Data-Trace Types for Distributed Stream Processing
Systems

Konstantinos Mamouras
Rice University, USA
mamouras@rice.edu

Zachary G. Ives
University of Pennsylvania, USA
zives@cis.upenn.edu

Abstract

Distributed architectures for efficient processing of stream-
ing data are increasingly critical to modern information pro-
cessing systems. The goal of this paper is to develop type-
based programming abstractions that facilitate correct and
efficient deployment of a logical specification of the desired
computation on such architectures. In the proposed model,
each communication link has an associated type specifying
tagged data items along with a dependency relation over tags
that captures the logical partial ordering constraints over
data items. The semantics of a (distributed) stream process-
ing system is then a function from input data traces to output
data traces, where a data trace is an equivalence class of se-
quences of data items induced by the dependency relation.
This data-trace transduction model generalizes both acyclic
synchronous data-flow and relational query processors, and
can specify computations over data streams with a rich vari-
ety of partial ordering and synchronization characteristics.
We then describe a set of programming templates for data-
trace transductions: abstractions corresponding to common
stream processing tasks. Our system automatically maps
these high-level programs to a given topology on the dis-
tributed implementation platform Apache Storm while pre-
serving the semantics. Our experimental evaluation shows
that (1) while automatic parallelization deployed by existing
systems may not preserve semantics, particularly when the
computation is sensitive to the ordering of data items, our
programming abstractions allow a natural specification of
the query that contains a mix of ordering constraints while

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-6712-7/19/06....$15.00
https://doi.org/10.1145/3314221.3314580

Caleb Stanford
University of Pennsylvania, USA
castan@cis.upenn.edu

670

Rajeev Alur
University of Pennsylvania, USA
alur@cis.upenn.edu

Val Tannen
University of Pennsylvania, USA
val@cis.upenn.edu

guaranteeing correct deployment, and (2) the throughput of
the automatically compiled distributed code is comparable
to that of hand-crafted distributed implementations.

CCS Concepts +Information systems — Data streams;
Stream management; « Theory of computation — Stream-
ing models; « Software and its engineering — General
programming languages.

Keywords distributed data stream processing, types

ACM Reference Format:

Konstantinos Mamouras, Caleb Stanford, Rajeev Alur, Zachary
G. Ives, and Val Tannen. 2019. Data-Trace Types for Distributed
Stream Processing Systems. In Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI °19), June 22-26, 2019, Phoenix, AZ, USA. ACM, New York, NY,
USA, 16 pages. https://doi.org/10.1145/3314221.3314580

1 Introduction

Modern information processing systems increasingly de-
mand the ability to continuously process incoming data
streams in a timely manner. Distributed stream processing ar-
chitectures such as Apache Storm [28], Twitter’s Heron [38,
56], Apache Spark Streaming [27, 58], Google’s MillWheel
[5], Apache Flink [19, 25] and Apache Samza [26, 47] provide
platforms suitable for efficient deployment of such systems.
The focus of the existing systems has been mainly on pro-
viding high throughput, load balancing, load shedding, fault
tolerance and recovery. Less developed, however, is a seman-
tics for streaming computations that enables one to reason
formally about the correctness of implementations and dis-
tributed deployments with respect to a specification, even in
the presence of disorder in the input. This is especially impor-
tant because—as we will discuss in section 2—parallelization
and distribution can cause spurious orderings of the data
items, and it is therefore necessary to have a formal way of
reasoning about these effects. The goal of this paper is to
develop high-level abstractions for distributed stream pro-
cessing by relying on a type discipline that is suitable for
specifying computations and that can be the basis for correct
and efficient deployment.

https://doi.org/10.1145/3314221.3314580
https://doi.org/10.1145/3314221.3314580

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

Physically, streams are linearly ordered, of course, and
computations consume one item at a time. However, this is
only one of many possible logical views of streaming data.
Indeed, assuming a strict linear order over input items is
not the ideal abstraction for computation specification, for
two reasons. First, in an actual implementation, there may
be no meaningful logical way to impose a linear ordering
among items arriving at different processing nodes. Second,
for many computations it suffices to view the input logically
as a relation, that is, a bag of unordered data items. Such lack
of ordering often has computational benefits for optimization
and/or parallelization of the implementation. Between linear
ordering at one extreme and lack of ordering at the other
we have the large space of partial orders and capturing these
orders is the main focus of our type discipline.

We use partially ordered multisets (pomsets), a structure
studied extensively in concurrency theory [48]. Pomsets
generalize both sequences and bags, as well as sequences
of bags, bags of sequences, etc., and we have found them
sufficient and appropriate for our formal development. To
specify the types that capture these partial orders as well as
a logical type-consistent semantics for stream computations,
we model—inspired by the definition of Mazurkiewicz traces
[44] in concurrency theory—input and output streams as
data traces. We assume that each data item consists of a tag
and a value of a basic data type associated with this tag. The
ordering of items is specified by a (symmetric) dependency
relation over the set of tags. Two sequences of data items
are considered equivalent if one can be obtained from the
other by repeatedly commuting two adjacent items with
independent tags, and a data trace is an equivalence class of
such sequences. A data-trace type is given by a tag alphabet,
a type of values for each tag, and a dependency relation.

For instance, when all the tags are mutually dependent,
a sequence of items represents only itself, and when all the
tags are mutually independent, a sequence of items repre-
sents the bag of items it contains. A suitable choice of tags
along with the associated dependency relation, allows us to
model streams with a rich variety of logical ordering and syn-
chronization characteristics. As another example, consider a
system that implements key-based partitioning by mapping
a linearly ordered input sequence to a set of linearly ordered
sub-streams, one per key. To model such a system the output
items corresponding to distinct keys should be unordered.
For this purpose, we allow the output items to have their
own tags along with a dependency relation over these tags,
and a sequence of outputs produced by the system is inter-
preted as the corresponding data trace. This representation
can be easily presented programmatically and is also easily
related to physical realizations.

While a system processes the input in a specific order by
consuming items one by one in a streaming manner, it is
required to interpret the input sequence as a data trace, that
is, outputs produced while processing two equivalent input

671

K. Mamouras, C. Stanford, R. Alur, Z. lves, and V. Tannen

sequences should be equivalent. Formally, this means that
a stream processor defines a function from input data traces
to output data traces. Such a data-trace transduction is the
proposed semantic model for distributed stream processing
systems, and is a generalization of existing models in liter-
ature such as acyclic Kahn process networks [36, 39] and
streaming extensions of database query languages [15, 40].
Our formal model is described in section 3.

In section 4 we propose a programming model where the
overall computation is given as an acyclic dataflow graph,
where every communication link is annotated with a data-
trace type that specifies the ordering characteristics of the
stream flowing through the link. In order to make the type
annotation easier for the application developer, we restrict
our framework to data-trace types that have two features: (1)
the traces contain linearly ordered periodic synchronization
markers for triggering the output of blocking operations
and forcing progress (similar to the punctuations of [40] or
the heartbeats of [50]), and (2) the data items of traces are
viewed as key-value pairs in order to expose opportunities
for key-based data parallelism. To ensure that each individual
computational element of the dataflow graph respects the
data-trace types of its input and output channels, we provide
a set of operator templates for constraining the computation
appropriately. For example, when the input data-trace type
specifies that the items are unordered, their processing is
described by a commutative monoid (a structure with an
identity element and an associative, commutative binary
operation), which guarantees that the output is independent
of the order in which the items are processed.

When a programmer uses these typed abstractions to de-
scribe an application, she secures the global guarantee that
the overall computation has a well-defined semantics as a
data-trace transduction, and therefore its behavior is pre-
dictable and independent of any arbitrary data item inter-
leaving that is imposed by the network or the distribution
system (Theorem 4.2). Moreover, the operator templates al-
low for data parallelism that always preserves the semantics
of the original specification (Theorem 4.3, Corollary 4.4).

We have implemented data-trace types, operator tem-
plates and typed dataflow DAGs in Java as an embedded
domain-specific language. Our system compiles the specifi-
cation of the computation into a “topology” [29] that can be
executed using Storm (see section 5). In section 6 we present
an experimental evaluation where we address the follow-
ing questions: (1) Is the code that our framework generates
as efficient as a handcrafted implementation? (2) Does our
framework facilitate the development of complex streaming
applications? To answer the first question, we used a slight
variant of the Yahoo Streaming Benchmark [35] and com-
pared a generated implementation (that we built using our
typed abstractions) against a handcrafted one. The experi-
mental results show very similar performance. This provides

Data-Trace Types for Distributed Stream Processing Systems

evidence that our approach does not impose a computa-
tional overhead, while offering guarantees of type correct-
ness, predictable behavior, and preservation of semantics
when data parallelism is introduced. To address the second
question, we consider a significant case study on prediction
of power usage. This case study is inspired by the DEBS’14
Grand Challenge [22], which we adapted to incorporate a
more realistic prediction technique based on machine learn-
ing. This application requires a mix of ordering constraints
over data items. Our system automatically deals with low-
level ordering and synchronization, so our programming
effort was focused on the power prediction itself.

2 Motivation

Many popular distributed stream processing systems—such
as Storm [28, 54], Heron [38, 56] and Samza [26, 47]—allow
the programmer to express a streaming computation as a
dataflow graph, where the processing performed by each
node is described in a general-purpose language such as Java
or Scala. During compilation and deployment, this dataflow
graph is mapped to physical nodes and processes.

As a simple example, suppose that we want to process a
stream of sensor measurements and calculate every 10 sec-
onds the average of all measurements seen so far. We assume
that the sensor generates the data items in increasing times-
tamp order, but the time series may have missing data points.
The processing pipeline consists of three stages: (1) Map de-
serializes the incoming messages and retains only the scalar
value and timestamp (i.e., discards any additional metadata),
(2) LI performs linear interpolation to fill in the missing data
points, and (3) Avg computes the average historical value
and emits an update every 10 seconds.

SENSOR (L1} [ave]
The above pipeline can be programmed conveniently in
Storm by providing the implementations of each node Map,
LI, Avg and describing the connections between them.

The implementation described previously exposes pipeline
parallelism, and thus suggests a multi-process or distributed
execution where each stage of the pipeline computes as an
independent process. In the case where the sensor produces
messages at a very high rate, the computationally expensive
deserialization stage Map becomes a bottleneck. In order to
deal with such bottlenecks, Storm provides a facility for data
parallelism by allowing the programmer to explicitly specify
the creation of several parallel instances of the Map node.
It handles automatically the splitting and balancing of the
input stream across these instances, as well as the merging
of the output streams of these instances.

Map
SNSRI — it
Map

The problem, however, with this data parallelization trans-
formation is that it does not preserve the semantics of the
original pipeline. The issue is that the linear interpolation

'Map |
Map

[Avel
rve}—— (5]

672

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

stage LI relies on receiving the data elements in increas-
ing order of timestamps. Unfortunately, when Storm merges
the output streams of the two Map instances it introduces
some arbitrary interleaving that may violate this precon-
dition. This introduces nondeterminism to the system that
causes the outputs to be unpredictable and therefore not
reproducible without modifications to the computation.

Typically, a practical way to deal with these problems is
to generate sequence numbers and attach them to stream
elements in order to recover their order later (if they get
out of order). However, this increases the size of data items.
Moreover, it imposes a linear order, even in cases where
a partial order is sufficient. For example, synchronization
markers can be used to impose a partial order more efficiently
than attaching sequence numbers. In general, many such
practical fixes make the programs harder to debug, maintain,
and modify correctly and thus less reliable.

In contrast, in order to facilitate semantically sound par-
allelization transformations and eliminate behaviors that rely
on spurious ordering of the data items, our approach relies on
data-trace types that classify the streams according to their
partial ordering characteristics. For example, we can declare
that the connection from Map to LI is “linearly ordered”, and
this would indicate that the parallelization transformation
of the previous paragraph is not sound because it causes
the reordering of data items flowing through that channel.
Alternatively, the implementation LI could be replaced by
a new implementation, denoted Sort-LI, that can handle a
disordered input by sorting it first according to timestamps.
Then, the connection channel between Map and Sort-LI can
be declared to be “unordered”, which enables sound data par-
allelization for the Map stage. Assuming that all connections
are typed, the problem now arises of whether the compu-
tation nodes are consistent with these input/output partial
ordering types. We propose later in section 4 a way of struc-
turing the code for each node according to a set of templates,
so that it respects the types of its input/output channels.

3 Types for Data Streams

We will introduce a semantic framework for distributed
stream processing systems, where the input and output
streams are viewed as partial orders [13]. Under this view,
finite prefixes of streams are represented as data traces, and
they are classified according to their ordering characteristics
using types. The input/output behavior of a stream process-
ing system is modeled as a data-trace transduction, which is
a monotone function from input traces to output traces.

3.1 Data Traces

We use data traces to model streams in which the data items
are partially ordered. Data traces generalize sequences (data
items are linearly ordered), relations (data items are un-
ordered), and independent stream channels (data items are

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

organized as a collection of linearly ordered subsets). The
concatenation operation and the prefix order on sequences
can be generalized naturally to the setting of data traces.

A data type A = (2,(T,;)sex) consists of a potentially
infinite tag alphabet ¥ and a value type T, for every tag
o € X. The set of elements of type A, or data items, is
equal to {(0,d) | o0 € ¥ andd € T,}, which we will also
denote by A. The set of sequences over A is denoted as A*.
A dependence relation on a tag alphabet X is a symmetric
binary relation on X. We say that the tags o, 7 are independent
(w.r.t. a dependence relation D) if (o, 7) ¢ D. For a data type
A = (3,(Ty)ses) and a dependence relation D on X, we
define the dependence relation that is induced on A by D as
{((0,d),(c’,d")) €e AX A| (0,0’) € D}, which we will also
denote by D. Define = to be the smallest congruence (w.r.t.
sequence concatenation) on A* containing {(ab, ba) € A* x
A* | (a,b) ¢ D}. Informally, two sequences are equivalent
w.r.t. =p if one can be obtained from the other by repeatedly
commuting adjacent items with independent tags.

Example 3.1. Suppose we want to process a stream that
consists of sensor measurements and special symbols that in-
dicate the end of a one-second interval. The data type for this
input stream involves the tags ¥ = {M, #}, where M indicates
a sensor measurement and # is an end-of-second marker.
The value sets for these tags are Ty = Nat (natural numbers),
and Ty = Ut is the unit type (singleton). So, the data type
A = (3, Ty, Ty) contains measurements (M, d), where d is a
natural number, and the end-of-second symbol #.

The dependence relation D = {(M,#), (#,M), (#, #)} says
that the tag M is independent of itself, and therefore con-
secutive M-tagged items are considered unordered. For ex-
ample, (M,5) (M, 5) (M, 8) # (M, 9) and (M, 8) (M,5) (M,5) # (M, 9)
are equivalent w.r.t. =p.

A data-trace type is a pair X = (A, D), where A is a data
type and D is a dependence relation on the tag alphabet of A.
A data trace of type X is a congruence class of the relation
=p. We also write X to denote the set of data traces of type
X. Since the equivalence =p is a congruence w.r.t. sequence
concatenation, the operation of concatenation is also well-
defined on data traces: [u] - [v] = [uv] for sequences u and v,
where [u] is the congruence class of u. We define the relation
< on the data traces of X as a generalization of the prefix
partial order on sequences: for data traces u and v of type
X,u < viff thereareu €e uand v € vs.t. u < v (ie., uis
a prefix of v). The relation < on data traces of a fixed type
is a partial order. Since it generalizes the prefix order on
sequences (when the congruence classes of =p are singleton
sets), we will call < the prefix order on data traces.

Example 3.2 (Data Traces). Consider the data-trace type
X = (A, D), where A and D are given in Example 3.1. A data
trace of X can be represented as a sequence of multisets (bags)
of natural numbers and visualized as a partial order on that
multiset. The trace corresponding to the sequence of data

673

K. Mamouras, C. Stanford, R. Alur, Z. lves, and V. Tannen

items (M,5) (M, 7) # (M, 9) (M, 8) (M, 9) # (M, 6) is visualized as:

M%) — 4(5’§)> — M6
= —

where a line from left to right indicates that the item on the
right must occur after the item on the left. The end-of-second
markers # separate multisets of natural numbers. So, the set
of data traces of X has an isomorphic representation as the
set Bag(Nat)" of nonempty sequences of multisets of natural
numbers. In particular, the empty sequence ¢ is represented
as 0 and the single-element sequence # is represented as 0 0.

A singleton tag alphabet can be used to model sequences or
multisets over a basic type of values. For the data type given
by X = {0} and T, = T there are two possible dependence
relations for ¥, namely @) and {(o, 0)}. The data traces of
(%, T,0) are multisets over T, which we denote as Bag(T),
and the data traces of (%, T, {(0, 0)}) are sequences over T.

Example 3.3 (Multiple Input/Output Channels). Suppose
we want to model a streaming system with multiple indepen-
dent input and output channels, where the items within each
channel are linearly ordered but the channels are completely
independent. This is the setting of (acyclic) Kahn Process
Networks [36] and the more restricted synchronous dataflow
models [18, 39]. We introduce tags 1 = {Iy,...,I,,} for
m input channels, and tags Xy = {0y, ...,0,} for n output
channels. The dependence relation for the input consists of
all pairs (I;,I;) with i = 1,...,m. This means that for all
indexes i # j the tags I; and I; are independent. Similarly,
the dependence relation for the output consists of all pairs
(0;,0;) with i = 1,...,n. Assume that the value types as-
sociated with the input tags are Ty, ..., T,,, and the value
types associated with the output tags are Uy, ..., U,. The
sets of input and output data traces are (up to a bijection)
T X+ x Ty and U;" X - - - X U, respectively.

3.2 Data-String Transductions

In a sequential implementation of a stream processor the
input is consumed in a sequential fashion, i.e. one item at a
time, and the output items are produced in a specific linear
order. Such sequential semantics is formally described by
data-string transductions, which we use as a precursor to
defining data-trace transductions.

Let A and B be data types. A data-string transduction
with input type A and output type B is a function f : A* —
B*. A data-string transduction f : A* — B* describes a
streaming computation where the input items arrive in a
linear order. For an input sequence u € A* the value f(u)
gives the output items that are emitted right after consuming
the sequence u. In other words, f(u) is the output that is
triggered by the arrival of the last data item of u. We say
that f is a one-step description of the computation because
it gives the output increment that is emitted at every step.

Data-Trace Types for Distributed Stream Processing Systems

The lifting of a data-string transduction f : A* — B* is
the function f : A* — B* that maps a sequence aja; . .. a, €
A% 10 f(a105 - an) = F(o)- f(@r)- f(@1a:) - - f(@rgz .. . an).
In particular, the definition implies that f(e) = f(¢). That
is, f accumulates the outputs of f for all prefixes of the
input. Notice that f is monotone w.r.t. the prefix order: u < v
implies that f(u) < f(v) for all u,v € A*. The lifting f of a
data-string transduction f describes a sequential streaming
computation in a different but equivalent way. For an input
sequence u € A* the value f(u) is the cumulative output of
the computation as the stream is extended item by item.

Example 3.4. Suppose the input is a sequence of natural
numbers, and we want to define the transformation that out-
puts the current data item if it is strictly larger than all data
items seen so far. We model this as a data-string transduction
f :Nat™ — Nat™, given by f(¢) = ¢ and

an, ifap, >a;foralli=1,...,n-1;

otherwise.

flay...ap1ap) = {

£,

The table below gives the values of f and f on input prefixes:

current item input history f output £ output
€ € €

3 3 3 3

1 31 £ 3

5 315 5 35

2 3152 £ 3

5
Notice that f(3152) = f(¢)- f(3)- f31)- f(315)- f(3152).

3.3 Data-Trace Transductions

Data-trace transductions are useful for giving the meaning
(semantics) of a stream processing system. Consider the anal-
ogy with a functional model of computation: the meaning
of a program consists of the input type, the output type,
and a mapping that describes the input/output behavior of
the program. Correspondingly, the semantics for a stream
processing systems consists of: (1) the type X of input data
traces, (2) the type Y of output data traces, and (3) a mono-
tone mapping f : X — Y that specifies the cumulative
output after having consumed a prefix of the input stream.
The monotonicity requirement captures the idea that output
items cannot be retracted after they have been omitted. Since
B takes an entire input history (data trace) as input, it can
model stateful systems, where the output that is emitted at
every step depends potentially on the entire input history.
We have already discussed how (monotone) functions
from A* to B* model sequential stream processors. We will
now introduce the formal notion of consistency, which cap-
tures the intuition that a sequential implementation does not
depend on the relative order of any two elements unless the
stream type considers them to be relatively ordered.

Definition 3.5 (Consistency). LetX = (A,D)andY = (B, E)
be data-trace types. We say that a data-string transduction
f : A" — B*is (X,Y)-consistent if u =p v implies that
f(w) = f(v) for all u,v € A*.

674

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

Let f € A* — B* be a (X, Y)-consistent data-string trans-

duction. The function f§ : X — Y, defined by f([u]) = [f(u)]
for all u € A, is called the (X, Y)-denotation of f.

Definition 3.6 (Data-Trace Transductions). Let X = (A, D)
and Y = (B,E) be data-trace types. A data-trace trans-
duction with input type X and output type Y is a function
B : X — Y that is monotone w.r.t. the prefix order on data
traces: u < v implies that f(u) < B(v) for all traces u, v € X.

Definition 3.5 essentially says that a data-string transduc-
tion f is consistent when it gives equivalent cumulative
outputs for equivalent input sequences. It is shown in [13]
that the set of data-trace transductions from X to Y is equal
to the set of (X, Y)-denotations of all (X, Y)-consistent data-
string transductions.

Example 3.7 (Deterministic Merge). Consider the stream-
ing computation where two linearly ordered input channels
are merged into one. More specifically, this transformation
reads items cyclically from the two input channels and passes
them unchanged to the output channel. Recall from Exam-
ple 3.3 that the set of input data traces is essentially T x T*,
and the set of output data traces is essentially T*. The data-
trace transduction merge : T* X T* — T™ is given by:

X1Yp ... ifm < n;

X1Yy --.

Xm Ym>

Xn Yn, ifm>n.

merge(X; ... Xm,Y1-.-Yn) = {

Example 3.8 (Key-Based Partitioning). Consider the com-
putation that maps a linearly ordered input sequence of
data items of type T (each of which contains a key), to a set
of linearly ordered sub-streams, one per key. The function
key : T — K extracts the key from each input value. An
input trace is represented as an element of T*. The out-
put type is specified by the tag alphabet K, value types
Ti =T for every key k € K, and the dependence relation
{(k,k) | k € K}. So, an output trace is represented as a K-
indexed tuple, that is, a function K — T*. The data-trace
transduction partitiony,, : T* — (K — T*) describes the
partitioning of the input stream into sub-streams according
to the key extraction map key: partitionkey(u)(k) = ulg for
allu € T* and k € K, where u|; denotes the subsequence of
u that consists of all items whose key is equal to k. The im-
plementation of partition,, can be modeled as a data-string
transduction f : T* — (K x T)*, given by f(¢) = ¢ and
f(wx) = (key(x),x) forall w € T* and x € T.

Although the computation of aggregates (e.g., sum, max,
and min) is meaningful for unordered input data (i.e., a bag),
if the bag is given as a stream then it is meaningless to
produce partial aggregates as the data arrives: any partial
aggregate depends on a particular linear order for the input
items, which is inconsistent with the notion of unordered
input. Therefore, for a computation of relational aggregates
in the streaming setting we require that the input contains

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

linearly ordered markers that trigger the emission of output
(see [40] for a generalization of this idea). The input can
then be viewed as an ordered sequence of bags (each bag is
delineated by markers), and it is meaningful to compute at
every marker occurrence the aggregate over all items seen so
far. Our definition of data-trace transductions captures these
subtle aspects of streaming computation with relational data.

Example 3.9. Suppose that the input stream consists of un-
ordered natural numbers and linearly ordered markers #.
Consider the computation that emits at every occurence of
the maximum of all numbers seen so far. More specifically,
the input type is given by ¥ = {0, 7}, T, = Nat, T, = Ut
(unit type), and D = {(o, 1), (7, 0), (7, 7)}. So, an input data
trace is essentially an element of Bag(Nat)*, as in Exam-
ple 3.2. The streaming maximum computation is described
by the data-trace transduction smax : Bag(Nat)" — Nat*,
where for a sequence of bags B; ... B, smax(B; ...B,) :=
max(B;) max(B; U By)...max(B; UB; U---U B,_;). In par-
ticular, the output does not include the bag of items B,, since
the last occurrence of #. The implementation of smax is mod-
eled as a data-string transduction f : (Nat U {#})* — Nat™,
which outputs at every # occurrence the maximum number
so far. That is, f(¢) = ¢ and

if a, € Nat;
if a, = #.

flar...an) = {E’

max of {ay, ..

San} \ {#}

for all sequences aja; . ..a, € (Nat U {#})*.

4 Type-Consistent Programming

Complex streaming computations can be naturally described
as directed acyclic graphs (DAGs), where the vertices rep-
resent simple operations and the edges represent streams
of data. Such a representation explicitly exposes task and
pipeline parallelism, and suggests a distributed implemen-
tation where every vertex is an independent process and
inter-process communication is achieved via FIFO channels.

The semantic framework of section 3, which includes the
notions of data-trace types and data-trace transductions, will
serve a dual purpose. First, it will allow us to give a formal de-
notational semantics for streaming computation DAGs that
respect the input/output stream types. Second, it will en-
able reasoning about equivalence and semantics-preserving
transformations, such as data parallelization. We will focus
here on a subset of data-trace types that emphasizes two
crucial elements that are required by practical streaming
computations: (1) a notion of synchronization markers, and
(2) viewing the data items as key-value pairs in order to
expose opportunities for data parallelization.

The synchronization markers can be thought of as events
that are periodically generated by the input sources. The pe-
riod is configurable and can be chosen by the application pro-
grammer depending on the time-granularity requirements
of the computation (e.g. 1 msec, 1 sec, etc). The purpose

675

K. Mamouras, C. Stanford, R. Alur, Z. lves, and V. Tannen

of the markers is similar to the punctuations of [40] or the
heartbeats of [50]. They are used for triggering the output of
nonmonotonic operations (e.g., the streaming aggregation
of Example 3.9) and making overall progress, as well as for
merging streams in a predictable way by aligning them on
corresponding markers. These synchronization markers are
always assumed to be linearly ordered, and they occur in
order of increasing timestamp.

We define two kinds of data-trace types for streams of
key-value pairs: unordered types of the form U(K, V), and
ordered types of the form O(K, V). For a set of keys K and
a set of values V, let U(K, V) denote the type with alphabet
K U {#}, values V for every key, values Nat for the # tag
(i.e., marker timestamps), and dependence relation {(#, #)} U
{(k,#),(#,k) | k € K}. In other words, U(K, V) consists of
data traces where the marker tags # are linearly ordered and
the elements between two such tags are of the form (k, v),
where k € K and v € V, and are completely unordered.
We define O(K, V) similarly, with the difference that the
dependence relation also contains {(k, k) | k € K}. That is,
in a data trace of O(K, V), elements with the same key are
linearly ordered between # markers, but there is no order
across elements of different keys.

A transduction DAG is a tuple (S,N, T, E, —, 1) which
represents a labelled directed acyclic graph, where: S is the
set of source vertices, T is the set of sink vertices, N is the
set of processing vertices, E is the set of edges (i.e., connec-
tions/channels), — is the edge relation, and A is a labelling
function. The function A assigns: (1) a data-trace type to each
edge, (2) a data-trace transduction to each processing ver-
tex that respects the input/output types, and (3) names to
the source/sink vertices. We require additionally that each
source vertex has exactly one outgoing edge, and each sink
vertex has exactly one incoming edge.

Next we define the denotational semantics of a trans-
duction DAG G with source vertices Sy, ..., S, and sink
vertices Ty, . . ., T,,. Suppose that e; is the unique edge ema-
nating from the source vertex S; (fori = 1,...,m), and ¢; is
the unique edge leading to the sink vertex T; (fori = 1, ..., n).
The graph G denotes a data-trace transduction, where the
set of input traces is (up to a bijection) []12,A(e;) and the
set of output traces is (up to a bijection) []7,A(e;). Given
an input trace, we will describe how to obtain the output
data trace (representing the entire output history of G on
this input trace). We will gradually label every edge e of the
DAG with a data trace u(e). First, label every edge emanat-
ing from a source vertex with the corresponding input trace.
Then, consider in any order the processing vertices whose
incoming edges have already been labeled. For such a vertex
n, apply the data-trace transduction A(n) to the input traces
and label the outgoing edges with the corresponding output
traces. After this process ends, the output is read off from
the data traces which label the edges that point to sinks.

Data-Trace Types for Distributed Stream Processing Systems

Example 4.1 (Time-Series Interpolation). Consider a home
IoT system where temperature sensors are installed at a resi-
dence. We wish to analyze the sensor time series to create
real-time notifications for excessive energy loss through the
windows. The sensor time series sometimes have missing
data points, and therefore the application requires a pre-
processing step to fill in any missing measurements using
linear interpolation. We assume that the sensors first send
their measurements to a hub, and then the hub propagates
them to the stream processing system. The stream that ar-
rives from the hub does not guarantee that the measurements
are sent in linear order (e.g., with respect to a timestamp
field). Instead, it produces synchronization markers every
10 seconds with the guarantee that all elements with times-
tamps < 10-i have been emitted by the time the i-th marker is
emitted. That is, the i-th marker can be thought of as a water-
mark with timestamp 10-i. The input stream is a data trace of
U(Ut, M), where M is the type of measurements (id, value, ts)
consisting of a sensor identifier id, a scalar value value, and
a timestamp ts. This is a transduction DAG that describes
the pre-processing computation:

U(Ut, M) u(In, v) o(ID, V) O(ID, V)
HUB JFM SORT LI SINK

The vertex HUB represents the source of sensor measure-
ments, and the vertex SINK represents the destination of the
output stream. ID is the type of sensor identifiers, and V is
the type of timestamped values (value, ts). The processing
vertices are described below:

— The stage Join-Filter-Map (JFM) joins the input stream
with a table that indicates the location of each sensor,
filters out all sensors except for those that are close to
windows, and reorganizes the fields of the input tuple.
Recall the guarantee for the synchronization markers, and
notice that it implies the following property for the input
traces: for any two input measurements that are separated
by at least one marker, the one on the left has a strictly
smaller timestamp than the one on the right. The sorting
stage SORT sorts for each sensor the measurements that
are contained between markers.

The linear interpolation stage LI considers each sensor
independently and fills in any missing data points.

We have described informally the data-trace transductions
JFM, SORT and LI. The transduction DAG shown earlier de-
notes a data-trace transduction U(Ut,M) — O(ID, V).

The computation performed by a processing node is given
in a structured fashion, by completing function definitions
of a specified operator template. Table 1 shows the three
templates that are supported, which encompass both ordered
and unordered input streams. Each operator is defined by
a sequential implementation, which we describe informally
below. This means that each operator can be modeled as
a data-string transduction. It can then be proved formally
that these data-string transductions are consistent w.r.t. their

676

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

Table 1. Operator templates for data-trace transductions.

U(K, V): unordered key-value pairs between markers
O(K, V): for every key, ordered values between markers
Type parameters: K, V, L, W

OpStateless: transduction U(K, V) — U(L, W)

Ut onItem(K key, V value) { }

Ut onMarker(Marker m) { }

Type parameters: K, V, W, S

OpKeyedOrdered: transduction O(K, V) — O(K, W)

S initialState() { }

S onItem(S state, K key, V value) { }

S onMarker(S state, K key, Marker m) { }

// Restriction: Output items preserve the input key.
Type parameters: K, V, L, W, S, A
OpKeyedUnordered: transduction U(K, V) — U(L, W)

A in(K key, V value) { }

A id() { } // identity for combine

A combine(A x, A y) { } // associative, commutative
S initialState() { }

S updateState(S oldState, A agg) { }

Ut onItem(S lastState, K key, V value) { }

Ut onMarker(S newState, K key, Marker m) { }

// Restriction: in, id, combine, initialState, and
// updateState are all pure functions.

input/output data-trace types (Definition 3.5). It follows that
each operator that is programmed according to the template
conventions has a denotation (semantics) as a data-trace
transduction of the appropriate type.

OpStateless: The simplest template concerns stateless
computations, where only the current input event—not the
input history—determines the output. The programmer fills
in two function definitions: (1) onItem for processing key-
value pairs, and (2) onMarker for processing synchronization
markers. The functions have no output (the output type is
Ut, i.e. the unit type) and their only side-effect is emitting
output key-value pairs to the output channel by invoking
emit(outputKey, outputValue).

OpKeyedOrdered: Assuming that the input is ordered per
key, this template describes a stateful computation for each
key independently that is order-dependent. The programmer
fills in three function definitions: (1) initialState for ob-
taining the initial state, (2) onItem for processing a key-value
pair and updating the state, and (3) onMarker for processing
a synchronization marker and updating the state. The func-
tions have output S, which is the type of the data structure
for representing the state. As for stateless computations, the
functions allow the side-effect of emitting output key-value
pairs to the output channel. This template requires a crucial
restriction for maintaining the order for the output: every
occurrence of emit must preserve the input key. If this re-
striction is violated, e.g. by projecting out the key, then the
output cannot be viewed as being ordered.

OpKeyedUnordered: Assuming that the input is unordered,
this template describes a stateful computation for each key
independently. Recall that the synchronization markers are
ordered, but the key-value pairs between markers are un-
ordered. To guarantee that the computation does not depend
on some arbitrary linear ordering of the key-value pairs, their
processing does not update the state. Instead, the key-value
pairs between two consecutive markers are aggregated using

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

Table 2. Examples of data-trace transductions.

M = { id: ID, scalar: Float, ts: Int }
V = { scalar: Float, ts: Int }
joinFilterMap: OpStateless U(Ut, M) — U(ID, V)
Ut onItem(Ut key, M value) {
if (location(value.id) = "window")
b emit(value.id, (value.scalar, value.ts))

Ut onMarker(Marker m) { }
linearInterpolation: OpKeyedOrdered O(ID, V) — O(ID, V)
Precondition: items arrive in order of increasing timestamp
V initialState() { return nil }
V onItem(V state, ID key, V value) {
if (state == nil) then // first element
emit(key, value)
else // not the first element

Float x = state.scalar

Int dt = value.ts - state.ts

for i =1 ... dt do

Float y = x + i * (value.scalar - x) / dt
emit(key, (y, state.ts + i))

3} return value
V onMarker(V state, ID key, Marker m) { return state }
max0fAvgPerID: OpKeyedUnordered U(ID, V) — U(ID, V)
AvgPair = { sum: Float, count: Nat }
AvgPair in(ID key, V value) { return (value.scalar, 1) }
AvgPair id() { return (0.0, @) }
AvgPair combine(AvgPair x, AvgPair y) {
3} return (x.sum + y.sum, x.count + y.count)
Float initialState() { return -infinity }
Float updateState(Float oldState, AvgPair agg) {
} return max(oldState, agg.sum / agg.count)
Ut onItem(Float lastState, ID key, V value) { }
Ut onMarker(Float newState, ID key, Marker m) {
b emit(key, (newState, m.timestamp - 1))

the operation of a commutative monoid A: the programmer
specifies an identity element id(), and a binary operation
combine () that must be associative and commutative. When-
ever the next synchronization marker is seen, updateState
is used to incorporate the aggregate (of type A) into the state
(of type S) and then onMarker is invoked to (potentially)
emit output. The behavior onItem may depend on the last
snapshot of the state, i.e. the one that was formed at the last
marker. The functions onItem and onMarker are allowed to
emit output data items (but not markers), but the rest of the
functions must be pure (i.e., no side-effects).

Table 2 shows how some streaming computations (which
are based on the setting of Example 4.1) can be programmed
using the operator templates of Table 1. The first example
is the stateless computation joinFilterMap, which retains
the measurements of temperature sensors that are placed
near windows. The second example is the per-sensor or-
dered stateful computation linearInterpolation, which
fills in the missing data points of a sensor time series by
performing linear interpolation. The last example is the per-
sensor unordered (between markers) stateful computation
that takes the average of the measurements between markers
and reports the maximum over all the averages so far.

Theorem 4.2. Every streaming computation defined using
the operator templates of Table 1 is consistent w.r.t. its in-
put/output type (see Definition 3.5).

677

K. Mamouras, C. Stanford, R. Alur, Z. lves, and V. Tannen

Table 3. Implementation of OpKeyedUnordered.

R = { agg: A, state: S } // record type
Map<K ,R> stateMap = @ // state map
S startS = initialState() // state when key is first seen
next(K key, V value) { // process data item
R r = stateMap.get(key)
if (r == nil) then // first time key is seen
r = { agg = id(), state = startS }
onltem(r.state, key, value)
r.agg = combine(r.agg, in(key, value))
} stateMap.update(key, r)

next(Marker m) { // process marker
for each (key, r) in stateMap do:
r.state = updateState(r.state, r.agg)
r.agg = id()
stateMap.update(key, r)
onMarker(r.state, key, m)
startS = updateState(startS, id())
3 emit(m)

Proof. We will prove the case of the OpKeyedUnordered tem-
plate, since it is the most interesting one, and we will omit
the rest. A template OpKeyedUnordered<K,V,L, W, S, A>de-
scribes a data-string transduction f : A* — B*, where:

A=(KxV)U{#}xNat) B=(LxW)U ({#} xNat)

This data-string transduction was informally described ear-
lier and is defined operationally by the pseudocode shown
in Table 3. The streaming algorithm of Table 3 maintains a
per-key store and also tracks the state that should be given
to keys that have not been encountered yet.

We write M for the memory of the streaming algorithm
of Table 3. The function next : M X A — M describes how
the algorithm updates its memory every time it consumes
an element. We also write next : M x A* — M to denote the
function that describes how the algorithm updates the mem-
ory after consuming a sequence of elements. If a;, a; € A are
key-value pairs, then we have a;a; = aza;. It is easy to see
that next(m, aja;) = next(m, aza;) for every m € M. If the
items a; and a; have the same key, then the property holds
because of the associativity and commutativity of combine.
If the items a; and a; have different keys, then the prop-
erty holds because different keys cause the modification of
disjoint parts of the memory. It follows by an inductive argu-
ment (on the construction of =) that next(m, u) = next(m, v)
forallm e M and u,v € A* with u = .

Suppose now that out : M X A — B* gives the output
generated by the algorithm when it consumes a single ele-
ment. We lift this function to out : M X A* — B* as follows:
out(m, £) = ¢ and out(m, ua) = out(m, u) - out(next(m, u), a)
for allm € M, u € A* and a € A. The crucial observation
is that for every key-value item (k,v) € (K X V), the value
out(m, (k,v)) depends only on the part of memory that holds
the state for k, which we denote by m[k].state. Moreover,
this part of the memory does not get modified when key-
value pairs are processed. For memories my, m; € M and key
k, we write m; =, my, when my[k].state = my[k].state.
Our previous observations can be written as m; = my =
out(my, (k,v)) = out(my,(k,v)) and m =p next(m, (k,v))

Data-Trace Types for Distributed Stream Processing Systems

for all m,m;,my, € M, all k,k’ € K, and every v € V. For
key-value pairs a;, a; € (K X V) we have that

out(m, ajaz) = out(m, ay) - out(next(m, ay), ay) € (L x W)*

out(m, aza) = out(m, ay) - out(next(m, az), a;) € (L x W)*

and by virtue of the properties discussed previously we ob-
tain that out(m, aja;) = out(m, aza;). By an inductive ar-
gument on the construction of =, we can generalize this
property to: out(m, u) = out(m, v) for every memory m € M
and all sequences u,v € A* with u = v.

In order to establish the consistency property we have to
show that: u = v implies f(u) = f(v) for all u,v € A*. We
have that f(u) = out(my, u), where my is the initial memory
for the algorithm. From u = v and earlier results we conclude
that f(u) = out(my, u) = out(mg,v) = f(v). O

The templates of Table 1 define data-trace transductions
with only one input channel and output channel. The opera-
tion merge, which we denote by MRG or M, combines several
input streams into one by aligning them on synchronization
markers and taking the union of the key-value pairs that
are in corresponding blocks. We consider two variants of
merge, which we will not distinguish notationally. The first
one has unordered input channels with the same input keys
and values,i.e. MRG : U(K,V)X---XU(K,V) — U(K, V). The
second variant of merge has ordered input channels with
pairwise disjoint sets of input keys K1, K, ..., K,, so we
write MRG : O(K, V) X -+ - X O(K,,V) = O(K;U---UK,, V).

To enable parallelization, we also need to consider oper-
ations that split one input stream into several output streams.
The round-robin splitter, denoted RR : U(K, V) — U(K, V)x
---xXU(K, V), sends every input key-value pair to one output
channel by cycling through them and sends a synchroniza-
tion marker to all output channels. The hash-n splitter, de-
noted HASH or H : U(K, V) — U(Ko;n, V)X X U(Ky—1/n, V)
sends a key-value pair (k, v) with k € Kj/, with the i-th out-
put channel where K;/, = {k € K | hash(k) = i (mod n)}.
We write K; instead of K;/, when no confusion arises. As for
the round-robin splitter, H sends a synchronization marker
to all output channels. The ordered version H : O(K, V) —
O(Kp, V) x -+ X O(K,-1, V) behaves similarly.

In order to convert an unordered trace of type U(K, V) to
an ordered trace of O(K, V), we also consider the sorting
data-trace transduction SORT< : U(K,V) — O(K, V). The
transformation SORT < uses the linear order < to impose a
total order for every key separately on the key-value pairs
between synchronization markers. Even when the stream
source is ordered, the parallelization of intermediate process-
ing stages can reorder the key-value pairs between markers
in an arbitrary way. So, if a later stage of the processing
requires the original ordered view of the data, SORT< must
be applied immediately prior to that stage.

The templates of Table 1 not only enforce the data-trace
type discipline on the input and output channels, but they

678

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

also expose explicitly opportunities for parallelization and
distribution. Computations that are described by the tem-
plates OpKeyedOrdered and OpKeyedUnordered can be par-
allelized on the basis of keys, and stateless computations can
be parallelized arbitrarily.

Theorem 4.3 (Semantics-Preserving Parallelization). Let
B : UK,V) > UL W),y : OK,V) > OK, W), and § :
U(K,V) — U(L,W) be data-trace transductions that are
implemented using the OpStateless, OpKeyedOrdered, and
OpKeyedUnordered templates, respectively. Then, we have:

MRG> S =(f | --- |l f) > MRG
Yy =HASH> (y || --- || y) > MRG
O =HASH> (& || --- || §) > MRG
SORT = HASH > (SORT || - - - || SORT) > MRG

where > denotes streaming composition and || denotes par-
allel composition [13]:

f:X->Y ¢g:Y>Z
f>»>g9g:X—>Z

f:X->Y g:Z->W
fllg:XXZ—>YXW

Proof. First, we observe that all the considered data-trace
transductions are well-typed by Theorem 4.2. We will only
give the proof for the equation involving f, since the other
cases are handled similarly. For simplicity, we ignore the
timestamps of the # markers. We can view the traces of
U(K, V) as nonempty sequences of bags of elements of K XV
(recall Example 3.2),i.e. U(K, V) = Bag(KxV)*. Since f is im-
plemented by the template OpStateless, there is a function
out : (KXV) — Bag(LXW) that gives the output of f when it
processes a single key-value element. Then, we have f(B) =

Uk, v)eout(k,v) and B(BiB; . .. By) = B(B1)B(Bz) . .. B(By)

for all B,By,...,B, € Bag(K x V). Assuming we have m
input channels, we obtain:
(B 11l B) > MRG)(Bi1 ... Bin,...»Bmi ... Bmn)

— MRG(B(Br1 - .. Bin)s - - SBont - .- Byun)
=MRG(B(B11) ... B(Bin), - - ., f(Bm1) - . . B(Bmn))

= (ﬁ(Bll) Uu---u ﬁ(Bml)) cee (ﬁ(Bln) U---u ﬂ(an))
=pfB11U---UBp1)...H(B1nU---UBpyy)

:ﬁ((Bll U-+-UBmi1)...(Bin U+ U Bpy))

= (MRG > ﬁ)(Bll e B]n, e 7Bm1 e an)
using elementary properties of § and of MRG. So, we conclude
thatMRG > = (B || --- || f) > MRG. O

We say that a data-trace transduction f : UK,V) —
UK, V)x---xU(K,V)isasplitterif f > MRG : U(K,V) —
U(K, V) is the identity function on data traces (identity trans-
duction). Informally, a splitter splits (partitions) the input
stream into several output streams. The data-trace trans-
ductions RR and H (defined earlier) are splitters. If SPLIT
is a splitter, then Theorem 4.3 implies that for stateless f,
B =SPLIT> (B |- || B) > MRG.

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

K. Mamouras, C. Stanford, R. Alur, Z. lves, and V. Tannen

O(ID0. V) ¢y(1p,) O(IDO, V) 0O(1D0, V) o(ID, V)

U(Ut, M) U(In, V) U(1Do, V)
uUt, M JFM u(In, v >
e) = i o

Ut M) U(1D, V) U1, V) 0101, V) o101, V) o101, V)

u(In, v u(1pe, v o(1pe, v
Ut M) u(Ut, M) i (1D, V) ol () [¥RG SORT] () o 0(1De, V) oD, V)
HUB RSO I MRG SINK
JFM H2 ; [
U(Ut, M) u@o,v) = u@bl,v) ——— o(b1,V) O(1D1, V)

RR2 (resp., H2)

Partitions the input stream into two substreams in a round-robin fashion (resp., based on the hash value of the key).

IDO (resp., ID1) The subset of identifiers in ID whose hash value is equal to 0 (resp., 1) modulo 2.
Figure 1. A transduction DAG that is equivalent to the one of Example 4.1 and allows data parallelism.

The processing pipeline for the sensor input stream of
Example 4.1 can be parallelized. Figure 1 shows two equiv-
alent processing graphs, where every stage of the pipeline
is instantiated two times. The input for the JFM stage is
partitioned in a round-robin fashion, and the input for the
SORT and LI stages is partitioned based on the key (sensor
identifier). All the vertices of the graph have a formal deno-
tational semantics as data-trace transductions (Theorem 4.2),
which enables a rigorous proof of equivalence for the DAGs
of Example 4.1 and Figure 1. The top graph of Figure 1 is
obtained from the graph of Example 4.1 by applying the par-
allelizing transformation rules of Theorem 4.3. The bottom
graph of Figure 1 is obtained from the top one using the
transformation rules of the following table:

Reordering MRG and HASH

U(K, V) U(K, V. U(Ko, V)| O(Koj2, V) __ O(K, V) 5 O(Ko3, V)
B U(Ky, V) O(Ky /s, V)
U(K, V) U(Kz, V)|O(K12, V) 2/3 V)
M U(Ko, V JM— O(Ko3, V)
Ui, V)_> U(KO v; OKora, V) g O(Ky/s, V)

3 1> S 3

UK, V) —HES O(Ky2, V)

ENUESEG L v v i 0(Kyys, V)

Each box above shows two equivalent transduction DAGs.
These rules are specialized to two input channels and three
output channels for the sake of easy visualization. They ex-
tend in the obvious way to an arbitrary number of input
and output channels. The bottom right graph of the table is
equivalent to the identity transduction when the number of
output channels is equal to the number of input channels, be-
cause HASH,, : O(K/n, V) — O(Ko/n, V) X+ - X O(Kyy—1/n, V)
sends the entire input stream to the i-th output channel.

Corollary 4.4 (Correctness of Deployment). Let G be a
transduction DAG that is built using the operator templates
of Table 1. Any deployment of G, regardless of the degree of
parallelization, is equivalent to G.

Proof. The idea of the proof is that every deployment can be
obtained from the original description G of the computation
by applying a sequence of semantics-preserving transforma-
tion rules on specific subgraphs. This requires examining
several cases. We will limit this proof to one case that illus-
trates the proof technique, and we will omit the rest since
they can be handled with very similar arguments. First of
all, we observe that the original graph G (and every graph
obtained via transformations) has a denotational semantics
in terms of data-trace transductions (Theorem 4.2). Let us

679

examine the case of a subgraph of the form > y, where
B is programmed using OpStateless and y is programmed
using OpKeyedUnordered. Let SPLIT be an arbitrary splitter,
which means that SPLIT > MRG is the identity transduction.
Using the equations of Theorem 4.3 we can obtain the equiva-
lent SPLIT > (B || f) > MRG > HASH > (y || v || v) > MRG.
Using the transformation rules for “reordering MRG and HASH”
mentioned earlier, we obtain:

s[MRG———)

= m—
MR ——

Finally, each subgraph f > HASH is fused into a single node
B; HASH, and similarly each subgraph MRG > y is fused into
MRG; y. These fusion transformations can be easily checked
to be semantics-preserving. ml

SPLIT

5 Implementation in Apache Storm

In the previous section we proposed an abstraction for de-
scribing a distributed streaming computation as a transduc-
tion DAG, where each processing element is programmed
using one of three predefined templates. This principled man-
ner of defining computations enforces a data-trace type disci-
pline that disallows operations which depend on a spurious
ordering of the data items. Additionally, it enables a number
of equivalence-preserving parallelization transformations.
We have implemented a compilation procedure that con-
verts a transduction DAG into a deployment plan for the
distributed streaming framework Storm [28, 54]. In Storm,
a computation is structured as a DAG (called topology) of
source vertices called spouts and processing/sink vertices
called bolts. Each vertex (bolt or spout) may be instanti-
ated multiple times, across different physical nodes or CPU
threads. In such settings, the connections between vertices
specify a data partitioning strategy, which is employed when
the vertices are instantiated multiple times. These connec-
tions are called groupings in Storm’s terminology, and the
most useful ones are: (1) shuffle grouping, which randomly
partitions the stream in balanced substreams, (2) fields group-
ing, which partitions the stream on the basis of a key, and
(3) global grouping, which sends the entire stream to exactly
one instance of the target bolt. We refer the reader to [29]
for more information on the programming model of Storm.
Figure 2 shows a concrete example of programming a
transduction DAG (and thus obtaining a Storm topology)

Data-Trace Types for Distributed Stream Processing Systems

// Source: input stream given by iterator
Iterator<Event<Int, Float>> iterator = new Stream();
Source<Int, Float> source = new Source<>(iterator)
// Processing node 1: filter out the odd keys
Operator<Int, Float, Int, Float> filterOp =
new OpStateless<Int, Float, Int, Float>() {
void onItem(KV<Int, Float> item) {
if (item.key % 2 == 0) this.emit(item); }
void onMarker(Marker<Int, Float> m) { } }
// Processing node 2: sum per time unit
Operator<Int, Float, Int, Float> sumOp =
new OpKeyedUnordered<Int, Float, Int, Float, Float, Float>() {
Float id() { return 0.0; }
Float in(KV<Int, Float> item) { return item.value; }
Float combine(Float x, Float y) { return x +vy; }
Float initialState() { return Float.NaN; }
Float stateUpdate(Float state, Float agg) { return agg; }
void onItem(Float lastState, KV<Int, Float> item) { }
void onMarker(Float state, Int key, Marker<Int, Float> m) {
this.emit(new KV<>(key, state, m.timestamp - 1)); } }
// Sink: prints the output stream
Sink<Int, Float> printer = Sink.defaultPrinter();
// Setting up the transduction DAG
DAG dag = new DAG();
dag.addSource(source);
int parl = 2; // parallelism hint for filterOp
dag.addOp(filterOp, parl, source); // source ==> filterOp
int par2 = 3; // parallelism hint for sumOp
dag.addOp(sumOp, par2, filterOp); // filterOp ==> sumOp
dag.addSink(printer, sumOp); // sumOp ==> printer
// Check type consistency & create the topology for Storm
StormTopology topology = dag.getStormTopology();

Figure 2. An extended programming example.

using our framework. In this example, the user first describes
the data source using an Iterator object and converts it to
a Source vertex. Then, the operator vertices are described
using the templates OpStateless and OpKeyedUnordered.
A transduction DAG is represented as a DAG object, which ex-
poses methods for adding new vertices and edges. For exam-
ple, the method call dag.addOp(op, par, v1, v2, ...)
adds the vertex op to dag with the parallelism hint par, and
it also adds edges from the vertices v1, v2, ...to op. Finally,
dag.getStormTopology() performs all necessary checks
for type consistency and returns a StormTopology object
that can be passed to Storm for deployment on the cluster.

Our framework ensures that the data-trace types of input,
output and intermediate streams are respected. The com-
pilation procedure automatically constructs the glue code
for propagating synchronization markers throughout the
computation, merging input channels, partitioning output
channels, and sorting input channels to enforce a per-key to-
tal order on the elements between markers. We use Storm’s
built-in facilities for the parallelization of individual pro-
cessing vertices, but we have replaced Storm’s “groupings”
because they inhibit the propagation of the synchroniza-
tion markers. For efficiency reasons, we fuse the merging
operator (MRG) and the sorting operator (SORT) with the op-
erator that follows them in order to eliminate unnecessary
communication delays.

We chose Storm as the deployment platform because (1) it
is a widely adopted “pure streaming” system that is used for
many industry workloads, (2) it naturally exposes parallelism

680

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

and distribution, and (3) it is extensible. Due to its similarity
to alternative systems, it would not be difficult to compile
transduction DAGs into topologies for these other platforms.

6 Experimental Evaluation

In this section we experimentally evaluate our data-trace
type-based framework. We address two questions:

— Can our system generate code that is as efficient as a hand-
crafted implementation, while automatically adapting to
whatever levels of parallelism are available?

— Does our framework facilitate the development of complex
streaming applications?

To answer the first question, we used an extension of the
Yahoo Streaming Benchmark [21]. We compared an imple-
mentation generated using our framework against a hand-
tuned one. To address the second question, we consider a
significant case study: the Smart Homes Benchmark [22]
used in the Grand Challenge of the DEBS 2014 conference,
which we have modified to include a more realistic power
prediction technique based on a machine learning model.
Our focus in the experiments is to determine how well
stream applications scale. To do this, we used the following
experimental setup: We ran our implementation on top of
Storm on a cluster of several virtual machines. Each virtual
machine has 2 CPUs, 8 GB of memory, and 8 GB of disk each
and runs CentOS 7. Across multiple trials and configurations,
we measured maximum throughput for each configuration.

YaHO0O STREAMING BENCHMARK. The streaming bench-
mark of Yahoo [21] defines a stream of events that concern
the interaction of users with advertisements, and suggests
an analytics pipeline to process the stream. There is a fixed
set of campaigns and a set of advertisements, where each ad
belongs to exactly one campaign. The map from ads to cam-
paigns is stored in a database. Each element of the stream is
of the form (userld, pageld, adld, eventType, eventTime),
and it records the interaction of a user with an advertise-
ment, where eventType is one of {view, click, purchase}.
The component eventTime is the timestamp of the event.

The basic benchmark query (as described in [21]) com-
putes, at the end of each second, a map from each campaign
to the number of views associated with that campaign within
the last 10 seconds. For each event tuple, this involves an
expensive database lookup to determine the campaign asso-
ciated with the advertisement viewed. The reference imple-
mentation published with the Yahoo benchmark involves a
multi-stage pipeline: (i) stage I: filter view events, project the
ad id from each view tuple, and lookup the campaign id of
each ad, (ii) stage 2: compute for every window the number
of events (views) associated with each campaign. The query
involes key-based partitioning on only one property, namely
the derived campaign id of the event.

To compare the effectiveness of our framework, we next
re-implemented this analytics pipeline as a transduction

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

Yahooo | RRZ
AMRG; Filter-Map | H3
—————
A}
YahooN | RR2

K. Mamouras, C. Stanford, R. Alur, Z. lves, and V. Tannen

U(Ut, YItem)
! U(CID, Ut) U(CID, Long)
] dFilter-Map Count(10 sec) SINK
YahooN
[YahooN] MRG; Count (1@ sec) | UNQ

MRG; SINK

Figure 3. QUERY IV: Transduction DAG for a variant of the Yahoo Streaming Benchmark [21], and its deployment on Storm
with parallelization 2 and 3 for the processing vertices Filter-Map and Count (10 sec) respectively.

Query | Query Il
1.00 0.50
0.90 0.45
0.80 0.40
0.70 0.35
0.60 0.30
0.50 0.25
0.40 0.20
0.30 0.15
0.20 0.10
0.10 0.05
0.00 0.00
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Query Il Query IV
1.00 0.40
0:90 035
0.80
030 /
0.70
0.60 0.25
0.50 0.20
040 0.15
0.30
0.10
0.20
0.10 ¢ 0.05 ¢
0.00 0.00
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Query V Query VI
0.40 0.40
035 0.35
0.30 0.30
0.25 0.25
0.20 0.20
0.15 0.15 /

0.10 0.10

0.05 0.05

0.00 0.00

Figure 4. Queries inspired by the Yahoo Streaming Bench-
mark. The orange (resp., blue) line shows the throughput of
the transduction-based (resp., handcrafted) implementation.
The horizontal (resp., vertical) axis shows the number of
machines (resp., throughput in million tuples/sec).

DAG, where every processing vertex is programmed using
a template of Table 1. This is shown in the top graph of
Figure 3, where YItem is the type of input tuples and CID is
the type of campaign identifiers. The system is configured
so that the stream sources emit synchronization markers at
1 second intervals, i.e. exactly when the timestamps of the
tuples cross 1 second boundaries. To evaluate our framework
more comprehensively, we have implemented six queries:

— Query I: A single-stage stateless computation that en-
riches the input data items with information from a data-
base (we use Apache Derby [24]).

681

— Query II: A single-stage per-key aggregation, where the
intermediate results are persisted in a database.

Query III: A two-stage pipeline that enriches the input
stream with location information and then performs a
per-location summarization of the entire stream history.

Query IV: A re-implementation of the analytics pipeline
of the original Yahoo streaming benchmark (see Figure 3).
Query V: A modification of Query IV, where the per-
campaign aggregation is performed over non-overlapping
windows (also called tumbling windows), instead of the
overlapping (or sliding) windows of Query IV.

Query VI: A three-stage pipeline that performs a machine
learning task. First, it enriches the stream with location
information from a database. Then, it performs a per-user
feature extraction (i.e., per-key aggregation). Finally, for
every location independently it clusters the users periodi-
cally using a k-means clustering algorithm.

For every query, we have created a handwritten implemen-
tation using the user-level API of Apache Storm, as well as
an implementation using our framework of data-trace trans-
ductions. Figure 4 shows the experimental comparison of the
handcrafted implementations (blue line) and the data-trace-
transduction-based implementations (orange line). We have
varied the degree of parallelization from 1 up to 8 (shown
in the horizontal axis), which correponds to the number of
virtual machines assigned to the computation. The vertical
axis shows the maximum throughput for each configura-
tion. Observe that the hand-written implementation and the
generated implementation have similar performance.

The experiments reported in Figure 4 involve compute-
heavy operators, but our observations also apply to compu-
tationally cheaper operators: our framework incurs a small
performance penalty in the range of 0%-20%. In the results
for Query I, the generated code is slightly more efficient
than the handwritten code (by 10%-15%). This is because we
use a routing mechanism that balances the load in a way
that minimizes the communication cost, whereas Storm bal-
ances the load more evenly across the replicated nodes but
incurs a slightly higher communication cost. Overall, we
conclude that our framework achieves good performance—
despite the higher-level specification and additional typing
requirements in the transduction-based code.

Case STUDY: SMART HOMES BENCHMARK. To examine
the suitability of our framework for more expressive stream

Data-Trace Types for Distributed Stream Processing Systems

Er— U(Plug, VT) O(Plug, VT) O(Plug, VT)
]
BuildingN U(Ut, SItem)

M

a

p

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

O(DType, VT)

Predict] [SINK]

U(DType, VT)

O(DType, VT) O(DType, VT)

Avg

Building@ | R2

MRG; SORT; LI; Map | H3

JMRG;SORT;Avg;Predict | UNQ

MRG; SORT; LI; Map | H3

S MRG; SINK

[MRG; SORT; Avg; Predict | UNQ

BuildingN | R2

MRG; SORT; LI; Map | H3

3[MRG; SORT; Avg; Predict | UNQ

Figure 5. Transduction DAG for a variant of the Smart Home Benchmark [22] of DEBS 2014, and its deployment on Storm.

processing applications, we consider a variant of the bench-
mark used for the “Smart Homes” Internet of Things (IoT)
competition of the DEBS 2014 conference [22]. In this bench-
mark, the input stream consists of measurements produced
by smart power plugs. A smart plug is connected to a wall
power outlet, and then an electrical device is connected to
the plug. This allows the plug sensors to measure quantities
that are relevant to power consumption. The deployment of
these smart plugs is done across several buildings, each of
which contains several units. A smart plug is uniquely iden-
tified by three numbers: a building identifier, a unit identifier
(which specifies a unit within a building), and a plug identi-
fier (which specifies a plug within a unit). For simplicity, we
assume here that the plugs only generate load measurements,
i.e. power in Watts. More specifically, every stream event
is a tuple with the following components: (i) timestamp:
timestamp of the measurement, (ii) value: the value of the
load measurement (in Watts), (iii) plugld: identifier that
specifies the plug, (iv) unitId: identifier that specifies the
unit, (v) buildingId: identifier that specifies the building.
A plug generates roughly one load measurement for every
2 seconds, but the measurements are not uniformly spaced.
There can be gaps in the measurements, as well as many
measurements for the same timestamp.

We implement a load prediction pipeline in the framework
of data-trace transductions. The load prediction is separate
for each device type (A/C unit, lights, etc.). The diagram of
Figure 5 is a transduction DAG implementing the compu-
tation: (i) JFM (join-filter-map): Join the input stream with
information regarding the type of electrical device connected
to a plug and retain only a subset of device types. Reorga-
nize the fields of the tuple, separating them into a plug key
(plugId) of type Plug and a timestamped value of type VT.
(ii) SORT: For every plug key, sort the input items (between
consecutive markers) by timestamp. (iii) LI: For every plug
key, fill in missing data points using linear interpolation.
(iv) Map: Project every input key (a Plug identifier) to the
kind of device it is connected to. (v) SORT: For every device
type, sort the input items (between consecutive markers)
according to their timestamp. (vi) AVG: Compute the average
load for each device type by averaging all data items with
the same key (device type) and timestamp. (vii) Predict: For
every device type and every input value (there is exactly one
value per second), predict the total power consumption over
the next 10 minutes using the features: current time, current

682

0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00

1 2 3 4 5 6 7 8

Figure 6. SMART HOMES - ENERGY PREDICTION: The hori-
zontal (resp., vertical) axis shows the level of parallelization
(resp., throughput in million tuples/sec).

load, and power consumption over the past 1 minute. A de-
cision/regression tree is used for the prediction (REPTree of
[32]), which has been trained on a subset of the data.

Figure 6 shows that by varying the degree of parallelism
(number of virtual machines) the computation scales up lin-
early. As before, we conducted the experiment on a cluster of
virtual machines (each with 2 CPUs, 8 GB memory, and 8 GB
disk). We conclude from these results that our framework
indeed can scale out to high levels of concurrency, even for
complex operations such as machine learning inference over
streams. Overall, our experiments have demonstrated that
our framework can express the complex computations re-
quired in both enterprise and IoT streaming applications, and
that it can generate an efficient implementation comparable
to hand-coded solutions.

7 Related Work

Our programming model is closely related to dataflow com-
putation models. It is a generalization of acyclic Kahn pro-
cess networks (KPNs) [36]. A KPN specifies a finite number
of independent linearly ordered input and output channels,
and consists of a collection of processes, where each process
is a sequential program that can read from its input chan-
nels and write to its output channels. Synchronous Dataflow
[18, 30, 39, 53] is a special case of KPNs, which has been
used for specifying and parallelizing streaming programs
primarily in the embedded software domain. In a synchro-
nous dataflow graph, each process reads a fixed finite number
of items from the input channels and also emits a fixed finite
number of items as output. We accommodate a finite number
of independent input or output streams, but also allow more
complicated dependence relations on the input and output.
In particular, viewing the input or output stream as a bag of
events is not possible in KPNs or their restrictions.

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

There is a large body of work on streaming database
query languages and systems: Aurora [2] and its succes-
sor Borealis [1], STREAM [15], CACQ [42], TelegraphCQ
[20], CEDR/StreamInsight [7, 17], and System S [33]. The
query language supported by these systems (for example,
CQL [15]) is typically an extension of SQL with constructs
for sliding windows over data streams. This allows for rich
relational queries, including set-aggregations (e.g. sum, max,
min, average, count) and joins over multiple data streams, but
requires the programmer to resort to user-defined functions
in another language for richer computations such as machine
learning classification. A precise semantics for how to deal
with out-of-order streams has been defined using punctua-
tions (a type of synchronization markers) [37, 40, 41, 55]. The
partial ordering view supported by data-trace transductions
gives the ability to view a stream in many different ways:
as a linearly ordered sequence, as a relation, or even as a
sequence of relations. This provides a rich framework for
classifying disorder, which is useful for describing streaming
computations that combine relational with sequence-aware
operations. Our implementation supports at the moment
only a specific kind of time-based punctuations (i.e., peri-
odic synchronization markers), but our semantic framework
can encode more general punctuations. Extending relational
query languages to partially ordered multisets has been stud-
ied in [31], though not in the context of streaming.

A number of distributed stream processing engines,
such as Samza [26, 47], Storm [28, 54], Heron [38, 56], Mill-
Wheel [5], Spark Streaming [27, 58], and Flink [19, 25], have
achieved widespread use. Spark Streaming and Flink support
SQL-style queries or, equivalently, lower-level operations
roughly corresponding to the relational algebra underlying
SQL. Apache Beam [6, 23] is a programming model that pro-
vides relational and window-based abstractions. The other
stream engines provide much lower-level abstractions in
which the programmer writes event handlers that take tu-
ples, combine the data with windows, and emit results. As
with the manually coded Storm implementation used in our
experiments, this provides great power but does not aid the
programmer in reasoning about correctness. Naiad [45] is a
general-purpose distributed dataflow system for performing
iterative batch and stream processing. It supports a scheme
of logical timestamps for tracking the progress of compu-
tations. These timestamps can support the punctuations of
[40] and deal with certain kinds of disorder, but they cannot
encode more general partial orders. Systems such as Flink
[19, 25] and Naiad [45] support feedback cycles, which we
do not consider here due to the semantic complexities of
cycles: they require a complex denotational model involving
continuous functions, as in KPNs [36].

Prior work has considered the issue of semantically
sound parallelization of streaming applications [34, 49].
The authors of [49] observe that Storm [28, 54] and S4 [46]
perform unsound parallelizing transformations and propose

683

K. Mamouras, C. Stanford, R. Alur, Z. lves, and V. Tannen

techniques for exploiting data parallelism without altering
the original semantics of the computation. Our framework
addresses similar issues, and our markers have a similar role
to the “pulses” of [49]. Our approach, however, is based on a
type-based discipline for classifying streams and a denota-
tional method for proving the preservation of semantics.

8 Conclusion

We have proposed a type discipline for classifying streams
according to their partial ordering characteristics using data-
trace types. These types are used to annotate the communi-
cation links in the dataflow graph that describes a streaming
computation. Each vertex of this typed dataflow graph is
programmed using a pre-defined set of templates, so as to en-
sure that the code respects the types of the input and output
channels. We have implemented this framework in Java and
we have provided an automatic procedure for deployment
on Apache Storm. We have shown experimentally that our
framework can express complex computations required in
IoT streaming applications, and that it can produce efficient
implementations comparable to hand-coded solutions.

A direction for further work is to enrich the set of type-
consistent templates with common patterns. For example,
our templates can already express sliding-window aggrega-
tion, but a specialized template for that purpose would re-
lieve the programmer from the burden of re-discovering
and re-implementing efficient sliding-window algorithms
(e.g., [16, 51, 52, 57]). Other avenues for future research are
to extend the compilation procedure to target streaming
frameworks other than Storm, and to automatically perform
optimizations that exploit the underlying hardware.

The StreamQRE language [43] (see also [10]) consists of
a set of programming constructs that allow the combina-
tion of streaming computations over linearly-ordered data
with static relational operations (i.e., over unordered data).
A promising direction for future work is to generalize the
language to the setting of partially ordered data streams.
StreamQRE is based on a notion of regular stream transfor-
mations [8, 9] that admit efficient space-bounded implemen-
tations [11, 12, 14], which is a crucial property for applica-
tions in resource-constrained environments [3, 4]. It would
be interesting to investigate whether a similar notion of reg-
ularity can be formulated for the data-trace transductions
that we consider here.

Acknowledgments

We would like to thank the anonymous reviewers and Martin
Hirzel for their constructive comments. This research was
supported in part by US National Science Foundation awards
1763514 and 1640813.

Data-Trace Types for Distributed Stream Processing Systems

References

(1]

(10]

(11]

(12]

(13]

Daniel J. Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur Cetintemel,
Mitch Cherniack, Jeong-Hyon Hwang, Wolfgang Lindner, Anurag
Maskey, Alex Rasin, Esther Ryvkina, Nesime Tatbul, Ying Xing, and
Stanley Zdonik. 2005. The Design of the Borealis Stream Processing
Engine. In Proceedings of the 2nd Biennial Conference on Innovative
Data Systems Research (CIDR °05). 277-289. http://cidrdb.org/cidr2005/
papers/P23.pdf

Daniel J. Abadi, Don Carney, Ugur Cetintemel, Mitch Cherniack,
Christian Convey, Sangdon Lee, Michael Stonebraker, Nesime Tat-
bul, and Stan Zdonik. 2003. Aurora: A New Model and Architecture
for Data Stream Management. The VLDB Journal 12, 2 (2003), 120-139.
https://doi.org/10.1007/s00778-003-0095-z

Houssam Abbas, Rajeev Alur, Konstantinos Mamouras, Rahul Mang-
haram, and Alena Rodionova. 2018. Real-time Decision Policies with
Predictable Performance. Proc. IEEE 106, 9 (Sep. 2018), 1593-1615.
https://doi.org/10.1109/JPROC.2018.2853608

Houssam Abbas, Alena Rodionova, Konstantinos Mamouras, Ezio
Bartocci, Scott A. Smolka, and Radu Grosu. 2018. Quantitative Regular
Expressions for Arrhythmia Detection. To appear in the IEEE/ACM
Transactions on Computational Biology and Bioinformatics (2018). https:
//doi.org/10.1109/TCBB.2018.2885274

Tyler Akidau, Alex Balikov, Kaya Bekiroglu, Slava Chernyak, Josh
Haberman, Reuven Lax, Sam McVeety, Daniel Mills, Paul Nordstrom,
and Sam Whittle. 2013. MillWheel: Fault-tolerant Stream Processing
at Internet Scale. Proc. VLDB Endow. 6, 11 (Aug. 2013), 1033-1044.
https://doi.org/10.14778/2536222.2536229

Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak,
Rafael J. Fernandez-Moctezuma, Reuven Lax, Sam McVeety, Daniel
Mills, Frances Perry, Eric Schmidt, and Sam Whittle. 2015. The
Dataflow Model: A Practical Approach to Balancing Correctness, La-
tency, and Cost in Massive-scale, Unbounded, Out-of-order Data Pro-
cessing. Proceedings of the VLDB Endowment 8, 12 (Aug. 2015), 1792-
1803. https://doi.org/10.14778/2824032.2824076

Mohamed Ali, Badrish Chandramouli, Jonathan Goldstein, and Ro-
man Schindlauer. 2011. The Extensibility Framework in Microsoft
StreamlInsight. In Proceedings of the 27th IEEE International Conference
on Data Engineering (ICDE ’11). 1242-1253. https://doi.org/10.1109/
ICDE.2011.5767878

Rajeev Alur, Dana Fisman, Konstantinos Mamouras, Mukund
Raghothaman, and Caleb Stanford. 2018. Streamable Regular Trans-
ductions. CoRR abs/1807.03865 (2018). http://arxiv.org/abs/1807.03865
Rajeev Alur, Dana Fisman, and Mukund Raghothaman. 2016. Reg-
ular Programming for Quantitative Properties of Data Streams. In
Proceedings of the 25th European Symposium on Programming (ESOP
’16). 15-40. https://doi.org/10.1007/978-3-662-49498-1_2

Rajeev Alur and Konstantinos Mamouras. 2017. An Introduction to
the StreamQRE Language. Dependable Software Systems Engineering
50 (2017), 1. https://doi.org/10.3233/978-1-61499-810-5-1

Rajeev Alur, Konstantinos Mamouras, and Caleb Stanford. 2017.
Automata-Based Stream Processing. In Proceedings of the 44th Interna-
tional Colloquium on Automata, Languages, and Programming (ICALP
’17) (Leibniz International Proceedings in Informatics (LIPIcs)), loannis
Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl (Eds.),
Vol. 80. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl,
Germany, 112:1-112:15. https://doi.org/10.4230/LIPlcs.ICALP.2017.112
Rajeev Alur, Konstantinos Mamouras, and Caleb Stanford. 2019. Mod-
ular Quantitative Monitoring. Proceedings of the ACM on Program-
ming Languages 3, POPL, Article 50 (Jan. 2019), 31 pages. https:
//doi.org/10.1145/3290363

Rajeev Alur, Konstantinos Mamouras, Caleb Stanford, and Val Tannen.
2018. Interfaces for Stream Processing Systems. In Principles of Mod-
eling: Essays Dedicated to Edward A. Lee on the Occasion of His 60th
Birthday, Marten Lohstroh, Patricia Derler, and Marjan Sirjani (Eds.).

684

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]
[24]
[25]
[26]

[27]

[28]

[29]

[30]

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

Lecture Notes in Computer Science, Vol. 10760. Springer, Cham, 38-60.
https://doi.org/10.1007/978-3-319-95246-8_3

Rajeev Alur, Konstantinos Mamouras, and Dogan Ulus. 2017. Deriva-
tives of Quantitative Regular Expressions. In Models, Algorithms, Logics
and Tools: Essays Dedicated to Kim Guldstrand Larsen on the Occasion
of His 60th Birthday, Luca Aceto, Giorgio Bacci, Giovanni Bacci, Anna
Ingolfsdottir, Axel Legay, and Radu Mardare (Eds.). Lecture Notes
in Computer Science, Vol. 10460. Springer International Publishing,
Cham, 75-95. https://doi.org/10.1007/978-3-319-63121-9_4

Arvind Arasu, Shivnath Babu, and Jennifer Widom. 2006. The CQL
Continuous Query Language: Semantic Foundations and Query Ex-
ecution. The VLDB Journal 15, 2 (2006), 121-142. https://doi.org/10.
1007/s00778-004-0147-z

Arvind Arasu and Jennifer Widom. 2004. Resource Sharing in Continu-
ous Sliding-window Aggregates. In Proceedings of the 30th International
Conference on Very Large Data Bases (VLDB ’04). VLDB Endowment,
336-347. http://dl.acm.org/citation.cfm?id=1316689.1316720

Roger S. Barga, Jonathan Goldstein, Mohamed Ali, and Mingsheng
Hong. 2007. Consistent Streaming Through Time: A Vision for Event
Stream Processing. In Proceedings of the 3rd Biennial Conference on
Innovative Data Systems Research (CIDR °07). 363-374. http://cidrdb.
org/cidr2007/papers/cidr07p42.pdf

Albert Benveniste, Paul Caspi, Stephen A. Edwards, Nicolas Halbwachs,
Paul Le Guernic, and Robert de Simone. 2003. The Synchronous
Languages 12 Years Later. Proc. IEEE 91, 1 (2003), 64-83. https://doi.
org/10.1109/JPROC.2002.805826

Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl,
Seif Haridi, and Kostas Tzoumas. 2015. Apache Flink: Stream and
Batch Processing in a Single Engine. Bulletin of the IEEE Computer
Society Technical Committee on Data Engineering 36, 4 (2015). http:
//sites.computer.org/debull/A15dec/p28.pdf

Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J.
Franklin, Joseph M. Hellerstein, Wei Hong, Sailesh Krishnamurthy,
Sam Madden, Vijayshankar Raman, Fred Reiss, and Mehul Shah. 2003.
TelegraphCQ: Continuous Dataflow Processing for an Uncertain World.
In Proceedings of the First Biennial Conference on Innovative Data Sys-
tems Research (CIDR °03). http://cidrdb.org/cidr2003/program/p24.pdf
S. Chintapalli, D. Dagit, B. Evans, R. Farivar, T. Graves, M. Holder-
baugh, Z. Liu, K. Nusbaum, K. Patil, B. J. Peng, and P. Poulosky.
2016. Benchmarking Streaming Computation Engines: Storm, Flink
and Spark Streaming. In 2016 IEEE International Parallel and Dis-
tributed Processing Symposium Workshops (IPDPSW). 1789-1792. https:
//doi.org/10.1109/IPDPSW.2016.138

DEBS Conference. 2014. DEBS 2014 Grand Challenge: Smart homes.
http://debs.org/debs-2014-smart-homes/. (2014). [Online; accessed
November 16, 2018].

Apache Software Foundation. 2019. Apache Beam. https://beam.
apache.org/. (2019). [Online; accessed March 31, 2019].

Apache Software Foundation. 2019. Apache Derby. https://db.apache.
org/derby/. (2019). [Online; accessed March 31, 2019].

Apache Software Foundation. 2019. Apache Flink. https://flink.apache.
org/. (2019). [Online; accessed March 31, 2019].

Apache Software Foundation. 2019. Apache Samza. http://samza.
apache.org/. (2019). [Online; accessed March 31, 2019].

Apache Software Foundation. 2019. Apache Spark Streaming. https:
//spark.apache.org/streaming/. (2019). [Online; accessed March 31,
2019].

Apache Software Foundation. 2019. Apache Storm. http://storm.
apache.org/. (2019). [Online; accessed March 31, 2019].

Apache Software Foundation. 2019. Apache Storm: Concepts. http:
//storm.apache.org/releases/1.2.2/Concepts.html. (2019). [Online;
accessed March 31, 2019].

Michael I. Gordon, William Thies, and Saman Amarasinghe. 2006.
Exploiting Coarse-grained Task, Data, and Pipeline Parallelism in

http://cidrdb.org/cidr2005/papers/P23.pdf
http://cidrdb.org/cidr2005/papers/P23.pdf
https://doi.org/10.1007/s00778-003-0095-z
https://doi.org/10.1109/JPROC.2018.2853608
https://doi.org/10.1109/TCBB.2018.2885274
https://doi.org/10.1109/TCBB.2018.2885274
https://doi.org/10.14778/2536222.2536229
https://doi.org/10.14778/2824032.2824076
https://doi.org/10.1109/ICDE.2011.5767878
https://doi.org/10.1109/ICDE.2011.5767878
http://arxiv.org/abs/1807.03865
https://doi.org/10.1007/978-3-662-49498-1_2
https://doi.org/10.3233/978-1-61499-810-5-1
https://doi.org/10.4230/LIPIcs.ICALP.2017.112
https://doi.org/10.1145/3290363
https://doi.org/10.1145/3290363
https://doi.org/10.1007/978-3-319-95246-8_3
https://doi.org/10.1007/978-3-319-63121-9_4
https://doi.org/10.1007/s00778-004-0147-z
https://doi.org/10.1007/s00778-004-0147-z
http://dl.acm.org/citation.cfm?id=1316689.1316720
http://cidrdb.org/cidr2007/papers/cidr07p42.pdf
http://cidrdb.org/cidr2007/papers/cidr07p42.pdf
https://doi.org/10.1109/JPROC.2002.805826
https://doi.org/10.1109/JPROC.2002.805826
http://sites.computer.org/debull/A15dec/p28.pdf
http://sites.computer.org/debull/A15dec/p28.pdf
http://cidrdb.org/cidr2003/program/p24.pdf
https://doi.org/10.1109/IPDPSW.2016.138
https://doi.org/10.1109/IPDPSW.2016.138
http://debs.org/debs-2014-smart-homes/
https://beam.apache.org/
https://beam.apache.org/
https://db.apache.org/derby/
https://db.apache.org/derby/
https://flink.apache.org/
https://flink.apache.org/
http://samza.apache.org/
http://samza.apache.org/
https://spark.apache.org/streaming/
https://spark.apache.org/streaming/
http://storm.apache.org/
http://storm.apache.org/
http://storm.apache.org/releases/1.2.2/Concepts.html
http://storm.apache.org/releases/1.2.2/Concepts.html

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

(33]

(34]

(35]

(36]

(37

—

(38

—

(39]

[40]

[41]

(43]

(4]

Stream Programs. In Proceedings of the 12th International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS XII). ACM, New York, NY, USA, 151-162. https:
//doi.org/10.1145/1168857.1168877

Stéphane Grumbach and Tova Milo. 1999. An Algebra for Pomsets.
Information and Computation 150, 2 (1999), 268-306. https://doi.org/
10.1006/inc0.1998.2777

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter
Reutemann, and Ian H. Witten. 2009. The WEKA Data Mining Soft-
ware: An Update. SIGKDD Explorations Newsletter 11, 1 (Nov. 2009),
10-18. https://doi.org/10.1145/1656274.1656278

M. Hirzel, H. Andrade, B. Gedik, G. Jacques-Silva, R. Khandekar, V.
Kumar, M. Mendell, H. Nasgaard, S. Schneider, R. Soulé, and K. L.
Wu. 2013. IBM Streams Processing Language: Analyzing Big Data
in motion. IBM Journal of Research and Development 57, 3/4 (2013),
7:1-7:11. https://doi.org/10.1147/JRD.2013.2243535

Martin Hirzel, Robert Soulé, Scott Schneider, Bugra Gedik, and Robert
Grimm. 2014. A Catalog of Stream Processing Optimizations. ACM
Computing Surveys (CSUR) 46, 4, Article 46 (March 2014), 34 pages.
https://doi.org/10.1145/2528412

Yahoo Inc. 2017. Reference implementation of the Yahoo Streaming
Benchmark. https://github.com/yahoo/streaming-benchmarks. (2017).
[Online; accessed March 31, 2019].

Gilles Kahn. 1974. The Semantics of a Simple Language for Parallel
Programming. Information Processing 74 (1974), 471-475.

Sailesh Krishnamurthy, Michael J. Franklin, Jeffrey Davis, Daniel Fa-
rina, Pasha Golovko, Alan Li, and Neil Thombre. 2010. Continuous
Analytics over Discontinuous Streams. In Proceedings of the 2010 ACM
SIGMOD International Conference on Management of Data (SIGMOD
’10). ACM, New York, NY, USA, 1081-1092. https://doi.org/10.1145/
1807167.1807290

Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli,
Christopher Kellogg, Sailesh Mittal, Jignesh M. Patel, Karthik Ra-
masamy, and Siddarth Taneja. 2015. Twitter Heron: Stream Process-
ing at Scale. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data (SIGMOD ’15). ACM, 239-250.
https://doi.org/10.1145/2723372.2742788

Edward A. Lee and David G. Messerschmitt. 1987. Synchronous Data
Flow. Proc. IEEE 75,9 (1987), 1235-1245. https://doi.org/10.1109/PROC.
1987.13876

Jin Li, David Maier, Kristin Tufte, Vassilis Papadimos, and Peter A.
Tucker. 2005. Semantics and Evaluation Techniques for Window Ag-
gregates in Data Streams. In Proceedings of the 2005 ACM SIGMOD
International Conference on Management of Data (SIGMOD *05). ACM,
311-322. https://doi.org/10.1145/1066157.1066193

Jin Li, Kristin Tufte, Vladislav Shkapenyuk, Vassilis Papadimos,
Theodore Johnson, and David Maier. 2008. Out-of-order Process-
ing: A New Architecture for High-performance Stream Systems. Pro-
ceedings of the VLDB Endowment 1, 1 (Aug. 2008), 274-288. https:
//doi.org/10.14778/1453856.1453890

Samuel Madden, Mehul Shah, Joseph M. Hellerstein, and Vijayshankar
Raman. 2002. Continuously Adaptive Continuous Queries over
Streams. In Proceedings of the 2002 ACM SIGMOD International Confer-
ence on Management of Data (SIGMOD "02). ACM, New York, NY, USA,
49-60. https://doi.org/10.1145/564691.564698

Konstantinos Mamouras, Mukund Raghothaman, Rajeev Alur,
Zachary G. Ives, and Sanjeev Khanna. 2017. StreamQRE: Modular
Specification and Efficient Evaluation of Quantitative Queries over
Streaming Data. In Proceedings of the 38th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI ’17). ACM,
New York, NY, USA, 693-708. https://doi.org/10.1145/3062341.3062369
Antoni Mazurkiewicz. 1987. Trace theory. In Petri Nets: Applications
and Relationships to Other Models of Concurrency (LNCS), W. Brauer,
W. Reisig, and G. Rozenberg (Eds.). Springer Berlin Heidelberg, Berlin,

685

K.

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

Mamouras, C. Stanford, R. Alur, Z. Ives, and V. Tannen

Heidelberg, 278-324. https://doi.org/10.1007/3-540-17906-2_30
Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul
Barham, and Martin Abadi. 2013. Naiad: A Timely Dataflow System.
In Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles (SOSP ’13). ACM, New York, NY, USA, 439-455.
https://doi.org/10.1145/2517349.2522738

Leonardo Neumeyer, Bruce Robbins, Anish Nair, and Anand Kesari.
2010. S4: Distributed Stream Computing Platform. In Proceedings of the
2010 IEEE International Conference on Data Mining Workshops. 170-177.
https://doi.org/10.1109/ICDMW.2010.172

Shadi A. Noghabi, Kartik Paramasivam, Yi Pan, Navina Ramesh, Jon
Bringhurst, Indranil Gupta, and Roy H. Campbell. 2017. Samza: Stateful
Scalable Stream Processing at LinkedIn. Proceedings of the VLDB
Endowment 10, 12 (Aug. 2017), 1634-1645. https://doi.org/10.14778/
3137765.3137770

Vaughan Pratt. 1986. Modeling Concurrency with Partial Orders.
International Journal of Parallel Programming 15, 1 (Feb 1986), 33-71.
https://doi.org/10.1007/BF01379149

Scott Schneider, Martin Hirzel, Bugra Gedik, and Kun-Lung Wu. 2015.
Safe Data Parallelism for General Streaming. IEEE Trans. Comput. 64,
2 (Feb 2015), 504-517. https://doi.org/10.1109/TC.2013.221

Utkarsh Srivastava and Jennifer Widom. 2004. Flexible Time Manage-
ment in Data Stream Systems. In PODS (PODS °04). ACM, New York,
NY, USA, 263-274. https://doi.org/10.1145/1055558.1055596

Kanat Tangwongsan, Martin Hirzel, and Scott Schneider. 2017. Low-
Latency Sliding-Window Aggregation in Worst-Case Constant Time.
In Proceedings of the 11th ACM International Conference on Distributed
and Event-based Systems (DEBS ’17). ACM, New York, NY, USA, 66-77.
https://doi.org/10.1145/3093742.3093925

Kanat Tangwongsan, Martin Hirzel, Scott Schneider, and Kun-Lung
Wau. 2015. General Incremental Sliding-window Aggregation. Proceed-
ings of the VLDB Endowment 8, 7 (2015), 702-713. https://doi.org/10.
14778/2752939.2752940

William Thies, Michal Karczmarek, and Saman Amarasinghe. 2002.
Streamlt: A Language for Streaming Applications. In Proceedings of
the 11th International Conference on Compiler Construction (CC ’02)
(Lecture Notes in Computer Science), R. Nigel Horspool (Ed.), Vol. 2304.
Springer Berlin Heidelberg, Berlin, Heidelberg, 179-196. https://doi.
org/10.1007/3-540-45937-5_14

Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy,
Jignesh M. Patel, Sanjeev Kulkarni, Jason Jackson, Krishna Gade,
Maosong Fu, Jake Donham, Nikunj Bhagat, Sailesh Mittal, and Dmitriy
Ryaboy. 2014. Storm @ Twitter. In Proceedings of the 2014 ACM SIG-
MOD International Conference on Management of Data (SIGMOD °14).
ACM, 147-156. https://doi.org/10.1145/2588555.2595641

Peter A. Tucker, David Maier, Tim Sheard, and Leonidas Fegaras. 2003.
Exploiting Punctuation Semantics in Continuous Data Streams. IEEE
Transactions on Knowledge and Data Engineering 15, 3 (2003), 555-568.
https://doi.org/10.1109/TKDE.2003.1198390

Twitter. 2019. Heron. https://apache.github.io/incubator-heron/.
(2019). [Online; accessed March 31, 2019].

Jun Yang and Jennifer Widom. 2003. Incremental Computation and
Maintenance of Temporal Aggregates. The VLDB Journal 12, 3 (Oct.
2003), 262-283. https://doi.org/10.1007/s00778-003-0107-z

Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott
Shenker, and Ion Stoica. 2013. Discretized Streams: Fault-tolerant
Streaming Computation at Scale. In Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles (SOSP ’13). ACM, New
York, NY, USA, 423-438. https://doi.org/10.1145/2517349.2522737

https://doi.org/10.1145/1168857.1168877
https://doi.org/10.1145/1168857.1168877
https://doi.org/10.1006/inco.1998.2777
https://doi.org/10.1006/inco.1998.2777
https://doi.org/10.1145/1656274.1656278
https://doi.org/10.1147/JRD.2013.2243535
https://doi.org/10.1145/2528412
https://github.com/yahoo/streaming-benchmarks
https://doi.org/10.1145/1807167.1807290
https://doi.org/10.1145/1807167.1807290
https://doi.org/10.1145/2723372.2742788
https://doi.org/10.1109/PROC.1987.13876
https://doi.org/10.1109/PROC.1987.13876
https://doi.org/10.1145/1066157.1066193
https://doi.org/10.14778/1453856.1453890
https://doi.org/10.14778/1453856.1453890
https://doi.org/10.1145/564691.564698
https://doi.org/10.1145/3062341.3062369
https://doi.org/10.1007/3-540-17906-2_30
https://doi.org/10.1145/2517349.2522738
https://doi.org/10.1109/ICDMW.2010.172
https://doi.org/10.14778/3137765.3137770
https://doi.org/10.14778/3137765.3137770
https://doi.org/10.1007/BF01379149
https://doi.org/10.1109/TC.2013.221
https://doi.org/10.1145/1055558.1055596
https://doi.org/10.1145/3093742.3093925
https://doi.org/10.14778/2752939.2752940
https://doi.org/10.14778/2752939.2752940
https://doi.org/10.1007/3-540-45937-5_14
https://doi.org/10.1007/3-540-45937-5_14
https://doi.org/10.1145/2588555.2595641
https://doi.org/10.1109/TKDE.2003.1198390
https://apache.github.io/incubator-heron/
https://doi.org/10.1007/s00778-003-0107-z
https://doi.org/10.1145/2517349.2522737

	Abstract
	1 Introduction
	2 Motivation
	3 Types for Data Streams
	3.1 Data Traces
	3.2 Data-String Transductions
	3.3 Data-Trace Transductions

	4 Type-Consistent Programming
	5 Implementation in Apache Storm
	6 Experimental Evaluation
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

