
Architectural Support
for Containment-based Security

Hansen Zhang∗

Princeton University

Soumyadeep Ghosh∗2

Princeton University

Jordan Fix3

Princeton University

Sotiris Apostolakis
Princeton University

Stephen R. Beard
Princeton University

Nayana P. Nagendra
Princeton University

Taewook Oh3

Princeton University

David I. August
Princeton University

Abstract

Software security techniques rely on correct execution by

the hardware. Securing hardware components has been chal-

lenging due to their complexity and the proportionate attack

surface they present during their design, manufacture, de-

ployment, and operation. Recognizing that external commu-

nication represents one of the greatest threats to a system’s

security, this paper introduces the TrustGuard containment

architecture. TrustGuard contains malicious and erroneous

behavior using a relatively simple and pluggable gatekeeping

hardware component called the Sentry. The Sentry bridges a

physical gap between the untrusted system and its external

interfaces. TrustGuard allows only communication that re-

sults from the correct execution of trusted software, thereby

preventing the ill effects of actions by malicious hardware or

software from leaving the system. The simplicity and plug-

gability of the Sentry, which is implemented in less than

half the lines of code of a simple in-order processor, enables

additional measures to secure this root of trust, including for-

mal verification, supervised manufacture, and supply chain

diversification with less than a 15% impact on performance.

CCS Concepts · Security and privacy→Hardware se-

curity implementation.

Keywords hardware security, containment, pluggable

∗These authors contributed equally to this research.
2Work done at Princeton University. At Barefoot Networks at time of

publication.
3Work done at Princeton University. At Facebook at time of publication.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

ASPLOS ’19, April 13ś17, 2019, Providence, RI, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6240-5/19/04. . . $15.00

https://doi.org/10.1145/3297858.3304020

ACM Reference Format:

Hansen Zhang, Soumyadeep Ghosh, Jordan Fix, Sotiris Apostolakis,

Stephen R. Beard, Nayana P. Nagendra, Taewook Oh, and David I.

August. 2019. Architectural Support for Containment-based Secu-

rity. In 2019 Architectural Support for Programming Languages and

Operating Systems (ASPLOS ’19), April 13ś17, 2019, Providence, RI,

USA. ACM, New York, NY, USA, 17 pages. https://doi.org/10.1145/

3297858.3304020

1 Introduction

Users may believe their systems are secure if they run only

trusted software; however, trusted software is only as trust-

worthy as the underlying hardware. Even if users run only

trusted software, attackers can gain unauthorized access to

sensitive data by exploiting hardware errors or by using

backdoors inserted at any point during design, manufac-

ture, or deployment [12, 24, 39, 97, 98, 103]. For example,

Biham et al. have demonstrated a devastating attack on the

RSA cryptosystem that builds on a multiplication bug that

computes the wrong product for only a single pair of 64-bit

integers [17]. An attacker can use knowledge of this pair

to break any key used in any RSA-based software running

on any device whose processor has this bug using a single

chosen message [17, 79].

Due to the complexity of designing and manufacturing

hardware, architects and manufacturers have limited confi-

dence that their systems have not been alteredmaliciously [20,

45, 52]. This confidence is further undermined by the fact

that building a computer system often involves different

parties across several important stages, from the initial spec-

ification all the way to fabrication. For example, manufac-

turing may be outsourced for economic reasons to com-

panies operating under the jurisdiction of foreign govern-

ments [12]. Additionally, many hardware components may

include intellectual property restrictions that prevent con-

cerned parties from ensuring their correctness and security.

Although prior techniques attempt to ensure hardware in-

tegrity during design, manufacture, and deployment, they

either do not protect against attacks in all of these stages

or are limited in the types of hardware components cov-

ered [2, 20, 23, 40, 44, 45, 54, 65, 66, 76, 77, 106].

Session: Security I ASPLOS’19, April 13–17, 2019, Providence, RI, USA

361

Given the difficulty in securing hardware, solutions that

protect complex computing systems using a single secure

hardware component are attractive. A promising class of

techniques uses this approach to secure systems by trusting

only the processor [25, 86]. Unfortunately, the only proces-

sors that have been secured with formal methods are simple

and low performance [20, 58, 64, 83]. Generally, processor

designers have focused on performance over security. For

example, aggressive optimizations (e.g., out-of-order execu-

tion) improve processor performance at the cost of design

complexity. The complexity of processors with reasonable

performance makes their verification far beyond the capa-

bilities of state-of-the-art formal methods [45, 52, 68, 93].

Further, backdoor detection does not scale to complex hard-

ware components such as processors with reasonable per-

formance [1, 39, 44, 84, 89, 97ś99, 109, 110]. Thus, securing

a system using a single secure hardware component means

securing a system with a single simple hardware component.

Single simple hardware components have successfully

provided systems with limited security guarantees. For ex-

ample, the Trusted Platform Module (TPM) provides secure

cryptographic functions and hardware authentication (e.g.,

a processor manufactured by a known supplier) [37, 48, 92].

Thus, while TPM can serve as the root of trust, it relies on the

assumption that a verified identity is sufficient for security.

However, as described above, authenticated provenance of a

hardware component does not ensure that it is secure.

This paper introduces a method to provide a stronger

set of security guarantees for a complex system with only

a single simple hardware component. This method builds

on three key insights. First, checking that a computation is

correct can be much simpler than performing the computa-

tion. Second, irreparable harm generally involves maliciously

or erroneously constructed external communication. Third,

checking the correctness of external communication is more

practical than checking all state changes within the system.

This paper presents TrustGuard, a proof-of-concept ar-

chitecture that enables the detection and containment of

malicious behavior by untrusted components before results

are externally visible. At the core of TrustGuard is the Sentry,

a single simple component dedicated to security. The Sen-

try’s simplicity and open design make it amenable to formal

verification and allow it to serve as the basis of trust used to

secure a system. In TrustGuard, the Sentry is the only path

between the system and its external interfaces. Untrusted

components must prove to the Sentry that any data sent

externally is the result of correct execution of trusted and

signed software.1 This allows the Sentry to containmalicious

behavior by untrusted hardware and software. While con-

tainment does not provide availability guarantees, it assures

users that all output is only the result of verified execution.

1The correctness of signed software is orthogonal to the problem addressed

by this paper. Extensions of this work can help secure software (§9).

The feasibility of containment-based security depends

upon the simplicity of the trusted components and its im-

pact on system performance. While the form of containment

may change for different types of architectures, this work es-

tablishes the feasibility of containment-based security with a

TrustGuard prototype protecting a system with a single-core

processor. The key insight is that the untrusted processor

and memory can do almost all of the work, including acting

as control for the Sentry, and hold almost all of the state

without compromising any containment guarantees.

The Sentry cannot independently execute programs. In-

stead, it relies on information sent by the processor to check

program execution. Thus, the Sentry avoids much of the com-

plexity of aggressive processor optimizations. The Sentry

detects any erroneous or malicious behavior by untrusted

components without trusting any information sent by the

processor. TrustGuard checks the execution information sent

by the processor using a combination of functional unit

re-execution (§5.1) and a cryptographic memory integrity

scheme (§5.3). The functional unit re-execution is similar to

DIVA [9], which adds a checker pipeline stage to the proces-

sor to provide reliability guarantees (§3).

The execution information sent by the processor removes

dependences between instructions and allows the Sentry to

efficiently check the correctness of instructions in parallel

(§5.2). In fact, doing so enables the Sentry to offer contain-

ment while operating at clock frequencies much lower than

the frequency of the untrusted processor with minimal im-

pact to system performance.

In summary, the contributions of this paper are:

• The containment model, a model in which a single sim-

ple, trusted hardware element, the Sentry, quarantines

the malicious effects of untrusted components;

• TrustGuard, a proof-of-concept design (§5) that shows

the viability of the Sentry in terms of performance

(§7.1), energy (ğ7.4), and design complexity (§8); and

• A characterization of the threat model and security

assurances provided by TrustGuard (§2 and §6).

2 Motivation

Today, users must take on faith that their hardware and

software providers have built a system that will not betray

them to malicious parties. While significant research has

focused on securing the software stack, all such techniques

rely on correct execution by the hardware. This means that

hardware threats, found both in theory and in practice, can

bypass any software security guarantees. Thus, a system is

only as trustworthy as the underlying hardware.

2.1 Hardware Threats

One class of hardware threats come from malicious hard-

ware backdoors inserted into the processor during design

Session: Security I ASPLOS’19, April 13–17, 2019, Providence, RI, USA

362

or fabrication stages. The Illinois Malicious Processors con-

tain shadow circuitry inserted at the design phase to enable

privilege escalation, backdoor login, and password theft [47].

Becker et al. demonstrated how a hardware Trojan inserted

during manufacture could compromise Intel’s cryptographi-

cally secure Random Number Generator [15].

The problem does not end with malicious hardware modi-

fication. Inadvertent bugs within hardware components like

functional units, coprocessors, memory, or on-chip networks

also pose security threats to the system. For example, as

stated in §1, a correctness bug can be exploited to weaken

encryption and lead to leakage of sensitive data [17].

Memory-related bugs are also a threat. Kim et al. showed,

in an attack called Rowhammer, that repeated accesses to

an address can cause data corruption in nearby addresses in

DRAM modules from three major manufacturers [46]. After

the discovery of Rowhammer, Google’s Project Zero team

developed two proof-of-concept exploits of this vulnerabil-

ity [78]. These exploits achieved privilege escalation and

underlined the security implications of such hardware bugs.

There are also threats that exploit performance-enhancing

features in the processor. For example, Meltdown [57] and

Spectre [50] extract information across protection bound-

aries.

TrustGuard focuses on preventing any harmful effects of

incorrect output in the face of all hardware threats men-

tioned above (§6). In general, TrustGuard can protect against

incorrect program output caused by hardware Trojans, bugs,

and other hardware security vulnerabilities (known and not-

yet-known). The Sentry even detects the results of internal

side-channel exploits, such as Meltdown and Spectre, if and

when they influence the output of the system.

2.2 Threat Model

TrustGuard ensures that all output from the system is only

the result of correctly executed signed software. The Sentry

allows only such output to pass while blocking all other

output. Thus, the output of non-signed software, such as

malware, is not permitted to pass through the Sentry. The

Sentry also prevents any errors in the execution of signed

software caused by malicious interference or system errors

from leaving the system.

TrustGuard does not provide any guarantees about avail-

ability or internal correctness of a system. Rather than pre-

venting hardware and software from maliciously or incor-

rectly altering the computation of results, TrustGuard instead

prevents any such interference from escaping the system via

explicit external communication. TrustGuard considers all

hardware components in the system other than the Sentryś

including processor, memory, and peripheralsśas untrusted

and vulnerable to compromise.

TrustGuard does not protect against communication chan-

nels out of the system other than through the Sentry. Trust-

Guard does not protect against information leaked through

the Sentry via covert channels or side channels (e.g., encod-

ing of sensitive information in an energy usage pattern, long

duration timing encodings, implicit information leaked by

failures). Moreover, malicious adversaries are assumed not

to have physical access to the Sentry nor the physical gap.

TrustGuard does not give any guarantees about vulnerabil-

ities (or a lack thereof) in the signed software itself. The Sen-

try ensures that all output from the system is only the result

of correctly executed signed software. The Sentry prevents

results from the execution of unsigned software, including

malicious interference with signed software, from being com-

municated externally. (See §9 for further discussion about

extending this work to cover software vulnerabilities.)

3 Background

This section introduces various existing proposals, each of

which possesses some desirable properties for providing a

basis of trust in a complex system.

Redundant Execution for Security and Reliability.

One traditional approach to building trustworthy systems

from untrustworthy components employs redundant execu-

tion [11, 14]. In this approach, several untrustworthy com-

ponents redundantly perform computation, and the system

uses majority voting to detect erroneous behavior. Design

diversity of redundant components makes a hardware bug

or backdoor escaping detection less likely. However, the cost

of creating such a system is quite high, making it attractive

only for high-assurance and high-security systems, such as

aircraft and military systems.

The redundant execution approach has also been used to

build systems resilient to transient faults [6ś10, 26, 36, 60, 62,

69, 70, 74, 81, 82, 87, 100, 102, 104, 112, 114]. DIVA [9] showed

that it is possible to build a simple, redundant checker to

detect errors in a processor’s functional units and its com-

munication channels with the register file and data cache.

While the introduction of a simple checker presents a

promising approach, DIVA was not designed for and is not

trivially extended to security. Architecturally, DIVA’s checker

is embedded in the processor’s commit path, and thus both

the checker and processor must be manufactured jointly.

This makes the checker vulnerable to malicious changes dur-

ing the processor’s manufacturing. DIVA also relies on the

processor to correctly communicate trace information to the

checker. Consequently, the checker cannot tell if the instruc-

tion execution stream it receives is modified, for example by

insertion or modification of instructions.

Additionally, DIVA does not provide any protections for

memory and register files. It instead relies on ECC to detect

any transient faults that may occur in these modules. This

is obviously insufficient for security. Finally, simply moving

DIVA off-chip is not a straightforward process, as there are

many issues to consider, including the potentially high off-

chip bandwidth required between the processor and checker.

Session: Security I ASPLOS’19, April 13–17, 2019, Providence, RI, USA

363

and MACs in the Merkle tree nodes are likely already avail-

able in the processor’s (and therefore also the Sentry’s) L1

caches due to memory locality and adjacent placement of

counters and MACs. These effects further reduce the com-

munication bandwidth between the processor and Sentry.

Cache Checking Unit (CCU). Since the cache in the

Sentry is trusted, each access to the Sentry’s cache does not

need to be verified by cryptographic operations, work which

would dramatically reduce the performance of the system.

Instead, only cache line insertion and eviction require cryp-

tographic operations.

The CCU validates the integrity of inserted cache lines.

Upon receiving new data or instruction cache lines from

the processor, the Sentry speculatively stores the new cache

line in the data or instruction cache marked as unchecked,

allowing for the RICU to proceed with instruction checking

without waiting for integrity to be verified. The Pending

Output Buffer (§5.5) holds all subsequent output instructions

until this speculative assumption is confirmed correct.

Next, the CCU re-computes the MACs for the cache lines

using the data received and the counter values that were ei-

ther already cached or received. It then checks the calculated

MAC against the one reported by the processor. Similarly, if

the delivered cache line contains counters, the Sentry must

also check the MACs of the counters (IM1
i
nodes in Figure 4),

as well as all the intermediate Merkle tree nodes toward the

root until a cached ancestor is found or the root node stored

on the Sentry is reached. Once verification is complete, a

confirmation signal is sent to the Pending Output Buffer

(§ 5.5) to alert speculative output operations that they are

no longer dependent on this instance of speculation.

The CCU updates the shadow memory state for evicted

cache lines. Whenever a dirty data cache line is evicted from

the Sentry’s cache, the CCU increments counters, creates

new MACs, and sends this new shadow memory state to the

processor to be stored back to memory.

5.4 Link Compression

To reduce the communication between the processor and

the Sentry, TrustGuard uses a hybrid of Significance-Width

Compression (SWC) and Frequent Value Encoding (FVE) [90].

As the compression and decompression do not need to be

trusted, it adds no complexity to the trusted logic of the

Sentry.

5.5 Discussion of Other Issues

Program Loading The TrustGuard architecture requires

programs to be signed by a trusted authority to communi-

cate externally. To ensure the correct execution of signed

programs, the Sentry contains a trusted program loader, sim-

ilar to systems in previous software integrity work [34, 49].

Upon creating the Sentry, the manufacturer will generate

the Sentry’s secret key and the Merkle Tree metadata for

the trusted program loader. The root of this tree will then

be fused into a private static register on the Sentry. Upon

initialization, the Sentry will load this value into the Merkle

Tree root register to verify the trusted program loader. The

Sentry checks the trusted program loader. In turn, the trusted

program loader verifies the signatures of trusted programs as

it loads them and their metadata into memory before starting

their execution.

Interaction with Peripherals As shown in Figure 2, the

Sentry resides physically between the untrusted processor

and the peripherals. The Sentry prevents the results of un-

verified instructions from communicating to the peripherals

via the Pending Output Buffer (POB). In TrustGuard, all I/O is

the result of explicit I/O instruction execution. Only values

that have been verified as correct by the RICU are stored in

the POB. However, these checked output operations may be

dependent on a cache line that is in the process of having

its integrity checked, as described in §5.3. Therefore, the

POB confirms that all speculatively filled cache lines that the

output is dependent upon have been verified before allowing

the output to proceed to a peripheral. Direct memory access

(DMA) is compatible with containment-based security, but

DMA is not implemented in this proof-of-concept.

Changes to Processor Design The nature of the inter-

action between the untrusted processor and the Sentry in

TrustGuard requires several modifications to be made to the

design of the untrusted processor. The processor and the

Sentry must support the same ISA as TrustGuard defines

correctness of instructions with respect to the ISA specifica-

tions. They must also have the same number of architectural

registers. The untrusted processor must also support loading

and storing of MACs, counters, and Merkle tree nodes from

and to cache lines and memory. The processor additionally

must send a trace of its execution information (cache lines,

results, shadow memory accesses, and the processor’s condi-

tion flags) to the Sentry. This communication is synchronized

through the addition of two buffers to the processor’s design:

one ExecInfo buffer for the outgoing communication to the

Sentry, and the other for shadow memory values received

from the Sentry.

6 Attack Scenarios

To evaluate its containment capabilities, we modeled Trust-

Guard in the gem5 simulator [18] and implemented the fol-

lowing attack scenarios.

Incorrect Arithmetic Instruction Execution. These

attacks involve the untrusted processor manipulating an

arithmetic instruction’s execution. In particular, we imple-

mented the following cases: (1) Incorrect execution of arith-

metic instruction, e.g., the multiplier bug compromising

RSA [17]; (2) Modification of values in the register file. In

the example from Figure 5, if the untrusted processor ma-

nipulates the result of r1 = r2 * r1 to be any other value

than 0x6000, the Sentry’s Redundant Instruction Checking

Session: Security I ASPLOS’19, April 13–17, 2019, Providence, RI, USA

367

Feature Parameter

Architecture ARMv7 32-bit 2GHz Processor

Processor Commit Width 8 instructions/cycle

L1 I-Cache 4-way set associative,

64KB, 64B cache line

L1 D-Cache 4-way set associative,

64KB, 64B cache line

L2 Cache 16-way set associative,

16MB, 12 cycle hit latency

Off-chip latency 100 CPU cycles

Off-chip bandwidth 16 GB/s

MAC Function HMAC with MD5

Table 1. Architectural parameters for simulation

additional SPECFP benchmarks: 450.soplex, 453.povray, and

470.lbm, as well as cryptographic operations from OpenSSL

(AES & RSA encryption/decryption). For programs with

short execution times ś 445.gobmk, 450.soplex, 462.libquan-

tum, and OpenSSL ś we simulate whole programs. For all

other benchmarks, we sample five random simulation check-

points. For each checkpoint, benchmarks run in the simula-

tion for 25 million instructions to warm up the microarchitec-

tural state prior to a cycle-accurate simulation for 200 million

instructions to collect performance data. For each experi-

ment, the baseline is the out-of-order, superscalar processor-

based system without any TrustGuard modifications (OoO

only).

7.1 Performance of TrustGuard

Two factors impact the IPC of the untrusted processor in

TrustGuard. The first factor is the increased cache and mem-

ory pressure from additional Merkle tree accesses. On av-

erage, the benchmarks performed 31.3% more accesses to

memory. The second factor is the introduction of two new

kinds of stalls in the untrusted processor: (1) Slow Sentry

Stalls, due to the Sentry’s inability to check instructions as

fast as execution by the processor; and (2) Bandwidth Stalls,

where the Sentry is kept waiting for execution information

due to bandwidth limitations on the channel to the processor.

To demonstrate the performance implications of Trust-

Guard, we evaluated the effects of various design parameters,

such as the RICU width (Figure 6), frequency of the proces-

sor and the Sentry (Figure 8), and the bandwidth between

the processor and the Sentry (Figure 10), on the IPC of the

untrusted processor.

Sentry Parallelism. Figure 6 shows the effect of varying

the number of instructions checked in parallel by the Sentry

(RICU width) on the IPC of the untrusted processor. The

geomean decline in IPC for RICU widths of 2, 4, 6, and 8

was 41.6%, 16.8%, 15.4%, and 15.2% respectively. The higher

RICU width resulted in higher checking throughput on the

Sentry, leading to improved performance. This is borne out

by the decrease in the number of Slow Sentry Stalls as the

RICU width increases (Figure 7). The average percentage

of Slow Sentry Stalls experienced was 30.76%, 2.13%, 0.30%,

 0

 0.5

 1

 1.5

 2

401.bzip2

429.mcf

445.gobmk

456.hmmer

458.sjeng

462.libquantum

464.h264ref

471.omnetpp

IN
T G

eom
ean

450.soplex

453.povray

470.lbm

FP G
eom

ean

AES Encrypt

AES Decrypt

RSA Encrypt

RSA Decrypt

G
eom

ean

P
ro

ce
ss

o
r

IP
C

OoO only
RICU Width 2

RICU Width 4
RICU Width 6

RICU Width 8

Figure 6. IPC while varying the Sentry’s RICU widths (Pro-

cessor Frequency=2GHz, Sentry Frequency=1GHz, Band-

width=16GB/s).

 0%

 5%

 10%

 15%

 20%

 25%

 30%

 35%

 40%

 45%

 50%

2468 2468 2468 2468 2468 2468 2468 2468 2468 2468 2468 2468 2468 2468 2468

P
er

ce
n
ta

g
e

o
f

ex
ec

u
ti

o
n
 c

y
cl

es

401.bzip2

429.mcf

445.gobmk

456.hmmer

458.sjeng

462.libquantum

464.h264ref

471.omnetpp

450.soplex

453.povray

470.lbm

AES Encrypt

AES Decrypt

RSA Encrypt

RSA Decrypt

Slow Sentry Stalls

Bandwidth Stalls

Figure 7. Stalls induced by the Sentry while varying the

Sentry’s RICU widths (same configuration as Figure 6). X-

axis labels indicate the RICU widths.

and 0.05% respectively for RICU widths of 2, 4, 6, and 8. The

effect of increasing the RICU width was especially visible

for benchmarks with higher baseline IPCs. For example, for

456.hmmer, going from RICU width 2 to 4 reduced the per-

centage of Slow Sentry cycles from 49.29% to 9.12%.

 0

 0.5

 1

 1.5

 2

401.bzip2

429.mcf

445.gobmk

456.hmmer

458.sjeng

462.libquantum

464.h264ref

471.omnetpp

IN
T G

eom
ean

450.soplex

453.povray

470.lbm

FP G
eom

ean

AES Encrypt

AES Decrypt

RSA Encrypt

RSA Decrypt

G
eom

ean

P
ro

ce
ss

o
r

IP
C

OoO only
2GHz / 500MHz

2GHz / 1GHz
4GHz / 1GHz

4GHz / 2GHz

Figure 8. IPC while varying the Processor/Sentry frequency

(RICU width=8, Bandwidth=16GB/s).

Processor/Sentry Clock Frequency. One of the main

insights behind TrustGuard is that a Sentry running at lower

clock frequency can verify the execution of instructions by

Session: Security I ASPLOS’19, April 13–17, 2019, Providence, RI, USA

369

 0%

 5%

 10%

 15%

 20%

 25%

 30%

 35%

 40%

 45%

1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234

P
er

ce
n
ta

g
e

o
f

ex
ec

u
ti

o
n
 c

y
cl

es

401.bzip2

429.mcf

445.gobmk

456.hmmer

458.sjeng

462.libquantum

464.h264ref

471.omnetpp

450.soplex

453.povray

470.lbm

AES Encrypt

AES Decrypt

RSA Encrypt

RSA Decrypt

Slow Sentry Stalls

Bandwidth Stalls

Figure 9. Stalls induced by the Sentry while varying the

frequencies (same configuration as Figure 8). X-axis labels

indicate the Processor/Sentry frequency: 1=2GHz/500MHz,

2=2GHz/1GHz, 3=4GHz/1GHz, 4=4GHz/2GHz.

the untrusted processor without impacting its performance

too adversely. Figure 8 shows the effect of varying the clock

frequency at which the processor and the Sentry operates.

The Sentry’s throughput increased at higher Sentry to pro-

cessor frequency ratio, leading to better performance. Com-

pared to the baseline, the 15 benchmarks showed a geomean

IPC reduction of 18.3% at 2GHz Processor & 500MHz Sentry,

15.2% at 2GHz / 1GHz, 30.2% at 4GHz / 1GHz, and 27.9% at

4GHz / 2GHz.

Figure 9 shows the number of bandwidth and slow Sen-

try stalls experienced by the processor while varying the

frequency of the processor and the Sentry. The average per-

centage of Slow Sentry Stalls reduced from 3.84% at 2GHz /

500MHz to 0.05% at 2GHz / 1GHz Sentry and from 3.28% at

4GHz / 1GHz Sentry to 0.04% at 4GHz / 2GHz.

 0

 0.5

 1

 1.5

 2

401.bzip2

429.mcf

445.gobmk

456.hmmer

458.sjeng

462.libquantum

464.h264ref

471.omnetpp

IN
T G

eom
ean

450.soplex

453.povray

470.lbm

FP G
eom

ean

AES Encrypt

AES Decrypt

RSA Encrypt

RSA Decrypt

G
eom

ean

P
ro

ce
ss

o
r

IP
C

OoO only 8 GB/s 16 GB/s 32 GB/s

Figure 10. IPC while varying the bandwidth (Processor Fre-

quency=2GHz, RICU width=8, Sentry Frequency=1GHz).

Bandwidth. As shown in Figure 7 and Figure 9, the av-

erage percentage of bandwidth stalls remains quite stable

because the communication depends on program character-

istics. Figure 10 shows the effect of varying bandwidth on the

IPC of the untrusted processor, while Figure 11 presents the

percentage of Slow Sentry and Bandwidth Stalls incurred for

the resulting configurations. The geomean IPC decline was

27.9% at 8GB/s, 15.2% at 16GB/s and 14.2% at 32GB/s. The

 0%

 5%

 10%

 15%

 20%

 25%

 30%

 35%

 40%

 45%

123 123 123 123 123 123 123 123 123 123 123 123 123 123 123

P
er

ce
n
ta

g
e

o
f

ex
ec

u
ti

o
n
 c

y
cl

es

401.bzip2

429.mcf

445.gobmk

456.hmmer

458.sjeng

462.libquantum

464.h264ref

471.omnetpp

450.soplex

453.povray

470.lbm

AES Encrypt

AES Decrypt

RSA Encrypt

RSA Decrypt

Slow Sentry Stalls

Bandwidth Stalls

Figure 11. Stalls induced by the Sentry while varying the

bandwidth (same configuration as Figure 10). X-axis labels

indicate the bandwidth: 1=8GB/s, 2=16GB/s, 3=32GB/s.

corresponding average of the percentage of bandwidth stalls

was 17.36% at 8GB/s, 1.73% at 16GB/s, and 0.00% at 32GB/s.

With cache mirroring, the processor need not send cache

data to the Sentry on L1 cache hits. Therefore, programs

with greater cache locality will save on communication. For

example, at 16GB/s, 445.gobmk with an L1 data cache hit rate

of 83.5% incurred bandwidth stalls for 10.57% of execution

cycles. By contrast, 456.hmmer with 98.7% data cache hit

rate incurred bandwidth stalls for only 0.004% of execution

cycles.

7.2 Link Utilization

When the processor-Sentry link is 16GB/s, the geomean

bandwidth usage across the eleven benchmarks is 9.2GB/s.

The highest usage is in 445.gobmk (12.4GB/s) while the low-

est is in 471.omnetpp (4.84GB/s). As for instantaneous band-

widths (bandwidth used in a particular cycle), 445.gobmk

uses more than 12GB/s of instantaneous bandwidth for 75%

of execution cycles while benchmarks like 471.omnetpp and

458.sjeng use less than 4GB/s for more than 60% of execution

cycles.

7.3 Instruction Verification Latency

 0

 100

 200

 300

 400

 500

401.bzip2

429.mcf

445.gobmk

456.hmmer

458.sjeng

462.libquantum

464.h264ref

471.omnetpp

IN
T G

eom
ean

450.soplex

453.povray

470.lbm

FP G
eom

ean

AES Encrypt

AES Decrypt

RSA Encrypt

RSA Decrypt

G
eom

ean

A
v
er

ag
e

D
el

ay
(#

P
ro

ce
ss

o
r

C
y
cl

es
)

500MHz+RICU Width 8

1GHz+RICU Width 4

1GHz+RICU Width 8

Figure 12. Average latency between committing of an in-

struction in the processor and its checking by the Sentry

(Processor Frequency=2GHz, Bandwidth=16GB/s).

Session: Security I ASPLOS’19, April 13–17, 2019, Providence, RI, USA

370

Output operations in TrustGuard cannot proceed until the

Sentry verifies them. Figure 12 shows the average latency for

each instruction from when untrusted processor commits

it to when the Sentry verifies it. This metric is the average

output operation delay. With increased Sentry parallelism

and frequency, the throughput of checking increases, which

results in a decline in the average latency. The geomean

average latency for each instruction is 155 processor cycles

(77.5ns) at 500MHz and RICU width 8, 137 processor cycles

(68.5ns) at 1GHz and RICU width 4, and 112 processor cycles

(56ns) at 1GHz and RICUwidth 8. Note that every instruction

incurs a latency of at least 100 processor cycles (the latency

of off-chip communication).

There is a clear difference between the SPECINT and

SPECFP benchmarks. At 1GHz and RICU width 4, SPECINT

has a geomean latency of 123 CPU cycles (61.5ns), while

SPECFP has a geomean latency of 220 CPU cycles (110ns).

SPECFP’s higher latency comes from the higher latency of

floating point operations compared to integer operations,

which is magnified by the fact the Sentry runs at half the

frequency of the untrusted processor.

7.4 Energy

 0

 50

 100

 150

 200

 250

 300

401.bzip2

429.mcf

445.gobmk

456.hmmer

458.sjeng

462.libquantum

464.h264ref

471.omnetpp

IN
T G

eom
ean

450.soplex

453.povray

470.lbm

FP G
eom

ean

AES Encrypt

AES Decrypt

RSA Encrypt

RSA Decrypt

G
eom

ean

N
o
rm

al
iz

ed
 E

n
er

g
y

Processor Link Sentry

Figure 13. TrustGuard’s energy usage. Processor Fre-

quency=2GHz, RICU Width=8, Sentry Frequency=1GHz,

Bandwidth=16GB/s

We used McPAT v1.2 [55] to model the energy of the

TrustGuard processor and Sentry using execution statistics

from the performance simulation. Power for the MAC en-

gines was estimated using an HMAC-MD5 accelerator [101],

adapted to our design using technology scaling. Figure 13

shows the energy consumption of TrustGuard, normalized

to the energy consumption of the baseline untrusted pro-

cessor. The geomean energy consumption for TrustGuard

was 41.0% greater than the baseline, while instantaneous

power was 16.0% greater than the baseline. The untrusted

processor in TrustGuard showed a geomean 13.0% higher

energy consumption than the baseline processor. The ge-

omean energy consumption of the Sentry itself is 19.9% of

the energy consumption of the baseline processor, which

is significantly lower than the 100+% increase that would

come from a second redundant processor. The main factors

for Sentry’s lower energy consumption compared to the un-

trusted processor are its lower frequency, the absence of an

L2 cache, and the absence of the OoO support structures.

Furthermore, the linkśmodeled as a PCIe interconnect [88]

consumes a geomean 8.0% of the energy of the untrusted

processor. 429.mcf saw a large energy overhead due to its

memory intensive nature and, the majority of the overhead

comes from the Merkle tree accesses and hash computations.

8 Simplicity of the Sentry

Only the Sentry must be secured to ensure containment of

the entire system. The simpler the Sentry, the more confi-

dence there will be in its containment guarantees. To eval-

uate the design complexity of the Sentry, we use the obser-

vation by Bazeghi et al. [13] that lines of HDL code serve

as a good approximation of a design’s complexity. For this

purpose, we built an FPGA prototype of the Sentry support-

ing the RISC-V user-level ISA [71]. We chose RISC-V due to

the unavailability of a full, open-source ARM processor. We

synthesized the Sentry design onto a NetFPGA SUME FPGA

Board using Xilinx Vivado 17.2.

Table 2 shows the lines of code (LoC) our prototype Sentry,

along with the reported size of various open-source proces-

sors. The Sentry’s design complexity compares favorably

to in-order processors, some of which have been formally

verified [20, 58, 64, 83]. Table 2 shows that the Sentry pro-

totype’s LoC is an order of magnitude less than that of the

out-of-order (OoO) processors. Concerning area, we found

that a single-core BOOM configuration uses ∼4× the number

of LUTs and ∼3× the number of flip-flops compared to the

Sentry [71].

The Sentry is simpler than the processor in many ways. It

lacks both cache and memory controllers. Functional unit re-

execution in the Sentry is simpler than instruction execution

in a processor. The Sentry does not include out-of-order exe-

cution, branch predictors, memory dependence predictors,

register renaming units, dispatch units, reorder buffers, mul-

tiple cache levels, load/store queues, inter-stage forwarding

logic, bypass networks, memory control, and misspeculation

recovery support. Note that most of these components op-

timize overall performance rather than perform the actual

execution of instructions. The Sentry is incapable of initiat-

ing instruction execution on its own. Instead, it relies on the

processor to direct its work.

The cache checking unit (CCU) and parallel checking are

optimizations to the Sentry worth the added complexity. The

size and design complexity of the MAC engines in the CCU

is comparable to other functional units already present on

both the processor and the Sentry, and MAC engines have

been formally verified [91]. The processor performs much

of the Merkle tree and cache control logic for the Sentry,

Session: Security I ASPLOS’19, April 13–17, 2019, Providence, RI, USA

371

Processor Leon3 [13] PUMA [13] IVM [13] BOOM [71] Sentry

Description In-Order OoO no FP OoO no FP OoO This Work

Language VHDL Verilog Verilog Chisel Verilog

Lines of

Code (LoC)

for various

components

Pipeline 2814 Fetch 1490 Fetch 4972 Fetch 1974 OR 425

Memory 4456 Decode 3416 Decode 963 Decode 650 VG 392

ROB 913 Rename 2519 ROB 709 CH 60

Execute 9613 Issue 2704 Rename 456 CCU 1030

Memory 2251 Execute 4083 Issue 356 FPU 1636

Retire 2278 Execute 3898

Memory 5308 Memory 7407

Total 7270 Total 17683 Total 22827 Total 15450 Total 3543

Table 2. Comparison of implementation complexities in terms of lines of code (LoC) of various open-source processor designs

against that of the Sentry prototype. Note: Processor proof of correctness would not secure memory nor program integrity.

thus further reducing the Sentry’s complexity (§5.3). Parallel

checking requires relatively simple forwarding logic between

functional units compared to pipeline forwarding in OoO

engines.

9 Conclusion and Future Work

This paper proved the viability of the containment-based

security approach. The TrustGuard proof-of-concept imple-

mentation showed that a separate, simple Sentry can validate

the execution of a processor with less than 15% geomean

impact on performance. These results motivate further ex-

ploration of containment-based security techniques, tools,

and implementations.

Programmer-Enabled Selective Checking Not all of a

trusted program needs to be validated by the Sentry to ensure

the correctness of external communication. For example, the

Sentry does not need to check the execution of any program

that does not produce external communication.

Prior work has shown that a small piece of trusted

code can be used to validate the result of a large pro-

gram [53, 63, 111, 113]. This has inspired the exploration

of a Sentry programming model, where the validation code

is used to validate the execution of untrusted parts of the

program and the Sentry checks the validation code itself.

The creation of such a Sentry programming model would

allow programmers, perhaps with the help of tools, to divide

their programs into trusted and untrusted regions or to cre-

ate checking code to validate results produced by untrusted

code prior to output. Initial exploration has shown that SAT

solvers [61], filesystems [35], databases [67, 111, 113], and

iterative algorithms [80] are good candidates for applying

such selective checking mechanism to improve performance.

Multicore Support A natural next step of any single-core

feature is the extension to multicore. There are many ways

to support multicore, and we leave the exploration of that

space, for now, as work inspired by the success reported in

this paper. This space includes supporting multicore with a

Sentry per core. This method would increase the required

bandwidth between the processor and the Sentries to the

point of infeasibility. Since the Sentries would likely need to

be placed on the same die, the threat model of the system

will change.

Another possibility is to use selective checking to sup-

port validation of multithreaded programs, where trusted

code running on a single thread can validate the result of

a multithreaded program. Witness generating SAT solvers

provide an example for such a system. Such SAT solvers pro-

duce a witness that is validated by a verifier [61]. A single

threaded verifier, checked by the Sentry, could ensure correct

output by checking the proof witness generated rapidly by

an untrusted multithreaded SAT solver.

Cache Policy and Sentry Independence The current L1

cache mirroring scheme works well to simplify the inter-

face between the processor and Sentry. It also reduces the

overhead of managing the Sentry’s cache. A processor-

independent Sentry is desirable for many reasons, including

portability and reusability, but would require decoupling the

cache designs. An independent cache design also creates new

optimization opportunities. For example, the processor could

serve as an oracle for the Sentry since it is typically hundreds

of instructions ahead. Thus, a more optimized design may,

without loss of correctness guarantees, replace the cache on

the Sentry with a scratchpad memory.

Acknowledgments

We thank the Liberty Research Group for their support and

feedback during this work. We also thank the anonymous

reviewers for their insightful comments and suggestions.

This material is based upon work supported by the National

Science Foundation under grant numbers CNS-1441650 and

CCF-1814654. Any opinions, findings, and conclusions or

recommendations expressed in this material are those of

the authors and do not necessarily reflect the views of the

National Science Foundation. A patent application related

to this work exists [5].

Session: Security I ASPLOS’19, April 13–17, 2019, Providence, RI, USA

372

References
[1] Dakshi Agrawal, Selcuk Baktir, Deniz Karakoyunlu, Pankaj Rohatgi,

and Berk Sunar. 2007. Trojan Detection Using IC Fingerprinting.

In Proceedings of the 2007 IEEE Symposium on Security and Privacy

(SP ’07). IEEE Computer Society, Washington, DC, USA, 296ś310.

https://doi.org/10.1109/SP.2007.36

[2] Aharon Aharon, Dave Goodman, Moshe Levinger, Yossi Lichtenstein,

Yossi Malka, Charlotte Metzger, Moshe Molcho, and Gil Shurek. 1995.

Test Program Generation for Functional Verification of PowerPC

Processors in IBM. In Proceedings of the 32Nd Annual ACM/IEEE

Design Automation Conference (DAC ’95). ACM, New York, NY, USA,

279ś285. https://doi.org/10.1145/217474.217542

[3] ANANDTECH.Com. 2018. Arm’s Cortex-A76 CPU Un-

veiled: Taking Aim at the Top for 7nm. Retrieved Janu-

ary 16, 2019 from https://www.anandtech.com/show/12785/

arm-cortex-a76-cpu-unveiled-7nm-powerhouse

[4] Arm.Com. 2009. Building a Secure System using Trust-

Zone Technology. Retrieved January 16, 2019 from http:

//infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/

PRD29-GENC-009492C_trustzone_security_whitepaper.pdf

[5] David I. August, Soumyadeep Ghosh, and Jordan Fix. 2015. "Trust

architecture and related methods", U.S. Provisional Pat. Ser. No.

15/518,681, Filed October 21, 2015.

[6] Todd Austin. 2000. DIVA: A Dynamic Approach to Microprocessor

Verification. Journal of Instruction-Level Parallelism 2 (2000), 2000.

[7] Todd Austin and Valeria Bertacco. 2005. Deployment of Better

Than Worst-Case Design: Solutions and Needs. In Proceedings of

the 2005 International Conference on Computer Design (ICCD ’05).

IEEE Computer Society, Washington, DC, USA, 550ś558. https:

//doi.org/10.1109/ICCD.2005.43

[8] Todd Austin, Valeria Bertacco, David Blaauw, and TrevorMudge. 2005.

Opportunities and Challenges for Better Than Worst-case Design.

In Proceedings of the 2005 Asia and South Pacific Design Automation

Conference (ASP-DAC ’05). ACM, New York, NY, USA, 2ś7. https:

//doi.org/10.1145/1120725.1120878

[9] Todd M. Austin. 1999. DIVA: A Reliable Substrate for Deep Sub-

micron Microarchitecture Design. In Proceedings of the 32Nd An-

nual ACM/IEEE International Symposium on Microarchitecture (MI-

CRO 32). IEEE Computer Society, Washington, DC, USA, 196ś207.

http://dl.acm.org/citation.cfm?id=320080.320111

[10] Todd M. Austin. 2004. Designing Robust Microarchitectures. In Pro-

ceedings of the 41st Annual Design Automation Conference (DAC ’04).

ACM, New York, NY, USA, 78ś78. https://doi.org/10.1145/996566.

996591

[11] A. Avizienis. 1985. The N-Version Approach to Fault-Tolerant

Software. IEEE Trans. Softw. Eng. 11, 12 (Dec. 1985), 1491ś1501.

https://doi.org/10.1109/TSE.1985.231893

[12] Mainak Banga and Michael S. Hsiao. 2008. A Region Based Approach

for the Identification of Hardware Trojans. In Proceedings of the 2008

IEEE International Workshop on Hardware-Oriented Security and Trust

(HST ’08). IEEE Computer Society, Washington, DC, USA, 40ś47.

https://doi.org/10.1109/HST.2008.4559047

[13] Cyrus Bazeghi, Francisco J. Mesa-Martinez, and Jose Renau. 2005.

uComplexity: Estimating Processor Design Effort. In Proceedings of

the 38th Annual IEEE/ACM International Symposium on Microarchi-

tecture (MICRO 38). IEEE Computer Society, Washington, DC, USA,

209ś218. https://doi.org/10.1109/MICRO.2005.37

[14] Mark Beaumont, Bradley Hopkins, and Tristan Newby. 2012. SAFER

PATH: Security Architecture Using Fragmented Execution and Repli-

cation for Protection Against Trojaned Hardware. In Proceedings of

the Conference on Design, Automation and Test in Europe (DATE ’12).

EDA Consortium, San Jose, CA, USA, 1000ś1005. http://dl.acm.org/

citation.cfm?id=2492708.2492958

[15] Georg T. Becker, Francesco Regazzoni, Christof Paar, and Wayne P.

Burleson. 2013. Stealthy Dopant-level Hardware Trojans. In Proceed-

ings of the 15th International Conference on Cryptographic Hardware

and Embedded Systems (CHES’13). Springer-Verlag, Berlin, Heidelberg,

197ś214. https://doi.org/10.1007/978-3-642-40349-1_12

[16] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza.

2014. Succinct Non-interactive Zero Knowledge for a Von Neumann

Architecture. In Proceedings of the 23rd USENIX Conference on Security

Symposium (SEC’14). USENIX Association, Berkeley, CA, USA, 781ś

796. http://dl.acm.org/citation.cfm?id=2671225.2671275

[17] Eli Biham, Yaniv Carmeli, and Adi Shamir. 2008. Bug Attacks. In

Proceedings of the 28th Annual Conference on Cryptology: Advances

in Cryptology (CRYPTO 2008). Springer-Verlag, Berlin, Heidelberg,

221ś240. https://doi.org/10.1007/978-3-540-85174-5_13

[18] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Rein-

hardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower,

Tushar Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell,

Muhammad Shoaib, Nilay Vaish, Mark D. Hill, and David A. Wood.

2011. The Gem5 Simulator. SIGARCH Comput. Archit. News 39, 2

(Aug. 2011), 1ś7. https://doi.org/10.1145/2024716.2024718

[19] Benjamin Braun, Ariel J. Feldman, Zuocheng Ren, Srinath Setty, An-

drew J. Blumberg, andMichaelWalfish. 2013. Verifying Computations

with State. In Proceedings of the Twenty-Fourth ACM Symposium on

Operating Systems Principles (SOSP ’13). ACM, New York, NY, USA,

341ś357. https://doi.org/10.1145/2517349.2522733

[20] Jerry R. Burch and David L. Dill. 1994. Automatic Verification of

Pipelined Microprocessor Control. In Proceedings of the 6th Interna-

tional Conference on Computer Aided Verification (CAV ’94). Springer-

Verlag, London, UK, UK, 68ś80. http://dl.acm.org/citation.cfm?id=

647763.735662

[21] M. Bushnell and Vishwani Agrawal. 2013. Essentials of Electronic

Testing for Digital, Memory and Mixed-Signal VLSI Circuits. Springer

Publishing Company, Incorporated.

[22] Rajat Subhra Chakraborty and Swarup Bhunia. 2009. HARPOON:

An Obfuscation-based SoC Design Methodology for Hardware Pro-

tection. Trans. Comp.-Aided Des. Integ. Cir. Sys. 28, 10 (Oct. 2009),

1493ś1502. https://doi.org/10.1109/TCAD.2009.2028166

[23] Rajat Subhra Chakraborty and Swarup Bhunia. 2009. Security Against

Hardware Trojan Through aNovel Application of DesignObfuscation.

In Proceedings of the 2009 International Conference on Computer-Aided

Design (ICCAD ’09). ACM, New York, NY, USA, 113ś116. https:

//doi.org/10.1145/1687399.1687424

[24] Rajat Subhra Chakraborty, Somnath Paul, and Swarup Bhunia.

2008. On-demand Transparency for Improving Hardware Trojan

Detectability. In Proceedings of the 2008 IEEE International Workshop

on Hardware-Oriented Security and Trust (HST ’08). IEEE Computer

Society, Washington, DC, USA, 48ś50. https://doi.org/10.1109/HST.

2008.4559048

[25] D. Champagne and R. B. Lee. 2010. Scalable architectural support

for trusted software. In HPCA - 16 2010 The Sixteenth International

Symposium on High-Performance Computer Architecture. 1ś12. https:

//doi.org/10.1109/HPCA.2010.5416657

[26] Saugata Chatterjee, Chris Weaver, and Todd Austin. 2000. Effi-

cient Checker Processor Design. In Proceedings of the 33rd Annual

ACM/IEEE International Symposium on Microarchitecture (MICRO 33).

ACM, New York, NY, USA, 87ś97. https://doi.org/10.1145/360128.

360139

[27] Shimin Chen, Babak Falsafi, Phillip B. Gibbons, Michael Kozuch,

Todd C. Mowry, Radu Teodorescu, Anastassia Ailamaki, Limor Fix,

Gregory R. Ganger, Bin Lin, and StevenW. Schlosser. 2006. Log-based

Architectures for General-purpose Monitoring of Deployed Code. In

Proceedings of the 1st Workshop on Architectural and System Support

for Improving Software Dependability (ASID ’06). ACM, New York, NY,

USA, 63ś65. https://doi.org/10.1145/1181309.1181319

Session: Security I ASPLOS’19, April 13–17, 2019, Providence, RI, USA

373

[28] Shimin Chen, Phillip B. Gibbons,Michael Kozuch, and Todd C.Mowry.

2011. Log-based Architectures: Using Multicore to Help Software

Behave Correctly. SIGOPS Oper. Syst. Rev. 45, 1 (Feb. 2011), 84ś91.

https://doi.org/10.1145/1945023.1945034

[29] Shimin Chen, Michael Kozuch, Theodoros Strigkos, Babak Falsafi,

Phillip B. Gibbons, Todd C. Mowry, Vijaya Ramachandran, Olatunji

Ruwase, Michael Ryan, and Evangelos Vlachos. 2008. Flexible Hard-

ware Acceleration for Instruction-Grain Program Monitoring. In Pro-

ceedings of the 35th Annual International Symposium on Computer

Architecture (ISCA ’08). IEEE Computer Society, Washington, DC,

USA, 377ś388. https://doi.org/10.1109/ISCA.2008.20

[30] Siddhartha Chhabra, Yan Solihin, Reshma Lal, and Matthew Hoekstra.

2010. Transactions on Computational Science VII. Springer-Verlag,

Chapter An Analysis of Secure Processor Architectures. http://dl.

acm.org/citation.cfm?id=1880392.1880400

[31] Victor Costan, Ilia Lebedev, and Srinivas Devadas. 2016. Sanc-

tum: Minimal Hardware Extensions for Strong Software Isolation.

In Proceedings of the 25th USENIX Conference on Security Sympo-

sium (SEC’16). USENIX Association, Berkeley, CA, USA, 857ś874.

http://dl.acm.org/citation.cfm?id=3241094.3241161

[32] Michael Dalton, Hari Kannan, and Christos Kozyrakis. 2007. Raksha:

A Flexible Information Flow Architecture for Software Security. In

Proceedings of the 34th Annual International Symposium on Computer

Architecture (ISCA ’07). ACM, New York, NY, USA, 482ś493. https:

//doi.org/10.1145/1250662.1250722

[33] Daniel Y. Deng, Daniel Lo, Greg Malysa, Skyler Schneider, and G. Ed-

ward Suh. 2010. Flexible and Efficient Instruction-Grained Run-Time

Monitoring Using On-Chip Reconfigurable Fabric. In Proceedings of

the 2010 43rd Annual IEEE/ACM International Symposium on Microar-

chitecture (MICRO ’43). IEEE Computer Society, Washington, DC,

USA, 137ś148. https://doi.org/10.1109/MICRO.2010.17

[34] Milenko Drinic and Darko Kirovski. 2004. A Hardware-Software

Platform for Intrusion Prevention. In Proceedings of the 37th Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO 37).

IEEE Computer Society, Washington, DC, USA, 233ś242. https:

//doi.org/10.1109/MICRO.2004.2

[35] Daniel Fryer, Kuei Sun, Rahat Mahmood, TingHao Cheng, Shaun

Benjamin, Ashvin Goel, and Angela Demke Brown. 2012. Recon:

Verifying File System Consistency at Runtime. In Proceedings of the

10th USENIX Conference on File and Storage Technologies (FAST’12).

USENIX Association, Berkeley, CA, USA, 7ś7. http://dl.acm.org/

citation.cfm?id=2208461.2208468

[36] Mohamed A. Gomaa, Chad Scarbrough, T. N. Vijaykumar, and Irith

Pomeranz. 2003. Transient-Fault Recovery for Chip Multiprocessors.

IEEE Micro 23, 6 (Nov. 2003), 76ś83. https://doi.org/10.1109/MM.

2003.1261390

[37] David Grawrock. 2009. Dynamics of a Trusted Platform: A Building

Block Approach (1st ed.). Intel Press.

[38] John L. Hennessy and David A. Patterson. 2017. Computer Archi-

tecture, Sixth Edition: A Quantitative Approach (6th ed.). Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA.

[39] Matthew Hicks, Murph Finnicum, Samuel T. King, Milo M. K. Martin,

and Jonathan M. Smith. 2010. Overcoming an Untrusted Computing

Base: Detecting and Removing Malicious Hardware Automatically.

In Proceedings of the 2010 IEEE Symposium on Security and Privacy

(SP ’10). IEEE Computer Society, Washington, DC, USA, 159ś172.

https://doi.org/10.1109/SP.2010.18

[40] Warren A. Hunt, Jr. 1989. Microprocessor Design Verification. J.

Autom. Reason. 5, 4 (Nov. 1989), 429ś460. http://dl.acm.org/citation.

cfm?id=83471.83476

[41] Frank Imeson, Ariq Emtenan, Siddharth Garg, and Mahesh V. Tripuni-

tara. 2013. Securing Computer Hardware Using 3D Integrated Circuit

(IC) Technology and Split Manufacturing for Obfuscation. In Proceed-

ings of the 22Nd USENIX Conference on Security (SEC’13). USENIX

Association, Berkeley, CA, USA, 495ś510. http://dl.acm.org/citation.

cfm?id=2534766.2534809

[42] Intel.Com. 2017. Intel Xeon Platinum 8176 Processor. Re-

trieved January 16, 2019 from https://ark.intel.com/products/120508/

Intel-Xeon-Platinum-8176-Processor-38-5M-Cache-2-10-GHz

[43] M. Ismail and G. E. Suh. 2012. Fast development of hardware-based

run-time monitors through architecture framework and high-level

synthesis. In 2012 IEEE 30th International Conference on Computer

Design (ICCD). 393ś400. https://doi.org/10.1109/ICCD.2012.6378669

[44] Yier Jin and Yiorgos Makris. 2008. Hardware Trojan Detection Using

Path Delay Fingerprint. In Proceedings of the 2008 IEEE International

Workshop on Hardware-Oriented Security and Trust (HST ’08). IEEE

Computer Society, Washington, DC, USA, 51ś57. https://doi.org/10.

1109/HST.2008.4559049

[45] Christoph Kern and Mark R. Greenstreet. 1999. Formal Verification in

Hardware Design: A Survey. ACM Trans. Des. Autom. Electron. Syst.

4, 2 (April 1999), 123ś193. https://doi.org/10.1145/307988.307989

[46] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee,

Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu. 2014.

Flipping Bits in Memory Without Accessing Them: An Experimental

Study of DRAM Disturbance Errors. In Proceeding of the 41st Annual

International Symposium on Computer Architecuture (ISCA ’14). IEEE

Press, Piscataway, NJ, USA, 361ś372. http://dl.acm.org/citation.cfm?

id=2665671.2665726

[47] Samuel T. King, Joseph Tucek, Anthony Cozzie, Chris Grier, Wei-

hang Jiang, and Yuanyuan Zhou. 2008. Designing and Implementing

Malicious Hardware. In Proceedings of the 1st Usenix Workshop on

Large-Scale Exploits and Emergent Threats (LEET’08). USENIX Asso-

ciation, Berkeley, CA, USA, Article 5, 8 pages. http://dl.acm.org/

citation.cfm?id=1387709.1387714

[48] Steven L. Kinney. 2006. Trusted Platform Module Basics: Using TPM in

Embedded Systems. Newnes, Newton, MA, USA.

[49] Darko Kirovski, Milenko Drinić, and Miodrag Potkonjak. 2002. En-

abling Trusted Software Integrity. In Proceedings of the 10th Interna-

tional Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS X). ACM, New York, NY, USA, 108ś

120. https://doi.org/10.1145/605397.605409

[50] Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin, Daniel Gruss,

Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas

Prescher, Michael Schwarz, and Yuval Yarom. 2019. Spectre Attacks:

Exploiting Speculative Execution. In 40th IEEE Symposium on Security

and Privacy (S&P’19).

[51] F. Koushanfar and A. Mirhoseini. 2011. A Unified Framework for

Multimodal Submodular Integrated Circuits Trojan Detection. Trans.

Info. For. Sec. 6, 1 (March 2011), 162ś174. https://doi.org/10.1109/

TIFS.2010.2096811

[52] William K. Lam. 2008. Hardware Design Verification: Simulation and

Formal Method-Based Approaches (1st ed.). Prentice Hall PTR, Upper

Saddle River, NJ, USA.

[53] Xavier Leroy. 2009. Formal Verification of a Realistic Compiler. Com-

mun. ACM 52, 7 (July 2009), 107ś115. https://doi.org/10.1145/1538788.

1538814

[54] Jie Li and John Lach. 2008. At-speed Delay Characterization for IC

Authentication and Trojan Horse Detection. In Proceedings of the

2008 IEEE International Workshop on Hardware-Oriented Security and

Trust (HST ’08). IEEE Computer Society, Washington, DC, USA, 8ś14.

https://doi.org/10.1109/HST.2008.4559038

[55] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M.

Tullsen, and Norman P. Jouppi. 2009. McPAT: An Integrated Power,

Area, and Timing Modeling Framework for Multicore and Manycore

Architectures. In Proceedings of the 42Nd Annual IEEE/ACM Interna-

tional Symposium on Microarchitecture (MICRO 42). ACM, New York,

NY, USA, 469ś480. https://doi.org/10.1145/1669112.1669172

Session: Security I ASPLOS’19, April 13–17, 2019, Providence, RI, USA

374

[56] David Lie, John Mitchell, Chandramohan A. Thekkath, and Mark

Horowitz. 2003. Specifying and Verifying Hardware for Tamper-

Resistant Software. In Proceedings of the 2003 IEEE Symposium on

Security and Privacy (SP ’03). IEEE Computer Society, Washington,

DC, USA, 166ś. http://dl.acm.org/citation.cfm?id=829515.830564

[57] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher,

Werner Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher,

Daniel Genkin, Yuval Yarom, and Mike Hamburg. 2018. Meltdown:

Reading Kernel Memory from User Space. In Proceedings of the 27th

USENIX Conference on Security Symposium (SEC’18). USENIX Associ-

ation, Berkeley, CA, USA, 973ś990. http://dl.acm.org/citation.cfm?

id=3277203.3277276

[58] Panagiotis Manolios and Sudarshan K. Srinivasan. 2004. Automatic

Verification of Safety and Liveness for XScale-Like Processor Models

Using WEB Refinements. In Proceedings of the Conference on Design,

Automation and Test in Europe - Volume 1 (DATE ’04). IEEE Computer

Society, Washington, DC, USA, 10168ś. http://dl.acm.org/citation.

cfm?id=968878.969049

[59] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas,

Hisham Shafi, Vedvyas Shanbhogue, and Uday R. Savagaonkar. 2013.

Innovative Instructions and Software Model for Isolated Execution.

In Proceedings of the 2Nd International Workshop on Hardware and

Architectural Support for Security and Privacy (HASP ’13). ACM, New

York, NY, USA, Article 10, 1 pages. https://doi.org/10.1145/2487726.

2488368

[60] Maher Mneimneh, Fadi Aloul, Chris Weaver, Saugata Chatterjee,

Karem Sakallah, and Todd Austin. 2001. Scalable Hybrid Verification

of Complex Microprocessors. In Proceedings of the 38th Annual Design

Automation Conference (DAC ’01). ACM, New York, NY, USA, 41ś46.

https://doi.org/10.1145/378239.378265

[61] MatthewW. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang,

and Sharad Malik. 2001. Chaff: Engineering an Efficient SAT Solver.

In Proceedings of the 38th Annual Design Automation Conference (DAC

’01). ACM, New York, NY, USA, 530ś535. https://doi.org/10.1145/

378239.379017

[62] Nahmsuk Oh, Subhasish Mitra, and Edward J. McCluskey. 2002. ED4I:

Error Detection by Diverse Data and Duplicated Instructions. IEEE

Trans. Comput. 51, 2 (Feb. 2002), 180ś199. https://doi.org/10.1109/12.

980007

[63] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. 2013.

Pinocchio: Nearly Practical Verifiable Computation. In Proceedings

of the 2013 IEEE Symposium on Security and Privacy (SP ’13). IEEE

Computer Society, Washington, DC, USA, 238ś252. https://doi.org/

10.1109/SP.2013.47

[64] V. A. Patankar, A. Jain, and R. E. Bryant. 1999. Formal verification of

an ARM processor. In Proceedings Twelfth International Conference

on VLSI Design. (Cat. No.PR00013). 282ś287. https://doi.org/10.1109/

ICVD.1999.745161

[65] Devendra Rai and John Lach. 2009. Performance of Delay-based

Trojan Detection Techniques Under Parameter Variations. In Proceed-

ings of the 2009 IEEE International Workshop on Hardware-Oriented

Security and Trust (HST ’09). IEEE Computer Society, Washington,

DC, USA, 58ś65. https://doi.org/10.1109/HST.2009.5224966

[66] S. P. Rajan, N. Shankar, and M. K. Srivas. 1997. Industrial Strength

Formal Verification Techniques for Hardware Designs. In Proceedings

of the Tenth International Conference on VLSI Design: VLSI in Multi-

media Applications (VLSID ’97). IEEE Computer Society, Washington,

DC, USA, 208ś. http://dl.acm.org/citation.cfm?id=523974.834850

[67] Redis.Io. 2018. Redis. Retrieved January 16, 2019 from http://redis.io

[68] Alastair Reid, Rick Chen, Anastasios Deligiannis, David Gilday, David

Hoyes, Will Keen, Ashan Pathirane, Owen Shepherd, Peter Vrabel,

and Ali Zaidi. 2016. End-to-End Verification of Processors with ISA-

Formal. Springer International Publishing, Cham, 42ś58. https:

//doi.org/10.1007/978-3-319-41540-6_3

[69] Steven K. Reinhardt and Shubhendu S. Mukherjee. 2000. Transient

Fault Detection via Simultaneous Multithreading. In Proceedings of

the 27th Annual International Symposium on Computer Architecture

(ISCA ’00). ACM, New York, NY, USA, 25ś36. https://doi.org/10.1145/

339647.339652

[70] George A. Reis, Jonathan Chang, Neil Vachharajani, Ram Rangan, and

David I. August. 2005. SWIFT: Software Implemented Fault Tolerance.

In Proceedings of the International Symposium on Code Generation and

Optimization (CGO ’05). IEEE Computer Society, Washington, DC,

USA, 243ś254. https://doi.org/10.1109/CGO.2005.34

[71] RISCV.Org. 2018. RISC-V Foundation. Retrieved January 16, 2019

from https://riscv.org

[72] Brian Rogers, Siddhartha Chhabra, Milos Prvulovic, and Yan Solihin.

2007. Using Address Independent Seed Encryption and Bonsai Merkle

Trees to Make Secure Processors OS- and Performance-Friendly. In

Proceedings of the 40th Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO 40). IEEE Computer Society, Washington,

DC, USA, 183ś196. https://doi.org/10.1109/MICRO.2007.44

[73] Brian Rogers, Milos Prvulovic, and Yan Solihin. 2006. Efficient Data

Protection for Distributed Shared Memory Multiprocessors. In Pro-

ceedings of the 15th International Conference on Parallel Architectures

and Compilation Techniques (PACT ’06). ACM, New York, NY, USA,

84ś94. https://doi.org/10.1145/1152154.1152170

[74] Eric Rotenberg. 1999. AR-SMT: A Microarchitectural Approach to

Fault Tolerance in Microprocessors. In Proceedings of the Twenty-

Ninth Annual International Symposium on Fault-Tolerant Computing

(FTCS ’99). IEEE Computer Society, Washington, DC, USA, 84ś. http:

//dl.acm.org/citation.cfm?id=795672.796966

[75] Jarrod A. Roy, Farinaz Koushanfar, and Igor L. Markov. 2008. EPIC:

Ending Piracy of Integrated Circuits. In Proceedings of the Conference

on Design, Automation and Test in Europe (DATE ’08). ACM, New York,

NY, USA, 1069ś1074. https://doi.org/10.1145/1403375.1403631

[76] Hassan Salmani, Mohammad Tehranipoor, and Jim Plusquellic. 2009.

New Design Strategy for Improving Hardware Trojan Detection and

Reducing Trojan Activation Time. In Proceedings of the 2009 IEEE

International Workshop on Hardware-Oriented Security and Trust (HST

’09). IEEE Computer Society, Washington, DC, USA, 66ś73. https:

//doi.org/10.1109/HST.2009.5224968

[77] Hassan Salmani, Mohammad Tehranipoor, and Jim Plusquellic. 2012.

A Novel Technique for Improving Hardware Trojan Detection and

Reducing Trojan Activation Time. IEEE Trans. Very Large Scale Integr.

Syst. 20, 1 (Jan. 2012), 112ś125. https://doi.org/10.1109/TVLSI.2010.

2093547

[78] Mark Seaborn. 2015. Exploiting the DRAM rowhammer

bug to gain kernel privileges. Retrieved January 16,

2019 from http://googleprojectzero.blogspot.com/2015/03/

exploiting-dram-rowhammer-bug-to-gain.html

[79] Adi Shamir. 2018. How Cryptosystems Are Really Broken. Re-

trieved January 16, 2019 from http://www.forth.gr/onassis/lectures/

pdf/How_Cryptosystems_Are_Really_Broken.pdf

[80] A. Shapiro and Y. Wardi. 1996. Convergence Analysis of Gradient

Descent Stochastic Algorithms. J. Optim. Theory Appl. 91, 2 (Nov.

1996), 439ś454. https://doi.org/10.1007/BF02190104

[81] Alex Shye, Tipp Moseley, Vijay Janapa Reddi, Joseph Blomstedt, and

Daniel A. Connors. 2007. Using Process-Level Redundancy to Exploit

Multiple Cores for Transient Fault Tolerance. In Proceedings of the

37th Annual IEEE/IFIP International Conference on Dependable Systems

and Networks (DSN ’07). IEEE Computer Society, Washington, DC,

USA, 297ś306. https://doi.org/10.1109/DSN.2007.98

[82] T. J. Slegel, R. M. Averill, M. A. Check, B. C. Giamei, B.W. Krumm, C. A.

Krygowski, W. H. Li, J. S. Liptay, J. D. MacDougall, T. J. McPherson,

J. A. Navarro, E. M. Schwarz, K. Shum, and C. F. Webb. 1999. IBM’s

S/390 G5 microprocessor design. IEEE Micro 19, 2 (March 1999), 12ś23.

https://doi.org/10.1109/40.755464

Session: Security I ASPLOS’19, April 13–17, 2019, Providence, RI, USA

375

[83] Sudarshan K. Srinivasan and Miroslav N. Velev. 2003. Formal Ver-

ification of an Intel XScale Processor Model with Scoreboarding,

Specialized Execution Pipelines, and Impress Data-Memory Excep-

tions. In Proceedings of the First ACM and IEEE International Con-

ference on Formal Methods and Models for Co-Design (MEMOCODE

’03). IEEE Computer Society, Washington, DC, USA, 65ś. http:

//dl.acm.org/citation.cfm?id=823453.823841

[84] Cynthia Sturton, Matthew Hicks, David Wagner, and Samuel T. King.

2011. Defeating UCI: Building Stealthy and Malicious Hardware. In

Proceedings of the 2011 IEEE Symposium on Security and Privacy (SP

’11). IEEE Computer Society, Washington, DC, USA, 64ś77. https:

//doi.org/10.1109/SP.2011.32

[85] G. Edward Suh, Dwaine Clarke, Blaise Gassend, Marten van Dijk,

and Srinivas Devadas. 2003. AEGIS: Architecture for Tamper-evident

and Tamper-resistant Processing. In Proceedings of the 17th Annual

International Conference on Supercomputing (ICS ’03). ACM, New York,

NY, USA, 160ś171. https://doi.org/10.1145/782814.782838

[86] G. Edward Suh, Charles W. O’Donnell, and Srinivas Devadas. 2007.

Aegis: A Single-Chip Secure Processor. IEEE Des. Test 24, 6 (Nov.

2007), 570ś580. https://doi.org/10.1109/MDT.2007.179

[87] Karthik Sundaramoorthy, Zach Purser, and Eric Rotenburg. 2000.

Slipstream Processors: Improving Both Performance and Fault Tol-

erance. In Proceedings of the Ninth International Conference on Ar-

chitectural Support for Programming Languages and Operating Sys-

tems (ASPLOS IX). ACM, New York, NY, USA, 257ś268. https:

//doi.org/10.1145/378993.379247

[88] Synopsys.Com. 2018. Synopsys’ DesignWare IP for PCI Express (PCIe)

Solution. Retrieved January 16, 2019 from http://www.synopsys.

com/IP/InterfaceIP/PCIExpress/Pages/default.aspx

[89] Mohammad Tehranipoor and Farinaz Koushanfar. 2010. A Survey of

Hardware Trojan Taxonomy and Detection. IEEE Des. Test 27, 1 (Jan.

2010), 10ś25. https://doi.org/10.1109/MDT.2010.7

[90] Martin Thuresson, Lawrence Spracklen, and Per Stenstrom. 2008.

Memory-Link Compression Schemes: A Value Locality Perspective.

IEEE Trans. Comput. 57, 7 (July 2008), 916ś927. https://doi.org/10.

1109/TC.2008.28

[91] Diana Toma and Dominique Borrione. 2005. Formal Verification

of a SHA-1 Circuit Core Using ACL2. In Proceedings of the 18th In-

ternational Conference on Theorem Proving in Higher Order Logics

(TPHOLs’05). Springer-Verlag, Berlin, Heidelberg, 326ś341. https:

//doi.org/10.1007/11541868_21

[92] TrustedComputingGroup.Org. 2018. Trusted Computing Group. Re-

trieved January 16, 2019 from http://trustedcomputinggroup.org

[93] Muralidaran Vijayaraghavan, AdamChlipala, Arvind, andNiravDave.

2015. Modular Deductive Verification of Multiprocessor Hardware

Designs. In Computer Aided Verification - 27th International Confer-

ence, CAV 2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings,

Part II. 109ś127. https://doi.org/10.1007/978-3-319-21668-3_7

[94] Victor Vu, Srinath Setty, Andrew J. Blumberg, and Michael Walfish.

2013. A Hybrid Architecture for Interactive Verifiable Computation.

In Proceedings of the 2013 IEEE Symposium on Security and Privacy

(SP ’13). IEEE Computer Society, Washington, DC, USA, 223ś237.

https://doi.org/10.1109/SP.2013.48

[95] R. S. Wahby, M. Howald, S. Garg, A. Shelat, and M. Walfish. 2016.

Verifiable ASICs. In 2016 IEEE Symposium on Security and Privacy

(SP). 759ś778. https://doi.org/10.1109/SP.2016.51

[96] Riad S. Wahby, Srinath T. V. Setty, Zuocheng Ren, Andrew J. Blum-

berg, and Michael Walfish. 2015. Efficient RAM and control flow in

verifiable outsourced computation. In NDSS.

[97] Adam Waksman and Simha Sethumadhavan. 2010. Tamper Evident

Microprocessors. In Proceedings of the 2010 IEEE Symposium on Secu-

rity and Privacy (SP ’10). IEEE Computer Society, Washington, DC,

USA, 173ś188. https://doi.org/10.1109/SP.2010.19
[98] Adam Waksman and Simha Sethumadhavan. 2011. Silencing Hard-

ware Backdoors. In Proceedings of the 2011 IEEE Symposium on Security

and Privacy (SP ’11). IEEE Computer Society, Washington, DC, USA,

49ś63. https://doi.org/10.1109/SP.2011.27

[99] Adam Waksman, Matthew Suozzo, and Simha Sethumadhavan. 2013.

FANCI: Identification of StealthyMalicious Logic Using Boolean Func-

tional Analysis. In Proceedings of the 2013 ACM SIGSAC Conference

on Computer & Communications Security (CCS ’13). ACM, New

York, NY, USA, 697ś708. https://doi.org/10.1145/2508859.2516654

[100] Cheng Wang, Ho-seop Kim, Youfeng Wu, and Victor Ying. 2007.

Compiler-Managed Software-based Redundant Multi-Threading for

Transient Fault Detection. In Proceedings of the International Sympo-

sium on Code Generation and Optimization (CGO ’07). IEEE Computer

Society, Washington, DC, USA, 244ś258. https://doi.org/10.1109/

CGO.2007.7

[101] Mao-Yin Wang, Chih-Pin Su, Chih-Tsun Huang, and Cheng-Wen

Wu. 2004. An HMAC Processor with Integrated SHA-1 and MD5

Algorithms. In Proceedings of the 2004 Asia and South Pacific Design

Automation Conference (ASP-DAC ’04). IEEE Press, Piscataway, NJ,

USA, 456ś458. http://dl.acm.org/citation.cfm?id=1015090.1015204

[102] N. J. Wang and S. J. Patel. 2005. ReStore: Symptom Based Soft Error

Detection in Microprocessors. In Proceedings of the 2005 International

Conference on Dependable Systems and Networks (DSN ’05). IEEE

Computer Society, Washington, DC, USA, 30ś39. https://doi.org/10.

1109/DSN.2005.82

[103] Xiaoxiao Wang, Mohammad Tehranipoor, and Jim Plusquellic. 2008.

Detecting Malicious Inclusions in Secure Hardware: Challenges and

Solutions. In Proceedings of the 2008 IEEE International Workshop

on Hardware-Oriented Security and Trust (HST ’08). IEEE Computer

Society, Washington, DC, USA, 15ś19. https://doi.org/10.1109/HST.

2008.4559039

[104] Chris Weaver and Todd M. Austin. 2001. A Fault Tolerant Approach

to Microprocessor Design. In Proceedings of the 2001 International

Conference on Dependable Systems and Networks (Formerly: FTCS)

(DSN ’01). IEEE Computer Society, Washington, DC, USA, 411ś420.

http://dl.acm.org/citation.cfm?id=647882.738066

[105] Sheng Wei, S. Meguerdichian, and M. Potkonjak. 2011. Malicious

Circuitry Detection Using Thermal Conditioning. Trans. Info. For.

Sec. 6, 3 (Sept. 2011), 1136ś1145. https://doi.org/10.1109/TIFS.2011.

2157341

[106] Phillip J. Windley. 1995. Formal Modeling and Verification of Mi-

croprocessors. IEEE Trans. Comput. 44, 1 (Jan. 1995), 54ś72. https:

//doi.org/10.1109/12.368009

[107] Francis Wolff, Chris Papachristou, Swarup Bhunia, and Rajat S.

Chakraborty. 2008. Towards Trojan-free Trusted ICs: Problem Analy-

sis and Detection Scheme. In Proceedings of the Conference on Design,

Automation and Test in Europe (DATE ’08). ACM, New York, NY, USA,

1362ś1365. https://doi.org/10.1145/1403375.1403703

[108] Chenyu Yan, Daniel Englender, Milos Prvulovic, Brian Rogers, and

Yan Solihin. 2006. Improving Cost, Performance, and Security of

Memory Encryption and Authentication. In Proceedings of the 33rd

Annual International Symposium on Computer Architecture (ISCA ’06).

IEEE Computer Society, Washington, DC, USA, 179ś190. https:

//doi.org/10.1109/ISCA.2006.22

[109] Jie Zhang and Qiang Xu. 2013. On hardware Trojan design and

implementation at register-transfer level. InHOST ’13. 107ś112. https:

//doi.org/10.1109/HST.2013.6581574

[110] Jie Zhang, Feng Yuan, Lingxiao Wei, Zelong Sun, and Qiang Xu. 2013.

VeriTrust: Verification for Hardware Trust. In Proceedings of the 50th

Annual Design Automation Conference (DAC ’13). ACM, New York, NY,

USA, Article 61, 8 pages. https://doi.org/10.1145/2463209.2488808

[111] Y. Zhang, D. Genkin, J. Katz, D. Papadopoulos, and C. Papamanthou.

2017. vSQL: Verifying Arbitrary SQL Queries over Dynamic Out-

sourced Databases. In 2017 IEEE Symposium on Security and Privacy

(SP). 863ś880. https://doi.org/10.1109/SP.2017.43

Session: Security I ASPLOS’19, April 13–17, 2019, Providence, RI, USA

376

[112] Yun Zhang, Soumyadeep Ghosh, Jialu Huang, Jae W. Lee, Scott A.

Mahlke, and David I. August. 2012. Runtime Asynchronous Fault Tol-

erance via Speculation. In Proceedings of the Tenth International Sym-

posium on Code Generation and Optimization (CGO ’12). ACM, New

York, NY, USA, 145ś154. https://doi.org/10.1145/2259016.2259035

[113] Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou. 2015.

IntegriDB: Verifiable SQL for Outsourced Databases. In Proceedings of

the 22Nd ACM SIGSAC Conference on Computer and Communications

Security (CCS ’15). ACM, New York, NY, USA, 1480ś1491. https:

//doi.org/10.1145/2810103.2813711

[114] Yun Zhang, Jae W. Lee, Nick P. Johnson, and David I. August. 2010.

DAFT: Decoupled Acyclic Fault Tolerance. In Proceedings of the 19th

International Conference on Parallel Architectures and Compilation

Techniques (PACT ’10). ACM, New York, NY, USA, 87ś98. https:

//doi.org/10.1145/1854273.1854289

Session: Security I ASPLOS’19, April 13–17, 2019, Providence, RI, USA

377

	Abstract
	1 Introduction
	2 Motivation
	2.1 Hardware Threats
	2.2 Threat Model

	3 Background
	4 The TrustGuard Approach
	5 The TrustGuard Architecture
	5.1 Checking Instruction Correctness
	5.2 Redundant Instruction Checking Unit
	5.3 Memory Checking
	5.4 Link Compression
	5.5 Discussion of Other Issues

	6 Attack Scenarios
	7 Performance Analysis
	7.1 Performance of TrustGuard
	7.2 Link Utilization
	7.3 Instruction Verification Latency
	7.4 Energy

	8 Simplicity of the Sentry
	9 Conclusion and Future Work
	Acknowledgments
	References

