2019 IEEE 35th International Conference on Data Engineering (ICDE)

Fine-Grained Provenance for Matching & ETL

Nan Zheng
University of Pennsylvania
nanzheng @seas.upenn.edu

Abstract—Data provenance tools capture the steps used to
produce analyses. However, scientists must choose among work-
flow provenance systems, which allow arbitrary code but only
track provenance at the granularity of files; provenance APIs,
which provide tuple-level provenance, but incur overhead in
all computations; and database provenance tools, which track
tuple-level provenance through relational operators and support
optimization, but support a limited subset of data science tasks.
None of these solutions are well suited for tracing errors in-
troduced during common ETL, record alignment, and matching
tasks — for data types such as strings, images, etc. Scientists
need new capabilities to identify the sources of errors, find why
different code versions produce different results, and identify
which parameter values affect output. We propose PROVision, a
provenance-driven troubleshooting tool that supports ETL and
matching computations and traces extraction of content within
data objects. PROVision extends database-style provenance tech-
niques to capture equivalences, support optimizations, and enable
selective evaluation. We formalize our extensions, implement
them in the PROVision system, and validate their effectiveness
and scalability for common ETL and matching tasks.

[. INTRODUCTION

Data science’s need for rigor, consistency, and reproducibil-
ity has spurred the development of tools for capturing data
provenance. Today, there are three “families” of provenance
techniques [7], each making different trade-offs. Workflow
provenance [12], [21], [23] techniques handle complex work-
flows consisting of arbitrary “black box” modules. Yet they
only capture coarse-grained (file-process-file) relationships,
which limits their ability to “explain” specific outputs. Prove-
nance API techniques [28] allow programmers to manually
instrument code with API calls, thus revealing fine-grained
tuple-to-tuple provenance. However, such APIs impose over-
head over all computations, and they produce provenance that
depends on the order of evaluation of operations. Database-
style techniques [2], [7], [11], [18] leverage and extend the
provenance semiring model to capture provenance through
standard relational operators. Here, (bag-)equivalent query
expressions, as produced by a query optimizer, yield equivalent
provenance. A variety of middleware [11], [18] and custom
query-engine-based [28] solutions have been developed, as
have extensions to the relational aspects of Hadoop, Pig, and
Spark [1], [16], [17], [20].

A major source of irregularity in data science (encountered
in our collaborations with biologists) occurs in information
extraction, matching, ranking, and ETL workflows, where data
(or features) are pulled from files and objects, records are
aligned or mapped against a reference dataset, and results are

Abdussalam Alawini
University of Illinois, Urbana-Champaign
alawini @illinois.edu

Zachary G. Ives
University of Pennsylvania
zives @cis.upenn.edu

used for tasks such as OLAP, machine learning, and data visu-
alization. This may involve commercial or open-source ETL
tools; dataframe operations in Python or R; or custom scripts
and binaries. We develop techniques applicable to all of these
settings; our implementation targets scripts and code. Some-
times extraction is done incorrectly, or different workflow
executions produce different results due to (undocumented)
parameters, or workflow module changes result in inconsis-
tent outputs. Unfortunately, existing techniques do not help
troubleshoot such issues. Workflow provenance is too coarse-
grained to help troubleshoot issues. Provenance APIs require
recompilation of often-large source code bases, incur overhead
in recording every derivation in advance, and are sensitive
to changes in execution ordering. Database-style techniques
hold promise, but do not trace through information extraction-
style operations over content within arbitrary datatypes such
as strings, binary objects, and images, do not handle user-
defined functions, and require that the computation occur in
a DBMS or “big data” engine. Moreover, for operations that
choose top-k items from within a group, we may need to know
both which inputs were selected for the output and which parts
of the data were also candidates) in order to create test cases
that reproduce behavior.

This paper develops a solution with the optimizability
and the potential for on-demand computation provided by
database-style techniques, the ability to instrument user-
defined code offered by provenance APIs, and general appli-
cability across languages and datatypes used in science. Our
work adapts and extends database-style techniques to address a
broad class of ETL-style workflows, including record linking,
matching against a reference dataset, and data cleaning. Such
tasks — in order to scale — rely on relational algebra-
like operations, techniques for data partitioning (sharding,
blocking), and (typically deterministic) user-defined functions
to extract, match, rank, and select. Our PROVision system
reproduces fine-grained, record-to-record provenance across
a wide variety of ETL and data processing workflows. Our
contributions are as follows:

« Extensions to semiring provenance [15] to handle track-
ing of extraction from a wide variety of structured files
and objects — using a single formalism and framework.

o Support for user-defined blocking, transformation, and
ranking functions — with datatype-specific optimizations.

o Semantic descriptors based on algebraic operators, to
recompute provenance on demand.

2375-026X/19/$31.00 ©2019 IEEE
DOI 10.1109/ICDE.2019.00025

184 IEEE
computer
® psoaety

« Strategies for optimizing provenance computation, when
troubleshooting results, explaining differences, and dis-
covering parameter settings.

« Experimental validation of our techniques’ performance
and scalability, versus alternative methods.

Section II highlights prior work. Section III outlines our
need to explain differences and detect parameter values in
matching and extraction workflows. We propose our operators
and provenance model in Section IV, then study optimization
in Section V. Section VI uses provenance to troubleshoot dif-
ferences across workflow versions and recover missing param-
eters. We evaluate PROVision’s performance in Section VII,
and conclude and describe future work in Section VIII.

II. PRIOR WORK

We build upon the literature in the database provenance
space [7], particulary provenance semirings [2], [14], [15]
that capture fine-grained provenance through relational algebra
operators, while preserving the algebraic equivalences used by
query optimization. Our novelty is in extending the semiring
model to user-defined functions (UDFs), specifically tracking
the extraction of sets of values from within user-defined
datatypes, and in supporting functions that perform operations
such as blocking, approximate matching, and ranking. Like
Smoke [25], we develop an implementation, PROVision, based
on our own query processing engine — as opposed to using
a standard DBMS [11], [18] that is ill-suited to external
data and structured scientific file formats, or an instrumented
“big data” engine based on Hadoop, Spark, or Pig [1]. Our
implementation enables the UDFs to specify what items in an
object or a group were “sub-selected,” while also capturing
the relationship to the broader object or group. In contrast
to SubZero’s [28] or to event logging [22], [22], [27], our
model captures equivalences among computations (including
equivalences that hold for particular datatypes and UDFs).
PROVision’s query optimizer exploits these to “trace” prove-
nance and aid in troubleshooting.

We study finer-grained provenance than scientific work-
flow management systems such as Taverna [23], Kepler [21],
VisTrails [5], and Galaxy [12]. However, we are limited to
relational-style operators augmented by “gray-box” operations,
where key functionality is described in tuple- or tuple-group-
based user-defined functions.

III. PROBLEM AND APPROACH

Conventional provenance tools do not adequately support
detailed reasoning about common ETL-style, matching, and
ranking tasks because they are limited to tuple-level opera-
tions and they do not support approximate matching or sub-
selection. Our study of this problem is motivated by biomedi-
cal collaborators who operate a gene sequencing center. Their
sequencing machine generates files with lists of text strings
representing gene sequence reads. The data is analyzed via
a workflow built from open-source tools written in different
languages (C, Python, shell scripts). A key stage is sequence

185

alignment: much like a record linking tool, the aligner mod-
ule reads strings from the sequence machine’s output and
compares them against sequences in a reference genome file.
It outputs a list of pairs describing the best matching. This
gene sequence alignment workflow is specified via a shell
script that executes the modules with appropriate command-
line parameters, input files, and outputs. Unfortunately, two
novel problems arise as the same workflow script is run at
collaborating sites.

Version Inconsistency: As workflow modules or reference
datasets are updated, input data gets processed slightly differ-
ently. Prior and current workflow versions may produce results
that differ in subtly different ways — pointing to a likely
bug in one or both versions of the software! This problem
requires debugging by a human expert — given a small input
test case. Changes in output records can be computed using a
standard “diff” tool ' as in data versioning systems [29] and
diff tools [4]. Our goal is to identify sets of inputs that can be
used to reproduce those different outputs (assuming the tools
are deterministic). In order to deterministically reproduce the
exact same ranking and choice among potential outputs, for
many matching algorithms our input set must include not only
those inputs that directly contributed to the outputs, but other
“candidate” inputs that were considered but discarded within
the same group, block, or ranking computation.

Missing Parameters: Many scientific workflows are built
from shell scripts, which execute binaries with command-line
parameters. It is straightforward to instrument such scripts
to capture the majority of provenance information. However,
some configuration parameters (e.g. thresholds) are often spec-
ified in local configuration files (e.g., in /etc), and these are
often missing from the data and provenance shared across a
data lake or distributed filesystem. Given output produced by
the workflow with unknown parameters, we might be able to
reverse engineer which parameter values produced that output.
If we understand the operation of the workflow, we can test
over a carefully chosen subset of the input data.

A. Reconstructing Provenance Information

Workflow modules for data science take many forms.
Our focus is on ETL, content extraction, and approximate
matching-style computations, where fine-grained provenance
helps diagnose issues. Such computations have been optimized
for I/O performance. Our collaborators do not want to incur
the significant (factor-of-two or greater) overheads required in
recording provenance as computation occurs [28], when they
only occasionally need to debug a few answers. Rather than
instrumenting individual workflow modules to get fine-grained
provenance, we instead develop methods to later recompute
provenance rapidly and on-demand, using declaratively speci-
fied implementations of the workflow modules that, while not
as fast as the original code, allow us to selectively compute
only the needed provenance. A PROVision user may (1) trace
provenance back to inputs and data sub-objects extracted or

1«Record” denotes an element in a collection, e.g., a tuple, JSON tree, etc.

Result analysis
tools

Workflow
descriptor

Workflow Selected
results

Plan
Generator

-
Wg:
T

egistry

Semantic
descriptors 1

Sfy
Provenance

Computation

Provenance

Optimizer of selected
l results

Input +
Intermed
Files

Structured
files

Fig. 1: PROVision system architecture.

matched from the inputs; (2) isolate subsets of inputs that,
taken together, produce different outputs across workflows;
(3) for certain cases, find parameter values if these were not
captured in provenance.

To achieve this, we associate with each workflow module
a descriptor. Each descriptor algebraically expresses how the
original module extracts structured content from the files; fil-
ters, combines, processes, and transforms this content; and/or
joins and aggregates results, all with user-defined code. The
operations within the descriptor attach provenance information
to their outputs (similar in spirit to Smoke [25]).

B. The PROVision System

The PROVision system provides tools for reconstructing
provenance to improve data consistency. PROVision is given
a workflow, input and intermediate files, and records selected
by the user. It selectively produces record-level provenance
for outputs, subsets of data that produce differences across
workflow versions, and values for missing parameters. It is
comprised of the modules shown in Figure 1.

Module Registry. PROVision looks up the workflow mod-
ules in a central repository? to find accompanying semantic
descriptors. Each descriptor, stored as a JSON file, specifies
inputs and data formats, a tree of relational algebra operators
(a semantic descriptor, Section IV), and optional user-defined
code (or links to code) for the operations.

Plan Generator. Given the coarse-grained provenance and
semantic descriptors from a workflow run, the plan generator
builds an initial plan for computing provenance. This query
plan makes selected calls to user-defined code for similarity
matching, ranking, etc.

Optimizer. A query rewrite-based [13] optimizer then takes
cost information gathered from the original workflow prove-
nance and data, as well as any user selections for results of
interest, and generates a more efficient plan. Our optimizer
aggressively uses a semijoin-based optimization technique to
prune intermediate results (Section V-C).

Provenance Computation. PROVision executes the query
plan using a custom query engine (Section V-B), which
works over external files, interfaces with external code, and
reproduces workflow results annotated with provenance.

Zhttps://github.com/nzheng/Module-descriptor-1lib

186

Result Analysis Tools. Interactive tools (Section VI) enable
the user to select records (e.g., those that differ workflow ver-
sions) to trace back to their inputs, and to rapidly reconstruct
missing parameter values.

IV. SEMANTIC DESCRIPTORS

Workflow modules are arbitrary data-driven programs, in-
voked with parameter lists, typically operating with structured
files as inputs and outputs. Our goal is to describe, using a
more tractable specification, the data processing operations
being performed within the module — such that we can
trace from individual “records” within the output file, back
to input “records” in the input file(s). We term this simplified
specification a workflow module descriptor.

Key assumptions. While “re-implementing” workflow mod-
ules sounds complex, our task is often easier than full reim-
plementations like in Smoke or Lipstick. We leverage several
factors: (1) many ETL tasks are in fact relational operations;
(2) many others are open-source and their “core logic” is
already modularized into a function or library, as in our real
use cases; (3) many operations within workflow modules, such
as those over strings or images, share implementations; (4)
workflows share modules. To use PROVision, an expert must
instrument key functions such as substring extraction or image
clipping, which can be done once per datatype per language;
and identify the main code module(s) used to perform key
logic such as top-k ranking or approximate matching. This
is easy for data-driven code but may be challenging in other
settings; we study this in Section VIIL.

Each workflow module descriptor is specified as a query
in an extended relational algebra; operators compute and
maintain provenance. We leverage techniques developed for
database provenance, but make key innovations in provenance-
preserving query operators that invoke user-defined functions
to compute new attributes and/or extract multi-valued content
embedded within composite (possibly binary, free-text, image,
or substring) attributes.

Expressiveness. We build upon the relational algebra, so our
techniques do not capture Turing-complete programs. We tar-
get ETL-style operations like extraction of content from data,
blocking and binning of records, attribute-to-record transfor-
mations, and arbitrary computations over groups of tuples.
We develop a unified provenance framework for deterministic
extraction, ranking, and transformation operations over many
composite datatypes (e.g., strings, images, volumes, trees,
binary objects) and collections thereof. We merely assume
operations return sets of sub-selected items as fields or records.
As formalized in the next section, our only requirement is
that each operation can be subdivided into deterministic sub-
operations that (a) determine a set of values to be extracted
into separate sub-records (e.g., extractions of substrings) and
return a set of index markers (“location specifiers” such as
bounding boxes) from which the sub-records were extracted;
(b) return the sub-records corresponding to individual location
specifiers. Our approach can leverage known equivalences that
hold for compositions of operations.

File3 {
\
File2 NN
Filel | aracema S
' TGACACCT/ E
—

Fig. 2: Extracting data from structured files: read a sequence
of (filename, object) pairs from the data lake, then join these
results with the extracted records within the objects.

Extract
Jrom file

55 | TGACACCTA | /

Novel requirements. Our algebra and provenance model build
upon the database provenance literature [15], [18], producing
results annotated with provenance polynomial expressions in
the provenance semiring model. Here, logically equivalent
query plans produce algebraically equivalent provenance poly-
nomial expressions. Thus, like Smoke [25], we incorporate
SPJU+GROUP operators, but we exploit algebraic equiva-
lences (Section VII-A). Additionally, most ETL and data
matching tasks involve user-defined functions, to extract and
transform content from composite data (e.g., a nested object
in a structured file) or return items from a group (e.g., by
choosing top-k items from a set). This requires us to develop
a comprehensive treatment for interfacing with user-defined
functions, such that we can determine not only what their
atomic input values are, but also what we term locations
— datatype-specific specifiers of projections, such as subsets,
ranges, and bounding boxes — within specific inputs. Impor-
tantly, we allow the definition of type- and operation-specific
equivalence rules to support optimization.

Insight: Content extraction as a dependent join. Semiring-
style database provenance does not handle ‘“‘unnesting” or
extraction operations over complex datatypes. Yet ETL tasks
and scientific workflows operate on JSON/XML, structured
files, images, raw text, and even (e.g., in genetics) substrings.
We must represent extraction and transforms over any of these
formats. To do this, we still assume a tuple-based processing
model, possibly of bindings to content (subtrees in XML, faces
in an image, or substrings in gene sequences). Now, if input
tuples contain (bindings to) objects such as images, objects,
trees, or text; a content-specific extraction operation takes one
such value at a time, and extracts a set (relation) of values.
The input tuples and extracted results are semantically linked
by the function call, just as, in data on the web, a parameter
to a web service call is linked to the returned results. We
propose that the “right” abstraction of this dependency is the
dependent join [10], previously used in the data integration
literature to represent external function calls. In our case the
function returns a set of values for each input: the dependent
join is with a relation, not merely a function. This abstraction
incorporates table-valued UDFs into the semiring provenance
model. This abstraction allows us to formalize the semantics
of provenance, but does not reflect how we implement UDFs.

Example 4.1: Figure 2 illustrates extraction of gene se-
quences. Given a list of (name, content) tuples corresponding
to files in the data lake, for each such tuple a file format reader

187

extracts sets of (location, sequence) pairs. We capture this as
a dependent join between the input (file, object) tuples and
the set of extracted (location, sequence) tuples, where the
location is relative to the file.

A. PROVision Data Model and Algebra

We describe a workflow’s data processing modules using
algebraic expression trees that filter, combine, and extract data,
starting from raw input data that is stored in files or is remotely
accessible via URLSs, and resulting in structured outputs.

In a relational DBMS setting, queries (and their provenance)
are derived from a set of INF base relations. PROVision uses
a bag-of-tuples data model with support for binary objects’.
Given that PROVision operates in a file-based environment,
we instead assume that all of our base data is maintained in
a “data lake.” This data lake stores (URL, object) pairs in a
single relation £(key, value). Data values are often composite
binary objects (BLOBs), such as structured files, so we make
no assumption that our data is in 1NF. As in prior work [14],
each tuple in the data lake, #, is annotated with a provenance
token Prov[t], a unique, opaque tuple ID.

1) Core Relational Algebra: PROVision implements bag
relational selection, projection, join, union, and distinct (ex-
traction, nesting, and grouping are described later). Selection
and join predicates may test attribute equality-by-value and
equality-by-reference. For each output tuple ¢, each algebra
operator creates an annotation, denoted, Prov[[ﬂ], that is a
provenance polynomial from the semiring model [15]. Briefly,
we assume a unique variable or token associated with each
base tuple, which represents any provenance metadata “at-
tached” to that tuple. Each time we derive a new tuple via a
relational algebra operation, this new tuple will be annotated
with an algebraic, polynomial expression derived from the
annotation of the input tuple(s). The expressions are computed
as follows:

o For a select expression o4(R), for each tuple t € R
satisfying ¢(t), its provenance expression is Prov[¢].
(Provenance is unchanged by selection.)

« For a (bag) project expression II,(R), for each tuple
t € R, its provenance expression is Prov[t[]].

« For each output ¢’ from a join expression R xg S, for
each tuple pair {1 € R, iy € S satisfying 0(¢1,¢2), its
provenance expression is Prov[¢1] - Prov[tz].

« For a (bag) union expression R U S, for each tuple ¢ €
R U S, its provenance expression is Prov([Z].

o For a result ¢’ output by a duplicate removal expression,
distinct(R), if £1,---t,, € R and all m tuples are
equal, f; = --- = t,,, then t’s provenance expression
is Prov[t1] + - - - + Prov[t,].

Example 4.2: Suppose we have a relational algebra expres-
sion distinct(Ilg y(R Xe—z ¢z<5(S5))), applied to schema
¥ = {R(a,b,c), S(z,y)}, and tuples R(1,2,3), R(1,4,3),
S(3,4) with provenance tokens p1, p2, and p3, respectively.
The result ¢(1,4) has provenance Prov[t] = p1 - p3 + p2 - p3,

3JSON and XML data are encoded as non-1NF CLOBs.

representing that the derived result is generated twice, from
the first-and-third and second-and-third base tuples.

2) Novel Operators for User-Defined Functions: ETL tasks
often invoke non-declarative code to extract embedded content
within an input object, or to compute a value over some fields
of a record. We assume our query plan embeds this logic in
the form of a user-defined function (UDF) modeled after the
original workflow module, but (as we describe below) that our
UDFs additionally provide a limited amount of information
about the provenance of any result being computed.

Since some UDFs can be applied to sets of tuples as a result
of grouping, and others can be applied to single tuples at a
time, we develop separate operators for each (the group-by
and compute operations, respectively). We define the operators
using the same basic ideas.

UDFs as joins with binding pattern restrictions. Bor-
rowing from the data integration literature [26], we model
the invocation of a UDF, which takes a set of input

parameters, as a dependent join with a relation with
binding patterns, of the form
Ry(ab,... a0 0], ., b}). Attributes adorned with ° are

bound and those annotated with / are free. To retrieve
tuples in Ry, we must parameterize (join on) the bound
attributes.

Example 4.3: Suppose function fn(z,y) returns a set of
pairs (a, b). We model this as a relation from inputs to outputs,
R(2%, y®, af,b/). We can then represent a function call to f,
based on the contents of relation S(u,v) as a dependent join,
S ™7, R, whose results will have the schema (u, v, a,b).

Definition 1 (Scalar UDF operator): The scalar UDF
operator, compute, evaluates one tuple £ at a time, computing
a function fn over the fields #[@], returning a list of attributes
B: compute #n,a,3(1?). The input parameters to fn must match
the arity and types of R[a].

The scalar UDF operator is extremely useful for building
query plans with extraction functions, and for query optimiza-
tion. However, we will (in the next 2 sections) need to define
the provenance for its outputs. Here it is useful to note that the
scalar UDF can be modeled using the dependent join (hence,
a standard join for which provenance is well understood), as
follows. Let us represent function fn as a relation Ry,,, whose
schema is @ U (3, where & are all bound and J are all free.
Computey,, 5 5(R) can then be rewritten as a dependent join
R N;} an.

Definition 2 (Grouping UDF operator): The grouping UDF
operator, group, partitions the input relation R into sets
of tuples sharing the same values for grouping fields R[G].
For each set of tuples, it then applies a series of aggregate
functions, F'N; through F'N,, over projections &; through
@, Tespectively; returning values 3; through (,,,. We denote
it as follows:

groupG (FNy,a1,61)s..s(F Non 0o ,Bm }) (R)

Unlike with the scalar UDF case, aggregate functions are
second-order and we cannot capture the full semantics using

188

select/project-join expressions. However, for each set of tuples
T C R belonging to a group (i.e., sharing the same values for
all grouping fields (7), the output of the grouping operator is
a join between the portion of the tuple corresponding to the
grouped fields, and the results of applying each function to
the set of tuples:

distinct(T[G]) xg FN1(T) -+ Xg FNu,,(T)

This is similar to the scalar UDF operator, but results in a bag
of tuples (namely, a Cartesian product between the grouping
tuple and the outputs of each of the m aggregate functions.)
Note that each a term consists only of attributes from R so
the order of evaluation of the functions does not matter.
Example 4.4: Suppose we are given two aggregate func-

tions, min, which returns the minimum value among a collec-
tion of values (and is modeled as relation R, (x?, m7), and
the table-valued function top2, which returns the two largest
values among a collection of values (modeled as relation
Ronin(y®, t5). Given an SQL query:

SELECT id, average(x), top2(y)

FROM r GROUP BY id

and a table r with values r(1,2,3), (1, 3,4), r(1,4,2) and
r(2,3,4). The group with id = 1 has three tuples (1,2, 3),
r(1,3,4), and r(1,4,2). The grouping tuple will simply be
comprised of the grouping attribute: (1). The function average
will be called on the values of x, {2,3,4} and will return a
single unary tuple (3). The function top2 will be called on the
values of y, {3, 4,2} and will return unary relation {(4), (3)}.
The ultimate output for this group will be the Cartesian product
of these three intermediate relations, which will result in the
two tuples (1,3,4) and (1,3, 3).

B. Provenance for Extraction of Nested Content

Unlike the standard relational queries studied in much of
the prior work on fine-grained provenance, ETL workloads
do not start with records in their fully parsed form. Thus
they often take as input a “BLOB” (Binary Large OBject)
of binary or string data, and apply an extraction function (or
path expression) to the data within that object. For instance, we
may extract segments of comma-separated text into different
fields, or we may apply an information extraction function to
find mentions of dates in an HTML file. These are common
use cases for PROVision’s scalar UDF operator, which takes
a tuple at a time, applies a user-defined function, and returns
a set of tuples representing the extractions. The scalar UDF
operator can additionally be useful in allowing a workflow to
apply transformations from tuples to tuples (e.g., converting
fields from one unit to another) or sets of tuples (e.g.,
extracting words from lines of text).

Recall that every object in our data lake has a unique
provenance token. Every derived SPJU tuple has a provenance
semiring polynomial expression in terms of these tokens,
as described at the start of this section. We capture the
provenance of each tuple as an expression over the provenance
of its source tuples. Now, we exploit the observation in the
previous section that the scalar UDF operator is a form of a

(dependent) join. However, the extraction UDF itself adds a
wrinkle: indeed a UDF takes zero or more arguments from an
input tuple, and produces a set of results. However, the UDF
often only uses a portion of the data in each input tuple’s
fields: for instance, it may extract a substring or a sub-region.
To precisely capture the provenance in this setting, we need
a datatype- and UDF-specific way of capturing the subsets of
data used within attributes.

1) Type- and UDF-specific Provenance: Let us assume the
presence of a location specifier and value extractor for a given
attribute = and function fn.

Definition 3 (Location specifier): A location specifier L, fn,
is a datatype- and operation-specific token — typically a range,
bounding box, or predicate — for use in extracting a value
from a subset of an attribute value a.

This is similar to a provenance token, but deterministically
applies to a piece of non-relational data returned by an
operation. To more precisely capture this, we factor function
fn into the composition of two subfunctions, fn = fn' owv
where v is a value extractor function that takes a series of
location specifiers (one per input argument to fn), and fn’ is
the UDF rewritten based on the outputs of the value extractor.

Definition 4 (Value extractor): A value extractor for func-
tion f, vynz(f, L) is an operation that, given a tuple and a
vector of location specifiers for each attribute in Z, L, returns
a list of subsets of ¢[Z] from which fn(Z) can be computed.

The value extractor is akin to a selection operation in the
relational algebra: it returns a subset of the input data, which
is used by the transformational or computational aspects of
UDF f. Together, these allow us to express the provenance
of extractions (where each location specifier might represent
an index key or projection) or transformations (where each
location specifier represents an input). fn(z) which,
Proposition 1: Assume a deterministic UDF
for any instance a of attribute(s) x, returns results fn(a) =
[Fa1s---5Tak,]- Suppose we can factor fn into composable
sub-functions fn’ o v, such that given a sequence of location
specifiers LS, = [Lg1,...,Lak,], fn'(v(LS,)) = fn(a),
for 1 < i < k,. Then if we can instrument our UDF to produce
LS, for any value of a, our model captures the provenance
of fn(x). (Proof is by contradiction.)

Example 4.5: For a CSV string CATGGCCG, alpha, a
location specifier might be the interval [0,7]. The value
extractor may simply be the substring function, which takes a
string from the CSV file (e.g., CATGGCCG, alpha) and the
location specifier, and returns all characters within that interval
(CATGGCCG).

We assume our value selector is defined in a way that is
independent of any specific input record. Given this, and the
ability to compare location specifiers according to a partial
ordering on restrictiveness, we can also define a minimal
location specifier to be the most restrictive location specifier
L,,,,, for a given value a, which still returns the same output
f'(v(a)) = f(a). For instance, the minimal location specifier
may represent the smallest substring from which a value is
computed, or the minimum bounding box.

189

2) Composing Provenance: We also want the provenance
of the output of our UDF operators to be the composition of
each input tuple’s provenance, along with its location speci-
fiers. Given function fn which takes parameters a, ...
and returns a set of (zero or more) Ry, (b1, ...,by) tuples:

fn(aq,.. ,bg)

we define the provenance of each output tuple ¢ as a prove-
nance function combining the provenance of the base tuple,
plus the UDF-specific provenance of the prior section:

7L'I'TL)

where Py, represents a function symbol in the provenance
semiring specific to our function fn. (We later allow for
specific algebraic equivalence to be associated with the prove-
nance functions, for query optimization purposes.)

Finally, each output of the scalar UDF function represents
the (dependent) join of the input tuple with each output tuple
returned from the function, i.e., it is the provenance expression:

s Lm)

Example 4.6 (Blocking): A key operation in record link-
ing [9] (as well as string and gene sequence alignment)
is known as blocking. Given the cost of performing a full
comparison between all pairs of tuples, blocking is used to
prune the set of comparisons to those with common features.
Each tuple is associated with one or more blocks, and all tuples
within a block are combined for a similarity comparison. A
common blocking function is the n-gram, where all subsets of
up to n tokens are returned as candidate blocks. (Each tuple
may have multiple blocks, in contrast to a hashing function.)

Given a tuple ("smith’, 123) with provenance token pg, and
a scalar UDF returning all trigrams, fnsgrqm, applied to the
first attribute, we will get the results and provenance:

y Am

.,am) — anwt (bl, e

Ppn(Prov(t], Ly, Lo, . ..

Prov[t] - Py, (Prov([t], L1, Lo, . ..

block | name id provenance

—s | smith | 123 | po - Psgram(po, [—2,0])
_sm smith 123 | po - Psgram(po,[—1,1])
smi smith | 123 | po - P3gram (po, [0, 2])
mit | smith | 123 | po - Psgram(po,[1,3])

Observe that the provenance column represents the product
of the input tuple with a provenance function (for fnsgram)
and a location specifier representing the index positions of a
substring. We assume here that index positions that are out of
string bounds are filled in with blank ‘_’ characters.

C. Provenance for Aggregates

We now consider another type of user-defined function,
which takes a set of tuples as its input. Classically, this is an
aggregate function in SQL. However, many types of matching,
ranking, and approximate join operations, such as record
linking [3], [9], [24], can be captured using a combination
of (1) computing, via the scalar UDF function, a set of
one or more blocks for each input record, as in our prior
example, (2) joining tuples within blocks, forming a Cartesian
product among these, (3) and then performing a ranking or
thresholding function over the collection of joint tuples within

the block to find the most promising matches. The grouping
UDF operator is critical to this third step.

To define provenance for each output from the grouping
UDF operator, we note that aggregate functions are generally
divided into exemplars — input tuples whose output appears
in the output — and summaries — where all of the input
tuples are combined to produce an output. For summaries, the
provenance should clearly be based on the provenance of all
of the input tuples. For exemplars, there is a choice between
capturing the provenance of all tuples whose values affect
the output, and all tuples whose values were considered in
producing the output. In either case, we can define a notion
of relative provenance, similar to that in Section IV-B. This
will represent a combination of the provenance of the input
group (e.g., the semiring sum of the provenance expressions of
the input tuples) with a notion of type- and operation-specific
provenance.

For each aggregate function F'N(aq,...,a,) applied to a
group of tuples T, we get a result tuple whose provenance is:

PFN(Z Prov[t], Z (Lia(tilaa]), -+ 5 Lim(tilag])))

teT t;eT

Recall from Section IV-A2 that we can express the com-
putation done by the grouping UDF operator for each group
of tuples T' C R, with multiple functions F'Ny ... FN,,, as a
series of joins:

distinct(T[G]) mg FNy(T)--- xg FNu(T)

Thus, the output provenance for each aggregate tuple, based
on a group of tuples 7' C R, is a product of the form:

ZProv[[ﬂ]
Prn, (> Prov[t], Y (Lia(tilay, ,]), - Lim(tilay, 1))

teT t,eT

Prn,, (> Provlt], Y (Lia(tilay, 1), - Lim(tilay,,)

teT t; €T

Example 4.7 (Aggregation): Suppose we are matching tu-
ples in two relations: A(‘smith’,123), B('smythe’,345),
B(’simpson’, 456) with provenance tokens po, p1, p2, respec-
tively. We use f3g,qm to compute a block for each tuple, and
we join candidate matches on the block ID.

block name; names idy ido provenance
s | smith | smythe | 123 | 345 %“’273 0] >Ij§9<’“[a_"§f’6‘]’>')p1’
_s smith | simpson | 123 | 456 IZF721?6]>13+39{[173(16T>)P27
sm | smith | smythe | 123 | 345 ’<’[°7 fj 11]' >Pj9<r[‘: m (Tﬁ’)) P

Finally, for each block, we return the highest-scoring pair-
wise match (fopl). We can visualize an intermediate point in
the computation. For instance, for block __s, the result would
be (‘smith’,‘smythe’,123,345) given that its string edit

190

Commutativity
GroupG,g,a,,8, (9T0UPG, f,a 4,8 (R)) =

if ag N By =0A

groupg, f,a;,8; (grounc,g,ay 8, (R)) arNBy =10
computeg,a,,g, (computejgafﬁ/ (R)) = if ag N By =0A
computes a8, (computeg o, ., (R)) arNBy =0

Compute/Group
computeg o, g, (groupc,fﬁafﬁgf(R)) = | ifag CGagn By =0/
grouPGUB,.f.a .8y (computeg a5, (R)) arNBy =0

TABLE I: UDF operator equivalences

Strings and substrings
Prov[substring. q(substring, »(S))] =
Prov[substringatc,a+d(S)]
Images and cropping
Prov[[crop(:tS,y3),(m4,y4)

(erop(z1 41y, (22,42) if x3,24 < @2 — 11
Prov[[crop(z14#3,y14y3) (e14a4y14y4) (D] | Ays,ya <y2 —y1
Trees and simple path expressions
Prov[patheval, (pathevaly (T))] =
Prov[pathstep, ;. (T)]

TABLE II: UDF type/operator provenance equivalences

‘ ifc,d<b—a

distance is the lowest in this block. Note that the provenance
of the output result would be:

(Po - p1 +Po - P2) - Prop1((Po - p1 + po - p2), {Po - p1-
Psgram(po - p1, ([=2,0]) + ([=2,0]))))

D. Algebraic and Provenance Equivalences

Our algebra exhibits all of the standard equivalences for
the relational algebra: join associativity and commutativity,
selection pushdown, distributivity of join through union, and
group-by/join pushdown [6]. Moreover, our UDF operators
show certain equivalences, shown in Table I. (We require that
UDFs, while effectively black-box, be deterministic.)

A virtue of the provenance semiring model is that algebraic
equivalences used in query optimization (e.g., commutativity
of joins) result in equivalent provenance. We are interested
in arbitrary datatypes and UDFs, for which equivalences
may or may not hold. Our PROVision system allows an
expert to provide type-and-operator-specific equivalence rules.
We describe here an important class of datatypes for which
we pre-encode equivalence rules for provenance expressions:
types with hierarchical containment and operators that project
locations. Table II shows some properties that hold for several
common cases: namely, strings, images, and trees.

V. PROVENANCE RECONSTRUCTION

We now describe how we implement a query processor for
efficiently reconstructing fine-grained provenance.

A. Generating the Initial Execution Plan

As alluded to in Figure 1, PROVision first take the various
modules executed in the workflow, looks up each of these in
the module registry to retrieve its semantic descriptor. The
semantic descriptor specifies the schema and file formats for
input and output results. Most importantly, it specifies a tree
of algebraic operators (Section IV) for the module — as
well as links to any external files and code that must be
retrieved to execute any associated user-defined functions. Our
implementation supports code written in Python, Java, and C.

B. Engine for Provenance Reconstruction

In our early explorations of the design space for PROVision,
we considered building over or extending existing open-source
query processors. However, most of the use cases for PRO-
Vision are based on data in files, we needed to support user-
defined functions in several different languages, and we needed
the operators to compute provenance. Hence PROVision has
its own custom query engine implemented in Java, built to use
pipelined execution over “batches” of tuples, and support for
UDFs written in Python, C, and Java. (Our engine uses JNA
and Jython to interface with external code.)

The query engine is built using an iterator model, in which
tuples are recursively requested from root to child operators.
Every tuple carries a unique provenance polynomial expres-
sion, itself stored as an in-memory expression (tree) with refer-
ences. As input tuples are composed within an operator (e.g., a
join) to produce output tuples, the output tuples are annotated
with polynomial expression trees composed from the inputs
(linked by reference, thus avoiding copying). We found that
“carrying” the polynomials along with the tuples, produced the
best performance within a pipelined query engine; methods
for storing the provenance in a separate subsystem added
significant overhead due to value copying.

C. Optimizing Provenance Reconstruction

The initial execution plan is optimized based on costs, using
rewrite rules. Our query optimizer is built in the style of
Volcano [13]: it supports logical-to-logical algebraic trans-
formation rules with optional constraints, as well as logical-
to-physical transformation rules with constraints and costs.
The search space is internally encoded as an AND/OR DAG,
where each node has an associated signature that is the
same for logically equivalent expressions. The PROVision
framework operates over files, and thus does not have a
DBMSs’ sophisticated mechanisms for computing histograms
and performing rich cost estimation. However, in fact we have
access to the inputs and outputs of each workflow module,
since it was previously run and its output materialized, so for
many expressions we can directly use the cardinality of the
results. Additionally, in our experience most workflow plans
have only a few join and aggregation steps, which limits the
error that accumulates through cost estimation. We use branch-
and-bound pruning to avoid searching plans that are more
expensive than the best-known alternative.

Algebraic rewrites. We implement transformation rules for
the algebraic equivalences described in Section IV-D. The
optimizer treats the scalar UDF operator as a join with an
input binding restriction [10], where one of the inputs must
be bound to the UDF’s parameters. It then searches for an
optimal ordering among joins and UDF calls.

Pruning with semijoins. An optimization unique to PROVi-
sion exploits the fact that the user typically only wants to
reconstruct the provenance for a subset of the output tuples
S C W, where W is the output of the workflow. In effect
we want to “trace back” the provenance from the output, but

191

since the provenance does not yet exist, we really need to
selectively compute only from those inputs that might relate
to the selected results.

We initially model this as computing the query plan for
W x S, i.e., W semijoined with the selected tuples. We then
introduce transformation rules for pushing the semijoin. Given
a join expression (A Xg1 B) Xpo R, we split 02’s predicates
to those between the attributes of A and R, resulting in
02a; and likewise for B and R; and substitute the expression
(A Xg,q R) Xp1 (B Xgap R). For UDF operators (whether
scalar or grouping), a challenge is that many attributes are not
necessarily shared between input and output. For any grouping
or scalar UDF operator U, given an expression U(A) x4 R,
we can rewrite as U(A xq (A)) xg R. To get 8’ we rewrite
0 to DNF, then remove any conjuncts over attributes missing
from A. This rewrite may match false positives (some tuples
may not actually contribute to the final output) but no false
negatives, so it preserves correctness. We later experimentally
study when the rewrite actually saves cost and time.

With the semijoin optimization and the input set of selected
tuples, PROVision can heavily prune the results it uses during
reconstruction, as we shall see in Section VII.

Provenance expression rewrites. Our query optimizer takes
expert-provided type-and-operator-specific rules, including
those in Table II, and uses them to simplify provenance.

Primary strategies. The above optimizations are incorporated
into two over-arching strategies to reconstruct provenance.
PROVision may eagerly recompute and materialize an entire
workflow’s results and provenance, in order to allow future
inquiry about the provenance of any intermediate or output
result. Alternatively, we may adopt an on-demand strategy
where we only recompute the portion of the workflow nec-
essary to produce the provenance of a specific user selection
and exploit pruning techniques such as semijoin pushdown
during on-demand computation. Here we deploy two strate-
gies: greedy, where we try to pushdown the restrictions as far
as we can (maximum pushdown); cost_based, where we pick
the best plan based on minimum execution time. Section VII
studies the trade-offs between these approaches.

VI. USER ANALYSIS TOOLS

Building upon PROVision’s provenance reconstruction tech-
niques, we consider how to address our motivating problems.
Both the version inconsistency and missing parameters prob-
lems leverage a provenance-tracing primitive. Algorithm 1,
TraceProv, is called with a workflow and intermediate results,
WF'. It computes the full provenance for the workflow (if
selected outputs Og; = @) or the provenance for selected
output tuples Og,; (if this is using a semijoin optimization).

A. Version Inconsistency

When workflow module code gets updated, sometimes these
changes cause unexpected changes to output. We seek test
instances for developers to debug for the output differences.
A test case is a small input instance that is guaranteed to

Algorithm 1 TraceProv(W F, Oge)

Algorithm 2 WorkflowDebuglnstance(M ap1, Maps, T)

1: Retrieve semantic descriptors of modules in W, use to
build execution plan Q.

: if Ogep # 0 then
Q=0Q X O

end if

: Optimize and execute (), recording provenance.

: return prov(Q)

reproduce the behavior and a subset of the different results
between (deterministic) module versions. For each output
tuple, we must compute those inputs that went into the same
block or group that yielded the result. We assume a pre-
processing step that executes each version of a module in
the workflow, and does a standard diff between the versions’
outputs. PROVision finds the earliest module that results in a
difference in outputs: the branching module. It then identifies
the output records that differ between the versions, allows the
user to sub-select from these, and reconstructs the necessary
provenance that went into these outputs. Finally, it outputs the
set of input records needed to reproduce the selected output.

We require the same abstract workflow specification across
versions, but the modules and files may differ. The workflow
specification is converted into a workflow template DAG,
T = (V,E), where nodes V = V™ U V/ represent modules
(V™) and input or output files (V7); edges E connect from
file nodes to module nodes (representing inputs to a program)
or from module nodes to file nodes (representing outputs
produced by a program). The template 7" is instantiated each
time the workflow is executed. Execution maps each node in
T to actual execution instances: in execution run X, every
module node m; € V™ is mapped to an executable program
(M; : my — Program;j); every file node f; € VI, fiis
mapped to a set of data files used in the execution (F} : f; —
{File; 1}, where k = 1,...,q represent multiple(q) files as
input or output of a module).

Given template 7" and mappings of two executions Map; =
{My, Fy} and Mapy, = {Ms, F»}, Algorithm 2 traces the
execution instances. Here the two executions share the same
input files, with an overall input set of records I, leading to
different output sets of records O; and Os, from which the user
selects a subset. We compute the responsible subset of records
I.csp € I which leads to the selected output results. The
algorithm traverses the file nodes in workflow template 7" and
compares the associated files. From the branching module, we
trace provenance back to the input records, for each execution.

B. Missing Parameters

Inconsistency also arises when we re-run a workflow ac-
cording to its provenance, but we are missing some parameter
settings. For instance, consider software with settings in the
local /etc directory, where data and provenance are on a
shared disk. PROVision “knows” the semantics of the modules
and possible parameter values from semantic descriptors: it
can run the workflow over carefully chosen subsets of the

1: for each f; € V/ in topological sort order do
2: search mappings Fy € Map; and Fy, € Maps, find
{Filem’k} and {Filei,g’k}

3. if not isEqual({File; 1}, {File;2}) then

4: Let 7' := (V',E’) where V', E’ represents the
transitive closure of all edges and nodes connecting
to f;.

5: Let W F} and W F} represent the subset of workflow
and module nodes mapped from 7" for executions 1
and 2, respectively

6: Let Oseh = 01 — (01 U Og) and 03512 = 0y —

(01 UOy).
7: provy := TraceProv(W F{, Ose,)
8: Ircsp, := the input records within prov;
9: provy := TraceProv(W F3, Oger,)
10: Iresp, := the input records within provs
11: return I,.qp, U Lcsp,
12: end if
13: end for

data under different parameter settings to quickly isolate
“plausible” parameter values. Algorithm 3 searches for the
missing parameter values. We take a workflow WFE' and a
search space S = (X1,..., X,,), where each set of values X;
represents the possible values for parameter p;. (The search
space is |S| = I, |X;|), and a possible setting for missing
parameters is PV =< p\’ s p') > where PO € S.

Now we enumerate possible settings for the m parame-
ters, and test (on a subset of the input data) whether these
produce results consistent with the original workflow output.
Algorithm 3, picks a subset of inputs T € I; this must be done
considering which items that are mapped by the algorithm to
the same hash bucket or block. We reconstruct the workflow
output over input subset I; with candidate parameter values,
producing outputs O; with provenance prov(O;). Lines 4-6
validate whether such records appear in the provenance of
the original workflow execution, and prunes candidates as
appropriate. Finally, we take the (much smaller) candidate
parameter settings that passed our tests over data subsets, and
return only those that produce consistent output over the full
input data (Lines 8-12).

VII. EXPERIMENTAL EVALUATION

We now evaluate the overhead of provenance reconstruction
and PROVision’s effectiveness with the version inconsistency
and missing-parameter reconstruction problems. We study
our different optimization strategies on the space and time
overheads of provenance reconstruction. We use workflows
and datasets for three types of ETL and scientific tasks.

Gene sequence alignment (Genome). Scientists often seek to
quantify the genes and related proteins from DNA-sequenced
tissue. A workflow cleans the sequence records (trim), aligns
trimmed sequences against a reference “library” of genes, and
finally looks up the genes to determine which proteins are

Algorithm 3 SearchParamValues(W F', .S)

1: choose subset T € I.
set S = set of all parameter combinations from
X, Xm
for 5 € S do
if not TestWF(WF, 5, T, O) then
remove 5 from S
end if
end for
for s € S do
if not TestWF(WF', s, I, O) then
remove s from S
end if
end for
. return S

coded. Our biologist collaborators’ workflow uses modules
from the STAR alignment toolkit. Our experiments use
145.5M sequences and three versions of STAR (2.3.0, 2.3.1
and 2.4.0), which each produced subtly different results.

Entity matching (Magellan). The Magellan [19] entity
matching toolkit provides blocking, alignment, and ranking
algorithms. Magellan workflows include stages for blocking
(comparing subsets of record pairs to find an alignment) and
matching (determining which pairs match above a threshold).
Building on example workflows provided with Magellan, we
seek to link entities between the ACM Digital Library (1813
records) and DBLP (1780 records).

Data cleaning (DuDe). Another common ETL task involves
cleaning records within a data set. The DuDe toolkit [8] is
a data cleaning framework, which searches for tuples that
represent the same real-world object across data sources (dedu-
plication). Our experiments use a standard DuDe workflow
over a compact disc dataset, with 9763 records comprised of
107 (possibly null) attributes.

The three workflows above have simple structure. Moreover,
the non-declarative portions of the code — the call the UDF
plus any referenced functions (code refd. by UDF in the table)
— is proportionally very small. The overall complexity of the
semantic descriptors is as follows:

Genome | Magellan | DuDe
Num. of modules 3 3 2
Num. of operators 12 8 3
Code refd. by UDF | 0.3% 2.2% 0.8%

The difficulty of our task (finding and extracting the UDF
and instrumenting code) is essentially the same as for in-
strumenting functionality with API calls, as with SubZero.
Experiments were conducted on an Intel Xeon E5-2630 run-
ning at 2.20GHz with 24 cores and 64GB of RAM. Our
implementation used the Java OpenJDK 1.8.0. Results are
averaged over 5 runs and we present 95% confidence intervals.

A. Overhead of Provenance Reconstruction

PROVision does not instrument an existing workflow sys-
tem; rather, it re-executes certain operations in a workflow

193

(using declarative modules) to derive record-to-record prove-
nance. Thus there is no overhead on the “normal” execution
path, but costs are incurred when the user asks for the
provenance of selected results. We study execution and space
overhead, and then assess the benefits of our optimizations.
We first study three methods for precomputing a complete
provenance trace. The naive method recomputes all data and
its provenance. The materialized results are comprised of both
output data and provenance. The RK method recomputes the
provenance as annotations for each tuple, using foreign keys
to link the provenance to the data, instead of materializing the
full data. The RC'S method builds upon RK and additionally
simplifies provenance expressions using the equivalences of
Section I'V-D. Finally, the on-demand method starts with user-
selected tuples, and selectively recomputes only the prove-
nance that it needs in order to trace provenance of those tuples.

Baseline: original workflow. The baseline costs, in terms of
space and time, are shown for the original data workflows
in Figure 3a. The Genome workflow is the most intensive in
terms of space and time; the Web entity resolution workflow
is small but requires a fair amount of computation per record;
the product data cleaning workflow produces combinatorial
explosion, but is reasonably fast on a per-record basis.

Minimum cost of provenance APIs. Prior provenance API
implementations, such as SubZero [28], are not readily avail-
able. To establish a point of comparison, we instrumented the
workflow modules’ source code (in C, Java, and Python) to
record provenance in-memory. Data was periodically written to
disk, forming a “lower bound” on provenance API overhead
(since a real implementation is likely to use IPC). We see
from Figure 3c that the normalized computation time over-
heads (vs. the baseline described above) are approximately
30% (Genome) to 480% (DuDe), on every computation. This
motivates our selective reconstruction approach.

Full provenance reconstruction. Figure 3b shows that PRO-
Vision adds low space overhead, 7-17%, similar to provenance
instrumentation via APIL. This cost depends on the number of
extractions, joins, and aggregations: DuDe only contains two
such operators, so adds little overhead; Genome and Magellan
have multiple join and aggregation steps so they are larger. The
provenance is smaller than the actual data, so the overhead is
below 20%. Simplification of provenance expressions (RCS)
saves a bit of space; since it adds no CPU cost (Figure 3c),
we conclude that compression is beneficial.

Figure 3c shows that CPU overhead varies significantly by
workload, based on how many tuple combinations are being
considered in the computation and how many calls are made
to the UDF. The DuDe implementation essentially performs
a Cartesian product on all inputs, hence it adds more than
4x overhead. This could be improved via blocking or pruning
techniques; but it is also alleviated by on-demand approaches
for computing only the provenance for specific results.

Selective (on-demand) reconstruction. The on-demand ap-

proach generally starts with a set of user-selected output
records, and PROVision uses semi-join pushdown to limit

Magellan ‘ DuDe

\ DuDe

input size | exec time | space
Genome 3.5GB 13.4hr 127GB
Magellan | 615KB 4.3min 615KB
DuDe 4.6MB 25.3min 116GB

(a) Original workflow execution costs.

[Baseline [l Naive [] RK [l RCS [l ProvAPI
(b) Normalized space overhead.
g. 3: Baselines and overheads for different workloads.

Fi

=

= Genome
= Magellan
= DuDe

CPU time (s)
>

w

0.71

o 0.67

50 100
Number of selected outputs

Fig. 4: Average CPU time for each selected output.

its computation to relevant results. Table III shows that for
small numbers of outputs, greedily using the semijoin (greedy)
results in very efficient provenance computations (between
0.7 and 5 sec). In fact, taking costs into effect (cost-based)
results in the same query plan, hence the same execution times.
Figure 4 shows how the performance speedups gradually drop
as we select larger and larger subsets of the output.

Full Greedy | Cost-based
Genome 13.4hr 4.71s 4.71s
Magellan | 4.3min 0.995s | 0.995s
DuDe 25.3min 0.695s 0.695s

TABLE III: CPU time for tracing 1000 output records.

Pruning overhead vs benefits. Selective reconstruction relies
on semijoins to prune input and intermediate state. A question
is how much of the output needs to be of interest before
it makes sense to precompute all of the provenance. We
measure this for the Genome, Magellan, and DuDe workflows
in Figures 5a, 5b, and S5c, respectively. Each figure plots
the greedy strategy’s reconstruction time (green line) versus
the cost-based strategy (red line) versus the baseline (blue
line) and computing all results ahead of time (dashed line).
The switchover point between strategies is at around 45-90%
of the output results. Our cost-based strategy chooses the
best approach in each case. Figure 6 provides greater detail
on the potential benefits: using synthetic data, it shows the
impact of a semijoin filter’s selectivity vs the performance of a
single-operator (group-by, substring extract, top-2, or equijoin)
computation. If the semijoin filters 50% of an operator’s input
data, there is always a speedup; less-selective semijoins only
show speedup for expensive (join, grouping, top-2) operations.

B. Enabling Consistency & Reproducibility

PROVision uses provenance to (1) find input test sets that
yield inconsistent results across workflow module versions

194

Hi

M Q 1L

[0 Baseline [] RK [ProvAPI [Compute B Storage
¥ Naive [E RCS

(c) Normalized execution time.

(debugging “version inconsistency”); and (2) find missing
parameter values from workflow runs (“parameter finding”).

1) Version Inconsistency: Our bioinformatics collaborators
often face versioning issues. If two versions of a workflow are
run over an input, and their results differ according to diff3,
PROVision is called. It can “trace back” from the differing
outputs, to find an input data subset useful for testing. We took
three versions of our collaborators’ workflow modules (vI-v3),
compared the outputs to find differences, and then traced back
to the input records that contributed to those outputs.

v1-v2 | v2-v3 | vI-v3
Prop. of outputs differing 03% | 2.1% 2.1%
Prop. of inputs contributing | 3.4% | 11.6% | 12.7%

Relatively few outputs differ between any pair of workflow
versions. PROVision can trace back to the specific input
records that contributed to those differences — yielding an
input set of 3.4-12.7% of the original input set. (Execution
costs are identical to Figure 5a and thus not reproduced.) This
shows that PROVision helps the user focus on a relatively
small set of inputs that directly contribute to differences in
answers. In fact, the user can generate even smaller test sets by
selecting a few outputs of interest from the “diff”” and tracing
those in a few seconds (as in Table III).

2) Missing Parameter Discovery: The Magellan entity
matching workflow includes stages for blocking, feature se-
lection, and matching. The blocking stage reduces the number
of comparisons needed, whereas the feature selection and
matching determine the alignment results. We study how
PROVision can recover missing information about the features
used in a prior workflow execution.

Given a fixed schema, the space of possible features is fixed.
The ACM and DBLP tables have 21 candidate features. About
half of these are “obvious” features that will always be used,
and about half are “tuning” features that need to be adjusted
by an expert. Figure 7 shows the cost of exploring the feature
space for Magellan to validate which features were used. The
cost is exponential in the number of features, but feasible due
to PROVision’s ability to test on a subset the data: It takes
between half a minute to about 8 minutes for PROVision to
find the set of features used to perform entity matching.

VIII. CONCLUSIONS AND FUTURE WORK

We proposed novel techniques to reconstruct and reason
about fine-grained provenance in data science and ETL work-
flows. PROVision uses an extended relational algebra with

70000+

65000- 60004

60000+

5000+
55000+

50000+
4000+ !
0.30

0.70 0.75 0.25

Recomputation

0.60 0.65
- Greedy

0.50 0.55
Cost_based

(a) Genome workflow.

0.35
Cost_based = Greedy

(b) Magellan workflow.

7000+
6000+

5000+

0.45 0.50 0.
Recomputation

040 5 0.6 07 0.8
Cost_based = Greedy = Recomputation

(c) DuDe workflow.

Fig. 5: Execution time (s) vs proportion of output selected for different workloads.

N
S
S

o
3

/

y:

Computation time(msec)
2
8

o
S

0.50 0.75
Selectivity Ratio

Groupby - Extract = Topk Join
Fig. 6: Per-operator selectivity ratio vs running time

0.25

500 477

240,

CPU time (s)

135.9

H G
Number of missing features

Fig. 7: Provenance computation times to fill in unknown
feature values, vs number of missing features.

UDFs that produce provenance annotations. It incorporates
type-and-operator-specific equivalence rules and a novel query
optimizer and engine to selectively recompute provenance.
Using real ETL and scientific workflows, we showed that
our methods efficiently trace erroneous results, create test sets
for debugging differences in workflow module outputs, and
reconstruct missing parameters. Our approach efficiently and
retrospectively reconstructs the information necessary to aid
in debugging or filling in workflow data. As future work, we
are interested in expanding our techniques to a broader class
of workloads, including machine learning tasks.

This work was funded in part by NSF ACI-1547360, ACI-
1640813, and NIH 1U01EB020954.

REFERENCES
[1] Y. Amsterdamer, S. B. Davidson, D. Deutch, T. Milo, J. Stoyanovich,
and V. Tannen. Putting Lipstick on Pig: Enabling database-style
workflow provenance. PVLDB, 5(4):346-357, 2011.
Y. Amsterdamer, D. Deutch, and V. Tannen. Provenance for aggregate
queries. In PODS, pages 153-164, 2011.
R. Ananthakrishna, S. Chaudhuri, and V. Ganti.
duplicates in data warehouses. In VLDB, 2002.
Z. Bao, S. Cohen-Boulakia, S. B. Davidson, and P. Girard. Pdiffview:
Viewing the difference in provenance of workflow results. PVLDB,
2(2):1638-1641, 2009.
L. Bavoil, S. P. Callahan, P. J. Crossno, J. Freire, C. E. Scheidegger,
C. T. Silva, and H. T. Vo. VisTrails: Enabling interactive multiple-view
visualizations. IEEE Visualization, 2005.
S. Chaudhuri and K. Shim. Including group-by in query optimization.
In VLDB, pages 354-366, 1994.

(2]
[3

Eliminating fuzzy

(4]

[6

195

[7] J. Cheney, L. Chiticariu, and W. C. Tan. Provenance in databases: Why,
how, and where. Foundations and Trends in Databases, 1(4):379-474,
2009.

U. Draisbach and F. Naumann. DuDe: The duplicate detection toolKkit.
In ODB, 2010.

A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios. Duplicate record
detection: A survey. IEEE TKDE, 19(1):1-16, 2007.

D. Florescu, A. Y. Levy, I. Manolescu, and D. Suciu. Query optimization
in the presence of limited access patterns. In SIGMOD, pages 311-322,
1999.

B. Glavic and G. Alonso. Perm: Processing provenance and data on the
same data model through query rewriting. In ICDE, pages 174-185,
2009.

J. Goecks, A. Nekrutenko, and J. Taylor. Galaxy: a comprehensive
approach for supporting accessible, reproducible, and transparent com-
putational research in the life sciences. Genome biology, 11(8):R86,
2010.

G. Graefe and W. J. McKenna. The Volcano optimizer generator:
Extensibility and efficient search. In ICDE, pages 209-218. IEEE, 1993.
T. J. Green, G. Karvounarakis, Z. G. Ives, and V. Tannen. Update
exchange with mappings and provenance. In VLDB, 2007.

T. J. Green, G. Karvounarakis, and V. Tannen. Provenance semirings.
In PODS, 2007.

R. Ikeda, H. Park, and J. Widom. Provenance for generalized map and
reduce workflows. CIDR, 2011.

M. Interlandi, K. Shah, S. D. Tetali, M. A. Gulzar, S. Yoo, M. Kim,
T. D. Millstein, and T. Condie. Titian: Data provenance support in
spark. PVLDB, 9(3):216-227, 2015.

G. Karvounarakis, Z. G. Ives, and V. Tannen. Querying data provenance.
In SIGMOD, 2010.

P. Konda, S. Das, P. Suganthan GC, A. Doan, A. Ardalan, J. R. Ballard,
H. Li, F. Panahi, et al. Magellan: Toward building entity matching
management systems. PVLDB, 9(12):1197-1208, 2016.

D. Logothetis, S. De, and K. Yocum. Scalable lineage capture for
debugging disc analytics. In SoCC, page 17, 2013.

B. Ludischer, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones,
E. A. Lee, J. Tao, and Y. Zhao. Scientific workflow management
and the Kepler system. Concurrency and Computation: Practice and
Experience, pages 1039-1065, 2006.

K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and M. 1. Seltzer.
Provenance-aware storage systems. In USENIX ATC, pages 43-56, 2006.
T. Oinn, M. Greenwood, M. Addis, N. Alpdemir, J. Ferris, K. Glover,
C. Goble, A. Goderis, D. Hull, D. Marvin, P. Li, et al. Taverna: lessons
in creating a workflow environment for the life sciences. Concurrency
and Computation: Practice and Experience, 18(10):1067-1100, 2006.
Oracle. Oracle 11g release 2 database online documentation: Matching,
merging, and deduplication. https://docs.oracle.com/cd/E11882_01/owb.
112/e10935/match_merge.htm, 2013.

F. Psallidas and E. Wu. Smoke: Fine-grained lineage at interactive speed.
Proc VLDB, 2018.

A. Rajaraman, Y. Sagiv, and J. D. Ullman. Answering queries using
templates with binding patterns. In PODS, pages 105-112, 1995.

M. Stamatogiannakis, H. Kazmi, H. Sharif, R. Vermeulen, A. Gehani,
H. Bos, and P. Groth. Trade-offs in automatic provenance capture. In
IPAW, pages 29-41. Springer, 2016.

E. Wu, S. Madden, and M. Stonebraker. Subzero: A fine-grained lineage
system for scientific databases. In ICDE, pages 865-876, 2013.
L. Xu, S. Huang, S. Hui, A. J. Elmore, and A. Parameswaran.
pheusdb: a lightweight approach to relational dataset versioning.
SIGMOD, pages 1655-1658, 2017.

[8]
[9]
[10]

[11]

[12]

[13]
[14]
[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]

[27]

[28]

Or-
In

[29]

