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Abstract—Data provenance tools capture the steps used to
produce analyses. However, scientists must choose among work-
flow provenance systems, which allow arbitrary code but only
track provenance at the granularity of files; provenance APIs,
which provide tuple-level provenance, but incur overhead in
all computations; and database provenance tools, which track
tuple-level provenance through relational operators and support
optimization, but support a limited subset of data science tasks.
None of these solutions are well suited for tracing errors in-
troduced during common ETL, record alignment, and matching
tasks – for data types such as strings, images, etc. Scientists
need new capabilities to identify the sources of errors, find why
different code versions produce different results, and identify
which parameter values affect output. We propose PROVision, a
provenance-driven troubleshooting tool that supports ETL and
matching computations and traces extraction of content within
data objects. PROVision extends database-style provenance tech-
niques to capture equivalences, support optimizations, and enable
selective evaluation. We formalize our extensions, implement
them in the PROVision system, and validate their effectiveness
and scalability for common ETL and matching tasks.

I. INTRODUCTION

Data science’s need for rigor, consistency, and reproducibil-

ity has spurred the development of tools for capturing data

provenance. Today, there are three “families” of provenance

techniques [7], each making different trade-offs. Workflow
provenance [12], [21], [23] techniques handle complex work-

flows consisting of arbitrary “black box” modules. Yet they

only capture coarse-grained (file-process-file) relationships,

which limits their ability to “explain” specific outputs. Prove-
nance API techniques [28] allow programmers to manually

instrument code with API calls, thus revealing fine-grained

tuple-to-tuple provenance. However, such APIs impose over-

head over all computations, and they produce provenance that

depends on the order of evaluation of operations. Database-
style techniques [2], [7], [11], [18] leverage and extend the

provenance semiring model to capture provenance through

standard relational operators. Here, (bag-)equivalent query

expressions, as produced by a query optimizer, yield equivalent

provenance. A variety of middleware [11], [18] and custom

query-engine-based [28] solutions have been developed, as

have extensions to the relational aspects of Hadoop, Pig, and

Spark [1], [16], [17], [20].

A major source of irregularity in data science (encountered

in our collaborations with biologists) occurs in information
extraction, matching, ranking, and ETL workflows, where data

(or features) are pulled from files and objects, records are

aligned or mapped against a reference dataset, and results are

used for tasks such as OLAP, machine learning, and data visu-

alization. This may involve commercial or open-source ETL

tools; dataframe operations in Python or R; or custom scripts

and binaries. We develop techniques applicable to all of these

settings; our implementation targets scripts and code. Some-

times extraction is done incorrectly, or different workflow

executions produce different results due to (undocumented)

parameters, or workflow module changes result in inconsis-

tent outputs. Unfortunately, existing techniques do not help

troubleshoot such issues. Workflow provenance is too coarse-

grained to help troubleshoot issues. Provenance APIs require

recompilation of often-large source code bases, incur overhead

in recording every derivation in advance, and are sensitive

to changes in execution ordering. Database-style techniques

hold promise, but do not trace through information extraction-

style operations over content within arbitrary datatypes such

as strings, binary objects, and images, do not handle user-

defined functions, and require that the computation occur in

a DBMS or “big data” engine. Moreover, for operations that

choose top-k items from within a group, we may need to know

both which inputs were selected for the output and which parts
of the data were also candidates) in order to create test cases

that reproduce behavior.

This paper develops a solution with the optimizability

and the potential for on-demand computation provided by

database-style techniques, the ability to instrument user-

defined code offered by provenance APIs, and general appli-

cability across languages and datatypes used in science. Our

work adapts and extends database-style techniques to address a

broad class of ETL-style workflows, including record linking,

matching against a reference dataset, and data cleaning. Such

tasks — in order to scale — rely on relational algebra-

like operations, techniques for data partitioning (sharding,

blocking), and (typically deterministic) user-defined functions

to extract, match, rank, and select. Our PROVision system

reproduces fine-grained, record-to-record provenance across

a wide variety of ETL and data processing workflows. Our

contributions are as follows:

• Extensions to semiring provenance [15] to handle track-

ing of extraction from a wide variety of structured files

and objects — using a single formalism and framework.

• Support for user-defined blocking, transformation, and

ranking functions – with datatype-specific optimizations.

• Semantic descriptors based on algebraic operators, to

recompute provenance on demand.
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• Strategies for optimizing provenance computation, when

troubleshooting results, explaining differences, and dis-

covering parameter settings.

• Experimental validation of our techniques’ performance

and scalability, versus alternative methods.

Section II highlights prior work. Section III outlines our

need to explain differences and detect parameter values in

matching and extraction workflows. We propose our operators

and provenance model in Section IV, then study optimization

in Section V. Section VI uses provenance to troubleshoot dif-

ferences across workflow versions and recover missing param-

eters. We evaluate PROVision’s performance in Section VII,

and conclude and describe future work in Section VIII.

II. PRIOR WORK

We build upon the literature in the database provenance

space [7], particulary provenance semirings [2], [14], [15]

that capture fine-grained provenance through relational algebra

operators, while preserving the algebraic equivalences used by

query optimization. Our novelty is in extending the semiring

model to user-defined functions (UDFs), specifically tracking

the extraction of sets of values from within user-defined
datatypes, and in supporting functions that perform operations

such as blocking, approximate matching, and ranking. Like

Smoke [25], we develop an implementation, PROVision, based

on our own query processing engine — as opposed to using

a standard DBMS [11], [18] that is ill-suited to external

data and structured scientific file formats, or an instrumented

“big data” engine based on Hadoop, Spark, or Pig [1]. Our

implementation enables the UDFs to specify what items in an

object or a group were “sub-selected,” while also capturing

the relationship to the broader object or group. In contrast

to SubZero’s [28] or to event logging [22], [22], [27], our

model captures equivalences among computations (including

equivalences that hold for particular datatypes and UDFs).

PROVision’s query optimizer exploits these to “trace” prove-

nance and aid in troubleshooting.

We study finer-grained provenance than scientific work-

flow management systems such as Taverna [23], Kepler [21],

VisTrails [5], and Galaxy [12]. However, we are limited to

relational-style operators augmented by “gray-box” operations,

where key functionality is described in tuple- or tuple-group-

based user-defined functions.

III. PROBLEM AND APPROACH

Conventional provenance tools do not adequately support

detailed reasoning about common ETL-style, matching, and

ranking tasks because they are limited to tuple-level opera-

tions and they do not support approximate matching or sub-

selection. Our study of this problem is motivated by biomedi-

cal collaborators who operate a gene sequencing center. Their

sequencing machine generates files with lists of text strings

representing gene sequence reads. The data is analyzed via

a workflow built from open-source tools written in different

languages (C, Python, shell scripts). A key stage is sequence

alignment: much like a record linking tool, the aligner mod-

ule reads strings from the sequence machine’s output and

compares them against sequences in a reference genome file.

It outputs a list of pairs describing the best matching. This

gene sequence alignment workflow is specified via a shell

script that executes the modules with appropriate command-

line parameters, input files, and outputs. Unfortunately, two

novel problems arise as the same workflow script is run at

collaborating sites.

Version Inconsistency: As workflow modules or reference

datasets are updated, input data gets processed slightly differ-

ently. Prior and current workflow versions may produce results

that differ in subtly different ways — pointing to a likely

bug in one or both versions of the software! This problem

requires debugging by a human expert — given a small input

test case. Changes in output records can be computed using a

standard “diff” tool 1 as in data versioning systems [29] and

diff tools [4]. Our goal is to identify sets of inputs that can be

used to reproduce those different outputs (assuming the tools

are deterministic). In order to deterministically reproduce the

exact same ranking and choice among potential outputs, for

many matching algorithms our input set must include not only

those inputs that directly contributed to the outputs, but other

“candidate” inputs that were considered but discarded within

the same group, block, or ranking computation.

Missing Parameters: Many scientific workflows are built

from shell scripts, which execute binaries with command-line

parameters. It is straightforward to instrument such scripts

to capture the majority of provenance information. However,

some configuration parameters (e.g. thresholds) are often spec-

ified in local configuration files (e.g., in /etc), and these are

often missing from the data and provenance shared across a

data lake or distributed filesystem. Given output produced by

the workflow with unknown parameters, we might be able to

reverse engineer which parameter values produced that output.

If we understand the operation of the workflow, we can test

over a carefully chosen subset of the input data.

A. Reconstructing Provenance Information

Workflow modules for data science take many forms.

Our focus is on ETL, content extraction, and approximate

matching-style computations, where fine-grained provenance

helps diagnose issues. Such computations have been optimized

for I/O performance. Our collaborators do not want to incur

the significant (factor-of-two or greater) overheads required in

recording provenance as computation occurs [28], when they

only occasionally need to debug a few answers. Rather than

instrumenting individual workflow modules to get fine-grained

provenance, we instead develop methods to later recompute

provenance rapidly and on-demand, using declaratively speci-
fied implementations of the workflow modules that, while not

as fast as the original code, allow us to selectively compute

only the needed provenance. A PROVision user may (1) trace

provenance back to inputs and data sub-objects extracted or

1“Record” denotes an element in a collection, e.g., a tuple, JSON tree, etc.
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Fig. 1: PROVision system architecture.

matched from the inputs; (2) isolate subsets of inputs that,

taken together, produce different outputs across workflows;

(3) for certain cases, find parameter values if these were not

captured in provenance.

To achieve this, we associate with each workflow module

a descriptor. Each descriptor algebraically expresses how the

original module extracts structured content from the files; fil-

ters, combines, processes, and transforms this content; and/or

joins and aggregates results, all with user-defined code. The

operations within the descriptor attach provenance information

to their outputs (similar in spirit to Smoke [25]).

B. The PROVision System

The PROVision system provides tools for reconstructing
provenance to improve data consistency. PROVision is given

a workflow, input and intermediate files, and records selected

by the user. It selectively produces record-level provenance

for outputs, subsets of data that produce differences across

workflow versions, and values for missing parameters. It is

comprised of the modules shown in Figure 1.

Module Registry. PROVision looks up the workflow mod-

ules in a central repository2 to find accompanying semantic
descriptors. Each descriptor, stored as a JSON file, specifies

inputs and data formats, a tree of relational algebra operators

(a semantic descriptor, Section IV), and optional user-defined

code (or links to code) for the operations.

Plan Generator. Given the coarse-grained provenance and

semantic descriptors from a workflow run, the plan generator

builds an initial plan for computing provenance. This query

plan makes selected calls to user-defined code for similarity

matching, ranking, etc.

Optimizer. A query rewrite-based [13] optimizer then takes

cost information gathered from the original workflow prove-

nance and data, as well as any user selections for results of

interest, and generates a more efficient plan. Our optimizer

aggressively uses a semijoin-based optimization technique to

prune intermediate results (Section V-C).

Provenance Computation. PROVision executes the query

plan using a custom query engine (Section V-B), which

works over external files, interfaces with external code, and

reproduces workflow results annotated with provenance.

2https://github.com/nzheng/Module-descriptor-lib

Result Analysis Tools. Interactive tools (Section VI) enable

the user to select records (e.g., those that differ workflow ver-

sions) to trace back to their inputs, and to rapidly reconstruct

missing parameter values.

IV. SEMANTIC DESCRIPTORS

Workflow modules are arbitrary data-driven programs, in-

voked with parameter lists, typically operating with structured

files as inputs and outputs. Our goal is to describe, using a

more tractable specification, the data processing operations

being performed within the module — such that we can

trace from individual “records” within the output file, back

to input “records” in the input file(s). We term this simplified

specification a workflow module descriptor.

Key assumptions. While “re-implementing” workflow mod-

ules sounds complex, our task is often easier than full reim-

plementations like in Smoke or Lipstick. We leverage several

factors: (1) many ETL tasks are in fact relational operations;

(2) many others are open-source and their “core logic” is

already modularized into a function or library, as in our real

use cases; (3) many operations within workflow modules, such

as those over strings or images, share implementations; (4)

workflows share modules. To use PROVision, an expert must

instrument key functions such as substring extraction or image

clipping, which can be done once per datatype per language;

and identify the main code module(s) used to perform key

logic such as top-k ranking or approximate matching. This

is easy for data-driven code but may be challenging in other

settings; we study this in Section VII.
Each workflow module descriptor is specified as a query

in an extended relational algebra; operators compute and

maintain provenance. We leverage techniques developed for

database provenance, but make key innovations in provenance-

preserving query operators that invoke user-defined functions

to compute new attributes and/or extract multi-valued content

embedded within composite (possibly binary, free-text, image,

or substring) attributes.

Expressiveness. We build upon the relational algebra, so our

techniques do not capture Turing-complete programs. We tar-

get ETL-style operations like extraction of content from data,

blocking and binning of records, attribute-to-record transfor-
mations, and arbitrary computations over groups of tuples.

We develop a unified provenance framework for deterministic

extraction, ranking, and transformation operations over many

composite datatypes (e.g., strings, images, volumes, trees,

binary objects) and collections thereof. We merely assume

operations return sets of sub-selected items as fields or records.

As formalized in the next section, our only requirement is

that each operation can be subdivided into deterministic sub-

operations that (a) determine a set of values to be extracted

into separate sub-records (e.g., extractions of substrings) and

return a set of index markers (“location specifiers” such as

bounding boxes) from which the sub-records were extracted;

(b) return the sub-records corresponding to individual location

specifiers. Our approach can leverage known equivalences that

hold for compositions of operations.
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Fig. 2: Extracting data from structured files: read a sequence

of 〈filename, object〉 pairs from the data lake, then join these

results with the extracted records within the objects.

Novel requirements. Our algebra and provenance model build

upon the database provenance literature [15], [18], producing

results annotated with provenance polynomial expressions in

the provenance semiring model. Here, logically equivalent

query plans produce algebraically equivalent provenance poly-

nomial expressions. Thus, like Smoke [25], we incorporate

SPJU+GROUP operators, but we exploit algebraic equiva-

lences (Section VII-A). Additionally, most ETL and data

matching tasks involve user-defined functions, to extract and

transform content from composite data (e.g., a nested object

in a structured file) or return items from a group (e.g., by

choosing top-k items from a set). This requires us to develop

a comprehensive treatment for interfacing with user-defined
functions, such that we can determine not only what their

atomic input values are, but also what we term locations
— datatype-specific specifiers of projections, such as subsets,

ranges, and bounding boxes — within specific inputs. Impor-

tantly, we allow the definition of type- and operation-specific

equivalence rules to support optimization.

Insight: Content extraction as a dependent join. Semiring-

style database provenance does not handle “unnesting” or

extraction operations over complex datatypes. Yet ETL tasks

and scientific workflows operate on JSON/XML, structured

files, images, raw text, and even (e.g., in genetics) substrings.

We must represent extraction and transforms over any of these

formats. To do this, we still assume a tuple-based processing

model, possibly of bindings to content (subtrees in XML, faces

in an image, or substrings in gene sequences). Now, if input

tuples contain (bindings to) objects such as images, objects,

trees, or text; a content-specific extraction operation takes one

such value at a time, and extracts a set (relation) of values.

The input tuples and extracted results are semantically linked

by the function call, just as, in data on the web, a parameter

to a web service call is linked to the returned results. We

propose that the “right” abstraction of this dependency is the

dependent join [10], previously used in the data integration

literature to represent external function calls. In our case the

function returns a set of values for each input: the dependent

join is with a relation, not merely a function. This abstraction

incorporates table-valued UDFs into the semiring provenance

model. This abstraction allows us to formalize the semantics

of provenance, but does not reflect how we implement UDFs.

Example 4.1: Figure 2 illustrates extraction of gene se-

quences. Given a list of (name, content) tuples corresponding

to files in the data lake, for each such tuple a file format reader

extracts sets of (location, sequence) pairs. We capture this as

a dependent join between the input 〈file, object〉 tuples and

the set of extracted 〈location, sequence〉 tuples, where the

location is relative to the file.

A. PROVision Data Model and Algebra

We describe a workflow’s data processing modules using

algebraic expression trees that filter, combine, and extract data,

starting from raw input data that is stored in files or is remotely

accessible via URLs, and resulting in structured outputs.

In a relational DBMS setting, queries (and their provenance)

are derived from a set of 1NF base relations. PROVision uses

a bag-of-tuples data model with support for binary objects3.

Given that PROVision operates in a file-based environment,

we instead assume that all of our base data is maintained in

a “data lake.” This data lake stores (URL, object) pairs in a

single relation L(key, value). Data values are often composite

binary objects (BLOBs), such as structured files, so we make

no assumption that our data is in 1NF. As in prior work [14],

each tuple in the data lake, t̄, is annotated with a provenance
token Prov[[t̄]], a unique, opaque tuple ID.

1) Core Relational Algebra: PROVision implements bag

relational selection, projection, join, union, and distinct (ex-

traction, nesting, and grouping are described later). Selection

and join predicates may test attribute equality-by-value and

equality-by-reference. For each output tuple t̄, each algebra

operator creates an annotation, denoted, Prov[[t̄]], that is a

provenance polynomial from the semiring model [15]. Briefly,

we assume a unique variable or token associated with each

base tuple, which represents any provenance metadata “at-

tached” to that tuple. Each time we derive a new tuple via a

relational algebra operation, this new tuple will be annotated

with an algebraic, polynomial expression derived from the

annotation of the input tuple(s). The expressions are computed

as follows:

• For a select expression σφ(R), for each tuple t̄ ∈ R
satisfying φ(t̄), its provenance expression is Prov[[t̄]].
(Provenance is unchanged by selection.)

• For a (bag) project expression Πα(R), for each tuple

t̄ ∈ R, its provenance expression is Prov[[t̄[α]]].
• For each output t̄′ from a join expression R ��θ S, for

each tuple pair t̄1 ∈ R, t̄2 ∈ S satisfying θ(t̄1, t̄2), its

provenance expression is Prov[[t̄1]] · Prov[[t̄2]].
• For a (bag) union expression R ∪ S, for each tuple t̄ ∈

R ∪ S, its provenance expression is Prov[[t̄]].
• For a result t̄′ output by a duplicate removal expression,

distinct(R), if t̄1, · · · ¯tm ∈ R and all m tuples are

equal, t̄1 = · · · = ¯tm, then t̄′’s provenance expression

is Prov[[t̄1]] + · · ·+ Prov[[ ¯tm]].

Example 4.2: Suppose we have a relational algebra expres-

sion distinct(Πa,y(R ��c=x φx<5(S))), applied to schema

Σ = {R(a, b, c), S(x, y)}, and tuples R(1, 2, 3), R(1, 4, 3),
S(3, 4) with provenance tokens p1, p2, and p3, respectively.

The result t(1, 4) has provenance Prov[[t]] = p1 · p3 + p2 · p3,

3JSON and XML data are encoded as non-1NF CLOBs.
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representing that the derived result is generated twice, from

the first-and-third and second-and-third base tuples.
2) Novel Operators for User-Defined Functions: ETL tasks

often invoke non-declarative code to extract embedded content

within an input object, or to compute a value over some fields

of a record. We assume our query plan embeds this logic in

the form of a user-defined function (UDF) modeled after the

original workflow module, but (as we describe below) that our

UDFs additionally provide a limited amount of information

about the provenance of any result being computed.
Since some UDFs can be applied to sets of tuples as a result

of grouping, and others can be applied to single tuples at a
time, we develop separate operators for each (the group-by
and compute operations, respectively). We define the operators

using the same basic ideas.

UDFs as joins with binding pattern restrictions. Bor-

rowing from the data integration literature [26], we model

the invocation of a UDF, which takes a set of input

parameters, as a dependent join with a relation with
binding patterns, of the form

Rf (a
b
1, . . . , a

b
n, b

f
1 , . . . , b

f
q ). Attributes adorned with b are

bound and those annotated with f are free. To retrieve

tuples in Rf , we must parameterize (join on) the bound

attributes.

Example 4.3: Suppose function fn(x, y) returns a set of

pairs (a, b). We model this as a relation from inputs to outputs,

R(xb, yb, af , bf ). We can then represent a function call to f ,

based on the contents of relation S(u, v) as a dependent join,

S ��
→
u,v R, whose results will have the schema (u, v, a, b).

Definition 1 (Scalar UDF operator): The scalar UDF
operator, compute, evaluates one tuple t̄ at a time, computing

a function fn over the fields t̄[ᾱ], returning a list of attributes

β̄: computefn,ᾱ,β̄(R). The input parameters to fn must match

the arity and types of R[ᾱ].
The scalar UDF operator is extremely useful for building

query plans with extraction functions, and for query optimiza-

tion. However, we will (in the next 2 sections) need to define

the provenance for its outputs. Here it is useful to note that the

scalar UDF can be modeled using the dependent join (hence,

a standard join for which provenance is well understood), as

follows. Let us represent function fn as a relation Rfn, whose

schema is ᾱ ∪ β̄, where ᾱ are all bound and β̄ are all free.

Computefn,ᾱ,β̄(R) can then be rewritten as a dependent join

R ��
→
α Rfn.

Definition 2 (Grouping UDF operator): The grouping UDF
operator, group, partitions the input relation R into sets

of tuples sharing the same values for grouping fields R[G].
For each set of tuples, it then applies a series of aggregate

functions, FN1 through FNm over projections ᾱ1 through

ᾱm, respectively; returning values β̄1 through β̄m. We denote

it as follows:

groupG,(FN1,ᾱ1,β̄1),...,(FNm,ᾱm,β̄m})(R)

Unlike with the scalar UDF case, aggregate functions are

second-order and we cannot capture the full semantics using

select/project-join expressions. However, for each set of tuples

T ⊆ R belonging to a group (i.e., sharing the same values for

all grouping fields G), the output of the grouping operator is

a join between the portion of the tuple corresponding to the

grouped fields, and the results of applying each function to

the set of tuples:

distinct(T [G]) ��G FN1(T ) · · · ��G FNm(T )

This is similar to the scalar UDF operator, but results in a bag

of tuples (namely, a Cartesian product between the grouping

tuple and the outputs of each of the m aggregate functions.)

Note that each α term consists only of attributes from R so

the order of evaluation of the functions does not matter.

Example 4.4: Suppose we are given two aggregate func-

tions, min, which returns the minimum value among a collec-

tion of values (and is modeled as relation Rmin(x
b,mf ), and

the table-valued function top2, which returns the two largest

values among a collection of values (modeled as relation

Rmin(y
b, tf ). Given an SQL query:

SELECT id, average(x), top2(y)
FROM r GROUP BY id

and a table r with values r(1, 2, 3), r(1, 3, 4), r(1, 4, 2) and

r(2, 3, 4). The group with id = 1 has three tuples r(1, 2, 3),
r(1, 3, 4), and r(1, 4, 2). The grouping tuple will simply be

comprised of the grouping attribute: (1). The function average
will be called on the values of x, {2, 3, 4} and will return a

single unary tuple (3). The function top2 will be called on the

values of y, {3, 4, 2} and will return unary relation {(4), (3)}.

The ultimate output for this group will be the Cartesian product

of these three intermediate relations, which will result in the

two tuples (1, 3, 4) and (1, 3, 3).

B. Provenance for Extraction of Nested Content

Unlike the standard relational queries studied in much of

the prior work on fine-grained provenance, ETL workloads

do not start with records in their fully parsed form. Thus

they often take as input a “BLOB” (Binary Large OBject)

of binary or string data, and apply an extraction function (or

path expression) to the data within that object. For instance, we

may extract segments of comma-separated text into different

fields, or we may apply an information extraction function to

find mentions of dates in an HTML file. These are common

use cases for PROVision’s scalar UDF operator, which takes

a tuple at a time, applies a user-defined function, and returns

a set of tuples representing the extractions. The scalar UDF

operator can additionally be useful in allowing a workflow to

apply transformations from tuples to tuples (e.g., converting

fields from one unit to another) or sets of tuples (e.g.,

extracting words from lines of text).

Recall that every object in our data lake has a unique

provenance token. Every derived SPJU tuple has a provenance
semiring polynomial expression in terms of these tokens,

as described at the start of this section. We capture the

provenance of each tuple as an expression over the provenance

of its source tuples. Now, we exploit the observation in the

previous section that the scalar UDF operator is a form of a
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(dependent) join. However, the extraction UDF itself adds a

wrinkle: indeed a UDF takes zero or more arguments from an

input tuple, and produces a set of results. However, the UDF

often only uses a portion of the data in each input tuple’s

fields: for instance, it may extract a substring or a sub-region.

To precisely capture the provenance in this setting, we need

a datatype- and UDF-specific way of capturing the subsets of

data used within attributes.

1) Type- and UDF-specific Provenance: Let us assume the

presence of a location specifier and value extractor for a given

attribute x and function fn.

Definition 3 (Location specifier): A location specifier La,fn,

is a datatype- and operation-specific token — typically a range,

bounding box, or predicate — for use in extracting a value

from a subset of an attribute value a.

This is similar to a provenance token, but deterministically

applies to a piece of non-relational data returned by an

operation. To more precisely capture this, we factor function

fn into the composition of two subfunctions, fn = fn′ ◦ v
where v is a value extractor function that takes a series of

location specifiers (one per input argument to fn), and fn′ is

the UDF rewritten based on the outputs of the value extractor.

Definition 4 (Value extractor): A value extractor for func-

tion f , vfn,x̄(t̄, L̄) is an operation that, given a tuple t̄ and a

vector of location specifiers for each attribute in x̄, L̄, returns

a list of subsets of t̄[x̄] from which fn(x̄) can be computed.

The value extractor is akin to a selection operation in the

relational algebra: it returns a subset of the input data, which

is used by the transformational or computational aspects of

UDF f . Together, these allow us to express the provenance

of extractions (where each location specifier might represent

an index key or projection) or transformations (where each

location specifier represents an input).

Proposition 1: Assume a deterministic UDF

fn(x) which,

for any instance a of attribute(s) x, returns results fn(a) =
[ra,1, . . . , ra,ka

]. Suppose we can factor fn into composable

sub-functions fn′ ◦ v, such that given a sequence of location

specifiers LSa = [La,1, . . . , La,ka ], fn′(v(LSa)) = fn(a),
for 1 ≤ i ≤ ka. Then if we can instrument our UDF to produce

LSa for any value of a, our model captures the provenance

of fn(x). (Proof is by contradiction.)

Example 4.5: For a CSV string CATGGCCG,alpha, a

location specifier might be the interval [0, 7]. The value

extractor may simply be the substring function, which takes a

string from the CSV file (e.g., CATGGCCG,alpha) and the

location specifier, and returns all characters within that interval

(CATGGCCG).

We assume our value selector is defined in a way that is

independent of any specific input record. Given this, and the

ability to compare location specifiers according to a partial

ordering on restrictiveness, we can also define a minimal
location specifier to be the most restrictive location specifier

Lamin
for a given value a, which still returns the same output

f ′(v(a)) = f(a). For instance, the minimal location specifier

may represent the smallest substring from which a value is

computed, or the minimum bounding box.

2) Composing Provenance: We also want the provenance

of the output of our UDF operators to be the composition of

each input tuple’s provenance, along with its location speci-

fiers. Given function fn which takes parameters a1, . . . , am
and returns a set of (zero or more) Rfn(b1, . . . , bq) tuples:

fn(a1, . . . , am) 	→ Rfnout
(b1, . . . , bq)

we define the provenance of each output tuple t̄ as a prove-
nance function combining the provenance of the base tuple,

plus the UDF-specific provenance of the prior section:

Pfn(Prov[[t̄]], L1, L2, . . . , Lm)

where Pfn represents a function symbol in the provenance

semiring specific to our function fn. (We later allow for

specific algebraic equivalence to be associated with the prove-

nance functions, for query optimization purposes.)

Finally, each output of the scalar UDF function represents

the (dependent) join of the input tuple with each output tuple

returned from the function, i.e., it is the provenance expression:

Prov[[t]] · Pfn(Prov[[t̄]], L1, L2, . . . , Lm)

Example 4.6 (Blocking): A key operation in record link-

ing [9] (as well as string and gene sequence alignment)

is known as blocking. Given the cost of performing a full

comparison between all pairs of tuples, blocking is used to

prune the set of comparisons to those with common features.

Each tuple is associated with one or more blocks, and all tuples

within a block are combined for a similarity comparison. A

common blocking function is the n-gram, where all subsets of

up to n tokens are returned as candidate blocks. (Each tuple

may have multiple blocks, in contrast to a hashing function.)

Given a tuple (′smith′, 123) with provenance token p0, and

a scalar UDF returning all trigrams, fn3gram, applied to the

first attribute, we will get the results and provenance:
block name id provenance

s smith 123 p0 · P3gram(p0, [−2, 0])
sm smith 123 p0 · P3gram(p0, [−1, 1])

smi smith 123 p0 · P3gram(p0, [0, 2])
mit smith 123 p0 · P3gram(p0, [1, 3])

.

.

.
.
.
.

.

.

.
.
.
.

Observe that the provenance column represents the product

of the input tuple with a provenance function (for fn3gram)

and a location specifier representing the index positions of a

substring. We assume here that index positions that are out of

string bounds are filled in with blank ‘ ’ characters.

C. Provenance for Aggregates

We now consider another type of user-defined function,

which takes a set of tuples as its input. Classically, this is an

aggregate function in SQL. However, many types of matching,

ranking, and approximate join operations, such as record

linking [3], [9], [24], can be captured using a combination

of (1) computing, via the scalar UDF function, a set of

one or more blocks for each input record, as in our prior

example, (2) joining tuples within blocks, forming a Cartesian

product among these, (3) and then performing a ranking or

thresholding function over the collection of joint tuples within
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the block to find the most promising matches. The grouping
UDF operator is critical to this third step.

To define provenance for each output from the grouping

UDF operator, we note that aggregate functions are generally

divided into exemplars — input tuples whose output appears

in the output — and summaries — where all of the input

tuples are combined to produce an output. For summaries, the

provenance should clearly be based on the provenance of all
of the input tuples. For exemplars, there is a choice between

capturing the provenance of all tuples whose values affect
the output, and all tuples whose values were considered in
producing the output. In either case, we can define a notion

of relative provenance, similar to that in Section IV-B. This

will represent a combination of the provenance of the input

group (e.g., the semiring sum of the provenance expressions of

the input tuples) with a notion of type- and operation-specific

provenance.

For each aggregate function FN(a1, . . . , aq) applied to a

group of tuples T , we get a result tuple whose provenance is:

PFN (
∑

t̄∈T

Prov[[t̄]],
∑

t̄i∈T

〈Li,1(ti[a1]), · · · , Li,m(ti[aq])〉)

Recall from Section IV-A2 that we can express the com-

putation done by the grouping UDF operator for each group
of tuples T ⊆ R, with multiple functions FN1 . . . FNm, as a

series of joins:

distinct(T [G]) ��G FN1(T ) · · · ��G FNm(T )

Thus, the output provenance for each aggregate tuple, based

on a group of tuples T ⊆ R, is a product of the form:

∑

t̄∈T

Prov[[t̄]]

·PFN1(
∑

t̄∈T

Prov[[t̄]],
∑

t̄i∈T

〈Li,1(ti[ay1,1 ]), · · · , Li,m(ti[ay1,q ])〉)

· · ·
·PFNm

(
∑

t̄∈T

Prov[[t̄]],
∑

t̄i∈T

〈Li,1(ti[aym,1
]), · · · , Li,m(ti[aym,q

])〉)

Example 4.7 (Aggregation): Suppose we are matching tu-

ples in two relations: A(‘smith′, 123), B(′smythe′, 345),
B(′simpson′, 456) with provenance tokens p0, p1, p2, respec-

tively. We use f3gram to compute a block for each tuple, and

we join candidate matches on the block ID.
block name1 name2 id1 id2 provenance

s smith smythe 123 345
p0 · p1 · P3gram(p0 · p1,
〈[−2, 0]〉 + 〈[−2, 0]〉)

s smith simpson 123 456
p0 · p2 · P3gram(p0 · p2,
〈[−2, 0]〉 + 〈[−2, 0]〉)

sm smith smythe 123 345
p0 · p1 · P3gram(p0 · p1,
〈[−1, 1]〉 + 〈[−1, 1]〉)

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

Finally, for each block, we return the highest-scoring pair-

wise match (top1). We can visualize an intermediate point in

the computation. For instance, for block s, the result would

be (‘smith′, ‘smythe′, 123, 345) given that its string edit

Commutativity
groupG,g,αg,βg (groupG,f,αf ,βf

(R)) ≡ if αg ∩ βf = ∅∧
groupG,f,αf ,βf

(groupG,g,αg ,βg (R)) αf ∩ βg = ∅
computeg,αg,βg (computef,αf ,βf

(R)) ≡ if αg ∩ βf = ∅∧
computef,αf ,βf

(computeg,αg ,βg (R)) αf ∩ βg = ∅
Compute/Group

computeg,αg ,βg (groupG,f,αf ,βf
(R)) ≡ if αg ⊆ G,αg ∩ βf = ∅∧

groupG∪βg ,f,αf ,βf
(computeg,αg ,βg (R)) αf ∩ βg = ∅

TABLE I: UDF operator equivalences

Strings and substrings
Prov[[substringc,d(substringa,b(S))]] ≡ if c, d ≤ b− a

Prov[[substringa+c,a+d(S)]]
Images and cropping

Prov[[crop(x3,y3),(x4,y4)
(crop(x1,y1),(x2,y2)(I))]] ≡ if x3, x4 ≤ x2 − x1

Prov[[crop(x1+x3,y1+y3),(x1+x4,y1+y4)(I)]] ∧y3, y4 ≤ y2 − y1
Trees and simple path expressions

Prov[[pathevalx(pathevaly(T ))]] ≡
Prov[[pathstepx/y(T )]]

TABLE II: UDF type/operator provenance equivalences

distance is the lowest in this block. Note that the provenance

of the output result would be:

(p0 · p1 + p0 · p2) · Ptop1((p0 · p1 + p0 · p2), 〈p0 · p1·
P3gram(p0 · p1, 〈[−2, 0]〉+ 〈[−2, 0]〉)〉)

D. Algebraic and Provenance Equivalences

Our algebra exhibits all of the standard equivalences for

the relational algebra: join associativity and commutativity,

selection pushdown, distributivity of join through union, and

group-by/join pushdown [6]. Moreover, our UDF operators

show certain equivalences, shown in Table I. (We require that

UDFs, while effectively black-box, be deterministic.)

A virtue of the provenance semiring model is that algebraic

equivalences used in query optimization (e.g., commutativity

of joins) result in equivalent provenance. We are interested

in arbitrary datatypes and UDFs, for which equivalences

may or may not hold. Our PROVision system allows an

expert to provide type-and-operator-specific equivalence rules.

We describe here an important class of datatypes for which

we pre-encode equivalence rules for provenance expressions:

types with hierarchical containment and operators that project
locations. Table II shows some properties that hold for several

common cases: namely, strings, images, and trees.

V. PROVENANCE RECONSTRUCTION

We now describe how we implement a query processor for

efficiently reconstructing fine-grained provenance.

A. Generating the Initial Execution Plan

As alluded to in Figure 1, PROVision first take the various

modules executed in the workflow, looks up each of these in

the module registry to retrieve its semantic descriptor. The

semantic descriptor specifies the schema and file formats for

input and output results. Most importantly, it specifies a tree

of algebraic operators (Section IV) for the module — as

well as links to any external files and code that must be

retrieved to execute any associated user-defined functions. Our

implementation supports code written in Python, Java, and C.
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B. Engine for Provenance Reconstruction

In our early explorations of the design space for PROVision,

we considered building over or extending existing open-source

query processors. However, most of the use cases for PRO-

Vision are based on data in files, we needed to support user-

defined functions in several different languages, and we needed

the operators to compute provenance. Hence PROVision has

its own custom query engine implemented in Java, built to use

pipelined execution over “batches” of tuples, and support for

UDFs written in Python, C, and Java. (Our engine uses JNA

and Jython to interface with external code.)

The query engine is built using an iterator model, in which

tuples are recursively requested from root to child operators.

Every tuple carries a unique provenance polynomial expres-
sion, itself stored as an in-memory expression (tree) with refer-

ences. As input tuples are composed within an operator (e.g., a

join) to produce output tuples, the output tuples are annotated

with polynomial expression trees composed from the inputs

(linked by reference, thus avoiding copying). We found that

“carrying” the polynomials along with the tuples, produced the

best performance within a pipelined query engine; methods

for storing the provenance in a separate subsystem added

significant overhead due to value copying.

C. Optimizing Provenance Reconstruction

The initial execution plan is optimized based on costs, using

rewrite rules. Our query optimizer is built in the style of

Volcano [13]: it supports logical-to-logical algebraic trans-

formation rules with optional constraints, as well as logical-

to-physical transformation rules with constraints and costs.

The search space is internally encoded as an AND/OR DAG,

where each node has an associated signature that is the

same for logically equivalent expressions. The PROVision

framework operates over files, and thus does not have a

DBMSs’ sophisticated mechanisms for computing histograms

and performing rich cost estimation. However, in fact we have

access to the inputs and outputs of each workflow module,

since it was previously run and its output materialized, so for

many expressions we can directly use the cardinality of the

results. Additionally, in our experience most workflow plans

have only a few join and aggregation steps, which limits the

error that accumulates through cost estimation. We use branch-

and-bound pruning to avoid searching plans that are more

expensive than the best-known alternative.

Algebraic rewrites. We implement transformation rules for

the algebraic equivalences described in Section IV-D. The

optimizer treats the scalar UDF operator as a join with an

input binding restriction [10], where one of the inputs must

be bound to the UDF’s parameters. It then searches for an

optimal ordering among joins and UDF calls.

Pruning with semijoins. An optimization unique to PROVi-

sion exploits the fact that the user typically only wants to

reconstruct the provenance for a subset of the output tuples
S ⊆ W , where W is the output of the workflow. In effect

we want to “trace back” the provenance from the output, but

since the provenance does not yet exist, we really need to

selectively compute only from those inputs that might relate

to the selected results.

We initially model this as computing the query plan for

W � S, i.e., W semijoined with the selected tuples. We then

introduce transformation rules for pushing the semijoin. Given

a join expression (A ��θ1 B) �θ2 R, we split θ2’s predicates

to those between the attributes of A and R, resulting in

θ2a; and likewise for B and R; and substitute the expression

(A �θ2a R) ��θ1 (B �θ2b R). For UDF operators (whether

scalar or grouping), a challenge is that many attributes are not
necessarily shared between input and output. For any grouping

or scalar UDF operator U , given an expression U(A) �θ R,

we can rewrite as U(A �θ′ (A)) �θ R. To get θ′ we rewrite

θ to DNF, then remove any conjuncts over attributes missing

from A. This rewrite may match false positives (some tuples

may not actually contribute to the final output) but no false

negatives, so it preserves correctness. We later experimentally

study when the rewrite actually saves cost and time.

With the semijoin optimization and the input set of selected

tuples, PROVision can heavily prune the results it uses during

reconstruction, as we shall see in Section VII.

Provenance expression rewrites. Our query optimizer takes

expert-provided type-and-operator-specific rules, including

those in Table II, and uses them to simplify provenance.

Primary strategies. The above optimizations are incorporated

into two over-arching strategies to reconstruct provenance.

PROVision may eagerly recompute and materialize an entire

workflow’s results and provenance, in order to allow future

inquiry about the provenance of any intermediate or output

result. Alternatively, we may adopt an on-demand strategy

where we only recompute the portion of the workflow nec-

essary to produce the provenance of a specific user selection

and exploit pruning techniques such as semijoin pushdown

during on-demand computation. Here we deploy two strate-

gies: greedy, where we try to pushdown the restrictions as far

as we can (maximum pushdown); cost based, where we pick

the best plan based on minimum execution time. Section VII

studies the trade-offs between these approaches.

VI. USER ANALYSIS TOOLS

Building upon PROVision’s provenance reconstruction tech-

niques, we consider how to address our motivating problems.

Both the version inconsistency and missing parameters prob-

lems leverage a provenance-tracing primitive. Algorithm 1,

TraceProv, is called with a workflow and intermediate results,

WF . It computes the full provenance for the workflow (if

selected outputs Osel = ∅) or the provenance for selected

output tuples Osel (if this is using a semijoin optimization).

A. Version Inconsistency

When workflow module code gets updated, sometimes these

changes cause unexpected changes to output. We seek test

instances for developers to debug for the output differences.

A test case is a small input instance that is guaranteed to
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Algorithm 1 TraceProv(WF , Osel)

1: Retrieve semantic descriptors of modules in W , use to

build execution plan Q.

2: if Osel �= ∅ then
3: Q = Q�Osel

4: end if
5: Optimize and execute Q, recording provenance.

6: return prov(Q)

reproduce the behavior and a subset of the different results
between (deterministic) module versions. For each output

tuple, we must compute those inputs that went into the same

block or group that yielded the result. We assume a pre-

processing step that executes each version of a module in

the workflow, and does a standard diff between the versions’

outputs. PROVision finds the earliest module that results in a
difference in outputs: the branching module. It then identifies

the output records that differ between the versions, allows the

user to sub-select from these, and reconstructs the necessary

provenance that went into these outputs. Finally, it outputs the

set of input records needed to reproduce the selected output.

We require the same abstract workflow specification across

versions, but the modules and files may differ. The workflow

specification is converted into a workflow template DAG,

T = (V,E), where nodes V = V m ∪ V f represent modules
(V m) and input or output files (V f ); edges E connect from

file nodes to module nodes (representing inputs to a program)

or from module nodes to file nodes (representing outputs

produced by a program). The template T is instantiated each

time the workflow is executed. Execution maps each node in

T to actual execution instances: in execution run Xj , every

module node mi ∈ V m is mapped to an executable program

(Mj : mi → Programi,j); every file node fi ∈ V f , fi is

mapped to a set of data files used in the execution (Fj : fi →
{Filei,j,k}, where k = 1, ..., q represent multiple(q) files as

input or output of a module).

Given template T and mappings of two executions Map1 =
{M1, F1} and Map2 = {M2, F2}, Algorithm 2 traces the

execution instances. Here the two executions share the same

input files, with an overall input set of records I , leading to

different output sets of records O1 and O2, from which the user

selects a subset. We compute the responsible subset of records

Iresp ∈ I which leads to the selected output results. The

algorithm traverses the file nodes in workflow template T and

compares the associated files. From the branching module, we

trace provenance back to the input records, for each execution.

B. Missing Parameters

Inconsistency also arises when we re-run a workflow ac-

cording to its provenance, but we are missing some parameter

settings. For instance, consider software with settings in the

local /etc directory, where data and provenance are on a

shared disk. PROVision “knows” the semantics of the modules

and possible parameter values from semantic descriptors: it

can run the workflow over carefully chosen subsets of the

Algorithm 2 WorkflowDebugInstance(Map1,Map2, T )

1: for each fi ∈ V f in topological sort order do
2: search mappings F1 ∈ Map1 and F2 ∈ Map2, find

{Filei,1,k} and {Filei,2,k}
3: if not isEqual({Filei,1,k}, {Filei,2,k}) then
4: Let T ′ := (V ′, E′) where V ′, E′ represents the

transitive closure of all edges and nodes connecting

to fi.
5: Let WF ′

1 and WF ′
2 represent the subset of workflow

and module nodes mapped from T ′ for executions 1

and 2, respectively

6: Let Osel1 := O1 − (O1 ∪ O2) and Osel2 := O2 −
(O1 ∪O2).

7: prov1 := TraceProv(WF ′
1, Osel1 )

8: Iresp1
:= the input records within prov1

9: prov2 := TraceProv(WF ′
2, Osel2 )

10: Iresp2 := the input records within prov2
11: return Iresp1

∪ Iresp2

12: end if
13: end for

data under different parameter settings to quickly isolate

“plausible” parameter values. Algorithm 3 searches for the

missing parameter values. We take a workflow WF and a

search space S = 〈X1, . . . , Xm〉, where each set of values Xi

represents the possible values for parameter pi. (The search

space is |S| = Πm
i=1|Xi|), and a possible setting for missing

parameters is P (i) =< p
(i)
1 , ..., p

(i)
m >, where P (i) ∈ S.

Now we enumerate possible settings for the m parame-

ters, and test (on a subset of the input data) whether these

produce results consistent with the original workflow output.

Algorithm 3, picks a subset of inputs T ∈ I; this must be done

considering which items that are mapped by the algorithm to

the same hash bucket or block. We reconstruct the workflow

output over input subset Ii with candidate parameter values,

producing outputs Oi with provenance prov(Oi). Lines 4-6

validate whether such records appear in the provenance of

the original workflow execution, and prunes candidates as

appropriate. Finally, we take the (much smaller) candidate

parameter settings that passed our tests over data subsets, and

return only those that produce consistent output over the full
input data (Lines 8-12).

VII. EXPERIMENTAL EVALUATION

We now evaluate the overhead of provenance reconstruction

and PROVision’s effectiveness with the version inconsistency

and missing-parameter reconstruction problems. We study

our different optimization strategies on the space and time

overheads of provenance reconstruction. We use workflows

and datasets for three types of ETL and scientific tasks.

Gene sequence alignment (Genome). Scientists often seek to

quantify the genes and related proteins from DNA-sequenced

tissue. A workflow cleans the sequence records (trim), aligns
trimmed sequences against a reference “library” of genes, and

finally looks up the genes to determine which proteins are
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Algorithm 3 SearchParamValues(WF , S)

1: choose subset T ∈ I .

2: set S = set of all parameter combinations from

X1, ..., Xm

3: for s̄ ∈ S do
4: if not TestWF(WF , s̄, T , O) then
5: remove s̄ from S
6: end if
7: end for
8: for s̄ ∈ S do
9: if not TestWF(WF , s̄, I , O) then

10: remove s̄ from S
11: end if
12: end for
13: return S

coded. Our biologist collaborators’ workflow uses modules

from the STAR alignment toolkit. Our experiments use

145.5M sequences and three versions of STAR (2.3.0, 2.3.1

and 2.4.0), which each produced subtly different results.

Entity matching (Magellan). The Magellan [19] entity

matching toolkit provides blocking, alignment, and ranking

algorithms. Magellan workflows include stages for blocking
(comparing subsets of record pairs to find an alignment) and

matching (determining which pairs match above a threshold).

Building on example workflows provided with Magellan, we

seek to link entities between the ACM Digital Library (1813

records) and DBLP (1780 records).

Data cleaning (DuDe). Another common ETL task involves

cleaning records within a data set. The DuDe toolkit [8] is

a data cleaning framework, which searches for tuples that

represent the same real-world object across data sources (dedu-

plication). Our experiments use a standard DuDe workflow

over a compact disc dataset, with 9763 records comprised of

107 (possibly null) attributes.

The three workflows above have simple structure. Moreover,

the non-declarative portions of the code — the call the UDF

plus any referenced functions (code refd. by UDF in the table)

— is proportionally very small. The overall complexity of the

semantic descriptors is as follows:

Genome Magellan DuDe
Num. of modules 3 3 2
Num. of operators 12 8 3
Code refd. by UDF 0.3% 2.2% 0.8%

The difficulty of our task (finding and extracting the UDF

and instrumenting code) is essentially the same as for in-

strumenting functionality with API calls, as with SubZero.

Experiments were conducted on an Intel Xeon E5-2630 run-

ning at 2.20GHz with 24 cores and 64GB of RAM. Our

implementation used the Java OpenJDK 1.8.0. Results are

averaged over 5 runs and we present 95% confidence intervals.

A. Overhead of Provenance Reconstruction

PROVision does not instrument an existing workflow sys-

tem; rather, it re-executes certain operations in a workflow

(using declarative modules) to derive record-to-record prove-

nance. Thus there is no overhead on the “normal” execution

path, but costs are incurred when the user asks for the

provenance of selected results. We study execution and space

overhead, and then assess the benefits of our optimizations.

We first study three methods for precomputing a complete

provenance trace. The naive method recomputes all data and

its provenance. The materialized results are comprised of both

output data and provenance. The RK method recomputes the

provenance as annotations for each tuple, using foreign keys

to link the provenance to the data, instead of materializing the

full data. The RCS method builds upon RK and additionally

simplifies provenance expressions using the equivalences of

Section IV-D. Finally, the on-demand method starts with user-

selected tuples, and selectively recomputes only the prove-
nance that it needs in order to trace provenance of those tuples.

Baseline: original workflow. The baseline costs, in terms of

space and time, are shown for the original data workflows

in Figure 3a. The Genome workflow is the most intensive in

terms of space and time; the Web entity resolution workflow

is small but requires a fair amount of computation per record;

the product data cleaning workflow produces combinatorial

explosion, but is reasonably fast on a per-record basis.

Minimum cost of provenance APIs. Prior provenance API

implementations, such as SubZero [28], are not readily avail-

able. To establish a point of comparison, we instrumented the

workflow modules’ source code (in C, Java, and Python) to

record provenance in-memory. Data was periodically written to

disk, forming a “lower bound” on provenance API overhead

(since a real implementation is likely to use IPC). We see

from Figure 3c that the normalized computation time over-

heads (vs. the baseline described above) are approximately

30% (Genome) to 480% (DuDe), on every computation. This

motivates our selective reconstruction approach.

Full provenance reconstruction. Figure 3b shows that PRO-

Vision adds low space overhead, 7-17%, similar to provenance

instrumentation via API. This cost depends on the number of

extractions, joins, and aggregations: DuDe only contains two

such operators, so adds little overhead; Genome and Magellan

have multiple join and aggregation steps so they are larger. The

provenance is smaller than the actual data, so the overhead is

below 20%. Simplification of provenance expressions (RCS)

saves a bit of space; since it adds no CPU cost (Figure 3c),

we conclude that compression is beneficial.

Figure 3c shows that CPU overhead varies significantly by

workload, based on how many tuple combinations are being

considered in the computation and how many calls are made

to the UDF. The DuDe implementation essentially performs

a Cartesian product on all inputs, hence it adds more than

4x overhead. This could be improved via blocking or pruning

techniques; but it is also alleviated by on-demand approaches

for computing only the provenance for specific results.

Selective (on-demand) reconstruction. The on-demand ap-

proach generally starts with a set of user-selected output
records, and PROVision uses semi-join pushdown to limit
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input size exec time space

Genome 3.5GB 13.4hr 127GB
Magellan 615KB 4.3min 615KB
DuDe 4.6MB 25.3min 116GB

(a) Original workflow execution costs.

DuDe Genome Magellan

0.00

0.25

0.50

0.75

1.00

Baseline Naive RK RCS ProvAPI
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Fig. 3: Baselines and overheads for different workloads.

●

●

●

●

●

●

●

●

●
● ● ●

●

●

● ● ● ●

11.71

7.63

5.32 4.94
3.99 3.55

6.31

3.07
1.24 0.98 0.88 0.84

2.8

1.5
0.71 0.61 0.58 0.520

3

6

9

12

5 10 50 100 500 1000
Number of selected outputs

C
PU

 ti
m

e 
(s

)

●a
●a
●a

Genome
Magellan
DuDe

Fig. 4: Average CPU time for each selected output.

its computation to relevant results. Table III shows that for

small numbers of outputs, greedily using the semijoin (greedy)

results in very efficient provenance computations (between

0.7 and 5 sec). In fact, taking costs into effect (cost-based)

results in the same query plan, hence the same execution times.

Figure 4 shows how the performance speedups gradually drop

as we select larger and larger subsets of the output.

Full Greedy Cost-based

Genome 13.4hr 4.71s 4.71s

Magellan 4.3min 0.995s 0.995s

DuDe 25.3min 0.695s 0.695s

TABLE III: CPU time for tracing 1000 output records.

Pruning overhead vs benefits. Selective reconstruction relies

on semijoins to prune input and intermediate state. A question

is how much of the output needs to be of interest before

it makes sense to precompute all of the provenance. We

measure this for the Genome, Magellan, and DuDe workflows

in Figures 5a, 5b, and 5c, respectively. Each figure plots

the greedy strategy’s reconstruction time (green line) versus

the cost-based strategy (red line) versus the baseline (blue

line) and computing all results ahead of time (dashed line).

The switchover point between strategies is at around 45-90%

of the output results. Our cost-based strategy chooses the

best approach in each case. Figure 6 provides greater detail

on the potential benefits: using synthetic data, it shows the

impact of a semijoin filter’s selectivity vs the performance of a

single-operator (group-by, substring extract, top-2, or equijoin)

computation. If the semijoin filters 50% of an operator’s input

data, there is always a speedup; less-selective semijoins only

show speedup for expensive (join, grouping, top-2) operations.

B. Enabling Consistency & Reproducibility

PROVision uses provenance to (1) find input test sets that

yield inconsistent results across workflow module versions

(debugging “version inconsistency”); and (2) find missing

parameter values from workflow runs (“parameter finding”).
1) Version Inconsistency: Our bioinformatics collaborators

often face versioning issues. If two versions of a workflow are

run over an input, and their results differ according to diff3,

PROVision is called. It can “trace back” from the differing

outputs, to find an input data subset useful for testing. We took

three versions of our collaborators’ workflow modules (v1-v3),

compared the outputs to find differences, and then traced back

to the input records that contributed to those outputs.
v1-v2 v2-v3 v1-v3

Prop. of outputs differing 0.3% 2.1% 2.1%
Prop. of inputs contributing 3.4% 11.6% 12.7%

Relatively few outputs differ between any pair of workflow

versions. PROVision can trace back to the specific input

records that contributed to those differences — yielding an

input set of 3.4-12.7% of the original input set. (Execution

costs are identical to Figure 5a and thus not reproduced.) This

shows that PROVision helps the user focus on a relatively

small set of inputs that directly contribute to differences in

answers. In fact, the user can generate even smaller test sets by

selecting a few outputs of interest from the “diff” and tracing

those in a few seconds (as in Table III).
2) Missing Parameter Discovery: The Magellan entity

matching workflow includes stages for blocking, feature se-

lection, and matching. The blocking stage reduces the number

of comparisons needed, whereas the feature selection and

matching determine the alignment results. We study how

PROVision can recover missing information about the features

used in a prior workflow execution.
Given a fixed schema, the space of possible features is fixed.

The ACM and DBLP tables have 21 candidate features. About

half of these are “obvious” features that will always be used,

and about half are “tuning” features that need to be adjusted

by an expert. Figure 7 shows the cost of exploring the feature

space for Magellan to validate which features were used. The

cost is exponential in the number of features, but feasible due

to PROVision’s ability to test on a subset the data: It takes

between half a minute to about 8 minutes for PROVision to

find the set of features used to perform entity matching.

VIII. CONCLUSIONS AND FUTURE WORK

We proposed novel techniques to reconstruct and reason

about fine-grained provenance in data science and ETL work-

flows. PROVision uses an extended relational algebra with
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Fig. 5: Execution time (s) vs proportion of output selected for different workloads.
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UDFs that produce provenance annotations. It incorporates

type-and-operator-specific equivalence rules and a novel query

optimizer and engine to selectively recompute provenance.

Using real ETL and scientific workflows, we showed that

our methods efficiently trace erroneous results, create test sets

for debugging differences in workflow module outputs, and

reconstruct missing parameters. Our approach efficiently and

retrospectively reconstructs the information necessary to aid

in debugging or filling in workflow data. As future work, we

are interested in expanding our techniques to a broader class

of workloads, including machine learning tasks.

This work was funded in part by NSF ACI-1547360, ACI-

1640813, and NIH 1U01EB020954.
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