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ABSTRACT

This study analyzes which communities adopted flood risk management practices during the past 25
years. In particular, we focus on community-scale flood management efforts undertaken voluntarily in
towns and counties across the United States. In 1990, the US Federal Emergency Management Agency
created the Community Rating System (CRS) to provide incentives to local governments to improve
flood resilience. About 1,300 counties and cities voluntarily participate in the CRS, but most eligible
communities do not participate. Here, we explore the factors shaping community CRS participation,
such as flood risk, socio-economic characteristics, and economic resources, and we assess the
competing phenomena of policy diffusion versus free riding. Previous models of community-scale
flood mitigation activities have all considered each community’s decision as independent of one
another. Yet one community’s flood management activities might directly or indirectly influence its
neighbors’ mitigation efforts. Spillover effects or “contagion” may arise if neighboring communities
learn from or seek to emulate or outcompete early adopting neighbors. Conversely, stricter regulation
in one community may allow its neighbors to capitalize on looser regulation either by attracting more
development or enjoying reduced “downstream” flood risks. This paper presents a conceptual model
that allows for multiple forces affecting diffusion, such as copycatting and learning from neighboring
communities, free-riding on neighbors’ efforts, and competing with neighbors to provide valuable
amenities. We empirically test for these alternative diffusion pathways after controlling for the spatially
correlated extant flood risks, building patterns, and demographics. The analysis integrates several large
datasets to predict community flood risk management for all cities and counties in the US since 1990.
Controls for local flood risk combined with a spatial lag regression model allow separate identification
of alternative diffusion pathways. The results indicate strong evidence of copycatting and also suggest
possible free-riding.
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1 INTRODUCTION

Flooding has long been a threat to communities, but risk management is a challenge for cities,
states, and national government. In 1990, the US Federal Emergency Management Agency
(FEMA) created the Community Rating System (CRS) to provide incentives to local
governments to improve flood resilience. The CRS measures community flood management
efforts, and flood insurance premiums are discounted accordingly. A number of factors shape
community participation, including flood risk, fiscal capacity, and socioeconomic
characteristics. Almost 1,300 communities voluntarily participated in the CRS in 2013, but
there are over 22,000 communities in the National Flood Insurance Program (NFIP) who are
eligible to join the CRS after undertaking additional management activities.

In this paper, we explore the factors shaping community CRS participation, and in
particular we assess the competing phenomenon of policy diffusion versus free riding. Policy
diffusion via spillover effects or a contagion model would suggest that neighboring
communities would be more likely to adopt resilience efforts once one local community led
the way, all else equal. City officials or concerned citizens could see the resilience efforts in
a nearby community, want similar protection, and perhaps more easily follow in their
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footsteps by borrowing from their policy framework. Therefore, we would see contagion
effects following early adopters.

Conversely, if tougher codes raise costs or at least are perceived to raise costs for
businesses and residents, flood management efforts could put a community at a competitive
disadvantage in terms of economic development or population expansion. Consequently,
nearby communities could benefit from this competitive advantage versus a nearby early
adopter. Further, the neighbor’s risk mitigation efforts could reduce potential damage from
floods for the nearby communities who do not participate so free-riding incentives would
suggest that they not act.

Using FEMA data on CRS participation, US Department of Transportation data on flood
risk at a 1km cell level, and Census data for socioeconomic factors, we develop a model of
policy adoption for CRS participation. We then enhance this model by adding in a spatial
error and lag term to capture whether neighbors’ adoption helps explain adoption in a
community. It is possible that some negative correlation happens especially if “downstream”
communities want to free ride on their upstream neighbors’ proactive mitigation.

Overall, the results can contribute to the policy diffusion literature at the local community
level, test for free-rider activity, and inform policymakers about the factors shaping the
success of the CRS program.

2 LITERATURE REVIEW
Historically, top-down, command and control regulatory approaches have been criticized for
their rigidity and costliness [1]-[3]. For example, [3] argues that some environmental
regulations, such as the Clean Air Act, have increased organizations’ operating costs, which
in turn, undermined their productivity and reduced their profits. Owing to the ineffectiveness
and costliness of command and control approaches, there has been a growing interest in using
voluntary programs as a salient policy tool [4].

Despite the inherent benefits of voluntary programs by way of increased compliance rates,
many federal voluntary programs find it hard to increase their compliance rates. Only a
fraction of the potential 22,000 communities nationwide (less than 6%) have achieved the
minimum score (500 points) necessary to qualify for CRS level 9. To make matters worse,
there is no comprehensive framework to explain the reasons for such low compliance or
participation rates. Before discussing the empirical setting for developing this framework, we
briefly highlight the importance of the Community Rating System program in reducing the
impacts of floods and strengthening communities’ resilience to floods.

Globally, floods are considered one of the most destructive natural hazards in terms of
lives lost, injuries, and economic losses [5]—[7]. In the United States, floods have posed, and
continue to pose, considerable problems to communities [8], [9]. According to [10], on
average over the previous 30 years there were 95 flood-related deaths and $8.2 billion in
flood damages in the United States between 1982 and 2011.

Although there is a flood risk management literature that looks at various topics related to
the CRS — the determinants of community participation [7], [11], adaptive capacity [12],
policy learning [13], non-linear incentive structure [9], and CRS effects on flood insurance
demand [14], to our knowledge, there is no explicit and comprehensive theoretical framework
that explains why local communities enroll in the CRS. Here, we draw on and integrate key
insights from several research literatures to explore empirical determinants of adoption.

First, we borrow insights from the political-economy literature and examine the influence
of political-economic factors on participation in the CRS. Second, the public finance
literature is useful in helping us articulate the role of financial resources in community
decisions regarding CRS participation. Third, the emergency/disaster management literature
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provides substantial empirical evidence that flood risk is an important predictor of
community participation in the CRS [7], [11], [12], [15]. Fourth, the flood-risk-management
literature demonstrates that communities participating in the CRS experience far less
property damage from flood disasters than communities not participating in the CRS
program. Fifth, there is a rich and extensive body of literature on voluntary environmental
programs that provides justification for why private entities participate in federal voluntary
environmental programs [16]-[22]. We extend that literature into the case of local
governments opting into a voluntary, federal program — the Community Rating System.

The National Flood Insurance Program (NFIP) provides federally backed flood insurance
for properties in floodplains where the local community enforce certain measures that
regulate floodplain development and flood mitigation. The NFIP, however, is fraught with
problems such as low insurance premium rates and increased development in floodplains
[23]. As a result, flood losses are substantial and on the rise [23], [24]. To encourage
communities to exceed the minimal rules set by the NFIP, FEMA developed a voluntary
program that provides a point system for a set of community actions and policies that reduce
flooding hazards and mitigate damages from flooding. Under the CRS, property owners in
covered floodplains within communities may receive discounted flood insurance premiums
with larger premium discounts available for those communities who rate better on the CRS.

FEMA established a set of CRS levels that range from ten to one (the best rating) with
higher point totals moving a community up the scale, and the discounts start at level nine
with a five percentage point reduction for each level on the CRS scale up to a 45% discount
at level one for properties in the special flood hazard area. The communities in the NFIP can
apply each year to FEMA for evaluation of the activities qualifying for various components
of the CRS point system to qualify for higher levels, and property owners in the qualified
coverage areas receive these discounts on their flood insurance. The communities seeking to
earn CRS points have many options, which are placed into the four broad categories: public
information activities, mapping and regulations, flood damage reduction activities, and
warning and response. The various activities differ in their maximum points allowed as well
as their main functions (e.g. informational, regulatory, altering infrastructure). Importantly
here, they also differ in terms of whether a community’s adoption might affect neighboring
communities’ flood risk and also in terms of how easily a neighbor might copy them.

3 RESEARCH DESIGN

To answer our research questions, our base model explores the factors that motivate
communities to implement flood hazard mitigation activities. In general, our approach
focuses on policy diffusion from one community to another. Mitigation activity represents
any activity a community implements to reduce flooding hazard and mitigate the damage
from flooding. The implementation of mitigation activity is a function of community flood
risk, other community characteristics, and its neighbors’ mitigation activities and other
characteristics.

Community flood risk includes the community’s natural environmental situation (e.g.
topography, on a coast, in a swamp, in a valley, or on a river), population density in a flood
plain, past flood experiences, weather patterns, and existing building patterns in flood plains.
Community characteristics include items such as housing stock, housing value, real personal
income, resident education levels, and poverty rates. The neighbor mitigation activities and
characteristics are the same set of variables but moderated through the lens of diffusion and
free-rider incentives.

For this study, community mitigation activities are measured using a community’s
adoption of CRS components. Our CRS data from FEMA begins in 1998, and we have point
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totals for adopting communities and CRS level for each year until 2013. Even though this is
a small fraction of the potentially eligible cities and counties in the US, it does capture a large
share of the population in flood plains. Over a thousand communities participated in the CRS,
with several thousand more directly adjacent, making the policy diffusion question
particularly salient for much of the data. Our base model operationalizes mitigation activities
as a community’s total CRS points in 2013, a continuous indicator of additional flood
management activity and policy. Additional models are estimated, including one that predicts
only changes in CRS score from 1998-2013, effectively switching from a cross-sectional
model to a more dynamic one. Additional models that examine particular types of CRS
activities (e.g., those easier to diffuse, those that affect neighbors’ flood risks) can also be
estimated, although space constraints limit discussion here.

The community flood risk and other characteristics are represented with an array of
variables as described further below. Neighbor effects are addressed using a spatial mixed
model (SMM), one that captures both a spatial lag and spatially autocorrelated errors,
described below. The base regression model to be estimated is:

y=pWy + X +6E +yR + 0. (N

In eqn (1), y represents the CRS point total in 2013 (or the change from 1998 to 2013 in
a second model we estimate), where nonparticipating communities receive a 0 score.
(Notably, some of those communities may still undertake relevant programs, just not such
that they are in the CRS.) X is a vector of demographics from the Census (aggregated up to
county/place level from tracts), typically measured in 2000 as the year closest to the 1998
start date for the CRS data. In eqn (1), E is a vector of environmental and geographic
factors (e.g. topography, water cover, humidity, ruralness), while R represents flood risk
measured using county-level flood damages from SHELDUS and from the USDOT (1996)
flood risk map.

The model in eqn (1) allows for a spatial mixed model estimation, where pWy is a spatial
lag term, based on a (row standardized) spatial weights matrix W (in our case, an NxN matrix
indicating whether any pair of observations are “neighbors” with a 1 and a 0 otherwise). We
define W based on simple contiguity so that the Wy term basically amounts to an average
value of y among all of community i’s adjacent communities. The parameter p is thus a spatial
lag parameter that reflects the direct spillover influence of neighbors’ y values on one’s own
y value. We expect a significant and positive p, and the regression allows us to test that
hypothesis. Wy is endogenous, so the estimator relies on a set of valid instruments based on
the spatial lags of all the other regressors. The error term 0 in eqn (1) can also be estimated
with a spatial error component: 6 = AWe + ¢, where the A is the spatial autocorrelation
parameter and the “nuisance” or error term is allowed to correlate among neighbors.
Essentially, this tests for some omitted variables that tend to cluster or correlate spatially.
Restricting p and A to both be zero allows for eqn (1) to be estimated using conventional
ordinary least squares (OLS).

4 DATA
Seven different secondary data sources are combined to test the hypotheses. These data
sources are CRS participation data (1998-2013) from FEMA, Geolytics (geolytics.com)
Neighborhood Change Database (tract-level Census data, 1970-2010), the Spatial Hazard
Events and Loss Database for the United States (SHELDUS) (1960-2014), FEMA’s latest
Digital Flood Insurance Rate Maps, demographic data from the Census Bureau (1992-2012),
county-level climate and topology measures from the US Department of Agriculture’s
Natural Amenities Index, and high-resolution raster-map (1 km grid cell) flood risk data from
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US Department of Transportation [25]. Each are mapped using GIS for the whole US and
resolved to the city and county level units (i.e. some units overlap) using current boundaries.

The dependent variables shape the type of method possible as well as the subsample of
the overall data set that can be assessed in each case. The summary statistics for the dependent
variables are in the first few rows of Table 2. Our CRS data from FEMA begins in 1998, and
we have point totals for adopting communities and the CRS level for each year until 2013.
While Totall3 indicates a mean score of only 77, this is weighted downward by a great
majority of communities that do not participate and thus receive a score of 0. Similarly,
ATotal has a relatively small value (46.2), owing to most communities not participating in
both 1998 and 2013. Notably, the mean CRS score among the participating communities in
2013 is 1,552. This is up from a mean of 950 among the participating communities in 1998,
even as the number of participating grew by over 40%. Because many of the early adopters
in the 1998 cohort remained in the program, nearly five percent of the communities were in
CRS in 2013.

The description of the independent variables is also in Table 1, and the summary statistics
are in Table 2. In general, the first few variables are demographic variables (e.g. population
density, percent college educated, poverty rate, housing values), followed by environmental
variables (humidity, water share, and topography) and flood risk variables (Raster Map —
1 km grid cell, flood plain share, flood damage). The demographic controls include initial
level measures (circa 2000) as well as percent changes from 2000 to 2010 to capture recent
trends and not just level effects. Using flood risk data from the raster maps in the 1990s has
the advantage of mitigating potential endogeneity in official flood insurance rate maps, but
still requires aggregating up from the 1 km grid cell to the community level. Community
flood risk here is thus measured using the weighted average of tract-level flood risks, with
weights defined by tracts’ area and also by tract population. Trends in flood risk — both in
terms of recent flood event damage and in terms of changing population flood risk — are also
included in the model. It is important to note that FloodDam59890 captures changes in the
past five years of flood damages, while RiskshareP9890 essentially captures shifts in
population toward flood-prone areas, as the flood risk measure itself is time invariant.

5 RESULTS

The results in Table 3 show how collectively important the various control variables are.
Communities that participate in the CRS tend to have had lower population densities, higher
education levels, and more population turnover (but not more growth). Interestingly, higher
average income and housing values tend to predict less CRS activity. One of the most
important factors affecting participation is the aggregate housing value in the community
(both initially and in terms of growth), perhaps reflective of a larger property tax base to fund
mitigation activities (or to warrant protecting). Environmental factors also play a role, as do
the flood-risk-related variables. More flood risk, weighted by where people are located rather
than land area, predicts more CRS activity. More flood damage experienced recently predicts
more CRS activity, but only in the SMM.

Of most interest here is how the spatial mixed models improve the fit over the OLS
approach. In particular, the statistically significant A spatial lag parameter (z-stat = 16.7)
indicates a strong and positive substantive spillover or “contagion” effect. This kind of
diffusion is distinct from the idea of spatially correlated unobservables in the model, thus
pointing to some substantive spillovers or diffusion effects in spite of the many control
variables and in spite of the relative rarity of CRS participation across the full sample.
Conditional on all of these demographic, environmental, and flood risk controls,
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Table 1: Variable descriptions.

Variable name

Description

Totalyr Point total in CRS for community (0, 500+) in year yr

ATotal Total CRS points in 2013 — Total CRS points in 1998

popdens98 Community population per area in 1998

%white00 % white in 2000

%adult00 % adults (age 18 and older) in 2000

%kids00 % children (under age 5) in 2000

%college00 % with college degree (or more) in 2000

smenty00 % living in same county 5 years prior, in 2000

%poverty00 % under poverty line in 2000

%unemploy00 % unemployed in 2000

income00 In(family income) in 2000, inflation adjusted to 2010 (Population-
weighted average of tracts’ median family incomes)

houseval00 In(median housing value) in 2000, inflation adjusted to 2010
(Population-weighted average of tracts’ median housing value)

aggval00 In(aggregate housing value) in 2000, inflation adjusted to 2010

%renter00 % of housing units that are renter-occupied in 2000

popgro0090 Population growth rate from 1990 to 2000

%college1000 %college10/%college00

income 1000 income10/income00

houseval1000 houseval10/houseval00

aggval1000 aggvall0/aggval00

rural Rural-urban influence code (0-9, with 9 being more rural), county-
level

JulHumid July humidity, county-level

watershare % (0—-100) of county covered in water, county-level

flat Dummy indicating flat topography, county-level

FloodDam598 Total property damage per capita from major flood events in county
1994-1998

FloodDam98 Total property damage per capita from major flood events in county
in 1998

noFIRM Dummy indicating community does not have a flood plain map
variable defined

RiskshareA Flood risk (0-99) as an area-weighted average of (average) tract
flood risk in community

RiskshareP Flood risk (0-99) as population-weighted average of (average) tract
flood risk in community in 1998

FloodDam59890 FloodDam598/FloodDam590

RiskshareP9890  RiskshareP98/RiskshareP90
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Variables Mean Std. Dev. Min. Max.
Totall3 77.24 368.08 0 5,315
ATotal 46.18 257.55 -2,066 3,883
popdens98 3.1E-04 7.2E-04 8.16E-08 0.03
%white00 0.87 0.17 0.002 1
%adult00 0.74 0.04 0.44 1
%kids00 0.06 0.01 0 0.20
%college00 0.13 0.09 0.003 0.64
smenty00 0.80 0.09 0.02 0.99
%poverty00 0.05 0.03 0 0.46
%unemploy00 0.12 0.07 0 0.68
income00 10.98 0.32 9.63 12.44
houseval00 11.69 0.56 2.94 14.05
aggval00 19.21 1.48 9.63 26.87
%renter00 0.28 0.11 0.01 0.99
popgro0090 1.15 0.42 0.24 32.86
%college1000 1.22 0.32 0 9.92
income1000 1.01 0.13 0 3.15
houseval1000 1.28 2.83 0 337.79
aggval1000 2.22 2.80 0 185.42
rural 3.73 291 0 9
JulHumid 57.57 13.22 14 80
watershare 7.02 14.03 0 75
flat 0.51 0.50 0 1
FloodDam598 129.09 1,458.15 0 64,975.34
FloodDam98 26.47 292.17 0 10,193.89
noFIRM 0.16 0.36 0 1
RiskshareA 53.63 21.48 3.38 99
RiskshareP 36.03 26.78 0.004 99
FloodDam59890 5,185.57 98,124.41 0 2,298,142
RiskshareP9890 1.01 0.08 0.42 7.28
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Table 3: OLS and SMM regression results.

OLS (Totall3) SMM (Totall3) SMM (A4 Total)
Variable Coef. Coef. Coef.
popdens98 -3.50E+Q4%*** -3.20E+04%** -20840.1#**
%white00 -60.410%** 13.988 9.261
%adult00 107.183 249.845%* 33.405
%kids00 -506.765* -16.312 -218.114
%college00 381.333%%* 363.883*** 182.306***
smcnty00 -318.110%** -186.274%** -105.222%**
%poverty00 -58.472 -0.611 -21.213
%unemploy00 -226.833%** -146.538 -54.932
income00 -200.034%*** -142.544%%* -78.694%**
houseval00 -44.904*** -40.905%** -17.773%%*
aggval00 103.131*** 68.597*** 33.704%**
%renter00 156.890%** 152.238%** 102.015%**
popgro0090 -10.947** -17.138* -1.914
%college1000 19.855 18.592%* 10.052*
income1000 -4.764 -11.506 -10.825
houseval 1000 0.570 0.242 0.131
aggval1000 8.005%** 5.575%%* 2.556%**
Rural -6.630%** -1.417 -0.847
JulHumid -0.488* -0.184 0.071
Watershare 1.342%** 1.027*%* 0.303**
Flat 29.203%** 27.067*** 16.373%**
FloodDam598 0.008 0.008*** 0.005%**
FloodDam98 -0.013 -0.011 -0.006
noFIRM 7.458 4.391 5.045
RiskshareA -1.254%** -0.621%** -0.171
RiskshareP 1.763%** 1.124%%* 0.409%**
FloodDam59890 5.00E-05* 3.09E-05 9.40E-06
RiskshareP9890 212.122%** 207.990*** 147.18%**
Constant 816.458%** 424,760 300.879
Spatial lag: A 0.058*** 0.065%**
Spatial error: p -0.025%** -0.046%**
N 18,165 18,165 18,095
F 25.73%**

* ** and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively.
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communities with neighbors that undertake more CRS activity tend to undertake more flood
management themselves. Further, the statistically significant spatial error parameter (p)
indicates that there is some spatial autocorrelation in the error term, albeit it is small and
(surprisingly) negative. Thus, the results point to some substantial spatial dependence in the
data that a basic OLS approach would overlook.

One key variable of particular note is RiskshareP9890. This variable captures the extent
to which a community had its population-weighted flood risk change from 1990—-1998 in the
lead-up to the first year in our CRS data. Because our flood risk measure itself is time
invariant, this change owes entirely to changing population. Thus, communities that are
experiencing faster population growth in the riskier parts of the community, according to
these results, tend to have earned more CRS points. This is true for both the cross-section of
points in 2013 as well as the change in points from 1998-2013. The results here suggest that
communities with more flood risk tend to participate more in the CRS, and this effect is even
stronger when their populations are growing faster in riskier areas. That these effects survive
the spatial controls in the SMM suggest a very robust result.

The results in the second and third columns in Table 3 exhibit considerable parallels,
indicating the patterns evident overall participation in the CRS are similar to those in the past
15 years of CRS dynamics. Despite the substantially different dependent variable between
models, 24 of 25 parameters estimated (and all of the statistically significant parameters)
share the same sign. Sixteen parameters share sign and significance, and only two parameters
that are significant in column 2 (Totall3) are insignificant in column 3 (47otal) at the 5%
level. Thus, even though the coefficients’ magnitudes differ as expected because the
dependent variables differ, Table 3 suggests that the drivers of the initial and eventual extents
of local flood management do not differ much. Both models show strong positive roles for
aggregate housing values (and negative roles for average house prices) and rentership rates,
recent flood events and populations in flood-prone areas, low density, and education levels.

This similarity extends to the spatial diffusion parameters in the SMM. Neighbors’
participation in the CRS positively affects a community’s level of participation, whether it is
measured in levels of participation in 2013 or as changes in participation from 1998-2013.
Both sets of results indicate a strong policy diffusion process whereby a communities’ CRS
flood management activity is positively affected by the activity of its neighboring
communities. The positive spatial lag suggests that a community’s flood management
activity (measured as levels of 2013 activity or as new activity since 1998) directly influences
its neighbors’ adoption of CRS flood management activities, even after controlling for a host
of flood risk, environmental, and other community characteristics. In addition, the similar,
negative autocorrelation parameter p in both models points to an unexpected pattern of
negatively spatially correlated unobservables. Although we typically expect the unobserved
factors in adoption decisions to positive spatially correlate or cluster, here both models show
the reverse. After controlling for many observables and the direct spillover of flood
management policies among neighbors, both models show negatively correlated errors. For
communities adopting more CRS activities than the model predicts, they tend to have
neighbors that adopt fewer CRS activities. Such a result resembles a patter than we might
expect if communities are free-riding on their neighbors’ costly management efforts. These
models have also been estimated as linear probability models (where the dependent variable
is a binary variable for whether a community has joined), and the results are very similar in
sign and significance for most parameters.
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6 CONCLUSION

Establishing the strong and robust roles of certain community, environmental, and risk factors
in explaining cities’ and counties’ decisions to participate in the CRS program offers
important indicators of the forces that systematically drive adoption of community risk
management programs. Even after controlling for spatial dependence in the data, key
demographic and environmental factors retain their strong influence. Aggregate housing
value and population exposed to high flood risk are consistently important predictors. The
role of renter-occupancy rates and housing stock variables may suggest more local
mobilization and advocacy efforts that are pushing politicians to participate in CRS. The
evidence is consistent with politicians and public managers being pressured by more property
owners to intensify their CRS participation (as this would result in greater discounts on
insurance premiums).

This study also finds that environmental factors and flood-risk-related variables play a
role in communities’ participation in CRS. This gives credence to previous studies that report
evidence of flood risk being an important predictor of community participation in the CRS
[71, [11], [12], [15]. Early indications suggest that CRS activities with great physical
spillovers and easy-to-diffuse components (e.g. public outreach, flood hazard maps, hazard
disclosure, map information services, flood data maintenance) that concurrently improve
awareness and knowledge of environmental and flood-risk-related factors are important to
CRS diffusion to neighboring communities.

The results here offer some of the first evidence of spatial interdependence in local flood
management activity, even after controlling for a rich set of community characteristics and
environmental factors. That the spatial lag parameter exhibits a positive contagion — whereby
more activity by neighbors predicts more activity by a community — dominates these spatial
models and shows a direct and strong, if unsurprising, role for policy diffusion. These results
also point to a more surprising finding: negative spatial autocorrelation. Though tricky to
interpret in an SMM, we find that a community with neighbors who have unexpectedly high
CRS scores (in terms of regression residuals) significantly predicts unexpectedly low CRS
scores in that community. In other words, when neighbors do “extra” CRS management
activity, conditional on many controls, a community is prone to doing “less”. These results
may point to some initial evidence of free-riding among communities.

Concerns about the diffusive capacity of the CRS and its individual components can be
addressed by looking to lessons from the policy diffusion literature. For instance, in
examining why certain policy intervention diffuse easier than others, [26] and [27] highlight
the policy’s complexity, relative advantage, compatibility, observability, and “trialability.”
Therefore, how can the CRS and its individual components be improved in terms of
suitability to local contexts, ease of comprehension and application, as well as the ability to
demonstrate visible benefits in an environment supportive of voluntary trials? Additionally,
consultative homegrown approaches are often encouraged to promote the various
components of the CRS. Though this can positively enhance the sustainability of actions and
activities, it typifies an “Achilles heel” of programs like this in terms of diffusion:
encouraging communities to look inwards may inhibit policy diffusion mechanisms.

Passive approaches of just relying on contagion, on initial adopters to diffuse more widely,
may fall short of more aggressive policy aims. Passive approaches can be complemented with
active efforts at linking communities. Notably, the CRS scheme makes no allowance for
watershed-related interdependencies, any regional approaches, or even explicitly leveraging
overlapping jurisdictions. Even a mentoring program could allow participants to earn points
by sharing expertise and providing support to neighboring communities. Given the implicit
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costs (e.g., additional insurance premium discounts in the NFIP), such approaches might do
well to target particularly costly regions.

On a general scale, flood risks, community characteristics, and environmental factors play
key roles in influencing CRS participation. This study extends the literature by pointing to a
strong and robust role of policy diffusion, specifically an interdependence among
neighboring communities, in local flood management decisions. While past work has
overlooked this aspect in assuming that adoption decisions are independent, recognizing and
leveraging these interdependencies is an important area for future research.
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