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Abstract
Traditional machine learning approaches for recognizing
modes of transportation rely heavily on hand-crafted feature
extraction methods which require domain knowledge. So,
we propose a hybrid deep learning model: Deep Convolu-
tional Bidirectional-LSTM (DCBL) which combines convolu-
tional and bidirectional LSTM layers and is trained directly
on raw sensor data to predict the transportation modes.
We compare our model to the traditional machine learn-
ing approaches of training Support Vector Machines and
Multilayer Perceptron models on extracted features. In our
experiments, DCBL performs better than the feature selec-
tion methods in terms of accuracy and simplifies the data
processing pipeline. The models are trained on the Sussex-
Huawei Locomotion-Transportation (SHL) dataset. The sub-
mission of our team, Vahan, to SHL recognition challenge
uses an ensemble of DCBL models trained on raw data us-
ing the different combination of sensors and window sizes
and achieved an F1-score of 0.96 on our test data.

Author Keywords
Transportation Modes Classification; Machine Learning;
Deep Learning; Mobile Sensing
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els]: Neural network; 1.5.4 [Applications]: Transportation
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modes

Introduction
The rise of smartphone’s sensing capabilities has enabled
complex activity recognition applications like fitness track-
ing [24], user activity recognition [30] and transportation
modes prediction [23, 29, 9, 15, 8]. Prediction of trans-
portation modes helps to understand the user mobility pat-
terns [29, 33] and has applications including travel time re-
duction, traffic planning, targeted advertisements, etc.

Multiple machine learning approaches to predict transporta-
tion modes have been tried in the past. To name a few,
traditional methods like Support Vector Machines (SVM),
Decision Tree, Random Forest, K-Nearest Neighbor, Naive
Bayesian and Multilayer Perceptron (MLP) are used by re-
searchers [14, 9, 34, 26, 8] on hand-crafted features ex-
tracted from the raw data. Yanyun et al. [31] use Convo-
lutional Neural Networks (CNN) for transportation modes
prediction by using statistical features as input. The accu-
racy reported depends on the method, complexity of the
classification task and dataset used.

However, these approaches require careful feature selec-
tion and domain knowledge. Feature selection also has
a trade-off between using a highly specific discriminative
feature set and a more generic less discriminative feature
set [4]. To avoid feature selection, modern deep learn-
ing techniques like CNN [32, 10], Deep Recurrent Neural
Networks [18], ConvLSTM [21, 20] are used for activity
recognition which directly takes raw data as input. Wang
et al. [27] present a survey of deep learning based sensor-
based activity recognition methods. Song et al. proposes
DeepTransport [25] that applies deep learning to model hu-
man mobility and transportation modes using GPS (Global
Positioning System) traces.

Inspired by the recent success of deep learning for activ-
ity recognition, our team, Vahan, proposes a deep learning
model: Deep Convolutional Bidirectional LSTM (DCBL) to
predict the transportation modes using raw sensor data as
input. We use the SHL dataset [12] to classify the user’s
locomotion and transportation modes. We compare our
model with the traditional machine learning approaches of
SVM and MLP using the feature extracted from the data.
We consider different window sizes for the data and ex-
tract multiple features both in time and frequency domain
to train SVM and MLP classifiers. Our experiments show
that DCBL performs better than the traditional approach
using features, and it requires no feature selection or do-
main knowledge thereby making the pipeline for training
and predictions much simpler. Finally, to make the test pre-
dictions for SHL recognition challenge, we use an ensemble
of DCBL classifiers. We train seven different DCBL classi-
fiers on raw data using the different combination of sensors
and window sizes and ensemble them to get F1-score of
0.96 on our test dataset.

SHL Dataset Description
We use SHL dataset [12] which includes sensor data recorded
by a smartphone, Huawei Mate 9 [11]. A single participant
collected data with the phone worn inside the front right
pocket with no fixed orientation over a period of four months
using an Android application called DataLogger [6]. Along
with the smartphone, a body-worn camera captured photos
every 30 seconds to label the data. The dataset has seven
sensors: accelerometer, gyroscope, magnetometer, linear
acceleration, gravity, orientation (quaternions), and ambient
pressure. It consists of 271 hours of training data, 95 hours
of test data from eight modes of locomotion and transporta-
tion activities: Car, Bus, Train, Subway, Walk, Run, Bike,
and Still. The samples were split into 62 days for training
and 20 days for testing. After the split, the data were seg-
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mented into samples of 1-minute non-overlapping sliding
window and permuted randomly. Each sample has 6000
data points. The distribution of class labels for all the data
samples is shown in Figure 1.

Window Size SVM MLP

3s 0.783 0.776

5s 0.755 0.761

6s 0.795 0.777

8s 0.764 0.734

10s 0.783 0.749

Table 1: F1-scores for different
window sizes using 1000 data
samples. Support Vector Machine
(SVM) and Multilayer Perceptron
(MLP) achieve the best F1-score
when the window size is 6 second.
The numbers reported are the
average of 5 experiments.

Figure 1: Distribution of labels in the SHL dataset. X-axis
represents 8 different types of transportation modes. Y-axis
represents the number of data points in each transportation mode.

Procedure and Workflow
Data Pre-processing:
The data samples (16310 samples) from the training dataset
of the challenge are split into train, validation and test set
in the ratio of 75:10:15. This split is used in both models
on extracted features (SVM and MLP) and deep learning
models on raw data (DCBL). We use the validation set to
explore the different window sizes and to tune the hyper
parameters of our models. We split the 1-minute window
samples into smaller windows to get input sequences. In
our evaluation, we try different window sizes and different
overlaps across the windows while training our models.
The input sequences are fed directly as input to the DCBL

model. To evaluate the traditional approach we extract a set
of features from input sequences and use them as input to
train the SVM and MLP classifiers.

Evaluation Metric:
F1-Score: We use F1-score as our evaluation metric. The
F1-score can be interpreted as a weighted average of preci-
sion and recall, where an F1-score reaches its best value at
1 and worst at 0. The calculation of F1-score is presented
next in Equations 1 - 5.

true positive = tp, true negative = tn (1)

false positive = fp, false negative = fn (2)

precision =
tp

tp+ fp
, recall =

tp

tp+ fn
(3)

accuracy =
tp+ tn

tp+ tn+ fp+ fn
(4)

F1− score = 2 ∗ precision ∗ recall
precision+ recall

(5)

Implementation:
The entire code is developed using Python, Sklearn [22],
and Keras [5] with Tensorflow backend [1]. We use the
server with 60GB RAM, a single 12 GB GeForce GTX TI-
TAN X GPU and 12 cores each clocked at 3GHz. In the
next section, we discuss the details of the feature extraction
and training of SVM and MLP classifiers. The details of our
DCBL model are presented in the section following that.
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Time Domain Frequency
Domain

Maximum Minimum Mean Energy
Median Kurtosis Skewness Entropy
Absolute
Area

Absolute
Mean

Coefficient
of Variation

Mean
Frequency

Interquartile
Range

Standard
Deviation

Root Mean
Square

Band
Power

Signal
Magnitude

Mean
Crossing
Rate

Mean
Absolute
Deviation

Domain
Frequency
Ratio

Range Percentiles Variance

Table 2: List of features extracted on the raw data. The feature set
contains statistical values from time domain and frequency domain
signal analysis.

Layers No. of Units Act

Den 1-2 256 relu

Den 3-4 128 relu

Den 5-12 64 relu

Den 13-20 32 relu

Den 21 8 softmax

Table 3: Multilayer perceptron
(MLP) Model Architecture. Den 1-2
refers to the dense layer 1 and
dense layer 2 both having 256
output nodes. Act refers to the
activation function. relu and
softmax are the activation
functions. No. of Units refers to the
number of output nodes.

Models based on Feature extraction
Feature Extraction:
We split each 1-minute data sample into smaller windows
to generate input sequences. For each input sequence, the
list of features in Table 2 is extracted from the raw data.
These features are selected based on the prior work done
by Bao et al. [3], Fang et al. [9] and Kwapisz et al. [16]. We
compute 18 time domain features and 5 frequency domain
features. The frequency domain features are based on prior
work by Erdacs et al. [7]. We extract the feature values from
each axis of sensors separately. Except for pressure, three
axes (x, y, z) from accelerometer, gyroscope, magnetome-
ter, linear acceleration, and gravity, and four axes (x, y, z, w)
from orientation sum up to 20 sensor streams. In total, we
have 720 features of all sensors within a sample.

From the previous studies of Banos at el [2], we generate
input sequence using different window sizes to extract fea-
tures and then normalize features with zero mean and unit

standard deviation. Before training the SVM, we apply Prin-
cipal Component Analysis(PCA) to reduce the dimensional-
ity to 50. MLP classifier uses all the 720 features as input.

Classifiers trained using the features: SVM and MLP
We consider a small dataset of 1000 1-minute samples out
of total 16310 1-minute samples to experiment with different
window sizes to generate input sequences. The evaluation
of classifiers on 1000 1-minute samples is used to deter-
mine the best window size and hyper parameter values.
Table 1 shows F1-score of SVM and MLP trained models
at different non-overlapping window sizes: 3, 5, 6, 8, and
10 seconds. SVM performs the best with 6-second window.
We use GridSearchCV function from sklearn to optimize the
C and gamma hyper parameters of SVM.

In addition to SVM classifiers, we also train MLP classifiers
using the features extracted from 1000 samples. Similar
to our approach to SVM classifiers, we train MLP classi-
fiers with features from 3-second, 5-second, 6-second,
8-second, and 10-second non-overlapping windows. The
architecture of the MLP classifier used by us is shown in
Table 3. It has a total of 21 dense layers along with dropout
layers. The architecture used here is generally adapted into
many wide range of application by changing the number of
layers and size of output nodes. We initially experimented
with different architectures before picking this one. Table 3
only shows layers having trainable parameters and dropout
layers are not shown.

Model on Raw Sensor Data
There are a couple of limitations to the traditional machine
learning approach. First, it requires hand-crafted feature
generation as seen from the previous section. One has to
first generate time-domain and frequency-domain statis-
tics for each training window and hence there is a question
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of which feature has to be generated. This is usually de-
cided by experiments and experience and requires a lot of
domain-specific expertise. Second, these traditional algo-
rithms do not usually generalize. The accuracy of common
algorithms tends to drop when we don’t take into account
the change mobile phone deployment location on human
body (possible locations: hand, left and right pockets, etc.)
or the orientation of the device once placed (the sensors
axes change direction as well). Hence, we use deep learn-
ing models to make our activity predictions as these models
do not require the extraction of features [21] from the sen-
sor values and also generalize better when compared to the
classical machine learning approaches [19, 17].

Building Blocks of our Model
Convolutional Layer (one dimensional): It is a biologically-
inspired variant of fully connected layer which is designed
to use minimal amounts of preprocessing. Convolutional
layers exploit spatially-local correlation by enforcing a local
connectivity pattern between neurons of adjacent layers.
The main operations in Convolution layers are Convolution,
Activation(ReLU), Batch normalization and Pooling or Sub
Sampling.

Long Short-Term Memory (LSTM) layer: It is a type of Re-
current Neural Network which takes current inputs and re-
members what it has perceived previously in time. A LSTM
layer has a chain-like structure of repeating units and each
unit is composed of a cell, an input gate, an output gate
and a forget gate working together. It is well-suited to clas-
sify, process, and predict time series with time lags of un-
known size and duration between important events. Be-
cause LSTMs can remember values over arbitrary intervals,
they usually have an advantage over alternative RNNs, Hid-
den Markov models, and other sequence learning methods
in numerous applications.

Bi-Directional LSTM: It has two LSTM layers operating in
parallel. The input to the first layer is provided as-is and
the input to the second layer is a reversed copy of the input
sequence. This helps to preserve information from both
past and the future by combining the hidden states of these
two layers.

Model Ensemble by Majority Voting: Ensemble is the art
of combining diverse set of learners (individual models) to-
gether to improve the stability and predictive power of the
model or reduce the likelihood of an unfortunate selection
of a poor one. The aggregate opinion of multiple models
is less noisy than an individual model as ensembling re-
duces generalization error. The ensembled models usually
have at least one of the following: difference in population,
difference in modeling technique, difference in hypothesis
or difference in the initial seed. In majority voting based
ensemble, individual classifiers are combined by taking a
simple majority vote of their decisions in the end. For any
given instance, the class chosen by the most number of
classifiers is the ensemble decision.

Deep Convolutional Bi-Directional LSTM (DCBL)
Using the building blocks we designed a hybrid model:
Deep Convolutional BiDirectional-LSTM (DCBL). This model
is a deep learning framework composed of Convolutional
layers and Bidirectional LSTM recurrent layers, that is ca-
pable of automatically learning feature representations and
modeling the temporal dependencies between their acti-
vation. Table 4 shows the architecture of the DCBL model.
The convolutional layers act as feature extractors and pro-
vide abstract representations of the input data in feature
maps. The recurrent layers model the temporal dynam-
ics of the activation of the feature maps. Our model con-
sists of three Convolutional layers followed by a single Bi-
Directional LSTM layer. The convolution layers are followed

1610



by batch normalization and maxpooling layers to help in
faster convergence. The final layer is a dense layer with
softmax activation which gives the probability distribution
of the different classes. We also incorporated model en-
sembling, which is another powerful technique, to further
increase the accuracy of our predictions. So we train seven
different models with the same DCBL architecture but with
differences in the training data and implement a simple ma-
jority voting based ensemble to make the final predictions.
The differences in the seven DCBL models used in the en-
semble are explained in Table 5.

Each network is trained for 50 epochs with a batch size of
512. We try different regularization techniques (dropout, L2-
norm) and optimizers and finally decide to use 30 percent
dropout and adam optimizer. The first three models, which
use a window size of 10-second without overlap, yield three
transport mode detections every 30 seconds. The next four
models, which use a window size of 5-second with fifty per-
cent overlap, give 23 transport mode detections every 30
seconds. These are aggregated into a per-30-second trans-
port label and then the final labels are assigned based on
majority voting.

Results
Models on Extracted Features: The best F1-score for MLP
classifier and SVM is for 6-second window as shown in Ta-
ble1. We choose the 6-second window to extract features
from the entire SHL dataset and train MLP and SVM clas-
sifiers which achieves an average F1-score of 0.933 and
0.873 respectively on our test set as shown in Table 6.

Layers No.ofUnits Size Stride Activation

Conv1 32 (1,5) (1,1) relu

MaxPool (1,2) (1,2)

Conv2 64 (1,3) (1,1) relu

MaxPool (1,2) (1,2)

Conv3 128 (1,3) (1,1) relu

BiD-Lstm 64

Dense 8 softmax

Table 4: Deep Convolutional and Bidirectional-LSTM (DCBL)
Model Architecture (ignoring batch normalization and dropout
layers)

Models on Raw Sensor data: We compare and evaluate
our DCBL model with other deep learning models [13] like
CNN [32], LSTM, MLP and ConvLSTM [21] which oper-
ate on raw sensor data and find that our model performs
significantly better than the other existing models. Table 6
summarizes the results of using the vanilla deep learning
models and DCBL on raw sensor data.

Table 5 reports the final performance achieved by an en-
semble of DCBL models and also lists the performance
of each individual model in the ensemble. The confusion
matrix of an ensemble of 7 DCBL models is shown in Fig-
ure 2. We can see clearly from the confusion matrix that
our model has no trouble in distinguishing six of the eight
categories but struggles slightly when it has to distinguish
between train and subway. We believe this is because train
and subway have similar sensor patterns and can be mit-
igated if it’s possible to use location information such as
GPS while making the predictions.
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S.No Sensor data used in training Window size Overlap F1-Score
1 Linear Acceleration, Gravity, Orientation, Pressure 10 sec - 0.923
2 Accelerometer, Gyroscope, Magnetometer 10 sec - 0.891
3 All Sensors 10 sec - 0.925
4 Linear Acceleration, Gravity, Orientation, Pressure 5 sec 2.5 sec 0.925
5 Accelerometer, Gyroscope, Magnetometer 5 sec 2.5 sec 0.915
6 All Sensors 5 sec 2.5 sec 0.935
7 All (Model with Timedistributed Dense layer) 5 sec 2.5 sec 0.942

Ensembled Model 0.964

Table 5: This table shows the details of seven Deep Convolutional and Bidirectional-LSTM (DCBL) models which are trained using the different
input of sensors and window sizes. The first 3 model windows have no overlap. The last 4 model windows have an overlap of 2.5 sec. For the
ensembled model, the individual classifiers are combined by taking a simple majority vote of their decisions.

Approach Model Window Size F1 Score

On Extracted Features
SVM 6 sec 0.873
MLP 6 sec 0.933

On Raw Sensor Data

CNN 5 sec 0.901
MLP 5 sec 0.702

LSTM 5 sec 0.662
ConvLSTM 5 sec 0.930

DCBL 5 sec 0.942
Ensembled DCBL 30 sec 0.964

Table 6: The F1-scores of individual models on the entire SHL
dataset are compared in this table. The numbers reported are an
average of five experiments.

Figure 2: The normalized confusion matrix of the final ensembled
Deep Convolutional Bidirectional LSTM
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Conclusion
In this paper, we presented our approach to predict the
modes of transportation using the SHL dataset. We com-
pared the traditional approach of feature extraction to train
the classifier with our modern deep learning method: Deep
Convolutional Bidirectional LSTM (DCBL), of using the raw
data directly as input. We show that DCBL performs better
than the traditional feature extraction methods. Also using
DCBL simplifies the processing pipeline and does not re-
quire tedious hand-crafted feature selection process. The
recognition result for the testing dataset will be presented in
the summary paper of the challenge [28].
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