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Abstract

Several classes of algorithms for combinatorial search and optimiza-

tion problems employ memoization data structures to speed up

their serial convergence. However, accesses to these data structures

impose dependences that obstruct program parallelization. Such

programs often continue to function correctly even when queries

into these data structures return a partial view of their contents.

Weakening the consistency of these data structures can unleash new

parallelism opportunities, potentially at the cost of additional com-

putation. These opportunities must, therefore, be carefully exploited

for overall speedup. This paper presentsMemoDyn, a framework

for parallelizing loops that access data structures with weakly con-

sistent semantics.MemoDyn provides programming abstractions

to express weak semantics, and consists of a parallelizing compiler

and a runtime system that automatically and adaptively exploit the

semantics for optimized parallel execution. Evaluation ofMemoDyn

shows that it achieves efficient parallelization, providing significant

improvements over competing techniques in terms of both runtime

performance and solution quality.
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1 Introduction

Search and optimization problems play an important role in many

modern-day desktop and scientific applications. These problems

are typically combinatorial in nature, having search spaces that are

prohibitively expensive to explore exhaustively. As a result, many

real-world algorithmic implementations for these problems employ

various optimization techniques. One well known and common

technique is memoization [31]: as the search space is explored,

new facts are recorded; these facts are later retrieved to prune or

guide the search. Examples of data structures for memoization in-

clude kernel caches in support vector machines [23], learned clause

databases in SAT solvers [15], elite sets in genetic algorithms [30],

cut pools in MILP solvers [29], and transposition tables in chess

programming [41]. Regardless of what they are called in each spe-

cific domain, they all have the same basic memoization property:

trade-off space for computation time by remembering previously

computed results. This optimization technique greatly improves

the running times of such search algorithms without affecting their

correctness. There are even tools to help programmers identify

memoization opportunities in their programs [11].

The emergence of multicore into mainstream computing presents

a tremendous opportunity to parallelize many search and optimiza-

tion algorithms. Explicitly parallelizing search loops by synchro-

nizing accesses to the memoization data structure is one way of

optimizing such programs. This is, however, a slow, manual, and

error-prone process that results in performance-unportable and

often sub-optimal programs.

Prior work demonstrates how high-level semantic programming ex-

tensions can facilitate automatic parallelization. Semantic commu-

tativity extensions [7, 27, 37] allow functions that atomically access

shared state to execute out-of-order concurrently, breaking flow
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dependences across function invocations. Cilk++ hyperobjects [17]

and the N-way programming model [9] provide programming sup-

port to implicitly privatize data for each parallel task. ALTER [46]

presents an optimistic execution model allowing parallel tasks to

read stale values of shared data as long as they do not write to the

same locations.

Programs accessing memoization data structures can be parallelized

by the methods described above, but each has its pitfalls: synchro-

nizing every access to a shared data structure as implied by semantic

commutativity is expensive, given the high frequency of access to

these data structures; complete privatization without communicat-

ing any memoization data can adversely affect the convergence

times of search loops by providing fewer pruning opportunities; and

with the ALTER model, conflicts based on writes to memory would

frequently occur due to updates to memoization data structures.

This work is based on the following insight: programs that access

memoization data structures continue to function correctly even

when queries to the data structure return a partial view of its con-

tents, or when deletions are not persistent. This weaker consistency

requirement can be leveraged to break dependences between data

structure operations, facilitating automatic parallelization of the

main search loops. Once parallelized, it is important to optimize

the trade-off between increased parallelism and potential increase

in computation. Frequent communication of memoization data be-

tween parallel tasks can reduce required computation at the cost

of synchronization overheads, and conversely little or no commu-

nication of memoization data may increase required computation

while reducing synchronization.

This paper presents MemoDyn, a framework for efficiently par-

allelizing search loops that access memoization data structures.

MemoDyn consists of,

• semantic language extensions for weakly consistent data struc-

tures, which expose parallelism in search loops using them;

• a compiler that automatically parallelizes search loops; and,

• a runtime system that adaptively optimizes parallel configura-

tions of weakly consistent data structures.

Table 1 comparesMemoDynwith frameworks that leverage relaxed

semantics for parallelization. The main advantage of MemoDyn

stems from expressingmuchweaker semantics than any of the other

frameworks, and having theMemoDyn parallelization framework

leverage theweaker semantics to realize an adaptively synchronized

parallel scheme as opposed to static parallel schemes realized by

others.

2 Motivation

MemoDyn is motivated by the Boolean satisfiability problem (SAT),

a well-known search problem with many important applications. A

SAT solver attempts to solve a given Boolean formula by assigning

values to variables such that all clauses are satisfied, or determine

that no such assignment exists. Figure 1 shows main parts of a SAT

solver’s [15] C++ implementation.

The main search loop of a SAT solver selects an unassigned variable,

sets its value, and recursively propagates this assignment until

either all variables are assigned (thereby completing a solution) or

a constraint becomes conflicting under the current assignment. In

case of a conflict, an analysis procedure learns a clause implying

the conflict, records it in a memoization data structure (Line 11),

and applies backtracking.

Clause learning greatly helps subsequent iterations prune their

search space. Disabling clause learning led to an average slow-

down of 8.15x when running a sequential SAT solver across several

workloads. However, while more learning implies more pruning

opportunities, traversals of the memoization data structure (Line 5)

can slow down if its size grows excessively, hence the SAT solver

loop periodically removes łuselessž learned clauses (Line 21).

Considering the intractable nature of the SAT problem, paralleliz-

ing such loops has the potential to drastically reduce search times.

One common approach to parallelize search and optimization algo-

rithms is multisearch [44]. In this approach, multiple parallel work-

ers search in distinct regions of the search space until some worker

finds a solution. Convergence times are greatly improved when

clauses learned by each worker are shared [20]. However, manually

parallelizing a SAT search loop using explicit parallel programming

requires considerable effort. Tools for automatic parallelization can

relieve programmers of this effort but are constrained by the need

to respect sequential semantics. In this example, reads, inserts, and

deletes into the learnts data structure within the search loop are

inter-dependent (Lines 5, 11 and 21), inhibiting automatic paral-

lelization.

The use of learnts data structure in the context of SAT solvers,

however, requires much weaker consistency than imposed by a

sequential programming model. In particular, the SAT search loop

will function correctly even when reads from learnts only return a

partial set of clauses inserted so far or when deleted clauses persist.

This weaker semantics of learnts can be used to break depen-

dences between data structure operations and facilitate automatic

parallelization. Programming extensions can express this weaker

semantics, enabling transformation tools to parallelize the loop

without sacrificing ease of sequential programming. Note that a

SAT solver using learnts with weaker consistency property may

explore the search space differently from a sequential search, which

may result in a different satisfying assignment.

Prior work on semantic extensions to the sequential programming

model for parallelism impose much stronger requirements on the

learnts data structure operations than required by SAT solvers.

In these solutions, all inserts into learnts have to eventually suc-

ceed [46] and operations either access one shared learnt data

structure which is always synchronized [7, 27, 37] or operate on

multiple private copies with no clause sharing [9, 17]. Choosing łallž

or łnothingž synchronization strategies for learnts data structure

can adversely affect parallel performance: using fine-grain syn-

chronization mechanisms to completely share every clause learned

amongst the workers can lead to increased overheads, while having

private copies with no sharing can increase the convergence time

due to redundant computation.
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Programming Model Concept (Section 3) Specific Parallel Implementation (Sections 4 and 5)
Out of Order Partial View Weak Deletion Annotation Type Parallelization Driver Sharing Synchronization

N-way [9] × I Runtime None Static

Semantic Commutativity [37] × × I Compiler All Static

Galois [27] × × I Runtime All Static

Cilk++ hyperobjects [17] × × E Programmer None Static

ALTER [46] × I Compiler All Static

MemoDyn [this paper] I Compiler & Runtime Sparse Static/Adaptive

Table 1: Comparison between MemoDyn and related parallelization frameworks (I: Implicitly Parallel, E: Explicitly Parallel)

1 lbool Solver :: search(int nof_learnts) {

2 model.clear ();

3 while (1) {

4 // propagate () accesses learnts[i]

5 Constr confl = propagate ();

6 if (confl != NULL) { // Conflict

7 if (decisionLevel () == root_level)

8 return False;

9 learnt_clause =analyze(confl , backtrack_level );

10 cancelUntil(max(backtrack_level , root_level ));

11 learnts.push(learnt_clause );

12 decayActivities ();

13 ... // backtrack

14 }

15 else { // No conflict

16 ...

17 if (learnts.size()-nAssigns () >= max_learnts ){

18 // Reduce the set of learnt clauses

19 sort(learnts );

20 for (int i=0; i < learnts.size ()/2; ++i)

21 learnts.remove(learnts[i]);

22 }

23 if (nAssigns () == nVars ()) {

24 // Model found:

25 model.growTo(nVars ());

26 ...

27 cancelUntil (root_level );

28 return True;

29 } else {

30 // New variable decision

31 lit p = lit (order.select ());

32 assume (p);

33 }

34 }

35 }

36 }

37 class Solver {

38 protected:

39 #pragma MemoDyn(SET , L)

40 vec <CRef > learnts;

41 #pragma MemoDyn(ALLOCATOR , A)

42 ClauseAllocator ca;

43 ...

44 void attachClause (CRef cr);

45 };

46

47 template <class T> class vec {

48 public:

49 #pragma MemoDynI(L, SZ);

50 int size(void) const;

51 #pragma MemoDynI(L, ILU)

52 T& operator [](int index );

53 #pragma MemoDynI(L, INS)

54 void push(const T& elem);

55 #pragma MemoDynI(L, DEL)

56 void remove(const T& elem);

57 ...

58 };

59

60 class ClauseAllocator : public RegionAllocator

61 {

62 public:

63 #pragma MemoDynI(A, ALLOC)

64 void reloc(CRef& cr, ClauseAllocator& to);

65 #pragma MemoDynI(A, DEALLOC)

66 void free(CRef cid);

67 ...

68 };

71 #pragma MemoDynI(L, PRO’)

72 double Solver :: progressEstimate () const {

73 return (pow(F,i)* (end -beg ))/ nVars ();

74 }

Figure 1: Motivating Code Example (a) SAT main search loop with learning (b) SAT solver declarations with MemoDyn annotations

Instead, this paper introduces a hybrid synchronization strategy

named sparse sharing that completely exploits the weak consis-

tency property of learnts in a way that has much better perfor-

mance characteristics than private and complete sharing strategies.

In sparse sharing, each worker maintains a copy of the learnts

data structure and selectively synchronizes with other workers by

exchanging subsets of locally learned clauses at certain intervals,

balancing the trade-off between synchronization overhead and re-

quired computation.

The running times of the SAT solver, similar to many search and op-

timization algorithms, varies widely depending on characteristics

of its input. Quite often, it exhibits phase changes in its computa-

tion [47]. In such scenarios adapting the synchronization strategy

to the differing progress rates of parallel workers (measured on

Line 72 in our example) has the potential to substantially acceler-

ate search convergence. For instance, during certain phases some

workers might quickly learn facts that could help other workers

prune their search space considerably. Online adaptation tunes

to this varying runtime behavior, effectively enabling workers to

cooperatively find a solution faster than otherwise possible.

Varying the synchronization strategy is only one parameter exposed

by the weakened semantics of the learnts data structure. Allowing

inserted clauses to disappear opens new opportunities for efficient

eviction mechanisms, and mechanisms for deciding which clauses

to share, with whom and when. These parameters are important

due to the tradeoff between the usefulness of the learnts database

and the time spent synchronizing it, which is proportional to its size.

Given the dynamic nature of SAT search, adapting these parameters

too at runtime in response to the varying progress made by different

workers can greatly improve convergence times. Adaptive sparse

sharing results in a speedup of 5.2x on eight cores, a gain of 148%

over earlier schemes (Section 6).
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3 Weakly Consistent Data Structures

3.1 Semantics

We describe the semantics of a weakly consistent data structure

in terms of operations supported on the data structure through

its interface. A weakly consistent set, for example, is defined as an

abstract data type that stores values, in no particular order, and

may contain repeated values similar to multiset. The semantics of

the operations supported by a weakly consistent set is as follows:

(1) Out of order mutation: The insertion operations of a weakly

consistent set can be executed in a different order from that of a

sequential specification. Similarly, deletions of multiple elements

can execute out of order with respect to each other and also with

respect to earlier insertions of non-identical elements. Both these

properties follow directly from a conventional set definition [22].

(2) Partial View: The set supports lookup operations that may re-

turn only a subset of its contents, giving only a partial view

of the data structure that may not reflect the latest insertions.

Each element returned by a lookup must, however, have been in-

serted at some earlier point in the execution of the program.1 This

partial view semantics corresponds to the concept of weak refer-

ences [13] in managed languages like Java, where it is used for

non-deterministic eviction of inserted elements to enable early

garbage collection. In the SAT example, a partial view of the

learned clause set during propagation may only reduce pruning

opportunities, but has no effect on program correctness.

(3) Weak Deletion: Deletions from a weakly consistent data struc-

ture need not be persistent, with the effect of deletions lasting for

a non-deterministic length of time. When combined with partial

view, this semantic implies that between two lookup operations

that are invoked after a deletion, certain elements not present in

the first lookup may appear during the second lookup without

any explicit insertion operation. In the SAT example, the weak

deletion property safely applies to the learned clause set due to

the temporally-agnostic nature of learned clauses: Since a learned

clause remains globally true regardless of when it was learned, it

is safe to re-materialize deleted clauses.

The abstract semantics outlined above translates into concurrent

semantics by adding one additional property: atomicity of each

operation. A weakly consistent set can have different concurrent

implementations, each trading consistency for different degrees of

parallelism. We describe three realizations of a weakly consistent

set, two of which ś privatization and complete sharing have been

studied in the context of other parallel programming models. The

third realization is sparse sharing, which is introduced in this paper

and implemented byMemoDyn. Sparse sharing takes full advan-

tage of weakened semantics for optimizing the tradeoff between

consistency and parallelism. In the following, the term client refers

to an independent execution context such as a thread or an OS

process.

1The terms later and earlier relate to a time-ordered sequence of operations invoked
on the data structure as part of an execution history or trace.

(1) Privatization [9, 17]: A weakly consistent set can be imple-

mented as a collection of multiple private replicas of a sequential

data structure, one for each client. Methods invoked by a client

operate on its private replica. There is no interference between

clients, and all operations are inherently atomic without any

synchronization. Insertion and deletion operations on a single

replica execute in sequential order, while they execute out of or-

der with respect to other replica operations. In any time-ordered

history of operations, lookups in a client only return elements

inserted earlier into a local replica and not the remote ones, thus

giving only a partial global view of the data structure. However,

deletions are persistent: once an element is deleted in a replica,

it will not be returned by a subsequent lookup on that replica

without an explicit insertion of the same element.

(2) Complete Sharing [7, 27, 37]: A weakly consistent set is real-

ized by a single data structure that is shared amongst all clients.

Operations performed on the data structure by clients are made

atomic by wrapping them in critical sections and employing syn-

chronization. This realization is implied by and implemented

via semantic commutativity annotations on the operations of

the data structure. In this method insertions and deletions of

non-identical elements can occur out of order. Lookups present a

complete view of the data structure for each client and return the

most up-to-date, globally available contents of the set. Deletion of

an element is persistent, with effects immediately visible across

all clients.

(3) Sparse Sharing: A third realization of a weakly consistent set

combines the above two to take full advantage of the partial view

and weak deletion property. This scheme uses a collection of

replicas, one for each client, and non-deterministically switches

between two sharing modes. In private mode, each operation is

performed on the local replica without any synchronization. In

sharing mode, insertions are propagated transparently to remote

replicas while deletions continue to apply to the local replica

only. In this model, lookups return a partial view of cumulative

contents of all replicas: elements made visible to a client corre-

spond to a mix of insertions performed locally and remotely at

some earlier point in execution. Deletions are weak: an element

deleted in a local replica can reappear if it has been propagated

to a remote replica prior to deletion and is propagated back to

the local replica transparently at some point after deletion. Note

that even with weak deletion, infrequently used clauses will be

completely removed by the MemoDyn runtime (Section 5), first

from local replicas and eventually globally if they are not useful

to any client.

The weak consistency concept easily extends from sets to other

sequential data structures. In particular, a weakly consistent map

is very useful for applications performing associative lookups of

memoized data. The use of kernel caches in SVMs and transposi-

tion tables in alpha-beta search [41] are instances of such weakly

consistent maps.
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MemoDyn #pragma MemoDyn(dstype, id)

Data typed obj;

Structure

Declarations dstype := SET | MAP | ALLOCATOR

MemoDyn #pragma MemoDynI(id, itype)

Interface typer class::fn(t1 p1, ...);

Declarations

itype := INS | DEL | ILU | ALLOC

SZ | DEALLOC | PRO’ | CMP

Figure 2: MemoDyn Syntax

3.2 Syntax

This paper describes aMemoDyn data structure using a standard

abstract interface. This interface corresponds to that of a set or a

map class with member functions for insertion, deletion, indexed

search and querying the data structure’s size.

MemoDyn extensions are specified as pragma directives within a

client’s sequential program.2 pragmas are used for two reasons:

first, arbitrary data structure implementations within a client can

be regarded as weakly consistent by annotating relevant accessor

and mutator interfaces using MemoDyn’s pragmas without major

re-factoring. Second, the use of pragmas preserves the sequential se-

mantics of the program when the annotations are elided, and allows

programs withMemoDyn’s annotations to be compiled unmodified

by C++ compilers that are unaware of MemoDyn semantics.

Figure 2 shows the syntax ofMemoDyn directives which include

two parts: extensions to annotate a data structure with aMemoDyn

type at its instantiation site, and for declaring the data structure’s

accessors and mutators as part of theMemoDyn interface. The two

mainMemoDyn data structures are the weakly consistent set (SET)

and map (MAP), with corresponding member functions for inser-

tion (INS), deletion (DEL), indexed lookup (ILU), and querying the

size of the data structure (SZ). Combining ILU and SZ gives a multi-

element lookup functionality. An allocator (ALLOCATOR) class can

be optionally associated with a weakly consistent data structure.

This class is akin to allocators for C++ standard template library

classes, and can be used when collections of pointers that rely on

custom memory allocation are annotated as weakly consistent. The

associated allocation (ALLOC) and deallocation (DEALLOC) meth-

ods are used by MemoDyn to transparently orchestrate replication

and sharing among parallel workers. Finally, the parent solver class

containing a weakly consistent data structure can specify a mem-

ber function that reports search progress (PROG) ś a real valued

measure between 0 and 1, and a member function to compare the

relative quality of weakly consistent element pairs (CMP). Both

these functions serve as hints to theMemoDyn runtime for optimiz-

ing sparse sharing. Figure 1b showsMemoDyn directives applied

to the SAT example. Note that the specific signature types of the

annotated methods do not matter and thus they do not need to

match the ones in Figure 1b.

Target data structures may lack certain of these member functions.

For example, inherited functions are implicitly declared (e.g. copy

2MemoDyn also provides a library of weakly consistent data structures based on C++
templates akin to STL that can be directly used.

constructors) and a function that reports search progress may not

be implemented. For the evaluated programs, the necessary source

code changes for compliance withMemoDyn’s abstract interface

are discussed throughout section 6 and are summarized in Table 2.

4 The MemoDyn Compiler

In the MemoDyn parallelization model, the programmer first anno-

tates a sequential program using pragmas at interface declarations

and data structure instantiations. This program is fed into theMem-

oDyn compiler which analyzes and extracts semantic information

in its frontend and later introduces parallelism in its backend. The

resulting parallelized program executes in conjunction with the

MemoDyn runtime that performs online adaptation.

Frontend. The frontend is based on clang++ [28]. It includes a

pragma parser, a type collector, and a source-to-source rewriter.

The pragma parser records source level and abstract syntax tree

(AST) level information about weakly consistent data structures

and interface declarations. The type collector module uses this

information to correctly deduce fully qualified source level type in-

formation of weakly consistent containers and checks that the type

information conforms to expected prototypes. The rewriter module

adds and initializes additional data member fields into the parent

class of weakly consistent types. In particular, it creates a unique

identifier field for distinguishing between different object instances

belonging to different parallel workers at runtime, to support an

object based parallel execution model [24] within MemoDyn.

The output of the rewriter is translated by the frontend from C++

code into LLVM IR [28]. Meta-data describing MemoDyn anno-

tations is embedded within this IR destined for the backend. The

frontend also creates runtime hooks to: (a) instantiate concrete

types for abstract data types declared within the MemoDyn run-

time library; (b) synthesize functors for measuring the progress of

each solver; and within (c) specialize the runtime’s function tem-

plates with the concrete types and interface declarations of the

client program. The outcome of these steps is the creation of a

version of the MemoDyn runtime library specialized to the current

client program.

Backend. The backend first profiles the LLVM IR to identify hot

loops. Once an outermost hot loop is identified, it injects paral-

lelism into the IR by transforming code to spawn threads at startup,

to replicate parent solver objects for granting ownership of each

replica to a newly spawned thread, and to start parallel execution.

The search loop is then augmented with calls into the runtime for

sparse sharing. These include calls to save a parallel worker’s native

weakly consistent set for exchange with other workers, and calls

to exchange weakly consistent data between workers at periods

determined by the runtime. The final step in parallelizing the loop

handles graceful termination Ð ensuring cancellation of remaining

workers when one worker completes execution.MemoDyn follows

the cooperative cancellation model [42] where the compiler inserts

cancellation checks at well-defined syntactic points in the code. In

our implementation, these points correspond to the return sites of

the transitively determined callers to runtime functions. Finally,
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Figure 3: The MemoDyn runtime execution model

the parallelized IR is linked with the specializedMemoDyn runtime

library to generate a parallel executable.

5 The MemoDyn Runtime

5.1 Implementation

TheMemoDyn runtime maintains a clear separation between its

parallelization, synchronization, and tuning subsystems. The run-

time interface is based on generic data types, makes no references to

C++ STL or any specific parallel libraries and hence can be targeted

by both compilers and programmers alike. The current implementa-

tion of the MemoDyn runtime is based on POSIX-threads. Figure 3

shows a schematic of MemoDyn’s parallel runtime execution.

The Parallelization subsystem controls parallelism injection,man-

agement, and termination as follows:

• Initialization 1 , Search Object Replication 2 , and Paral-

lelWorker Creation 3 : TheMemoDyn runtime first initializes

bookkeeping and profiling data; creates a one-to-one map be-

tween parallel workers and replicated search objects based on an

object-based concurrency model [24]. The replication function

uses a reference to the original solver object from the sequential

program to create new solver objects within the runtime. Addi-

tionally, functors encapsulating (a) the main driver that performs

the search and (b) a progress measure function for online adapta-

tion are recorded. Next,MemoDyn creates independent threads

of control, each given ownership of its unique search object, ini-

tialized to search from a distinct point in the search space. State

separation between parallel workers via object based replication

inMemoDyn ensures safe automatic parallelization.

• Finalization 4 : On successful completion, a worker sets a global

cancellation sentinel which is polled by all workers at appropriate

cancellation points. The other workers thus quickly exit their

search and terminate gracefully.

The Synchronization subsystem orchestrates sparse sharing in

two phases: in the first phase, data from a worker’s native weakly

consistent data structure is copied into a shadow replica that resides

within theMemoDyn runtime. In the second phase, remote workers

pull data from other workers’ shadow replica into their own native

version.

Sparse sharing was designed according to this two-phased protocol

for several reasons. First, a shadow replica distinct from a native ver-

sion allows remote workers to exchange data asynchronously with

a more efficient coarser grained synchronization mechanism. The

data exchange is decoupled from a local worker’s operations on its

native version, thereby preventing incorrect program behavior due

to data races. Second, two-phased sharing has the effect of buffering:

given a sequence of insert and delete operations on a native version,

only its net result is copied into the shadow replica which amortizes

the synchronization costs over this sequence. Third, this protocol

naturally leads to a sharing discipline that avoids deadlocks. In

particular, no remote worker ever requests access to a worker’s

shadow replica while holding access to another worker’s shadow

replica and so hold-and-wait conditions necessary for a deadlock

do not arise. Sparse sharing has these steps:

• Saving into shadow replica 5 : Given a native version of a

weakly consistent set, iterates through the elements of the set

adding them to the shadow replica. If the shadow replica is full,

an existing element is chosen and replaced using a comparison

function designated by MemoDyn annotations. Updates to the

shadow replica are performed within a critical section to prevent

remote workers from accessing the replica’s intermediate state.

• Copying from remote shadow replica 6 : Copies data from a

remote worker’s shadow replica into its own native version. This

function is invoked asynchronously by each worker. Interference

may arise only when two or more workers attempt to copy data

from the same shadow replica. Each worker attempts to copy data

by acquiring exclusive access to a shadow replica in sequence,
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with the order of acquisition and release determined a priori. As

above, existing elements in a native version are replaced if needed

using a comparison function.

The synchronization interface includes an optional allocator object

to support custom memory management of weakly consistent data

structures. In such a case, an instance of this allocator class is

used within the MemoDyn runtime to manage a shadow replica’s

memory allocation and deallocation (see minisat, Section 6.1).

The Tuning subsystem implements MemoDyn’s online adapta-

tion and allows for both synchronous [43] and asynchronous mod-

els of tuning [45]. Synchronous tuning is within a worker’s thread

of computation, while asynchronous tuning is done concurrently

by tuner threads that update tunable program state within a worker

periodically. The MemoDyn library maintains a clear separation

between tuning algorithm state and the search/parallel program

state. Tuning works as follows:

• Setup 7 , Registration 8 : Initializes tuning algorithm state,

including seed values for tuning parameters from the environ-

ment. For asynchronous tuning, lightweight tuning threads are

created as part of the setup ś one for each parallel worker. Tuning

variables along with lower and upper bounds for these variables

are recorded to constrain tuning to within these limits.

• Tuning 9 : Parameter tuning for each solver is done indepen-

dently of each other. Each tuner perturbs variables registered

for tuning, observes its effects by estimating change in progress

using the progress measure functor recorded internally within

MemoDyn, and then uses it for optimization.

• Deregistration and Finalization 10 : Parameters can be de-

registered on the fly to disable tuning during certain phases. A

tuning algorithm terminates when a worker completes its search.

In asynchronous tuning, pre-emptive thread cancellation primi-

tives terminate tuning threads.

5.2 Online adaptation

Desired Properties. Online adaptation within MemoDyn poses

a number of interesting challenges. First, concurrent access to a

search program’s runtime state by both a worker and a tuning

thread (in asynchronous tuning) during execution can result in in-

consistencies if mutual exclusion is not ensured, or in performance

penalties otherwise. InMemoDyn, parameters tied to shadow repli-

cas are tuned within the runtime rather than those of a native

version. Moreover, a search thread has limited access to a shadow

replica: only during phases of synchronization that are explicitly

controlled by the runtime. Second, online adaptation is useful only

when programs run sufficiently long for a tuner to sample enough

parameter configurations to optimize at runtime. Third, tuning al-

gorithms should be lightweight and should not interfere with or

slow down the main search algorithm computation. This implies

that a tuning algorithm should either be invoked infrequently or

involve only relatively inexpensive computations, and should not

increase contention for hardware resources shared with the search

threads. The tuning algorithm used within MemoDyn has these

properties.

Approach.The goal of online adaptation inMemoDyn is to improve

the overall execution time of parallel search. Since search programs

typically contain one main loop that is iterated many times and

do not exhibit regular memory access or predictable control flow

patterns which can be monitored, we rely on application level

progress measures that serve as a proxy for online performance.

Most solvers already provide such a measure, expressable using a

MemoDyn annotation.

MemoDyn tuning strives to maximize progress of each worker by

tuning parameters that are implicitly exposed by the weakened

consistency semantics of the auxiliary data structures. The cur-

rent implementation tunes three parameters: (a) the replica save

period that determines how often elements are saved from native to

shadow replica (b) the replica exchange period that determines how

often elements are copied from remote workers’ shadow replica to

native version and (c) sharing set size ś the number of elements

that are saved and copied between parallel workers. TheMemoDyn

runtime currently includes an online tuning algorithm based on

gradient ascent3, implemented under an asynchronous model of

tuning. In this model, tuning is done concurrently in a separate

thread and has minimal interference on the main thread’s compu-

tation.

Profile-based offline selection of initial parameter values. The

initial values of parameters for tuning are determined based on

profiling. First, a range of potential initial values for each tunable

parameter is selected for offline training. Since the combined space

of all possible parameter values is prohibitively large, this range

is selected by sampling values seen during the sequential runs of

a set of randomly selected inputs that run for at least one minute.

Offline training is then done using a second input set by invoking

a parallelized version of the search program that performs sparse

sharing. In this program, values for each parameter are statically

set at the beginning of the program and do not change during

execution. This parallel version is invoked for every combination

of parameter values computed in the first step, and corresponding

speedup is measured. The particular combination of parameter

values that results in the best geomean speedup across all inputs

is then selected as the initial condition to guide online adaptation.

This combination also constitutes the setting for the non-adaptive

version of MemoDyn evaluated in Section 6. In our experiments,

the profiling step had a geomean overhead of 8.9x over average

time for sequential execution across five programs.

Online adaptation using gradient ascent. The online adapta-

tion algorithm used within MemoDyn is based on gradient ascent

(Algorithm 1). It is invoked independently for each worker, with

the goal of finding the parameter configuration that maximizes

the progress made by each worker. The parameters correspond to

those exposed by the MemoDyn data structures, and the objective

function is a function of these parameters. Starting with the initial

values seeded by the offline profiling based parameter selection

algorithm, the tuning algorithm first perturbs these values in either

direction for each parameter (Lines 4 to 7) and computes the gradi-

ent of the objective by measuring the difference in progress made

3Other methods like Nelder-Mead [43] did not perform as well in our experiments due
to higher overheads.
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Algorithm 1: Online adaptation using gradient ascent

1 def gradient(id, ~x) :

2 a⃗ ← x⃗

3 for i = 1 to dim (a⃗) do
4 a⃗i ← x⃗i + δi
5 f1 ← per turbAndMeasure (id, a⃗)

6 a⃗i ← x⃗i − δi
7 f2 ← per turbAndMeasure (id, a⃗)

8 ▽i ← (f2 − f1 )/(2 × δi )

9 end

10 x⃗ ← x⃗ini where x⃗ini is from offline parameter selection

11 for i = 1 to NUMITERS do
12 ▽f ← дradient (id, x⃗ )

13 if ( ∥▽f ∥ < ϵ ) then
14 r eturn x⃗

15 end

16 x⃗ ← x⃗ + α ∗ ▽f

17 end

18 r eturn x⃗

due to this perturbation (Line 8). Because the objective function is

not a direct function of theMemoDyn parameters, measurement

is performed only after sufficient number of sharing cycles have

elapsed beyond the perturbation point (within perturbAndMeasure

on Lines 5 and 7). Once the gradient has been computed, the param-

eter configuration is updated in the direction of the gradient, scaled

appropriately by a fraction α . This whole cycle is iterated until the

gradient norm is very small (which would be the case near a local

maximum) or for a fixed number of iterations (Lines 15 to 17).

6 Evaluation

MemoDyn is applicable to sequential programs that use auxiliary

data structures to memoize results for increased performance, as

discussed in Section 1. Thus,MemoDyn is evaluated on five open

source sequential search/optimization programs that use memoiza-

tion, shown in Table 2. These programs were evaluated on multiple

randomly selected inputs fromwell-known open source input repos-

itories that take at least 30 seconds to run. Table 2 also shows the

programming effort in number of MemoDyn annotations added

and additional changes for implementing standard object oriented

abstractions relevant toMemoDyn. These changes only introduce

sequential code and use no parallel constructs.

In addition to MemoDyn, two most related non-MemoDyn seman-

tic parallelization schemes were evaluated for comparison: Privati-

zation and Complete-Sharing. Both these schemes have different

(non-adaptive) synchronization methods as described in Section 3.1,

but are based on the same POSIX-based parallel subsystem asMem-

oDyn. Figure 4 shows detailed performance results for minisat,

and Figure 5 shows all other results. The evaluation was done on a

1.6GHz Intel Xeon 64-bit dual-socket quad core machine with 8GB

RAM running Linux 2.6.24.

6.1 Boolean satisfiability solver: minisat

A total of 12 annotations are inserted to annotate (a) learnts as a

weakly consistent set, (b) ClauseAllocator class as an allocator

for elements of the weakly consistent set (c) progressEstimate

member function, which computes an approximate value for search

progress using current search depth and number of solved clauses
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Figure 4: MemoDyn Experimental results for minisat

and assigned variables, as a progress measure. Additionally, a copy

constructor was added to Solver to enableMemoDyn runtime to

perform initial solver replication; an overloaded comparison opera-

tor that uses activity heuristics within the solver to rank weakly

consistent set elements, and two callbacks to interface garbage

collection with the main Solver state.

Speedup and Variance. Figure 4a shows the speedup graph for

minisat. The adaptive version of MemoDyn outperforms the rest

by a wide margin. It scales up to six worker threads (a total of

twelve POSIX threads, with six additional tuning threads) achiev-

ing a geometric mean program speedup of 5.2x over sequential,

after which the speedup decreases mainly due to cache interfer-

ence between multiple parallel workers (14% increase in L2 data

cache miss rate from 6 to 7/8 threads). The non-adaptiveMemoDyn

version achieves better speedup than adaptive MemoDyn for up

to three worker threads but slows down beyond that point. Both

Privatization and Complete-Sharing versions show poor scaling. In

addition to data cache misses, repeated computation of the same

learnt clauses across different parallel workers in the former and

extremely high synchronization costs in the latter lead to speedup

curves with negative slopes.
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Program Description
Total Source Changes Profiling Input # Best Gain over best
LOC # Additions/Mods Overhead Source Inputs Speedup/ non- non-

Annot. LOC Desc Quality adaptive MemoDyn

minisat SAT Solver 2343 12 36 CC, C, CB 8.4x Sat-Race 21 5.2x 29.3% 148.0%
ga Genetic algorithm 811 8 114 CPP, C, P 8.6x HPEAC 22 3.4x 42.6% 86.1%

qmaxsat Partial MAX SAT 1783 12 49 CC, C, AO 10.7x Max-SAT 20 2.6x 24.8% 22.8%
bobcat Alpha-beta search 5255 8 47 CC, C, P 4.9x EndGDB 10 3.2x 14.1% 54.2%
ubqp Quadratic program 1387 8 81 CC, C, P 15x ACO-Set 15 11%* 1.5% 3.8%

Table 2: Applications evaluated using MemoDyn (CC: Copy constructor, C: Comparison operator, CB: Callback, CPP: C++ conversion, P:

Progress Measure, AO: Assignment operator, * Improvement in quality of solution). The final column shows the performance improvement

of adaptive-MemoDyn over other best schemes.

Figure 4b shows the variations in speedups across different inputs

(in log scale) for the adaptive version. The average of three runs

for each input is reported. The speedups range from a minimum of

1.1x to a maximum of 25x; this high variance demonstrates the sen-

sitivity of SAT execution times to input behavior and consequent

usefulness of online adaptation in optimizing runtime parallel con-

figuration. Superlinear speedup is due to different total amount of

computation needed in the sequential and the parallelized versions.

In particular, as noted in section 2, a SAT solver that uses weakly

consistent data structures may explore the search space differently

from a sequential search. This may result in a more efficient search,

more efficient use of memoized results, or even a different satisfying

assignment.

Search Progress and Synchronization. Search progress (Fig-

ure 4d) improves fastest per iteration for Complete-Sharing, but the

corresponding high synchronization costs result in overall slower

convergence. The other schemes make relatively slower progress

per iteration than Complete-Sharing. The MemoDyn schemes con-

verge the fastest followed by Privatization, as seen from the early

termination of their progress curves. Given that Complete-Sharing’s

synchronization costs (Figure 4c) is an order of magnitude higher

thanMemoDyn, and Privatization has longer convergence time due

to low search space pruning, sparse sharing becomes key to fast

convergence times.

Online adaptation. Figure 4e shows a snapshot of adaptation for

two MemoDyn parameters at runtime: the replica exchange period

and shadow replica set size. The curve for the third parameter, save

period, is not shown as it is very similar to exchange period. Initially,

the replica exchange period is high, implying a low initial frequency

of sharing, but as the search progresses,MemoDyn tuning decreases

the value of the replica exchange period. The value for shadow

replica size is high in the beginning, but with time the number

of elements shared decreases. Overall, tuning in minisat causes

plenty of elements to be shared less frequently during the initial

phases of search; as parallel workers start to converge in later

phases, tuning causes fewer elements to be shared more frequently

among parallel workers.

Comparison with Manual Parallelization. ManySAT [20] is a

portfolio based, manual parallelization of minisat. Figure 4f com-

pares the speedup of the best performing MemoDyn scheme with

ManySAT. ManySAT obtains the best speedup of 6.2x over sequen-

tial minisat.MemoDyn performs competitively, achieving the best

speedup of 5.2x. There are several key differences betweenMem-

oDyn and ManySAT. First, unlike ManySAT, MemoDyn’s multi-

search parallel execution model is derived automatically from high-

level program semantics without explicit parallelization. Second,

ManySAT requires programmer inserted synchronization for im-

plementing clause sharing, whereas MemoDyn’s sparse sharing

is automatic and is based on an adaptive synchronization proto-

col. Third, while ManySAT manually throttles clause sharing with

a hand-tuned implementation based on feedback control, Memo-

Dyn uses online optimization methods based on application level

progress metrics to automatically tune sharing. Thus, MemoDyn’s

key advantage is its generalized applicability ś the use of high level

semantic extensions to automate parallelization, synchronization,

and tuning gives it the flexibility to change underlying implemen-

tations without any additional programmer effort.

6.2 Genetic algorithm based Graph

Optimization: ga

ga is a genetic algorithm program originally written in C [21] which

we converted to C++. It uses operations like mutation, selection,

and crossover to probabilistically create newer generations of can-

didate solutions based on fitness scores of individuals in the current

generation. Solutions are represented as chromosomes within the

program. The search terminates on reaching sufficient fitness for a

population. The ga program in our evaluation additionally uses the

concept of elite chromosomes [30], where a non-deterministic frac-

tion of the fittest individuals within certain thresholds are carried

forward across generations.MemoDyn annotations were applied

to the elite chromosome set. The thresholds on elite chromosomes

were automatically enforced by a hard limit defined on the native

chromosome set. The correctness of applyingMemoDyn annota-

tions follows from the observation that missing a few elite chromo-

somes can only delay convergence without affecting core algorithm

functionality.

However, sharing the best chromosomes between different paral-

lel workers can potentially speed up convergence. Apart from the

annotations for weakly consistent sets, code changes involved con-

version of C code into C++. The progress measure returns a scaled

fitness value of the best chromosome in the current generation.

Figure 5a is the speedup graph for ga. AdaptiveMemoDyn scales

up to eight worker threads, achieving a speedup of 3.4x. Although

both non-adaptiveMemoDyn and Privatization show similar scal-

ing trends, their speedup curves have a much smaller slope than

adaptiveMemoDyn. Finally, Complete-Sharing shows no speedup
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beyond two threads, with synchronization costs at higher thread

counts causing a slight slowdown.

6.3 Partial Maximum Satisfiability Solver:

qmaxsat

qmaxsat [26] solves partial MAXSAT, an optimization problem

of finding an assignment that maximizes the number of satisfied

clauses for a given boolean formula. In qmaxsat, SAT is invoked

multiple times with different input instances, so learned clauses

from newer generations have different variables/clauses compared

to previous generations. In context ofMemoDyn, this means that

when parallel workers progress at different speeds, learned clauses

of newer generations belonging to a parallel worker should not be

shared and merged with learned clauses of previous generations be-

longing to other workers. The re-entrant and compositional nature

of MemoDyn guarantees correctness transparently by ensuring

that parallel SAT invocations across generations always proceed in

lock step.

Figure 5b shows the speedup graph. The adaptive version peaks

at five threads with a geomean speedup of 2.6x. Interestingly, the

Privatization scheme performs better than the non-adaptiveMemo-

Dyn scheme although both start to scale down beyond three threads.

The synchronization costs for the Complete-Sharing scheme cause

a slowdown at all thread counts. Overall, although qmaxsat is long

running, learned clause sharing and tuning occur within a shorter

window for each of the multiple invocations of SAT within the

main program, compared to minisat. The consequent constrained

sharing profile together with the cache sensitive nature of parallel

SAT are reflected in the performance.

6.4 Alpha-beta search based game engine:

bobcat

bobcat [19] is a chess engine based on alpha-beta search. It uses a

hash table called the łtransposition tablež [41] that memoizes the

results of a previously computed sequence of moves to prune the

search space of a game tree. Using MemoDyn annotations, this ta-

ble was assigned weakly consistent map semantics. Being a purely

auxiliary data structure akin to a cache, partial lookups and weak

mutation of the transposition table only cause previously deter-

mined positions to be recomputed, without affecting correctness.

Apart from adding a copy constructor and a comparison operator

that uses the age of a transposition for ranking, the transposition

table interface was made generic using C++ templates to expose

key and value types. The progress measure employed returns the

number of nodes pruned per second weighted by search depth.

Figure 5c shows the speedup graphs. In contrast to minisat, the

benefits of MemoDyn start only after five worker threads, with the

adaptive version achieving the best geomean speedup of 3.2x on

eight worker threads compared to the best of 2x for Privatization.

Compared to the weakly consistent sets in other programs, the

transposition table in bobcat is small in size and is accessed with a

high frequency. This causes Complete-Sharing to perform poorly,

resulting in a 20% slowdown due its associated high synchronization

overhead.
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(a) ga speedup
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(b) qmaxsat speedup
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(c) bobcat speedup
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(d) geomean speedup (4 programs)
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Figure 5: MemoDyn Experimental Results II

6.5 Unconstrained Binary Quadratic Program:

ubqp

ubqp [5] solves an unconstrained binary quadratic programming

problem using ant colony optimization. The algorithm maintains

a population of łantsž that randomly walk the solution space and

record history about the fitness of a solution in a łpheromone ma-

trixž structure. Similar to ga, elitism within this program holds a

collection of fittest solutions within a set, to which we appliedMem-

oDyn annotations. Instead of a conventional convergence criterion,

the search loop in ubqp stops when a given time budget expires.

Parallelizing ubqp can improve this program not by reducing its

execution time, but by improving the quality of the solution ob-

tained within this fixed time frame. Our evaluation measures the

improvement in the quality of the final solution (via an applica-

tion level metric) of parallel execution over sequential when both

are run for a fixed time duration. As seen from Figure 5e, for few

threads the adaptive version has better solution quality than the

other techniques (11% improvement), but the general trend of all the

curves is downward. This is because although MemoDyn enables

sharing of fitter solutions among different workers, the pheromone

matrix that encodes solutions history is not shared due to high

communication costs.
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6.6 Discussion

The application of MemoDyn achieves a geomean speedup of 3x

on four programs (Figure 5d) and improves the solution quality for

one program by up to 11%, while the best non-MemoDyn semantic

parallelization scheme (Privatization) obtains a geomean speedup

of 1.8x and 7.2% improvement in solution quality, respectively.4

Regarding programmer effort, an average of 10 MemoDyn anno-

tations and 67 sequential lines of code per program are added or

modified to implement C++ abstractions related toMemoDyn. In

spite of creating more threads than the number of available hard-

ware contexts, adaptive MemoDyn outperforms other schemes for

all evaluated programs. For ga and bobcat, it attains peak speedup

at eight worker threads with sixteen threads in total, outperform-

ing other schemes that create only eight threads in total. Figure 5f

shows a much lower processor utilization for Complete-Sharing

than other schemes due to synchronization overheads. The utiliza-

tion for adaptive-MemoDyn is comparable or better than others

indicating low parallel execution and context switching overheads.

7 Related Work

Explicit parallelization of search and optimization. Existing

parallelizations of search and optimization algorithms are predomi-

nantly based on explicit parallelism. SAT solvers have been paral-

lelized for shared memory [20] and clusters [18] using threading

and message passing libraries.MemoDyn’s semantic sequential lan-

guage extensions promote easy targeting to multiple parallel sub-

strates without increased programming effort. Additionally, Memo-

Dyn performs online adaptation of parallelized search.

Smart and concurrent data structures. Smart data struc-

tures [14] employ online machine learning to optimize throughput

of their concurrent operations. STAPL [34] is a parallel version

of STL that uses an adaptive runtime. Unlike MemoDyn, these

libraries preserve semantics of corresponding sequential data struc-

tures. Moreover, MemoDyn’s adaptation is based on application

level performance metrics (search progress) and aimed at optimiz-

ing overall performance and not only to improve data structure

throughput.

Data structures with weak semantics. Chakrabarti et al. [8]

present distributed data structures with weak semantics for use

within a parallel symbolic algebra application. Compared toMemo-

Dyn, these data structures require programmers to explicitly coordi-

nate data transfers, and their semantics enforces eventual reconcilia-

tion of mutated data across all parallel workers. WeakHashMap [13]

has weak semantics, but unlike MemoDyn it only supports strong

deletion and requires manual synchronization and concurrency con-

trol. Relaxed data structure synchronization [4, 35, 36, 38] allows

races as long as program output is statistically accurate. Memo-

Dyn’s sparse sharing provides a form of relaxed synchronization,

but is data-race free and adapts to runtime behavior. Cledat et

al. [10] leverage the programmer’s knowledge about the disjointed-

ness of data access footprints of various computations to parallelize

4Apart from minisat, manual parallelizations for ga, qmaxsat, ubqp either do not
exist or are not available online. The manual parallelization of bobcat implements
Privatization and hence omitted.

applications. By contrast, MemoDyn explicitly deals with the se-

mantics of access to shared state to enable better parallelization of

applications.

Memory consistencymodels.Various semantics for weakly consis-

tent memory models have been explored at the language [6, 25, 32]

and hardware level [1, 2, 12, 16, 40] A memory model depicts the

order in which read/write operations to memory locations appear

to execute, and addresses the question: łWhat value can a read of a

memory location return?ž. By contrast,MemoDyn is concerned with

the order and the semantics of high-level data structure operations,

and addresses łWhat values can a data structure query return?ž. A

concurrent implementation of weakly consistent data structures

can be achieved on systems implementing a sequential or weak

consistency memory model, with correct data structure semantics

ensured by appropriate use of low level atomics. In the current

MemoDyn implementation, this is realized via the use of pthreads

locking primitives.

Compiler and runtime support for application adaptation.

Adve et al. [3] propose compiler and runtime support for adap-

tation of distributed applications. In their system, a programmer

explicitly parallelizes programs, selects parameters, and inserts

calls for tuning at profitable program points. Active Harmony [43]

provides an API to specify optimization metrics and to expose pa-

rameters that a runtime monitors for online optimization. Rinard

et al. [39] present a parallelizing compiler that performs adaptive

runtime replication of data objects to minimize synchronization

overhead. Parcae [33] is an automatic system for platform-wide

dynamic tuning. In comparison, MemoDyn exploits the weak con-

sistency semantics of data structures to optimize parallel runtime

configuration by automatically selecting and tuning parameters.

8 Conclusion

This paper presented MemoDyn, a framework for parallelizing

search loops with auxiliary data structures that have weak con-

sistency semantics. MemoDyn provides language extensions for

expressing weak semantics, and a compiler-runtime system that

leverages weak semantics for parallelization and adaptive runtime

optimization. Evaluation on eight cores shows that MemoDyn ob-

tains a geomean speedup of 3x on four programs over sequential

execution, and an 11% improvement in solution quality of a fifth

program having fixed execution time, compared to 1.8x and 7.2%

respectively for the best non-MemoDyn semantic parallelization.
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