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Abstract

Several classes of algorithms for combinatorial search and optimiza-
tion problems employ memoization data structures to speed up
their serial convergence. However, accesses to these data structures
impose dependences that obstruct program parallelization. Such
programs often continue to function correctly even when queries
into these data structures return a partial view of their contents.
Weakening the consistency of these data structures can unleash new
parallelism opportunities, potentially at the cost of additional com-
putation. These opportunities must, therefore, be carefully exploited
for overall speedup. This paper presents MEMODYN, a framework
for parallelizing loops that access data structures with weakly con-
sistent semantics. MEMODYN provides programming abstractions
to express weak semantics, and consists of a parallelizing compiler
and a runtime system that automatically and adaptively exploit the
semantics for optimized parallel execution. Evaluation of MEMODYN
shows that it achieves efficient parallelization, providing significant
improvements over competing techniques in terms of both runtime
performance and solution quality.
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1 Introduction

Search and optimization problems play an important role in many
modern-day desktop and scientific applications. These problems
are typically combinatorial in nature, having search spaces that are
prohibitively expensive to explore exhaustively. As a result, many
real-world algorithmic implementations for these problems employ
various optimization techniques. One well known and common
technique is memoization [31]: as the search space is explored,
new facts are recorded; these facts are later retrieved to prune or
guide the search. Examples of data structures for memoization in-
clude kernel caches in support vector machines [23], learned clause
databases in SAT solvers [15], elite sets in genetic algorithms [30],
cut pools in MILP solvers [29], and transposition tables in chess
programming [41]. Regardless of what they are called in each spe-
cific domain, they all have the same basic memoization property:
trade-off space for computation time by remembering previously
computed results. This optimization technique greatly improves
the running times of such search algorithms without affecting their
correctness. There are even tools to help programmers identify
memoization opportunities in their programs [11].

The emergence of multicore into mainstream computing presents
a tremendous opportunity to parallelize many search and optimiza-
tion algorithms. Explicitly parallelizing search loops by synchro-
nizing accesses to the memoization data structure is one way of
optimizing such programs. This is, however, a slow, manual, and
error-prone process that results in performance-unportable and
often sub-optimal programs.

Prior work demonstrates how high-level semantic programming ex-
tensions can facilitate automatic parallelization. Semantic commu-
tativity extensions [7, 27, 37] allow functions that atomically access
shared state to execute out-of-order concurrently, breaking flow
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dependences across function invocations. Cilk++ hyperobjects [17]
and the N-way programming model [9] provide programming sup-
port to implicitly privatize data for each parallel task. ALTER [46]
presents an optimistic execution model allowing parallel tasks to
read stale values of shared data as long as they do not write to the
same locations.

Programs accessing memoization data structures can be parallelized
by the methods described above, but each has its pitfalls: synchro-
nizing every access to a shared data structure as implied by semantic
commutativity is expensive, given the high frequency of access to
these data structures; complete privatization without communicat-
ing any memoization data can adversely affect the convergence
times of search loops by providing fewer pruning opportunities; and
with the ALTER model, conflicts based on writes to memory would
frequently occur due to updates to memoization data structures.

This work is based on the following insight: programs that access
memoization data structures continue to function correctly even
when queries to the data structure return a partial view of its con-
tents, or when deletions are not persistent. This weaker consistency
requirement can be leveraged to break dependences between data
structure operations, facilitating automatic parallelization of the
main search loops. Once parallelized, it is important to optimize
the trade-off between increased parallelism and potential increase
in computation. Frequent communication of memoization data be-
tween parallel tasks can reduce required computation at the cost
of synchronization overheads, and conversely little or no commu-
nication of memoization data may increase required computation
while reducing synchronization.

This paper presents MEMODYN, a framework for efficiently par-
allelizing search loops that access memoization data structures.
MEMODYN consists of,

e semantic language extensions for weakly consistent data struc-
tures, which expose parallelism in search loops using them;

e a compiler that automatically parallelizes search loops; and,

e aruntime system that adaptively optimizes parallel configura-
tions of weakly consistent data structures.

Table 1 compares MEMoDYN with frameworks that leverage relaxed
semantics for parallelization. The main advantage of MEMODYN
stems from expressing much weaker semantics than any of the other
frameworks, and having the MEMoODYN parallelization framework
leverage the weaker semantics to realize an adaptively synchronized
parallel scheme as opposed to static parallel schemes realized by
others.

2 Motivation

MEmoDYN is motivated by the Boolean satisfiability problem (SAT),
a well-known search problem with many important applications. A
SAT solver attempts to solve a given Boolean formula by assigning
values to variables such that all clauses are satisfied, or determine
that no such assignment exists. Figure 1 shows main parts of a SAT
solver’s [15] C++ implementation.
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The main search loop of a SAT solver selects an unassigned variable,
sets its value, and recursively propagates this assignment until
either all variables are assigned (thereby completing a solution) or
a constraint becomes conflicting under the current assignment. In
case of a conflict, an analysis procedure learns a clause implying
the conflict, records it in a memoization data structure (Line 11),
and applies backtracking.

Clause learning greatly helps subsequent iterations prune their
search space. Disabling clause learning led to an average slow-
down of 8.15x when running a sequential SAT solver across several
workloads. However, while more learning implies more pruning
opportunities, traversals of the memoization data structure (Line 5)
can slow down if its size grows excessively, hence the SAT solver
loop periodically removes “useless” learned clauses (Line 21).

Considering the intractable nature of the SAT problem, paralleliz-
ing such loops has the potential to drastically reduce search times.
One common approach to parallelize search and optimization algo-
rithms is multisearch [44]. In this approach, multiple parallel work-
ers search in distinct regions of the search space until some worker
finds a solution. Convergence times are greatly improved when
clauses learned by each worker are shared [20]. However, manually
parallelizing a SAT search loop using explicit parallel programming
requires considerable effort. Tools for automatic parallelization can
relieve programmers of this effort but are constrained by the need
to respect sequential semantics. In this example, reads, inserts, and
deletes into the learnts data structure within the search loop are
inter-dependent (Lines 5, 11 and 21), inhibiting automatic paral-
lelization.

The use of learnts data structure in the context of SAT solvers,
however, requires much weaker consistency than imposed by a
sequential programming model. In particular, the SAT search loop
will function correctly even when reads from learnts only return a
partial set of clauses inserted so far or when deleted clauses persist.
This weaker semantics of learnts can be used to break depen-
dences between data structure operations and facilitate automatic
parallelization. Programming extensions can express this weaker
semantics, enabling transformation tools to parallelize the loop
without sacrificing ease of sequential programming. Note that a
SAT solver using learnts with weaker consistency property may
explore the search space differently from a sequential search, which
may result in a different satisfying assignment.

Prior work on semantic extensions to the sequential programming
model for parallelism impose much stronger requirements on the
learnts data structure operations than required by SAT solvers.
In these solutions, all inserts into learnts have to eventually suc-
ceed [46] and operations either access one shared learnt data
structure which is always synchronized [7, 27, 37] or operate on
multiple private copies with no clause sharing [9, 17]. Choosing “all”
or “nothing” synchronization strategies for learnts data structure
can adversely affect parallel performance: using fine-grain syn-
chronization mechanisms to completely share every clause learned
amongst the workers can lead to increased overheads, while having
private copies with no sharing can increase the convergence time
due to redundant computation.
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Programming Model Concept (Section 3) Specific Parallel Implementation (Sections 4 and 5)
Out of Order | Partial View | Weak Deletion | Annotation Type | Parallelization Driver | Sharing | Synchronization
N-way [9] \/ \/ I Runtime None Static
Semantic Commutativity [37] \/ X X I Compiler All Static
Galois [27] \/ X X 1 Runtime All Static
Cilk++ hyperobjects [17] / X X E Programmer None Static
ALTER [46] v’ v’ x I Compiler All Static
MEMODYN [this paper] \/ \/ \/ I Compiler & Runtime Sparse Static/Adaptive

Table 1: Comparison between MEMoDYN and related parallelization frameworks (I: Implicitly Parallel, E: Explicitly Parallel)

1 lbool Solver::search(int nof_learnts) {
2 model.clear();

3 while (1) {

4 // propagate() accesses learnts[i]

5 Constr confl = propagate();

6 if (confl != NULL) { // Conflict

7 if (decisionLevel() == root_level)

8 return False;

9

learnt_clause =analyze(confl, backtrack_level);

10 cancelUntil (max (backtrack_level, root_level));
1 learnts.push(learnt_clause);

12 decayActivities ();

13 ... // backtrack

14 }

15 else { // No conflict

16

17 if (learnts.size()-nAssigns() >= max_learnts){
18 // Reduce the set of learnt clauses

19 sort(learnts);

20 for (int i=0; i < learnts.size()/2; ++i)
21 learnts.remove (learnts[il);

22 }

23 if (nAssigns () == nVars ()) {

24 // Model found:

25 model.growTo(nVars ());

26

27 cancelUntil (root_level);

28 return True;

29 } else {

30 // New variable decision

31 lit p = 1lit (order.select());

32 assume (p);

33 }

34 }

35}

36 )

w
3

class Solver {

protected:

#pragma MemoDyn(SET, L)
vec<CRef> learnts;

#pragma MemoDyn (ALLOCATOR, A)
ClauseAllocator ca;
void attachClause (CRef cr);

¥

template<class T> class vec {
public:

#pragma MemoDynI(L, SZ);

int size(void) const;
#pragma MemoDynI(L, ILU)

T& operator []1(int index);
#pragma MemoDynI(L, INS)

void push(const T& elem);
#pragma MemoDynI(L, DEL)

void remove(const T& elem);

};
class ClauseAllocator public RegionAllocator
{

public:
#pragma MemoDynI (A, ALLOC)

void reloc(CRef& cr, ClauseAllocator& to);
#pragma MemoDynI (A, DEALLOC)

void free(CRef cid);
};

#pragma MemoDynI(L, PROG)

double Solver::progressEstimate() const {
return (pow(F,i)* (end-beg))/ nVars();

}

Figure 1: Motivating Code Example (a) SAT main search loop with learning (b) SAT solver declarations with MEMODYN annotations

Instead, this paper introduces a hybrid synchronization strategy
named sparse sharing that completely exploits the weak consis-
tency property of learnts in a way that has much better perfor-
mance characteristics than private and complete sharing strategies.
In sparse sharing, each worker maintains a copy of the learnts
data structure and selectively synchronizes with other workers by
exchanging subsets of locally learned clauses at certain intervals,
balancing the trade-off between synchronization overhead and re-
quired computation.

The running times of the SAT solver, similar to many search and op-
timization algorithms, varies widely depending on characteristics
of its input. Quite often, it exhibits phase changes in its computa-
tion [47]. In such scenarios adapting the synchronization strategy
to the differing progress rates of parallel workers (measured on
Line 72 in our example) has the potential to substantially acceler-
ate search convergence. For instance, during certain phases some

workers might quickly learn facts that could help other workers
prune their search space considerably. Online adaptation tunes
to this varying runtime behavior, effectively enabling workers to
cooperatively find a solution faster than otherwise possible.

Varying the synchronization strategy is only one parameter exposed
by the weakened semantics of the learnts data structure. Allowing
inserted clauses to disappear opens new opportunities for efficient
eviction mechanisms, and mechanisms for deciding which clauses
to share, with whom and when. These parameters are important
due to the tradeoff between the usefulness of the learnts database
and the time spent synchronizing it, which is proportional to its size.
Given the dynamic nature of SAT search, adapting these parameters
too at runtime in response to the varying progress made by different
workers can greatly improve convergence times. Adaptive sparse
sharing results in a speedup of 5.2x on eight cores, a gain of 148%
over earlier schemes (Section 6).
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3 Weakly Consistent Data Structures
3.1 Semantics

We describe the semantics of a weakly consistent data structure
in terms of operations supported on the data structure through
its interface. A weakly consistent set, for example, is defined as an
abstract data type that stores values, in no particular order, and
may contain repeated values similar to multiset. The semantics of
the operations supported by a weakly consistent set is as follows:

(1) Out of order mutation: The insertion operations of a weakly
consistent set can be executed in a different order from that of a
sequential specification. Similarly, deletions of multiple elements
can execute out of order with respect to each other and also with
respect to earlier insertions of non-identical elements. Both these
properties follow directly from a conventional set definition [22].

@

~

Partial View: The set supports lookup operations that may re-
turn only a subset of its contents, giving only a partial view
of the data structure that may not reflect the latest insertions.
Each element returned by a lookup must, however, have been in-
serted at some earlier point in the execution of the program.! This
partial view semantics corresponds to the concept of weak refer-
ences [13] in managed languages like Java, where it is used for
non-deterministic eviction of inserted elements to enable early
garbage collection. In the SAT example, a partial view of the
learned clause set during propagation may only reduce pruning
opportunities, but has no effect on program correctness.

(3) Weak Deletion: Deletions from a weakly consistent data struc-
ture need not be persistent, with the effect of deletions lasting for
a non-deterministic length of time. When combined with partial
view, this semantic implies that between two lookup operations
that are invoked after a deletion, certain elements not present in
the first lookup may appear during the second lookup without
any explicit insertion operation. In the SAT example, the weak
deletion property safely applies to the learned clause set due to
the temporally-agnostic nature of learned clauses: Since a learned
clause remains globally true regardless of when it was learned, it
is safe to re-materialize deleted clauses.

The abstract semantics outlined above translates into concurrent
semantics by adding one additional property: atomicity of each
operation. A weakly consistent set can have different concurrent
implementations, each trading consistency for different degrees of
parallelism. We describe three realizations of a weakly consistent
set, two of which - privatization and complete sharing have been
studied in the context of other parallel programming models. The
third realization is sparse sharing, which is introduced in this paper
and implemented by MEMODYN. Sparse sharing takes full advan-
tage of weakened semantics for optimizing the tradeoff between
consistency and parallelism. In the following, the term client refers
to an independent execution context such as a thread or an OS
process.

!The terms later and earlier relate to a time-ordered sequence of operations invoked
on the data structure as part of an execution history or trace.
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(1) Privatization [9, 17]: A weakly consistent set can be imple-
mented as a collection of multiple private replicas of a sequential
data structure, one for each client. Methods invoked by a client
operate on its private replica. There is no interference between
clients, and all operations are inherently atomic without any
synchronization. Insertion and deletion operations on a single
replica execute in sequential order, while they execute out of or-
der with respect to other replica operations. In any time-ordered
history of operations, lookups in a client only return elements
inserted earlier into a local replica and not the remote ones, thus
giving only a partial global view of the data structure. However,
deletions are persistent: once an element is deleted in a replica,
it will not be returned by a subsequent lookup on that replica
without an explicit insertion of the same element.

—
S
~

Complete Sharing [7, 27, 37]: A weakly consistent set is real-
ized by a single data structure that is shared amongst all clients.
Operations performed on the data structure by clients are made
atomic by wrapping them in critical sections and employing syn-
chronization. This realization is implied by and implemented
via semantic commutativity annotations on the operations of
the data structure. In this method insertions and deletions of
non-identical elements can occur out of order. Lookups present a
complete view of the data structure for each client and return the
most up-to-date, globally available contents of the set. Deletion of
an element is persistent, with effects immediately visible across
all clients.

—
&)
=

Sparse Sharing: A third realization of a weakly consistent set
combines the above two to take full advantage of the partial view
and weak deletion property. This scheme uses a collection of
replicas, one for each client, and non-deterministically switches
between two sharing modes. In private mode, each operation is
performed on the local replica without any synchronization. In
sharing mode, insertions are propagated transparently to remote
replicas while deletions continue to apply to the local replica
only. In this model, lookups return a partial view of cumulative
contents of all replicas: elements made visible to a client corre-
spond to a mix of insertions performed locally and remotely at
some earlier point in execution. Deletions are weak: an element
deleted in a local replica can reappear if it has been propagated
to a remote replica prior to deletion and is propagated back to
the local replica transparently at some point after deletion. Note
that even with weak deletion, infrequently used clauses will be
completely removed by the MemoDyn runtime (Section 5), first
from local replicas and eventually globally if they are not useful
to any client.

The weak consistency concept easily extends from sets to other
sequential data structures. In particular, a weakly consistent map
is very useful for applications performing associative lookups of
memoized data. The use of kernel caches in SVMs and transposi-
tion tables in alpha-beta search [41] are instances of such weakly
consistent maps.
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MEemoDYN #pragma MemoDyn(dstype, id)
Data typeg obj;
Structure

Declarations | dstype := SET | MAP | ALLOCATOR

MEMoDYN #pragma MemoDynI(id, itype)
Interface type, class::fn(t; p1, ...);
Declarations

itype := INS | DEL | ILU | ALLOC
SZ | DEALLOC | PROG | CMP

Figure 2: MEmoDYN Syntax

3.2 Syntax

This paper describes a MEMODYN data structure using a standard
abstract interface. This interface corresponds to that of a set or a
map class with member functions for insertion, deletion, indexed
search and querying the data structure’s size.

MEMODYN extensions are specified as pragma directives within a
client’s sequential program.? pragmas are used for two reasons:
first, arbitrary data structure implementations within a client can
be regarded as weakly consistent by annotating relevant accessor
and mutator interfaces using MEMODYN’s pragmas without major
re-factoring. Second, the use of pragmas preserves the sequential se-
mantics of the program when the annotations are elided, and allows
programs with MEMODYN’s annotations to be compiled unmodified
by C++ compilers that are unaware of MEMODYN semantics.

Figure 2 shows the syntax of MEMODYN directives which include
two parts: extensions to annotate a data structure with a MEMODYN
type at its instantiation site, and for declaring the data structure’s
accessors and mutators as part of the MEMODYN interface. The two
main MEMODYN data structures are the weakly consistent set (SET)
and map (MAP), with corresponding member functions for inser-
tion (INS), deletion (DEL), indexed lookup (ILU), and querying the
size of the data structure (SZ). Combining ILU and SZ gives a multi-
element lookup functionality. An allocator (ALLOCATOR) class can
be optionally associated with a weakly consistent data structure.
This class is akin to allocators for C++ standard template library
classes, and can be used when collections of pointers that rely on
custom memory allocation are annotated as weakly consistent. The
associated allocation (ALLOC) and deallocation (DEALLOC) meth-
ods are used by MEMODYN to transparently orchestrate replication
and sharing among parallel workers. Finally, the parent solver class
containing a weakly consistent data structure can specify a mem-
ber function that reports search progress (PROG) - a real valued
measure between 0 and 1, and a member function to compare the
relative quality of weakly consistent element pairs (CMP). Both
these functions serve as hints to the MEMODYN runtime for optimiz-
ing sparse sharing. Figure 1b shows MEMoDYN directives applied
to the SAT example. Note that the specific signature types of the
annotated methods do not matter and thus they do not need to
match the ones in Figure 1b.

Target data structures may lack certain of these member functions.
For example, inherited functions are implicitly declared (e.g. copy

2MemoDYN also provides a library of weakly consistent data structures based on C++
templates akin to STL that can be directly used.
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constructors) and a function that reports search progress may not
be implemented. For the evaluated programs, the necessary source
code changes for compliance with MEMODYN’s abstract interface
are discussed throughout section 6 and are summarized in Table 2.

4 The MEMoDYN Compiler

In the MEMODYN parallelization model, the programmer first anno-
tates a sequential program using pragmas at interface declarations
and data structure instantiations. This program is fed into the MEm-
oDyN compiler which analyzes and extracts semantic information
in its frontend and later introduces parallelism in its backend. The
resulting parallelized program executes in conjunction with the
MEMODYN runtime that performs online adaptation.

Frontend. The frontend is based on clang++ [28]. It includes a
pragma parser, a type collector, and a source-to-source rewriter.
The pragma parser records source level and abstract syntax tree
(AST) level information about weakly consistent data structures
and interface declarations. The type collector module uses this
information to correctly deduce fully qualified source level type in-
formation of weakly consistent containers and checks that the type
information conforms to expected prototypes. The rewriter module
adds and initializes additional data member fields into the parent
class of weakly consistent types. In particular, it creates a unique
identifier field for distinguishing between different object instances
belonging to different parallel workers at runtime, to support an
object based parallel execution model [24] within MEMODYN.

The output of the rewriter is translated by the frontend from C++
code into LLVM IR [28]. Meta-data describing MEMODYN anno-
tations is embedded within this IR destined for the backend. The
frontend also creates runtime hooks to: (a) instantiate concrete
types for abstract data types declared within the MEMODYN run-
time library; (b) synthesize functors for measuring the progress of
each solver; and within (c) specialize the runtime’s function tem-
plates with the concrete types and interface declarations of the
client program. The outcome of these steps is the creation of a
version of the MEMODYN runtime library specialized to the current
client program.

Backend. The backend first profiles the LLVM IR to identify hot
loops. Once an outermost hot loop is identified, it injects paral-
lelism into the IR by transforming code to spawn threads at startup,
to replicate parent solver objects for granting ownership of each
replica to a newly spawned thread, and to start parallel execution.
The search loop is then augmented with calls into the runtime for
sparse sharing. These include calls to save a parallel worker’s native
weakly consistent set for exchange with other workers, and calls
to exchange weakly consistent data between workers at periods
determined by the runtime. The final step in parallelizing the loop
handles graceful termination — ensuring cancellation of remaining
workers when one worker completes execution. MEMoDYN follows
the cooperative cancellation model [42] where the compiler inserts
cancellation checks at well-defined syntactic points in the code. In
our implementation, these points correspond to the return sites of
the transitively determined callers to runtime functions. Finally,
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Figure 3: The MEMODYN runtime execution model

the parallelized IR is linked with the specialized MEMODYN runtime
library to generate a parallel executable.

5 The MEMoDYN Runtime
5.1 Implementation

The MEMODYN runtime maintains a clear separation between its
parallelization, synchronization, and tuning subsystems. The run-
time interface is based on generic data types, makes no references to
C++ STL or any specific parallel libraries and hence can be targeted
by both compilers and programmers alike. The current implementa-
tion of the MEMODYN runtime is based on POSIX-threads. Figure 3
shows a schematic of MEMODYN’s parallel runtime execution.

The Parallelization subsystem controls parallelism injection, man-
agement, and termination as follows:

o Initialization @, Search Object Replication @, and Paral-
lel Worker Creation (3): The MEMODYN runtime first initializes
bookkeeping and profiling data; creates a one-to-one map be-
tween parallel workers and replicated search objects based on an
object-based concurrency model [24]. The replication function
uses a reference to the original solver object from the sequential
program to create new solver objects within the runtime. Addi-
tionally, functors encapsulating (a) the main driver that performs
the search and (b) a progress measure function for online adapta-
tion are recorded. Next, MEMODYN creates independent threads
of control, each given ownership of its unique search object, ini-
tialized to search from a distinct point in the search space. State
separation between parallel workers via object based replication
in MEMODYN ensures safe automatic parallelization.

o Finalization (4): On successful completion, a worker sets a global
cancellation sentinel which is polled by all workers at appropriate
cancellation points. The other workers thus quickly exit their
search and terminate gracefully.

The Synchronization subsystem orchestrates sparse sharing in
two phases: in the first phase, data from a worker’s native weakly
consistent data structure is copied into a shadow replica that resides
within the MEMODYN runtime. In the second phase, remote workers
pull data from other workers’ shadow replica into their own native
version.

Sparse sharing was designed according to this two-phased protocol
for several reasons. First, a shadow replica distinct from a native ver-
sion allows remote workers to exchange data asynchronously with
a more efficient coarser grained synchronization mechanism. The
data exchange is decoupled from a local worker’s operations on its
native version, thereby preventing incorrect program behavior due
to data races. Second, two-phased sharing has the effect of buffering:
given a sequence of insert and delete operations on a native version,
only its net result is copied into the shadow replica which amortizes
the synchronization costs over this sequence. Third, this protocol
naturally leads to a sharing discipline that avoids deadlocks. In
particular, no remote worker ever requests access to a worker’s
shadow replica while holding access to another worker’s shadow
replica and so hold-and-wait conditions necessary for a deadlock
do not arise. Sparse sharing has these steps:

e Saving into shadow replica (5): Given a native version of a
weakly consistent set, iterates through the elements of the set
adding them to the shadow replica. If the shadow replica is full,
an existing element is chosen and replaced using a comparison
function designated by MEMODYN annotations. Updates to the
shadow replica are performed within a critical section to prevent
remote workers from accessing the replica’s intermediate state.

e Copying from remote shadow replica (6): Copies data from a
remote worker’s shadow replica into its own native version. This
function is invoked asynchronously by each worker. Interference
may arise only when two or more workers attempt to copy data
from the same shadow replica. Each worker attempts to copy data
by acquiring exclusive access to a shadow replica in sequence,
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with the order of acquisition and release determined a priori. As
above, existing elements in a native version are replaced if needed
using a comparison function.

The synchronization interface includes an optional allocator object
to support custom memory management of weakly consistent data
structures. In such a case, an instance of this allocator class is
used within the MEMODYN runtime to manage a shadow replica’s
memory allocation and deallocation (see minisat, Section 6.1).

The Tuning subsystem implements MEMODYN’s online adapta-
tion and allows for both synchronous [43] and asynchronous mod-
els of tuning [45]. Synchronous tuning is within a worker’s thread
of computation, while asynchronous tuning is done concurrently
by tuner threads that update tunable program state within a worker
periodically. The MEMODYN library maintains a clear separation
between tuning algorithm state and the search/parallel program
state. Tuning works as follows:

o Setup (7), Registration (8): Initializes tuning algorithm state,
including seed values for tuning parameters from the environ-
ment. For asynchronous tuning, lightweight tuning threads are
created as part of the setup — one for each parallel worker. Tuning
variables along with lower and upper bounds for these variables
are recorded to constrain tuning to within these limits.

o Tuning (9): Parameter tuning for each solver is done indepen-
dently of each other. Each tuner perturbs variables registered
for tuning, observes its effects by estimating change in progress
using the progress measure functor recorded internally within
MEMODYN, and then uses it for optimization.

o Deregistration and Finalization : Parameters can be de-
registered on the fly to disable tuning during certain phases. A
tuning algorithm terminates when a worker completes its search.
In asynchronous tuning, pre-emptive thread cancellation primi-
tives terminate tuning threads.

5.2 Online adaptation

Desired Properties. Online adaptation within MEMODYN poses
a number of interesting challenges. First, concurrent access to a
search program’s runtime state by both a worker and a tuning
thread (in asynchronous tuning) during execution can result in in-
consistencies if mutual exclusion is not ensured, or in performance
penalties otherwise. In MEMODYN, parameters tied to shadow repli-
cas are tuned within the runtime rather than those of a native
version. Moreover, a search thread has limited access to a shadow
replica: only during phases of synchronization that are explicitly
controlled by the runtime. Second, online adaptation is useful only
when programs run sufficiently long for a tuner to sample enough
parameter configurations to optimize at runtime. Third, tuning al-
gorithms should be lightweight and should not interfere with or
slow down the main search algorithm computation. This implies
that a tuning algorithm should either be invoked infrequently or
involve only relatively inexpensive computations, and should not
increase contention for hardware resources shared with the search
threads. The tuning algorithm used within MEMODYN has these
properties.
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Approach. The goal of online adaptation in MEMODYN is to improve
the overall execution time of parallel search. Since search programs
typically contain one main loop that is iterated many times and
do not exhibit regular memory access or predictable control flow
patterns which can be monitored, we rely on application level
progress measures that serve as a proxy for online performance.
Most solvers already provide such a measure, expressable using a
MEeMoODYN annotation.

MEMODYN tuning strives to maximize progress of each worker by
tuning parameters that are implicitly exposed by the weakened
consistency semantics of the auxiliary data structures. The cur-
rent implementation tunes three parameters: (a) the replica save
period that determines how often elements are saved from native to
shadow replica (b) the replica exchange period that determines how
often elements are copied from remote workers’ shadow replica to
native version and (c) sharing set size — the number of elements
that are saved and copied between parallel workers. The MEMODYN
runtime currently includes an online tuning algorithm based on
gradient ascent®, implemented under an asynchronous model of
tuning. In this model, tuning is done concurrently in a separate
thread and has minimal interference on the main thread’s compu-
tation.

Profile-based offline selection of initial parameter values. The
initial values of parameters for tuning are determined based on
profiling. First, a range of potential initial values for each tunable
parameter is selected for offline training. Since the combined space
of all possible parameter values is prohibitively large, this range
is selected by sampling values seen during the sequential runs of
a set of randomly selected inputs that run for at least one minute.
Offline training is then done using a second input set by invoking
a parallelized version of the search program that performs sparse
sharing. In this program, values for each parameter are statically
set at the beginning of the program and do not change during
execution. This parallel version is invoked for every combination
of parameter values computed in the first step, and corresponding
speedup is measured. The particular combination of parameter
values that results in the best geomean speedup across all inputs
is then selected as the initial condition to guide online adaptation.
This combination also constitutes the setting for the non-adaptive
version of MEMODYN evaluated in Section 6. In our experiments,
the profiling step had a geomean overhead of 8.9x over average
time for sequential execution across five programs.

Online adaptation using gradient ascent. The online adapta-
tion algorithm used within MEMODYN is based on gradient ascent
(Algorithm 1). It is invoked independently for each worker, with
the goal of finding the parameter configuration that maximizes
the progress made by each worker. The parameters correspond to
those exposed by the MEMODYN data structures, and the objective
function is a function of these parameters. Starting with the initial
values seeded by the offline profiling based parameter selection
algorithm, the tuning algorithm first perturbs these values in either
direction for each parameter (Lines 4 to 7) and computes the gradi-
ent of the objective by measuring the difference in progress made

30ther methods like Nelder-Mead [43] did not perform as well in our experiments due
to higher overheads.
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Algorithm 1: Online adaptation using gradient ascent

1 def gradient(id, ) :

a«x

fori=1todim(a)do
a; « Xi +6;
fi « perturbAndMeasure(id, @)
a; « X;i - 6;
f2 « perturbAndMeasure(id, @)
Vi e (fo- )/ 2x8)

end

N e I I

10 X « Xjn;i where Xip; is from offline parameter selection
11 for i = 1 to NUMITERS do

12 Vf « gradient(id, X)
13 if (IVf]l < €) then

14 | returnX

15 end

16 Xe—X+axvf

17 end

18 returnX

due to this perturbation (Line 8). Because the objective function is
not a direct function of the MEMODYN parameters, measurement
is performed only after sufficient number of sharing cycles have
elapsed beyond the perturbation point (within perturbAndMeasure
on Lines 5 and 7). Once the gradient has been computed, the param-
eter configuration is updated in the direction of the gradient, scaled
appropriately by a fraction a. This whole cycle is iterated until the
gradient norm is very small (which would be the case near a local
maximum) or for a fixed number of iterations (Lines 15 to 17).

6 Evaluation

MEMODYN is applicable to sequential programs that use auxiliary
data structures to memoize results for increased performance, as
discussed in Section 1. Thus, MEMODYN is evaluated on five open
source sequential search/optimization programs that use memoiza-
tion, shown in Table 2. These programs were evaluated on multiple
randomly selected inputs from well-known open source input repos-
itories that take at least 30 seconds to run. Table 2 also shows the
programming effort in number of MEMODYN annotations added
and additional changes for implementing standard object oriented
abstractions relevant to MEMoDYN. These changes only introduce
sequential code and use no parallel constructs.

In addition to MEMODYN, two most related non-MEMODYN seman-
tic parallelization schemes were evaluated for comparison: Privati-
zation and Complete-Sharing. Both these schemes have different
(non-adaptive) synchronization methods as described in Section 3.1,
but are based on the same POSIX-based parallel subsystem as MEM-
oDyN. Figure 4 shows detailed performance results for minisat,
and Figure 5 shows all other results. The evaluation was done on a
1.6GHz Intel Xeon 64-bit dual-socket quad core machine with 8GB
RAM running Linux 2.6.24.

6.1 Boolean satisfiability solver: minisat

A total of 12 annotations are inserted to annotate (a) learnts as a
weakly consistent set, (b) ClauseAllocator class as an allocator
for elements of the weakly consistent set (c) progressEstimate
member function, which computes an approximate value for search
progress using current search depth and number of solved clauses
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Figure 4: MEMoDYN Experimental results for minisat

and assigned variables, as a progress measure. Additionally, a copy
constructor was added to Solver to enable MEMODYN runtime to
perform initial solver replication; an overloaded comparison opera-
tor that uses activity heuristics within the solver to rank weakly
consistent set elements, and two callbacks to interface garbage
collection with the main Solver state.

Speedup and Variance. Figure 4a shows the speedup graph for
minisat. The adaptive version of MEMODYN outperforms the rest
by a wide margin. It scales up to six worker threads (a total of
twelve POSIX threads, with six additional tuning threads) achiev-
ing a geometric mean program speedup of 5.2x over sequential,
after which the speedup decreases mainly due to cache interfer-
ence between multiple parallel workers (14% increase in L2 data
cache miss rate from 6 to 7/8 threads). The non-adaptive MEMODYN
version achieves better speedup than adaptive MEMoODYN for up
to three worker threads but slows down beyond that point. Both
Privatization and Complete-Sharing versions show poor scaling. In
addition to data cache misses, repeated computation of the same
learnt clauses across different parallel workers in the former and
extremely high synchronization costs in the latter lead to speedup
curves with negative slopes.
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Total Source Changes Profiling Input # Best Gain over best
Program | Description LOC # Additions/Mods Overhead Source Inputs | Speedup/ non- non-
Annot. | LOC Desc Quality | adaptive | MEMODYN
minisat SAT Solver 2343 12 36 | CC,C,CB 8.4x Sat-Race 21 5.2x 29.3% 148.0%
ga Genetic algorithm 811 8 114 CPP,C, P 8.6x HPEAC 22 3.4x 42.6% 86.1%
qmaxsat | Partial MAX SAT 1783 12 49 | CC,C, AO 10.7x Max-SAT 20 2.6x 24.8% 22.8%
bobcat Alpha-beta search 5255 8 47 CC,C,P 4.9x EndGDB 10 3.2x 14.1% 54.2%
ubqp Quadratic program | 1387 8 81 CC,C,P 15x ACO-Set 15 11%" 1.5% 3.8%

Table 2: Applications evaluated using MEmoDyN (CC: Copy constructor, C: Comparison operator, CB: Callback, CPP: C++ conversion, P:
Progress Measure, AO: Assignment operator, * Improvement in quality of solution). The final column shows the performance improvement

of adaptive-MEMODYN over other best schemes.

Figure 4b shows the variations in speedups across different inputs
(in log scale) for the adaptive version. The average of three runs
for each input is reported. The speedups range from a minimum of
1.1x to a maximum of 25x; this high variance demonstrates the sen-
sitivity of SAT execution times to input behavior and consequent
usefulness of online adaptation in optimizing runtime parallel con-
figuration. Superlinear speedup is due to different total amount of
computation needed in the sequential and the parallelized versions.
In particular, as noted in section 2, a SAT solver that uses weakly
consistent data structures may explore the search space differently
from a sequential search. This may result in a more efficient search,
more efficient use of memoized results, or even a different satisfying
assignment.

Search Progress and Synchronization. Search progress (Fig-
ure 4d) improves fastest per iteration for Complete-Sharing, but the
corresponding high synchronization costs result in overall slower
convergence. The other schemes make relatively slower progress
per iteration than Complete-Sharing. The MEMODYN schemes con-
verge the fastest followed by Privatization, as seen from the early
termination of their progress curves. Given that Complete-Sharing’s
synchronization costs (Figure 4c) is an order of magnitude higher
than MEMODYN, and Privatization has longer convergence time due
to low search space pruning, sparse sharing becomes key to fast
convergence times.

Online adaptation. Figure 4e shows a snapshot of adaptation for
two MEMODYN parameters at runtime: the replica exchange period
and shadow replica set size. The curve for the third parameter, save
period, is not shown as it is very similar to exchange period. Initially,
the replica exchange period is high, implying a low initial frequency
of sharing, but as the search progresses, MEMODYN tuning decreases
the value of the replica exchange period. The value for shadow
replica size is high in the beginning, but with time the number
of elements shared decreases. Overall, tuning in minisat causes
plenty of elements to be shared less frequently during the initial
phases of search; as parallel workers start to converge in later
phases, tuning causes fewer elements to be shared more frequently
among parallel workers.

Comparison with Manual Parallelization. ManySAT [20] is a
portfolio based, manual parallelization of minisat. Figure 4f com-
pares the speedup of the best performing MEMoDYN scheme with
ManySAT. ManySAT obtains the best speedup of 6.2x over sequen-
tial minisat. MEMODYN performs competitively, achieving the best

speedup of 5.2x. There are several key differences between MEM-
oDyN and ManySAT. First, unlike ManySAT, MEMODYN’s multi-
search parallel execution model is derived automatically from high-
level program semantics without explicit parallelization. Second,
ManySAT requires programmer inserted synchronization for im-
plementing clause sharing, whereas MEMODYN’s sparse sharing
is automatic and is based on an adaptive synchronization proto-
col. Third, while ManySAT manually throttles clause sharing with
a hand-tuned implementation based on feedback control, MEMO-
DyN uses online optimization methods based on application level
progress metrics to automatically tune sharing. Thus, MEMODYN’s
key advantage is its generalized applicability - the use of high level
semantic extensions to automate parallelization, synchronization,
and tuning gives it the flexibility to change underlying implemen-
tations without any additional programmer effort.

6.2 Genetic algorithm based Graph
Optimization: ga

ga is a genetic algorithm program originally written in C [21] which
we converted to C++. It uses operations like mutation, selection,
and crossover to probabilistically create newer generations of can-
didate solutions based on fitness scores of individuals in the current
generation. Solutions are represented as chromosomes within the
program. The search terminates on reaching sufficient fitness for a
population. The ga program in our evaluation additionally uses the
concept of elite chromosomes [30], where a non-deterministic frac-
tion of the fittest individuals within certain thresholds are carried
forward across generations. MEMODYN annotations were applied
to the elite chromosome set. The thresholds on elite chromosomes
were automatically enforced by a hard limit defined on the native
chromosome set. The correctness of applying MEMODYN annota-
tions follows from the observation that missing a few elite chromo-
somes can only delay convergence without affecting core algorithm
functionality.

However, sharing the best chromosomes between different paral-
lel workers can potentially speed up convergence. Apart from the
annotations for weakly consistent sets, code changes involved con-
version of C code into C++. The progress measure returns a scaled
fitness value of the best chromosome in the current generation.
Figure 5a is the speedup graph for ga. Adaptive MEMODYN scales
up to eight worker threads, achieving a speedup of 3.4x. Although
both non-adaptive MEMODYN and Privatization show similar scal-
ing trends, their speedup curves have a much smaller slope than
adaptive MEMoDYN. Finally, Complete-Sharing shows no speedup
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beyond two threads, with synchronization costs at higher thread
counts causing a slight slowdown.

6.3 Partial Maximum Satisfiability Solver:
gmaxsat

gmaxsat [26] solves partial MAXSAT, an optimization problem
of finding an assignment that maximizes the number of satisfied
clauses for a given boolean formula. In gmaxsat, SAT is invoked
multiple times with different input instances, so learned clauses
from newer generations have different variables/clauses compared
to previous generations. In context of MEMoODYN, this means that
when parallel workers progress at different speeds, learned clauses
of newer generations belonging to a parallel worker should not be
shared and merged with learned clauses of previous generations be-
longing to other workers. The re-entrant and compositional nature
of MEMODYN guarantees correctness transparently by ensuring
that parallel SAT invocations across generations always proceed in
lock step.

Figure 5b shows the speedup graph. The adaptive version peaks
at five threads with a geomean speedup of 2.6x. Interestingly, the
Privatization scheme performs better than the non-adaptive MEmo-
Dyn scheme although both start to scale down beyond three threads.
The synchronization costs for the Complete-Sharing scheme cause
a slowdown at all thread counts. Overall, although gmaxsat is long
running, learned clause sharing and tuning occur within a shorter
window for each of the multiple invocations of SAT within the
main program, compared to minisat. The consequent constrained
sharing profile together with the cache sensitive nature of parallel
SAT are reflected in the performance.

6.4 Alpha-beta search based game engine:
bobcat

bobcat [19] is a chess engine based on alpha-beta search. It uses a
hash table called the “transposition table” [41] that memoizes the
results of a previously computed sequence of moves to prune the
search space of a game tree. Using MEMODYN annotations, this ta-
ble was assigned weakly consistent map semantics. Being a purely
auxiliary data structure akin to a cache, partial lookups and weak
mutation of the transposition table only cause previously deter-
mined positions to be recomputed, without affecting correctness.
Apart from adding a copy constructor and a comparison operator
that uses the age of a transposition for ranking, the transposition
table interface was made generic using C++ templates to expose
key and value types. The progress measure employed returns the
number of nodes pruned per second weighted by search depth.
Figure 5c shows the speedup graphs. In contrast to minisat, the
benefits of MEMODYN start only after five worker threads, with the
adaptive version achieving the best geomean speedup of 3.2x on
eight worker threads compared to the best of 2x for Privatization.
Compared to the weakly consistent sets in other programs, the
transposition table in bobcat is small in size and is accessed with a
high frequency. This causes Complete-Sharing to perform poorly,
resulting in a 20% slowdown due its associated high synchronization
overhead.

P. Prabhu et al.

—MemoDyn (adaptive) —MemoDyn (adaptive)
3.5 ~4-MemoDyn (non-adaptive) 3} ~#-MemoDyn (non-adapive)
~6-Privatization -o-Privatization
3} -A- Complete-Sharing 2 5|, - Complete-Sharin
o g2
S S
B 29 B
3 g 2
2 3
@ 2 %)
g £ 151
23 g
o a1
1 A
° Ovim
2 4 5 6 8 ] 4 5 3 8
Num of Worker Threads Num of Worker Threads
(a) ga speedup (b) gmaxsat speedup
3
3.5[ —-MemoDyn (adaptive) —%MemoDyn (adaptive)
—%-MemoDyn (non-adaptive) —%—MemoDyn (non-adaptive)
3= -6~ Privatization
~A-Complete-Sharing -A-Complete-Siy
o g25
S29 13
2 2 A
& & 2 1
» 2 %) /—H—e\e—g
£ | ,
5 5
S 4 4
o 1 J a1 1
A— M
05 { 05 A
2 4 5 6 7 8 2 4 5 6 8
Num of Worker Threads Num of Worker Threads
(c) bobcat speedup (d) geomean speedup (4 programs)
— —»~MemoDyn (adaptive) i
Z 114 3 Nemooim Em’jada)pwe) I MemoDyn (adaptive)
B -6~ Privatization Il MemoDyn (non-adaptive)
S | 12| A Complete-Sharing Wl Private
g Il Shared (all)
s
5 1 S
2 2
n c
< 1.08] 2
. 3
2 3
g 5
1 P
:" g
Eiof '
8
E s
g w0

N

4 5 6
Num of Worker Threads minisat ga  bobcat gmaxsat ubgp

(e) ubgp QoS (f) Processor Utilization (8 worker

threads)

Figure 5: MemoDYN Experimental Results II

6.5 Unconstrained Binary Quadratic Program:
ubgp

ubgp [5] solves an unconstrained binary quadratic programming
problem using ant colony optimization. The algorithm maintains
a population of “ants” that randomly walk the solution space and
record history about the fitness of a solution in a “pheromone ma-
trix” structure. Similar to ga, elitism within this program holds a
collection of fittest solutions within a set, to which we applied MEm-
oDyYN annotations. Instead of a conventional convergence criterion,
the search loop in ubgp stops when a given time budget expires.
Parallelizing ubgp can improve this program not by reducing its
execution time, but by improving the quality of the solution ob-
tained within this fixed time frame. Our evaluation measures the
improvement in the quality of the final solution (via an applica-
tion level metric) of parallel execution over sequential when both
are run for a fixed time duration. As seen from Figure 5e, for few
threads the adaptive version has better solution quality than the
other techniques (11% improvement), but the general trend of all the
curves is downward. This is because although MEMODYN enables
sharing of fitter solutions among different workers, the pheromone
matrix that encodes solutions history is not shared due to high
communication costs.



MemMmoDyYN

6.6 Discussion

The application of MEMODYN achieves a geomean speedup of 3x
on four programs (Figure 5d) and improves the solution quality for
one program by up to 11%, while the best non-MEMODYN semantic
parallelization scheme (Privatization) obtains a geomean speedup
of 1.8x and 7.2% improvement in solution quality, respectively.*
Regarding programmer effort, an average of 10 MEMODYN anno-
tations and 67 sequential lines of code per program are added or
modified to implement C++ abstractions related to MEMODYN. In
spite of creating more threads than the number of available hard-
ware contexts, adaptive MEMODYN outperforms other schemes for
all evaluated programs. For ga and bobcat, it attains peak speedup
at eight worker threads with sixteen threads in total, outperform-
ing other schemes that create only eight threads in total. Figure 5f
shows a much lower processor utilization for Complete-Sharing
than other schemes due to synchronization overheads. The utiliza-
tion for adaptive-MEMODYN is comparable or better than others
indicating low parallel execution and context switching overheads.

7 Related Work

Explicit parallelization of search and optimization. Existing
parallelizations of search and optimization algorithms are predomi-
nantly based on explicit parallelism. SAT solvers have been paral-
lelized for shared memory [20] and clusters [18] using threading
and message passing libraries. MEMODYN’s semantic sequential lan-
guage extensions promote easy targeting to multiple parallel sub-
strates without increased programming effort. Additionally, MEMO-
DyN performs online adaptation of parallelized search.

Smart and concurrent data structures. Smart data struc-
tures [14] employ online machine learning to optimize throughput
of their concurrent operations. STAPL [34] is a parallel version
of STL that uses an adaptive runtime. Unlike MEMODYN, these
libraries preserve semantics of corresponding sequential data struc-
tures. Moreover, MEMODYN’s adaptation is based on application
level performance metrics (search progress) and aimed at optimiz-
ing overall performance and not only to improve data structure
throughput.

Data structures with weak semantics. Chakrabarti et al. [8]
present distributed data structures with weak semantics for use
within a parallel symbolic algebra application. Compared to MEMO-
Dyn, these data structures require programmers to explicitly coordi-
nate data transfers, and their semantics enforces eventual reconcilia-
tion of mutated data across all parallel workers. WeakHashMap [13]
has weak semantics, but unlike MEMODYN it only supports strong
deletion and requires manual synchronization and concurrency con-
trol. Relaxed data structure synchronization [4, 35, 36, 38] allows
races as long as program output is statistically accurate. MEMoO-
DyN’s sparse sharing provides a form of relaxed synchronization,
but is data-race free and adapts to runtime behavior. Cledat et
al. [10] leverage the programmer’s knowledge about the disjointed-
ness of data access footprints of various computations to parallelize

4Apart from minisat, manual parallelizations for ga, qmaxsat, ubgp either do not
exist or are not available online. The manual parallelization of bobcat implements
Privatization and hence omitted.
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applications. By contrast, MEMODYN explicitly deals with the se-
mantics of access to shared state to enable better parallelization of
applications.

Memory consistency models. Various semantics for weakly consis-
tent memory models have been explored at the language [6, 25, 32]
and hardware level [1, 2, 12, 16, 40] A memory model depicts the
order in which read/write operations to memory locations appear
to execute, and addresses the question: “What value can a read of a
memory location return?”. By contrast, MEMODYN is concerned with
the order and the semantics of high-level data structure operations,
and addresses “What values can a data structure query return?”. A
concurrent implementation of weakly consistent data structures
can be achieved on systems implementing a sequential or weak
consistency memory model, with correct data structure semantics
ensured by appropriate use of low level atomics. In the current
MEmoDYN implementation, this is realized via the use of pthreads
locking primitives.

Compiler and runtime support for application adaptation.
Adve et al. [3] propose compiler and runtime support for adap-
tation of distributed applications. In their system, a programmer
explicitly parallelizes programs, selects parameters, and inserts
calls for tuning at profitable program points. Active Harmony [43]
provides an API to specify optimization metrics and to expose pa-
rameters that a runtime monitors for online optimization. Rinard
et al. [39] present a parallelizing compiler that performs adaptive
runtime replication of data objects to minimize synchronization
overhead. Parcae [33] is an automatic system for platform-wide
dynamic tuning. In comparison, MEMODYN exploits the weak con-
sistency semantics of data structures to optimize parallel runtime
configuration by automatically selecting and tuning parameters.

8 Conclusion

This paper presented MEMODYN, a framework for parallelizing
search loops with auxiliary data structures that have weak con-
sistency semantics. MEMODYN provides language extensions for
expressing weak semantics, and a compiler-runtime system that
leverages weak semantics for parallelization and adaptive runtime
optimization. Evaluation on eight cores shows that MEMODYN ob-
tains a geomean speedup of 3x on four programs over sequential
execution, and an 11% improvement in solution quality of a fifth
program having fixed execution time, compared to 1.8x and 7.2%
respectively for the best non-MEMoDYN semantic parallelization.
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