition)

Fig. 3 Web span with RPG

Fig. 4 Web span with OPG
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the normal entry rule to the upstream roller, which stipulates that the web aligns perpendicular to the roller at contact, the web leaves
this roller perpendicularly. Then, the upstream roller angle becomes a boundary condition for web slope. In the region of wrap of the
upstream roller, the lateral displacement remains the same throughout, which is taken as the second boundary condition at the beginning
of the span.

To solve the governing equation, we apply the Laplace transform in the temporal variable for both the governing equation and the
boundary conditions. The governing equations given by Eq. (1) and the boundary conditions are rewritten compactly as

y 0; tð Þ ¼ y0 tð Þ; @y 0; tð Þ
@x

¼ h0 tð Þ; @y L; tð Þ
@x

¼ hL tð Þ þ 1

v

@z tð Þ
@t
� 1

v

@y L; tð Þ
@t

;
@2y L; tð Þ
@x2

¼ 1

v2

@2y L; tð Þ
@t2

� @
2z tð Þ
@t2

� �
(7)

The conditions at x¼ 0 represent web lateral position and web slope at the entry of the span (exit of the region of wrap of the upstream
roller); the slope is the same as the upstream roller angle h0ðtÞ, due to the interpretation of the entry rule for the web on that roller. The
other two conditions at x¼ L are the normal entry rules at the entry of the region of wrap for the downstream roller. We will apply the
following Laplace transform for the time variable:

Lff ðx; tÞg ¼ f̂ ðx; sÞ ¼
ð1

0

e�stf ðx; tÞdt (8)

to the web governing Eq. (1) and the boundary conditions (7) to obtain

@4ŷ x; sð Þ
@x4

� K2
@2ŷ x; sð Þ
@x2

¼ 0 (9)

and

ŷ 0; sð Þ ¼ ŷ0 sð Þ;
@ŷ 0; sð Þ
@x

¼ ĥ0 sð Þ;
@ŷ L; sð Þ
@x

¼ ĥL sð Þ þ
s

v
ẑL sð Þ �

s

v
ŷL sð Þ;

@2ŷ L; sð Þ
@x2

¼ s2

v2
ŷL sð Þ �

s2

v2
ẑL sð Þ (10)

The general solution of Eq. (9) is given by

ŷðx; sÞ ¼ C1ðsÞsinhðKxÞ þ C2ðsÞcoshðKxÞ þ C3ðsÞxþ C4ðsÞ (11)

Note that the coefficients Ci are functions of the variable s. Substituting the boundary conditions into Eq. (11) results in the following
solution:

ŷ x; sð Þ ¼ �
s2

v2
g2 xð Þ þ s

v
g1 xð Þ

� �
ŷL sð Þ þ

s2

v2
g2 xð Þ þ s

v
g1 xð Þ

� �
ẑL sð Þ þ ŷ0 sð Þ þ g1 xð ÞĥL sð Þ þ x� g1 xð Þð Þĥ0 sð Þ (12)

where we have used the notation ŷLðsÞ ¼ ŷðL; sÞ and

g1 xð Þ ¼ sinh KLð Þ cosh Kxð Þ � 1½ � � cosh KLð Þ sinh Kxð Þ � Kx½ �
K cosh KLð Þ � 1½ �

g2 xð Þ ¼ cosh KLð Þ � 1½ � cosh Kxð Þ � 1½ � � sinh KLð Þ sinh Kxð Þ � Kx½ �
K2 cosh KLð Þ � 1½ �

(13)

Note that the slope and moment at any location inside the span are given by

@ŷ

@x
x; sð Þ ¼ �

s2

v2
g2x xð Þ þ s

v
g1x xð Þ

� �
ŷL sð Þ þ

s2

v2
g2x xð Þ þ s

v
g1x xð Þ

� �
ẑL sð Þ þ g1x xð ÞĥL sð Þ þ 1� g1x xð Þð Þĥ0 sð Þ (14)

@2ŷ

@x2
x; sð Þ ¼ �

s2

v2
g2xx xð Þ þ s

v
g1xx xð Þ

� �
ŷL sð Þ þ

s2

v2
g2xx xð Þ þ s

v
g1xx xð Þ

� �
ẑL sð Þ þ g1xx xð ÞĥL sð Þ � g1xx xð Þĥ0 sð Þ (15)

where glxðxÞ is the first partial derivative of glðxÞ with respect to x (l ¼ 1; 2Þ and glxxðxÞ is the second partial derivative. Note that
g1xðLÞ ¼ 1; g2xðLÞ ¼ 0; g1xxðLÞ ¼ 0; g2xxðLÞ ¼ �1.

Define DbðsÞ ¼ s2 þ vg1ðLÞ=g2ðLÞsþ v2=g2ðLÞ. When x¼ L, Eq. (12) can be simplified to

ŷL sð Þ ¼
s2 þ v

g1 Lð Þ
g2 Lð Þ

s

Db sð Þ
ẑL sð Þ þ

g1 Lð Þ
g2 Lð Þ

v2

Db sð Þ
ĥL sð Þ þ

L� g1 Lð Þ
g2 Lð Þ

v2

Db sð Þ
ĥ0 sð Þ þ

1

g2 Lð Þ
v2

Db sð Þ
ŷ0 sð Þ (16)

Substituting Eq. (16) into Eq. (12) and simplifying we obtain

ŷ x; sð Þ ¼
P4 x; sð Þ
Db sð Þ

ẑL sð Þ þ
P3 x; sð Þ
Db sð Þ

ĥL sð Þ þ
P1 x; sð Þ
Db sð Þ

ĥ0 sð Þ þ
P2 x; sð Þ
Db sð Þ

ŷ0 sð Þ (17)
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where

P1 x; sð Þ ¼
1

g2 Lð Þ x� g1 xð Þð Þg2 Lð Þ � L� g1 Lð Þ
� �

g2 xð Þ
� �

s2
�

þv xg1 Lð Þ � Lg1 xð Þ
� ��

sþ x� g1 xð Þð Þv2
�

P2 x; sð Þ ¼
1

g2 Lð Þ g2 Lð Þ � g2 xð Þ
� �

s2 þ v g1 Lð Þ � g1 xð Þ
� �

sþ v2
h i

P3 x; sð Þ ¼
1

g2 Lð Þ
g1 xð Þg2 Lð Þ � g1 Lð Þg2 xð Þ
� �

s2 þ v2g1 xð Þ
h i

P4 x; sð Þ ¼
1

g2 Lð Þ
g2 xð Þs2 þ vg1 xð Þs
� �

(18)

Equation (17) provides the spatially dependent Laplace transform
of the lateral position in terms of various inputs and their associ-
ated transfer functions. Further, one can obtain transfer functions
for slope and moment at any location along the web span by sub-
stituting Eq. (16) in Eqs. (14) and (15).

3.1 Comparison With Existing Transfer Functions. Since
the approach in this work provides transfer functions from control
and disturbance inputs to lateral position output at any location in
the span, we can compare it with the general transfer functions
given in Ref. [7] when x¼ L. Note that at x¼L, we can write the
following relations:

g1 Lð Þ ¼ KLcosh KLð Þ � sinh KLð Þ
K cosh KLð Þ � 1½ �

g2 Lð Þ ¼ KLsinh KLð Þ þ 2 1� cosh KLð Þ½ �
K2 cosh KLð Þ � 1½ � ¼ L2

f1 KLð Þ

 !

L� g1 Lð Þ
g2 Lð Þ ¼ Ksinh KLð Þ � KL

KLsinh KLð Þ þ 2 1� cosh KLð Þ½ � ¼ f3 KLð Þ
L

� �
g1 Lð Þ
g2 Lð Þ ¼

K KLcosh KLð Þ � sinh KLð Þ½ �
KLsinh KLð Þ þ 2 1� cosh KLð Þ½ � ¼ f2 KLð Þ

L

� �
(19)

Substitution of these relations in Eq. (16) results in the web lateral
position response on the roller at x¼ L

yL sð Þ ¼
s2 þ f2 KLð Þ

s
s

D sð Þ
ẑL sð Þ þ

vf2 KLð Þ
s

D sð Þ
ĥL sð Þ þ

f1 KLð Þ
s2

D sð Þ
ŷ0 sð Þ

þ
vf3 KLð Þ

s
D sð Þ

ĥ0 sð Þ (20)

This differs slightly from Eq. (6) because in the existing approach
the free span definition included the region of wrap also, and the
entry rule was applied to the upstream roller in the following
manner:

ŷ 0; sð Þ ¼ ŷ0 sð Þ;
@ŷ

@x
0; sð Þ ¼ @ŷ

@x
jx¼0;s ¼ ĥw0 sð Þ ¼ �

s

v
ŷ0 sð Þ

(21)

However, in our approach, the free span does not include the
region of wrap in either the upstream or downstream rollers; the
interpretation of the normal entry rule is that the web will acquire
the roller angle and keep it for the entire region of wrap; due to
this the first term in the numerator of y0ðsÞ and z0ðsÞ cancel each
other. The following remarks provide some observations based on
the results of this section.

Remark 3.1. By employing normal entry conditions on the
downstream roller of the span as the boundary conditions, we
incorporated the effect of web/roller contact into the solution of
the governing equation. The proposed method allows us to
directly obtain higher order spatial partial derivatives of the lateral
response and thus can be used for obtaining web slope, moment,
shear force, etc. The method also further opens up the opportunity
to develop controllers for processes which require control of lat-
eral position within the span.

Remark 3.2. The proposed method can be extended to include
shear by establishing appropriate boundary conditions. The inclu-
sion of shear modifies the boundary condition for the lateral accel-
eration and introduces an additional pole and zero in the lateral
transfer functions. This is discussed later in Sec. 4.

Equation (17) is the general expression for spatially dependent
web lateral position and further simplification of this equation can
be achieved by considering the specific roller configuration corre-
sponding to a given situation. This is shown in Table 1 for the
most common situations.

The following remarks provide a perspective for each item in
Table 1. With a fixed downstream roller, the response depends
only on the perturbations (ŷ0ðsÞ; ĥ0ðsÞ) at the entry of the span.
To regulate web lateral position, one has to control both position
and slope; much of the existing work has focused only on regulat-
ing the lateral position at the exit of the guide without accounting
for the roller angle. Note that in most guide installations, the plane
of the guiding span and the span downstream of it are perpendicu-
lar to each other; if this is not the case, then the roller angle will
affect downstream lateral position. We will illustrate this effect in
subsequent model simulations. Note that the second and third
items in Table 1 correspond to a pure displacement guide roller
(with ẑLðsÞ as the input) and pure rotation guide roller (with ĥLðsÞ
as the input); these could be used for terminal guiding on unwind
and rewind rollers. The last two items correspond to two com-
monly used intermediate guides.

Table 1 Lateral response for various roller configurations

Setup Conditions Equation

Downstream fixed roller ĥLðsÞ ¼ 0; ẑLðsÞ ¼ 0 ŷðx; sÞ ¼ P1ðx; sÞ
DbðsÞ

ĥ0ðsÞ þ
P2ðx; sÞ
DbðsÞ

ŷ0ðsÞ

Pure displacement ĥLðsÞ ¼ 0 ŷðx; sÞ ¼ P1ðx; sÞ
DbðsÞ

ĥ0ðsÞ þ
P2ðx; sÞ
DbðsÞ

ŷ0ðsÞ þ
P4ðx; sÞ
DbðsÞ

ẑLðsÞ

Pure rotation ẑLðsÞ ¼ 0
ŷðx; sÞ ¼ P1ðx; sÞ

DbðsÞ
ĥ0ðsÞ þ

P2ðx; sÞ
DbðsÞ

ŷ0ðsÞ þ
P3ðx; sÞ
DbðsÞ

ĥLðsÞ

RPG (see Fig. 3) ẑLðsÞ ¼ X1ĥLðsÞ ŷðx; sÞ ¼ P1ðx; sÞ
DbðsÞ

ĥ0ðsÞ þ
P2ðx; sÞ
DbðsÞ

ŷ0ðsÞ þ
P5ðx; sÞ
DbðsÞ

ĥLðsÞ

where P5ðx; sÞ ¼ P3ðx; sÞ þ X1P4ðx; sÞ
OPG (see Fig. 4) ĥ0ðsÞ ¼ ĥLðsÞ ¼ ĥðsÞ ŷðx; sÞ ¼ P6ðx; sÞ

DbðsÞ
ĥðsÞ þ P2ðx; sÞ

DbðsÞ
ŷ0ðsÞ

where P6ðx; sÞ ¼ P1ðx; sÞ þ P3ðx; sÞ þ X1P4ðx; sÞ
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4 Consideration of Shear

The main assumption in the development of the tensioned beam
model (Euler–Bernoulli beam) is that under loading, the cross-
sectional area of the beam remains perpendicular to the neutral
axis. However, for beams with smaller length to width ratio, this
assumption may not hold, as the effect of shear is significant. This
is also true for short web spans as discussed in Refs. [2], [5], and
[11]. In this section we develop spatially dependent transfer func-
tions by adding shear to the bending case considered in Sec. 3.
The slope due to shear force may be expressed as

@ys x; tð Þ
@x

¼ nN

AG
(22)

where n is the correction factor and is equal to 1.2 for webs with
rectangular cross-sectional area, A is the web cross section area,
and G is the shear modulus. We will use subscript t to refer to the
total deflection due to combined bending and shear and subscripts
b and s, respectively, for pure bending and pure shear. The ten-
sioned beam governing equation that includes shear may be
obtained by using the force equilibrium in the lateral direction. A
free-body diagram of the web is provided in Fig. 5(a). The shear
force may be expressed as

N xð Þ ¼ T hL �
@yt x; tð Þ
@x

� �
þ N Lð Þ (23)

Taking two consecutive partial derivatives with respect to x of
Eqs. (22) and (23) and combining the resulting two equations
result in the following:

@3ys x; tð Þ
@x3

¼ � nT

AG

@3yt x; tð Þ
@x3

(24)

Further, the shear force due to bending is given by

N xð Þ ¼ �EI
@3yb x; tð Þ
@x3

(25)

Figure 5(b) provides a visualization of the bending and shear
angles, and the resulting slope of the web; note that

@yt=@x ¼ @yb=@xþ @ys=@x. Using the angle relationship, one can
write

N xð Þ ¼ �EI
@3yt x; tð Þ
@x3

1þ nT

AG

	 

(26)

Taking the partial derivative with respect to x and employing
@NðxÞ=@x ¼ �T@2ytðx; tÞ=@x2 (obtained from Eq. (23)), one can
establish the following governing equation for the web that
includes both bending and shear:

@4yt x; tð Þ
@x4

� K2
e

@2yt x; tð Þ
@x2

¼ 0 (27)

where K2
e ¼ T=ðEI½1þ nT=AG�Þ. Equation (27) is similar to the

pure bending case, except that K is replaced by Ke which is related
to K as K2

e ¼ K2=½1þ nT=AG�. Note that if shear is not consid-
ered, we can set n¼ 0 to obtain Ke¼K.

The inclusion of shear changes the normal entry condition
related to the acceleration. The two boundary conditions corre-
sponding to the position and slope on the upstream roller do not
change except for using the total response, yt; these are given by

y 0; tð Þ ¼ y0 tð Þ; @yt 0; tð Þ
@x

¼ h0 tð Þ (28)

The third boundary condition for slope at the downstream roller
does not change also because shear is included in the total slope
and is given by

@yt L; tð Þ
@x

¼ hL tð Þ þ 1

v

@zL tð Þ
@t
� 1

v

@yt L; tð Þ
@t

(29)

To determine the fourth boundary condition, we first have to con-
sider the following relationship for web rotational velocity at the
downstream roller [11]:

@hL tð Þ
@t
¼ @

2yb L; tð Þ
@t@x

þ v
@2yb L; tð Þ
@x2

(30)

Taking the time derivative of Eq. (29), we obtain

@2yt L; tð Þ
@t2

¼ v
@hL tð Þ
@t
� v

@

@t

@yt L; tð Þ
@x

þ @
2zL tð Þ
@t2

(31)

Then, using @yb=@x ¼ @yt=@x� @ys=@x in Eq. (30) and substitut-
ing the result into Eq. (31), we obtain the fourth condition bound-
ary condition as

Fig. 6 Two-span, three-roller systemFig. 5 Effect of shear: (a) free body forces and (b) slope
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@2yt L; tð Þ
@x2

¼ 1

v2

@2yt L; tð Þ
@t2

� @
2zL tð Þ
@t2

� �
þ 1

v

@

@t

@ys L; tð Þ
@x

þ v
@2ys L; tð Þ
@x2

� �
(32)

The previously-mentioned boundary condition for lateral acceleration is in terms of the shear angle. A relationship for shear angle
(@ys=@x) in terms of yt would aid in determining the coefficients of the general solution of the governing equation. To determine such a
relationship, the shear force expressed by Eq. (26) is used in Eq. (22). This results in

@ys x; tð Þ
@x

¼ n

AG
�EI

@3yt x; tð Þ
@x3

1þ nT

AG

	 
 !
(33)

A Hamiltonian method is used for finding such an expression in Ref. [12]. Now, using the definition of K2
e , Eq. (33) may be written as

@ys x; tð Þ
@x

¼ � nT

AGK2
e

@3yt x; tð Þ
@x3

(34)

Thus, the fourth boundary condition for lateral acceleration at the downstream roller may be written as

@2yt L; tð Þ
@x2

¼ 1

v2

@2yt L; tð Þ
@x2

� @
2zL tð Þ
@x2

� �
� nT

vAGK2
e

@

@t

@3yt L; tð Þ
@x3

þ v
@4yt L; tð Þ
@x4

� �
(35)

Now, the governing equation and the boundary conditions are in terms of the total deflection. Applying the Laplace transform as defined
in Eq. (8) to Eq. (27) and the modified boundary conditions that include shear, we obtain

@4ŷt x; sð Þ
@x4

� K2
e

@2ŷt x; sð Þ
@x2

¼ 0 (36)

and

ŷt 0; sð Þ ¼ ŷ0 sð Þ; @ŷt 0; sð Þ
@x

¼ ĥ0 sð Þ; @ŷt L; sð Þ
@x

¼ ĥL sð Þ þ s

v
ẑL sð Þ � s

v
ŷt L; sð Þ

@2ŷt L; sð Þ
@x2

¼ s2

v2
ŷt L; sð Þ � ẑ sð Þ
� �

� nTs

vAGK2
e

@3ŷt L; sð Þ
@x3

� nT

AGK2
e

@4ŷt L; sð Þ
@x4

(37)

The general solution of Eq. (36) is

ŷtðx; sÞ ¼ C1eðsÞsinhðKexÞ þ C2eðsÞcoshðKexÞ þ C3eðsÞxþ C4eðsÞ (38)

The coefficients CieðsÞ are determined by using the boundary conditions (37). Let g1eðxÞ and g2eðxÞ denote the expressions for g1ðxÞ and
g2ðxÞ, respectively, by replacing K with Ke. Using the same approach as in the pure bending case, the total lateral response due to both
bending and shear may be simplified to

ŷ x; sð Þ ¼
~P1 x; sð Þ

D1s sð ÞDs sð Þ
ĥ0 sð Þ þ

~P2 x; sð Þ
Ds sð Þ

ŷ0 sð Þ þ
~P3 x; sð Þ

D1s sð ÞDs sð Þ
ĥL sð Þ þ

~P4 x; sð Þ
D1s sð ÞDs sð Þ

ẑL sð Þ (39)

where

Ds sð Þ ¼ s2 þ bsþ c; D1s sð Þ ¼ csþ 1þ að Þv; a ¼ nT

AG
; c ¼ asinh KeLð Þ

Ke cosh KeLð Þ � 1ð Þ

b ¼ v 1þ að Þg1e Lð Þ þ c
� �

g2e Lð Þ � g3e Lð Þ
; c ¼ v2 1þ að Þ

g2e Lð Þ � g3e Lð Þ

g3e xð Þ ¼ a
sinh KeLð Þ sinh Kexð Þ � Kexð Þ � cosh KeLð Þ cosh Kexð Þ � 1ð Þð Þ

K2
e cosh KLð Þ � 1ð Þ

~P1 x; sð Þ ¼
1

g2e Lð Þ � g3e Lð Þ
� � 	 g3e xð Þg2e Lð Þ � g2e xð Þg3e Lð Þ þ c x g2e Lð Þ � g3e Lð Þ

� �
� L g2e xð Þ � g3e xð Þð Þ

� �� �
s3

þ v 1þ að Þ x� g1e xð Þð Þg2e Lð Þ þ g1e Lð Þ � L
� �

g2e xð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
bending

þx g1e Lð Þc� g3e Lð Þ
� �

� L cg1e xð Þ � g3e xð Þð Þ
 !

þ c xcþ g3e xð Þð Þ
 !

s2

þ v2 1þ að Þ 2xcþ g3e xð Þ � cg1e xð Þ þ 1þ að Þ xg1e Lð Þ � Lg1e xð Þ
� �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

bending

 !
sþ 1þ að Þ2 v3 x� g1e xð Þð Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

bending




(40)
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~P2 x; sð Þ ¼
1

g2e Lð Þ � g3e Lð Þ
� � g2e Lð Þ � g2e xð Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

bending

�g3e Lð Þ þ g3e xð Þ
 !

s2 þ v cþ 1þ að Þ g1e Lð Þ � g1e xð Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
bending

 ! !
s þ v2|{z}

bending

1þ að Þ
" #

(41)

~P3 x; sð Þ ¼
1

g2e Lð Þ � g3e Lð Þ
� � " g2e xð Þg3e Lð Þ � g3e xð Þg2e Lð Þ

� �
s3 þ v 1þ að Þ g2e Lð Þg1e xð Þ � g1e Lð Þg2e xð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

bending

 !
� cg3e xð Þ

 !
s2

þv2 1þ að Þ cg1e xð Þ � g3e xð Þð Þs þ 1þ að Þ2 v3g1e xð Þ|fflfflfflffl{zfflfflfflffl}
bending

# (42)

~P4 x; sð Þ ¼
1

g2e Lð Þ � g3e Lð Þ
� � c g2e xð Þ � g3e xð Þð Þs3 þ v 1þ að Þ g2e xð Þ|fflffl{zfflffl}

bending

�g3e xð Þ þ cg1e xð Þ
 !

s2 þ 1þ að Þ2 v2g1e xð Þ|fflfflfflffl{zfflfflfflffl}
bending

s
2
4

3
5 (43)

In the previously-mentioned definitions for ~Pj; j ¼ 1 : 4, terms
that carry forward from the pure bending case are indicated. Inclu-
sion of shear results in the additional terms in those definitions.
Note that if shear is not considered, then c¼ 0, g3eðxÞ ¼ 0; g1eðxÞ
¼ g1ðxÞ, and g2eðxÞ ¼ g2ðxÞ, and Eq. (39) reduces to Eq. (12)

Fig. 7 Evolution of web lateral position and slope for 4 points along the span for a sinusoidal
roller rotation of h0 5 0:01 sin(3t) of roller R1

Table 2 Parameter values used in numerical simulations [7]

Definition Symbol Value Units

Entry span length L 3.2808 (1) ft (m)
Exit span length L 3.806 (1.16) ft (m)
Integral gain ki 10
Pivoting distance for OPG X1 3.52808 (1) ft (m)
Pivoting distance for RPG X1 2.5833 (0.7874) ft (m)
Proportional gain kp 90
Reference tension T 10 (44.48) lbf (N)
Shear modulus G 0.154 (1.062� 109) Mpsi (Pa)
Transport speed v 500 (2.54) ft/min (m/s)
Web thickness h 0.005 (0.127) in (mm)
Web width W 5.4 (137.16) in (mm)
Wrap angle b 1.553 (89) rad (deg)
Young’s modulus E 0.40466 (2.76� 109) Mpsi (Pa)

Table 3 Simulation scenarios with single span

Figure Parameters

Fig. 7 h0ðtÞ ¼ 0:01 sinð3tÞ rad, y0 ¼ hL ¼ zL ¼ 0

Fig. 8 hLðtÞ ¼ 0:01 sinð3tÞ rad, zLðtÞ ¼ X1hLðtÞ; y0 ¼ h0 ¼ 0
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Fig. 9 Evolution of web lateral position and slope for 4 points along the entry span for a sinu-
soidal disturbance of y0 5 0:002 sin(3t) on R1, with proportional–integral (PI) control of the RPG

Fig. 8 Evolution of web lateral position and slope for 4 points along the span for a sinusoidal
roller rotation of hL 5 0:01 sin(3t); zL 5 X1hL of roller R2
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5 Numerical Simulations

Numerical simulations were conducted with the lateral transfer
functions that include both bending and shear. A three-roller sys-
tem shown in Fig. 6 is considered. The numerical values of the
web and guide parameters used in the simulations are provided in
Table 2 [7]. For the first set of numerical simulations, we consider
the governing equation for the span between rollers R1 and R2
(entry span), and apply different disturbance scenarios provided in
Table 3. Figure 7 provides the evolution of the lateral web posi-
tion and slope in the entry span at four different locations. One
can observe that the web slope changes direction as we move spa-
tially toward roller R2. Figure 8 shows results when the roller R2
is an RPG guide roller which rotates in sinusoidal motion around
a pivot point which is at a distance X1 from R2 in the entry span;
note that this also induces a roller displacement zLðtÞ ¼ X1hLðtÞ.
In essence, this action mimics a combination of pure displacement
and pure rotation at R2. In this case, the web slope is in the same
direction as the lateral motion direction as R2 is directing motion
in the entry span (note that R1 is fixed).

For the second set of numerical simulations, we consider the
following scenario which often comes up in practical situations
and does not have a clear answer in the literature. Does a web
guide completely eliminate propagation of lateral position oscilla-
tions into downstream spans? To address this issue, we consider
the setup shown in Fig. 6 with a controlled remotely pivoted guide
at R2; a PI controller is often used in industry based on measure-
ment of web lateral position on the guide roller R2. Figure 9 pro-
vides the lateral position response for different locations in the
entry span. It is clear that the web guide is able to regulate the

web lateral position, yLðtÞ, to zero. This controller is able to regu-
late lateral position to zero at the guide roller. Further, there is no
propagation of these oscillations into the exit span provided the
exit span is perpendicular to the entry span, i.e., the angle of wrap
on the guide roller is 90 deg. If the wrap angle is 90 deg, the rota-
tion of the guide roller in the plane of the entry span simply twists
the web in the exit span. If the wrap angle is not 90 deg, then the
in-plane rotation of the guide roller is projected as an initial web
slope for the exit span, resulting in twisting and bending of the
web in the exit span.

Figure 10 provides the guide roller angle or control action
(hLðtÞ) to regulate the web lateral position at zero as shown in Fig.
9. When the wrap angle on R2 is b ¼ 89deg, the projection of the
guide roller rotation into the exit span plane is h0R2ðtÞ ¼
hLðtÞcosðbÞ which is provided in Fig. 11; this acts as a disturbance
to the exit span. Figure 12 provides the response of the lateral
position and slope at different locations of the exit span due to this
disturbance. Although the lateral position at the guide roller has
been regulated at zero, both the web lateral position and slope at
subsequent locations of the span are not zero. There is propagation
of lateral oscillations into downstream spans. These typical
numerical simulations illustrate the benefit of the developed spa-
tially dependent transfer functions for understanding lateral
behavior in ideal as well as nonideal situations.

6 Conclusions

In this paper, we have derived spatially dependent transfer
functions for web lateral dynamics. The obvious benefits of such

Fig. 11 Projection of the guide roller rotation into the plane of the exit span;
h0R2(t) 5 (cos b)hL(t) and b is the web wrap angle on the guide roller

Fig. 10 Evolution of guide roller rotation (hL(t)) with PI control in the plane of the entry span
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governing equations are that one can obtain the evolution of lat-
eral position response at any location in the span as well as all
higher-order spatial partial derivatives, such as slope, moment,
shear force, etc. Further, these transfer functions may be used to
control the lateral position and slope at a prescribed location in
the span other than on the roller. In addition, R2R manufacturing
of flexible and printed electronics requires positioning the web
precisely in both lateral and longitudinal directions. Traditional
printing systems have relied solely on longitudinal registration for
printing presses with multiple print units. With the goal of achiev-
ing print registration accuracy within a few microns in R2R print-
ing of electronics, this work is expected to aid in a more precise
analysis of lateral behavior and facilitate the design of model-
based lateral control systems for achieving tight regulation of lat-
eral print registration. In the future, we plan to conduct experi-
ments to validate the proposed models and design and evaluate
model-based controllers.
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Nomenclature

A ¼ cross-sectional area of web
E ¼ modulus of elasticity of web material
fk ¼ defined functions, k ¼ 1; ::; 3
G ¼ shear modulus

glðxÞ ¼ defined functions, l¼ 1, 2, 3
glxðxÞ ¼ first-order spatial derivatives of defined functions

glxxðxÞ ¼ second-order spatial derivatives of defined functions
I ¼ web span moment area of inertia

K ¼ constant parameter, K2 ¼ T=EI
Ke ¼ constant parameter K with shear effect,

K2
e ¼ K2=½1þ nT=AG�

L ¼ web span length

m ¼ mass per unit length
n ¼ correction factor
N ¼ shear force

Pm ¼ numerator polynomial functions in transfer functions,
m ¼ 1; ::; 5

s ¼ Laplace variable
t ¼ time
s ¼ time constant, ¼ L=v
T ¼ web tension
v ¼ web transport velocity

vy ¼ web lateral velocity
x ¼ transport direction distance

X1 ¼ pivoting distance from guide roller
y ¼ web lateral displacement
zi ¼ roller lateral displacement
b ¼ wrap angle
hi ¼ roller angle

hwi ¼ web angle
Lf•g ¼ Laplace transform

~• ¼ shear variable that can be reduced to bending
•̂ðx; sÞ ¼ transformed function

Subscripts

b ¼ bending
i ¼ position in the span, 0 (upstream roller) or L (down-

stream roller)
s ¼ shear
t ¼ total effect, bending, and shear
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