Nurture: Notifying Users at the Right
Time Using Reinforcement Learning

Bo-Jhang Ho Mehmet Koseoglu
University of California, Los University of California, Los
Angeles Angeles

Los Angeles, CA 90095, USA Los Angeles, CA 90095, USA
bojhang@ucla.edu mkoseoglu@ucla.edu

Bharathan Balaji Mani Srivastava

University of California, Los University of California, Los
Angeles Angeles

Los Angeles, CA 90095, USA  Los Angeles, CA 90095, USA
bbalaji@ucla.edu mbs@ucla.edu

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

UbiComp/ISWC’18 Adjunct, October 8-12, 2018, Singapore, Singapore © 2018
Association for Computing Machinery.

ACM ISBN 978-1-4503-5966-5/18/10 $15.00.
https://doi.org/10.1145/3267305.3274107

Abstract

User interaction is an essential part of many mobile devices
such as smartphones and wrist bands. Only by interacting
with the user can these devices deliver services, enable
proper configurations, and learn user preferences. Push
notifications are the primary method used to attract user
attention in modern devices. However, these notifications
can be ineffective and even irritating if they prompt the user
at an inappropriate time. The discontent is exacerbated

by the large number of applications that target limited user
attention. We propose a reinforcement learning-based per-
sonalization technique, called Nurture, which automatically
identifies the appropriate time to send notifications for a
given user context. Through simulations with the crowd-
sourcing platform Amazon Mechanical Turk, we show that
our approach successfully learns user preferences and sig-
nificantly improves the rate of notification responses.
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Figure 1: The proposed
reinforcement learning agent
interacts with the user to learn the
right time to send notifications.
Nurture aims to empower different
applications. In this paper, the user
is simulated by underlying models.

Our project is open sourced:
https://github.com/nesl/
Nurture-UbiTtention18

Introduction

Many mobile devices depend upon human interaction for
numerous functionalities. Crowd-sourcing apps such as
Waze' and Yelp? bank on user input to deliver services;
intervention-based apps such as Apple Watch Activity app®
prompt users to exercise; and apps such as Google Now*,
Medisafe® send useful context-based reminders. User en-
gagement with mobile devices is leveraged to learn prefer-
ences, label activities and configure devices.

The usefulness of mobile devices diminishes significantly

if users do not want to interact with them [9]. For instance,
a medical therapy may not work if the patients do not read
the intervention messages. Users may not have the time to
react if they ignore warnings and alerts preceding a natu-
ral disaster. Notifications can also lead to negative effects
if they distract the user at the wrong time. For example, in-
teracting with a handheld device while driving increases the
crash risk 3.6 times [2].

Most mobile applications currently employ a simplistic in-
teraction model that assumes the user is always available
to engage with the device. In reality, user attention is a lim-
ited cognitive resource [5]. Users get over 60 notifications
a day [12], so it is natural to skip notifications when feel-
ing overwhelmed and to dismiss all communications when
disturbances are undesirable®. Nevertheless, there is no
systematic way to infer user availability yet, and identifying
the ideal time for human interaction remains a challenging
problem as user engagement depends on a wide range of

"Waze - https://www.waze.com/

2Yelp - https:/www.yelp.com/

3Use the Activity app on your Apple Watch -
https://support.apple.com/en-us/HT204517

4Google Now - https://en.wikipedia.org/wiki/Google_Now

Shttps://medisafe.com/

8https://www.wired.com/story/turn-off-your-push-notifications/

variables such as context [10], environment [16], hardware
status [11], and content of messages [8].

Here we approach notification timing as a reinforcement
learning (RL) problem, and propose a notification time se-
lection technique, Nurture, which learns user preferences
through interacting with users over time without any prior
knowledge. RL has the following advantages over super-
vised learning methods: (1) RL is an online learning pro-
cess and does not require a separate data collection phase
for model training. (2) RL implicitly tracks the state changes
of the user to maximize long term rewards. (3) It proactively
explores different actions when unseen observations occur.

Figure 1 illustrates the learning flow. Nurture obtains the
user state via sensors, decides if it should notify the user,
and observes user reaction after sending the notification.
By considering accepted notifications as positive signals
and dismissed notifications as negative signals, the agent
learns the appropriate times to notify the user. We evalu-
ated Nurture with both a synthetic and an online interactive
crowdsourcing-based simulation. Our simulation results
show that reinforcement learning improves user response
rate compared to supervised learning methods.

Related Work

For mobile applications, push notifications are a convenient
way to interact with users. However, it has been shown that
push notifications can reduce work performance and in-
crease stress especially if they arrive at inappropriate times.
Hence, there is a growing interest on how to make notifica-
tion systems more intelligent [7].

Prior work on identifying the right moment for notifying
users can be categorized to two types:

(i) Show notifications when the user is transitioning
between activities. An activity transition usually indicates


https://github.com/nesl/Nurture-UbiTtention18
https://github.com/nesl/Nurture-UbiTtention18

RL Agent: Our system (i.e.,
Nurture)

Environment: The edge
device user

State: User context (e.g.,
time, location, activity)

Action: Send a notification
or remain silent

Reward: User’s reaction of
handling notifications

Figure 2: The entities in our
reinforcement learning setup.

Category Values

Time of the day morning, afternoon, evening

Day of the week weekday, weekend
Location home, work, others

Motion activity stationary, walking, running, driving

Last notification within / beyond 1 hour

Table 1: The state categorical
values. Each state is presented by
the combination of these five
categories, so there are 144
different states in total.

that the former activity is completed, hence, it is a good
time to interrupt users before they start another task. Oa-
sis [4] exploits breakpoints between computer tasks to in-
terrupt users. Attelia [10] detects physical activity transitions
using smartphones and wristbands, and identifies which
transitions indicate user availability. The downside of this
approach is that the changes in sensor readings do not al-
ways reflect activity transitions, hence, high false positive
rate becomes a concern.

(ii) Infer user interruptibility from context. Sarker et

al. [13] show that location, activity type, stress, time, and
day of the week affect user participation in medical inter-
ventions. Goyal et al. [3] show that users are likely to pay
attention to the notifications at times of increasing arousal
detected from the electro-dermal activity. Aminikhanghabhi
et al. [1] proposed a combined activity recognition and intel-
ligent notification framework based on supervised learning
which improves notification response rate. PrefMiner [6]
correlates the phone context and notification responses,
and makes recommendations to users for managing their
notifications using learned rules.

Prior works have primarily focused on supervised learning
and manual labeling to understand the relationship between
the user state and notification response. Here we approach
the problem as a reinforcement learning problem where the
agent learns by interacting with the user and observing the
context of the interaction.

Design and Implementation

Problem Setup

In reinforcement learning (RL), an agent interacts with an
environment to achieve certain goals. At each step, the
environment is in a certain state and the agent takes an
action. The environment reacts to the action by transitioning

into another state and returns a reward to the agent. The
strategy with which the agent selects its actions is called
its policy. The RL agent tries to find a good policy by trying
different actions which maximizes the cumulative reward.

Figure 2 summarizes the mapping between our setup and
RL terminology. Nurture is the RL agent running in a mo-
bile device, and the environment is the user. Periodically
(e.g. 10 minutes), Nurture senses the user state based on
sensor readings. The user context we have considered
are time, location, physical activity, and last notification us-
age, summarized in Table 1. Nurture performs one of the
following actions - remain silent or send a notification to
the user. The reward is based on the reaction of the user:
a positive reward is received if the user responds to the no-
tification, a negative reward is received if the notification is
dismissed, and zero reward is received if the user ignores
it. We consider a relatively small state space as a proof of
concept. However, the learning agent can be scaled up by
introducing more dimensions, e.g., notification type.

Contextual Bandits

Bandits are a special case of RL where the agent does not
keep track of sequence of states visited. In a bandit prob-
lem, the agent can choose from a set of actions with un-
known rewards. Similar to RL, the agent maximizes cumu-
lative reward over successive iterations. The bandit agent
explores the rewards associated with each action (i.e, arm)
and aims to learn the best action. Contextual bandit is a
type of bandit where the agent receives observations as
context, and the context is used to learn the state in which
the environment is in. In our setup, the two arms of the ban-
dit are (i) to send a notification, or (ii) to remain silent. The
context is same as the state listed above. The reward from
the first arm depends on the response from the user and
the second arm always gets zero rewards.



Sample survey question:
Itis 10:30 AM on Saturday.
You're sitting in a shopping
mall. You responded to a
notification 1 hours 15 min-
utes ago. Now you receive a
notification from our app to
complete a 10-second task.
What action will you take?

Available responses:

a) Dismiss this notification

b) Leave the notification and
answer it later

c) Take ten seconds to
respond the notification

Figure 3: A sample of survey
question and available response
choices.

Attributes/Routings || User1 User2 User3 Userd

Staying workplace 2.81 2.96 9.74 3.89
Staying outdoor 2.76 7.29 3.80 6.96

Walking+running 1.32 0.54 1.57 1.34
Driving 0.37 1.20 0.43 2.05

Table 2: Statistics for four users,
showing the number of hours each
user spends at each location and
activity

Reinforcement Learning

We also consider our problem as a Markov Decision Pro-
cess (MDP) which we solve using Q-learning. Different from
the contextual bandit, the Q-learning implicitly learns transi-
tions between states.

The expected long term cumulative reward for taking an
action from a given state under a specific policy is referred
to as Q-value. In Q-learning [15], the agent updates the Q-
value based on rewards received as it visits different states
using a random exploration policy. Over time, the Q-value
converges to its optimum value, and we get the policy by
picking the actions with the highest Q-value at each state.

Experimental Setup

We conducted a simulation-based experiment using crowd-
sourced data as a proof-of-concept study. We do not claim
that the crowdsourced data can represent real user data.
Instead, we consider the crowdsourced data as a basis to
compare our proposed algorithms against supervised learn-
ing algorithms. Our experimental procedure is approved by
UCLA IRB. The simulation process is depicted in Figure 1.
In our simulator, we imitate a user in her daily routine. The
mobile application senses the user context through her mo-
bile phone and wearables, and Nurture decides whether

to send a notification or to remain silent. Once our agent
sends a notification, the simulated user can respond to the
notification, explicitly dismiss the notification, or perform no
action to skip it. Nurture then obtains the reward according
to the user’s reaction and adjusts the strategy.

A simulated user is driven by a behavior model and a re-
sponse model. The behavior model reflects the daily rou-
tine of the user, i.e., the location and the activity of the user
during a week. We derived the behavior model from the Ex-
traSensory dataset [14], which includes daily traces of 60
participants for improving context recognition in-the-wild.

The dataset consists of 29 locations and 15 activity con-
textual labels, and the participants marked the applicable
labels at a granularity of one minute. We group these la-
bels to fit our simulation settings and pick four user traces
which have distinct lifestyles. Important statistics regarding
the weekly routines of these users are summarized in Ta-
ble 2. The response model simulates how a user responds
to a notification at a given context, and the user context is
determined by the behavior model.

Each question in the mTurk survey describes a scenario
that specifies the time of the day, day of the week, location
and activity of the user, and when the last notification was
responded to. We provide a sample survey question and
the possible response choices in Figure 3.

We performed two different types of simulations to imitate
human responses: a synthetic simulation and an online
interactive simulation. In the synthetic simulation, we de-
ployed a survey on the Amazon Mechanical Turk” (MTurk)
prior to running Nurture to collect data on how users will
respond to notifications given different context. The user
response is determined by looking up the survey response
describing the same situation.

In the online interactive simulation, we do not collect data a
priori. Nurture interactively sends notifications in the form
of an MTurk survey to model a “pseudo-user”. Depending
on the responses collected in an iteration, Nurture updates
the notification scheduling policy either using the contextual
bandit or the Q-learning algorithm. The updated policy is
used to generate a new mTurk survey so as to maximize
the likelihood of positive response from the workers. We
create two pseudo-user profiles where each user has a dif-
ferent daily routine, and we collect each of their responses

7 Amazon Mechanical Turk - https:/www.mturk.com/



-

o
©

Response rate
< °
o

= %
ra N ESa Baseline (0.77)

o
g
.

<

- e- Userl - User3
A\d —s— User2  —w=- User4

o
o

6 8 10
Time (week)

(a) Response rate of contextual
bandit

o
©

Response rate
°
®

o
<

-e- Userl & User3
—=— User2 —+- User4

.6’ Baseline (0.77)

o

2 4 6 8 10
Time (week)

(b) Response rate of Q-learning

ST e- Userl 4 User3

7 —=— User2 —w- User4

s
S

w
)

~
S

Daily notifications

-
S

6
Time (week)

(¢) Number of daily notifications
of contextual bandit

-e- Userl - User3
—s— User2 —=- Userd

IS
S

w
&

N
S

Aok A Py ke

= &
%-_\._ Baseline (17.8) T

=
5

Daily notifications

2 a 6 8 10
Time (week)

(d) Number of daily notifications
of Q-learning

Figure 4: The performance of
contextual bandit and Q-learning
algorithms over weeks, compared
with SVM as our baseline.

from a different region, e.g., the U.S. vs India.

Evaluation

We first performed synthetic simulation in which the human
responses are approximated. This gives us the advantage
of repeatedly and systematically iterating over our algo-
rithms. We then tested our algorithm on online interactive
simulation where the user responses are collected in the
wild over a crowdsourced platform. This gives us insight
on whether our agents can adapt to user preferences over
time.

Synthetic Simulation Results

We collected 3,019 survey responses from MTurk across
123 workers. 44.1% notifications were accepted, 26.6%
were dismissed, and the rest were marked as ‘answer it
later’.

We use the response rate and notification volume as per-
formance metrics. Response rate is defined as the fraction
of accepted notifications over notifications sent without con-
sidering those marked as skipped. High response rate im-
plies our agent can accurately identify when to approach
users. However, an agent may increase the response rate
by avoiding interaction with users. Thus, we use number of
notifications to balance this effect. A well-behaved agent
should keep a high response rate while maintain a high no-
tification volume.

We consider the following two supervised algorithms as our
baseline: Support Vector Machine (SVM) with Radial Ba-
sis Function kernel, and 2-layer Neural Network (NN) with
32 neurons in each layer. The models apply one-hot en-
coding to represent contextual user data (i.e. the user state
shown in Table 1) as a feature vector, and an anticipated
action (i.e. user response) as the predicted label. We cre-
ated training and testing schedules that last 4 weeks and

6 weeks, respectively. During the training phase, each al-
gorithm randomly sends 15 notifications a day, and obtains
the responses from the simulated user. During the testing
phase, both algorithms predict an action every 10 minutes
to determine whether to send a notification or not. We apply
the baseline algorithms to the four users weekly routines

as described in Expermental Setup Section. SVM and NN
achieve a mean response rate of 77.4% and 77.1% each,
and send an average of 17.8 and 6.7 notifications per day,
respectively. We choose SVM as our baseline for the rest of
the paper.

Figure 4 shows the performance of Nurture. We apply con-
textual bandit and Q-learning algorithms on the four differ-
ent weekly routings. We found that these two algorithms
take opposite strategies: Contextual bandit starts conser-
vatively, whereas Q-learning sends more notifications in
the first two weeks. Both algorithms are able to achieve
higher response rate over time, and converge at 89.6% and
93.8% response rate, respectively. Moreover, both algo-
rithms demonstrate that they can achieve better response
rate compared against the baseline in less than 4 weeks,
which is the length of the training period of our baseline al-
gorithms. Q-learning is superior because it considers the
state transition, whereas contextual bandit does not con-
sider pursuing future rewards.

It should be noted that Q-learning converged earlier than
the end of the training periods of the benchmark supervised
learning algorithms and achieved better performance. Since
random notifications are sent during the training period of
the supervised learning algorithms, the user experience

is subpar during training. On the other hand, Q-learning
exploits what it had learn while it continues to explore the
state space. Hence the user experience improves as soon
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as the Q-learning algorithm sufficiently learns the user pref-
erences.

Moreover, the duration of the training period of supervised
learning benchmarks has to be decided a priori for all users.
However, a global selection for all users may not be opti-
mal for each user. On the other hand, online learning ap-
proaches adapts for each user.

Online Interactive Simulation Results

To demonstrate Nurture can interact with real users and
adapt to their preferences, we update our model online
based on the crowdsourced responses from MTurk. We
choose Q-learning algorithm because it performed better
in the offline case. We started two simulations which obtain
notifications from the U.S. and India. We removed the re-
sponses from abusive workers that take unreasonably short
amount of time to finish the survey or only enter a single
option. At the end, we recruited 223 workers from the U.S.
and 67 workers from India that collectively completed this
experiment.

The simulation result is shown in Figure 5. In the first two
weeks, Q-learning aggressively sends notifications to ex-
plore user preferences under different contexts. The de-
velopment of the two simulations deviate there onward. In
the simulation of India, since Nurture cannot find the oppor-
tune moments to interrupt users, it becomes conservative
but continues to learn, and finally improves the response
rate after week 6. In contrast, in the simulation of the U.S.,
Nurture converged to a high response rate on week 3, and
reaches out to the user more often. The agent then realizes
the user starts to show disagreement with the notification
schedule, and adjusts the strategy to carefully choose when
to approach the user. As we can see, the response rate
increases in the end after learning from its mistakes.

Limitations and Future Work

In our experiments, we have used crowdsourced data to
emulate user response to approximate what may happen in
a real deployment. Although we have only considered user
context that can be inferred from mobile phone sensors, our
proposal can make use of other sensing modalities. For ex-
ample, acoustic sensors such as Alexa can be a rich chan-
nel to infer user emotion, or electro-dermal activity from a
watch can be used to detect arousal or stress [3], which
are closely related to user availability. Additionally, instead
of treating all notifications uniformly, Nurture can consider
the importance of the message by manipulating the reward
associated with each notification, e.g., a large reward for a
high priority message. Building upon these preliminary ex-
periments, we plan to do a human subject study to evaluate
the performance of the proposed algorithms.

Conclusion

We have designed a reinforcement learning based algo-
rithm to improve notification response rate, which in turn
increases the quality of interactions from mobile devices
and reduces disturbance. Our algorithm considers user
context to optimize user engagement via push notifications.
We have conducted experiments using crowdsourced data
to evaluate the performance of our algorithm. The experi-
mental results show that our algorithm improves the notifi-
cation response rate significantly with respect to a super-
vised learning benchmark, while balancing the amount of
notifications. Therefore, our proposed approach improves
the quality of interaction between the user and the applica-
tions running on mobile devices by providing more timely
notifications.
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