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Abstract

Software security techniques rely on correct execution by

the hardware. Securing hardware components has been chal-

lenging due to their complexity and the proportionate attack

surface they present during their design, manufacture, de-

ployment, and operation. Recognizing that external commu-

nication represents one of the greatest threats to a system’s

security, this paper introduces the TrustGuard containment

architecture. TrustGuard contains malicious and erroneous

behavior using a relatively simple and pluggable gatekeeping

hardware component called the Sentry. The Sentry bridges a

physical gap between the untrusted system and its external

interfaces. TrustGuard allows only communication that re-

sults from the correct execution of trusted software, thereby

preventing the ill effects of actions by malicious hardware or

software from leaving the system. The simplicity and plug-

gability of the Sentry, which is implemented in less than

half the lines of code of a simple in-order processor, enables

additional measures to secure this root of trust, including for-

mal verification, supervised manufacture, and supply chain

diversification with less than a 15% impact on performance.

CCS Concepts · Security and privacy→Hardware se-

curity implementation.
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1 Introduction

Users may believe their systems are secure if they run only

trusted software; however, trusted software is only as trust-

worthy as the underlying hardware. Even if users run only

trusted software, attackers can gain unauthorized access to

sensitive data by exploiting hardware errors or by using

backdoors inserted at any point during design, manufac-

ture, or deployment [12, 24, 39, 97, 98, 103]. For example,

Biham et al. have demonstrated a devastating attack on the

RSA cryptosystem that builds on a multiplication bug that

computes the wrong product for only a single pair of 64-bit

integers [17]. An attacker can use knowledge of this pair

to break any key used in any RSA-based software running

on any device whose processor has this bug using a single

chosen message [17, 79].

Due to the complexity of designing and manufacturing

hardware, architects and manufacturers have limited confi-

dence that their systems have not been alteredmaliciously [20,

45, 52]. This confidence is further undermined by the fact

that building a computer system often involves different

parties across several important stages, from the initial spec-

ification all the way to fabrication. For example, manufac-

turing may be outsourced for economic reasons to com-

panies operating under the jurisdiction of foreign govern-

ments [12]. Additionally, many hardware components may

include intellectual property restrictions that prevent con-

cerned parties from ensuring their correctness and security.

Although prior techniques attempt to ensure hardware in-

tegrity during design, manufacture, and deployment, they

either do not protect against attacks in all of these stages

or are limited in the types of hardware components cov-

ered [2, 20, 23, 40, 44, 45, 54, 65, 66, 76, 77, 106].
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Given the difficulty in securing hardware, solutions that

protect complex computing systems using a single secure

hardware component are attractive. A promising class of

techniques uses this approach to secure systems by trusting

only the processor [25, 86]. Unfortunately, the only proces-

sors that have been secured with formal methods are simple

and low performance [20, 58, 64, 83]. Generally, processor

designers have focused on performance over security. For

example, aggressive optimizations (e.g., out-of-order execu-

tion) improve processor performance at the cost of design

complexity. The complexity of processors with reasonable

performance makes their verification far beyond the capa-

bilities of state-of-the-art formal methods [45, 52, 68, 93].

Further, backdoor detection does not scale to complex hard-

ware components such as processors with reasonable per-

formance [1, 39, 44, 84, 89, 97ś99, 109, 110]. Thus, securing

a system using a single secure hardware component means

securing a system with a single simple hardware component.

Single simple hardware components have successfully

provided systems with limited security guarantees. For ex-

ample, the Trusted Platform Module (TPM) provides secure

cryptographic functions and hardware authentication (e.g.,

a processor manufactured by a known supplier) [37, 48, 92].

Thus, while TPM can serve as the root of trust, it relies on the

assumption that a verified identity is sufficient for security.

However, as described above, authenticated provenance of a

hardware component does not ensure that it is secure.

This paper introduces a method to provide a stronger

set of security guarantees for a complex system with only

a single simple hardware component. This method builds

on three key insights. First, checking that a computation is

correct can be much simpler than performing the computa-

tion. Second, irreparable harm generally involves maliciously

or erroneously constructed external communication. Third,

checking the correctness of external communication is more

practical than checking all state changes within the system.

This paper presents TrustGuard, a proof-of-concept ar-

chitecture that enables the detection and containment of

malicious behavior by untrusted components before results

are externally visible. At the core of TrustGuard is the Sentry,

a single simple component dedicated to security. The Sen-

try’s simplicity and open design make it amenable to formal

verification and allow it to serve as the basis of trust used to

secure a system. In TrustGuard, the Sentry is the only path

between the system and its external interfaces. Untrusted

components must prove to the Sentry that any data sent

externally is the result of correct execution of trusted and

signed software.1 This allows the Sentry to containmalicious

behavior by untrusted hardware and software. While con-

tainment does not provide availability guarantees, it assures

users that all output is only the result of verified execution.

1The correctness of signed software is orthogonal to the problem addressed

by this paper. Extensions of this work can help secure software (§9).

The feasibility of containment-based security depends

upon the simplicity of the trusted components and its im-

pact on system performance. While the form of containment

may change for different types of architectures, this work es-

tablishes the feasibility of containment-based security with a

TrustGuard prototype protecting a system with a single-core

processor. The key insight is that the untrusted processor

and memory can do almost all of the work, including acting

as control for the Sentry, and hold almost all of the state

without compromising any containment guarantees.

The Sentry cannot independently execute programs. In-

stead, it relies on information sent by the processor to check

program execution. Thus, the Sentry avoids much of the com-

plexity of aggressive processor optimizations. The Sentry

detects any erroneous or malicious behavior by untrusted

components without trusting any information sent by the

processor. TrustGuard checks the execution information sent

by the processor using a combination of functional unit

re-execution (§5.1) and a cryptographic memory integrity

scheme (§5.3). The functional unit re-execution is similar to

DIVA [9], which adds a checker pipeline stage to the proces-

sor to provide reliability guarantees (§3).

The execution information sent by the processor removes

dependences between instructions and allows the Sentry to

efficiently check the correctness of instructions in parallel

(§5.2). In fact, doing so enables the Sentry to offer contain-

ment while operating at clock frequencies much lower than

the frequency of the untrusted processor with minimal im-

pact to system performance.

In summary, the contributions of this paper are:

• The containment model, a model in which a single sim-

ple, trusted hardware element, the Sentry, quarantines

the malicious effects of untrusted components;

• TrustGuard, a proof-of-concept design (§5) that shows

the viability of the Sentry in terms of performance

(§7.1), energy (ğ7.4), and design complexity (§8); and

• A characterization of the threat model and security

assurances provided by TrustGuard (§2 and §6).

2 Motivation

Today, users must take on faith that their hardware and

software providers have built a system that will not betray

them to malicious parties. While significant research has

focused on securing the software stack, all such techniques

rely on correct execution by the hardware. This means that

hardware threats, found both in theory and in practice, can

bypass any software security guarantees. Thus, a system is

only as trustworthy as the underlying hardware.

2.1 Hardware Threats

One class of hardware threats come from malicious hard-

ware backdoors inserted into the processor during design
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or fabrication stages. The Illinois Malicious Processors con-

tain shadow circuitry inserted at the design phase to enable

privilege escalation, backdoor login, and password theft [47].

Becker et al. demonstrated how a hardware Trojan inserted

during manufacture could compromise Intel’s cryptographi-

cally secure Random Number Generator [15].

The problem does not end with malicious hardware modi-

fication. Inadvertent bugs within hardware components like

functional units, coprocessors, memory, or on-chip networks

also pose security threats to the system. For example, as

stated in §1, a correctness bug can be exploited to weaken

encryption and lead to leakage of sensitive data [17].

Memory-related bugs are also a threat. Kim et al. showed,

in an attack called Rowhammer, that repeated accesses to

an address can cause data corruption in nearby addresses in

DRAM modules from three major manufacturers [46]. After

the discovery of Rowhammer, Google’s Project Zero team

developed two proof-of-concept exploits of this vulnerabil-

ity [78]. These exploits achieved privilege escalation and

underlined the security implications of such hardware bugs.

There are also threats that exploit performance-enhancing

features in the processor. For example, Meltdown [57] and

Spectre [50] extract information across protection bound-

aries.

TrustGuard focuses on preventing any harmful effects of

incorrect output in the face of all hardware threats men-

tioned above (§6). In general, TrustGuard can protect against

incorrect program output caused by hardware Trojans, bugs,

and other hardware security vulnerabilities (known and not-

yet-known). The Sentry even detects the results of internal

side-channel exploits, such as Meltdown and Spectre, if and

when they influence the output of the system.

2.2 Threat Model

TrustGuard ensures that all output from the system is only

the result of correctly executed signed software. The Sentry

allows only such output to pass while blocking all other

output. Thus, the output of non-signed software, such as

malware, is not permitted to pass through the Sentry. The

Sentry also prevents any errors in the execution of signed

software caused by malicious interference or system errors

from leaving the system.

TrustGuard does not provide any guarantees about avail-

ability or internal correctness of a system. Rather than pre-

venting hardware and software from maliciously or incor-

rectly altering the computation of results, TrustGuard instead

prevents any such interference from escaping the system via

explicit external communication. TrustGuard considers all

hardware components in the system other than the Sentryś

including processor, memory, and peripheralsśas untrusted

and vulnerable to compromise.

TrustGuard does not protect against communication chan-

nels out of the system other than through the Sentry. Trust-

Guard does not protect against information leaked through

the Sentry via covert channels or side channels (e.g., encod-

ing of sensitive information in an energy usage pattern, long

duration timing encodings, implicit information leaked by

failures). Moreover, malicious adversaries are assumed not

to have physical access to the Sentry nor the physical gap.

TrustGuard does not give any guarantees about vulnerabil-

ities (or a lack thereof) in the signed software itself. The Sen-

try ensures that all output from the system is only the result

of correctly executed signed software. The Sentry prevents

results from the execution of unsigned software, including

malicious interference with signed software, from being com-

municated externally. (See §9 for further discussion about

extending this work to cover software vulnerabilities.)

3 Background

This section introduces various existing proposals, each of

which possesses some desirable properties for providing a

basis of trust in a complex system.

Redundant Execution for Security and Reliability.

One traditional approach to building trustworthy systems

from untrustworthy components employs redundant execu-

tion [11, 14]. In this approach, several untrustworthy com-

ponents redundantly perform computation, and the system

uses majority voting to detect erroneous behavior. Design

diversity of redundant components makes a hardware bug

or backdoor escaping detection less likely. However, the cost

of creating such a system is quite high, making it attractive

only for high-assurance and high-security systems, such as

aircraft and military systems.

The redundant execution approach has also been used to

build systems resilient to transient faults [6ś10, 26, 36, 60, 62,

69, 70, 74, 81, 82, 87, 100, 102, 104, 112, 114]. DIVA [9] showed

that it is possible to build a simple, redundant checker to

detect errors in a processor’s functional units and its com-

munication channels with the register file and data cache.

While the introduction of a simple checker presents a

promising approach, DIVA was not designed for and is not

trivially extended to security. Architecturally, DIVA’s checker

is embedded in the processor’s commit path, and thus both

the checker and processor must be manufactured jointly.

This makes the checker vulnerable to malicious changes dur-

ing the processor’s manufacturing. DIVA also relies on the

processor to correctly communicate trace information to the

checker. Consequently, the checker cannot tell if the instruc-

tion execution stream it receives is modified, for example by

insertion or modification of instructions.

Additionally, DIVA does not provide any protections for

memory and register files. It instead relies on ECC to detect

any transient faults that may occur in these modules. This

is obviously insufficient for security. Finally, simply moving

DIVA off-chip is not a straightforward process, as there are

many issues to consider, including the potentially high off-

chip bandwidth required between the processor and checker.
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and MACs in the Merkle tree nodes are likely already avail-

able in the processor’s (and therefore also the Sentry’s) L1

caches due to memory locality and adjacent placement of

counters and MACs. These effects further reduce the com-

munication bandwidth between the processor and Sentry.

Cache Checking Unit (CCU). Since the cache in the

Sentry is trusted, each access to the Sentry’s cache does not

need to be verified by cryptographic operations, work which

would dramatically reduce the performance of the system.

Instead, only cache line insertion and eviction require cryp-

tographic operations.

The CCU validates the integrity of inserted cache lines.

Upon receiving new data or instruction cache lines from

the processor, the Sentry speculatively stores the new cache

line in the data or instruction cache marked as unchecked,

allowing for the RICU to proceed with instruction checking

without waiting for integrity to be verified. The Pending

Output Buffer (§5.5) holds all subsequent output instructions

until this speculative assumption is confirmed correct.

Next, the CCU re-computes the MACs for the cache lines

using the data received and the counter values that were ei-

ther already cached or received. It then checks the calculated

MAC against the one reported by the processor. Similarly, if

the delivered cache line contains counters, the Sentry must

also check the MACs of the counters (IM1
i
nodes in Figure 4),

as well as all the intermediate Merkle tree nodes toward the

root until a cached ancestor is found or the root node stored

on the Sentry is reached. Once verification is complete, a

confirmation signal is sent to the Pending Output Buffer

(§ 5.5) to alert speculative output operations that they are

no longer dependent on this instance of speculation.

The CCU updates the shadow memory state for evicted

cache lines. Whenever a dirty data cache line is evicted from

the Sentry’s cache, the CCU increments counters, creates

new MACs, and sends this new shadow memory state to the

processor to be stored back to memory.

5.4 Link Compression

To reduce the communication between the processor and

the Sentry, TrustGuard uses a hybrid of Significance-Width

Compression (SWC) and Frequent Value Encoding (FVE) [90].

As the compression and decompression do not need to be

trusted, it adds no complexity to the trusted logic of the

Sentry.

5.5 Discussion of Other Issues

Program Loading The TrustGuard architecture requires

programs to be signed by a trusted authority to communi-

cate externally. To ensure the correct execution of signed

programs, the Sentry contains a trusted program loader, sim-

ilar to systems in previous software integrity work [34, 49].

Upon creating the Sentry, the manufacturer will generate

the Sentry’s secret key and the Merkle Tree metadata for

the trusted program loader. The root of this tree will then

be fused into a private static register on the Sentry. Upon

initialization, the Sentry will load this value into the Merkle

Tree root register to verify the trusted program loader. The

Sentry checks the trusted program loader. In turn, the trusted

program loader verifies the signatures of trusted programs as

it loads them and their metadata into memory before starting

their execution.

Interaction with Peripherals As shown in Figure 2, the

Sentry resides physically between the untrusted processor

and the peripherals. The Sentry prevents the results of un-

verified instructions from communicating to the peripherals

via the Pending Output Buffer (POB). In TrustGuard, all I/O is

the result of explicit I/O instruction execution. Only values

that have been verified as correct by the RICU are stored in

the POB. However, these checked output operations may be

dependent on a cache line that is in the process of having

its integrity checked, as described in §5.3. Therefore, the

POB confirms that all speculatively filled cache lines that the

output is dependent upon have been verified before allowing

the output to proceed to a peripheral. Direct memory access

(DMA) is compatible with containment-based security, but

DMA is not implemented in this proof-of-concept.

Changes to Processor Design The nature of the inter-

action between the untrusted processor and the Sentry in

TrustGuard requires several modifications to be made to the

design of the untrusted processor. The processor and the

Sentry must support the same ISA as TrustGuard defines

correctness of instructions with respect to the ISA specifica-

tions. They must also have the same number of architectural

registers. The untrusted processor must also support loading

and storing of MACs, counters, and Merkle tree nodes from

and to cache lines and memory. The processor additionally

must send a trace of its execution information (cache lines,

results, shadow memory accesses, and the processor’s condi-

tion flags) to the Sentry. This communication is synchronized

through the addition of two buffers to the processor’s design:

one ExecInfo buffer for the outgoing communication to the

Sentry, and the other for shadow memory values received

from the Sentry.

6 Attack Scenarios

To evaluate its containment capabilities, we modeled Trust-

Guard in the gem5 simulator [18] and implemented the fol-

lowing attack scenarios.

Incorrect Arithmetic Instruction Execution. These

attacks involve the untrusted processor manipulating an

arithmetic instruction’s execution. In particular, we imple-

mented the following cases: (1) Incorrect execution of arith-

metic instruction, e.g., the multiplier bug compromising

RSA [17]; (2) Modification of values in the register file. In

the example from Figure 5, if the untrusted processor ma-

nipulates the result of r1 = r2 * r1 to be any other value

than 0x6000, the Sentry’s Redundant Instruction Checking

Session: Security I ASPLOS’19, April 13–17, 2019, Providence, RI, USA

367





Feature Parameter

Architecture ARMv7 32-bit 2GHz Processor

Processor Commit Width 8 instructions/cycle

L1 I-Cache 4-way set associative,

64KB, 64B cache line

L1 D-Cache 4-way set associative,

64KB, 64B cache line

L2 Cache 16-way set associative,

16MB, 12 cycle hit latency

Off-chip latency 100 CPU cycles

Off-chip bandwidth 16 GB/s

MAC Function HMAC with MD5

Table 1. Architectural parameters for simulation

additional SPECFP benchmarks: 450.soplex, 453.povray, and

470.lbm, as well as cryptographic operations from OpenSSL

(AES & RSA encryption/decryption). For programs with

short execution times ś 445.gobmk, 450.soplex, 462.libquan-

tum, and OpenSSL ś we simulate whole programs. For all

other benchmarks, we sample five random simulation check-

points. For each checkpoint, benchmarks run in the simula-

tion for 25 million instructions to warm up the microarchitec-

tural state prior to a cycle-accurate simulation for 200 million

instructions to collect performance data. For each experi-

ment, the baseline is the out-of-order, superscalar processor-

based system without any TrustGuard modifications (OoO

only).

7.1 Performance of TrustGuard

Two factors impact the IPC of the untrusted processor in

TrustGuard. The first factor is the increased cache and mem-

ory pressure from additional Merkle tree accesses. On av-

erage, the benchmarks performed 31.3% more accesses to

memory. The second factor is the introduction of two new

kinds of stalls in the untrusted processor: (1) Slow Sentry

Stalls, due to the Sentry’s inability to check instructions as

fast as execution by the processor; and (2) Bandwidth Stalls,

where the Sentry is kept waiting for execution information

due to bandwidth limitations on the channel to the processor.

To demonstrate the performance implications of Trust-

Guard, we evaluated the effects of various design parameters,

such as the RICU width (Figure 6), frequency of the proces-

sor and the Sentry (Figure 8), and the bandwidth between

the processor and the Sentry (Figure 10), on the IPC of the

untrusted processor.

Sentry Parallelism. Figure 6 shows the effect of varying

the number of instructions checked in parallel by the Sentry

(RICU width) on the IPC of the untrusted processor. The

geomean decline in IPC for RICU widths of 2, 4, 6, and 8

was 41.6%, 16.8%, 15.4%, and 15.2% respectively. The higher

RICU width resulted in higher checking throughput on the

Sentry, leading to improved performance. This is borne out

by the decrease in the number of Slow Sentry Stalls as the

RICU width increases (Figure 7). The average percentage

of Slow Sentry Stalls experienced was 30.76%, 2.13%, 0.30%,
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and 0.05% respectively for RICU widths of 2, 4, 6, and 8. The

effect of increasing the RICU width was especially visible

for benchmarks with higher baseline IPCs. For example, for

456.hmmer, going from RICU width 2 to 4 reduced the per-

centage of Slow Sentry cycles from 49.29% to 9.12%.
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Processor/Sentry Clock Frequency. One of the main

insights behind TrustGuard is that a Sentry running at lower

clock frequency can verify the execution of instructions by
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the untrusted processor without impacting its performance

too adversely. Figure 8 shows the effect of varying the clock

frequency at which the processor and the Sentry operates.

The Sentry’s throughput increased at higher Sentry to pro-

cessor frequency ratio, leading to better performance. Com-

pared to the baseline, the 15 benchmarks showed a geomean

IPC reduction of 18.3% at 2GHz Processor & 500MHz Sentry,

15.2% at 2GHz / 1GHz, 30.2% at 4GHz / 1GHz, and 27.9% at

4GHz / 2GHz.

Figure 9 shows the number of bandwidth and slow Sen-

try stalls experienced by the processor while varying the

frequency of the processor and the Sentry. The average per-

centage of Slow Sentry Stalls reduced from 3.84% at 2GHz /

500MHz to 0.05% at 2GHz / 1GHz Sentry and from 3.28% at

4GHz / 1GHz Sentry to 0.04% at 4GHz / 2GHz.
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Bandwidth. As shown in Figure 7 and Figure 9, the av-

erage percentage of bandwidth stalls remains quite stable

because the communication depends on program character-

istics. Figure 10 shows the effect of varying bandwidth on the

IPC of the untrusted processor, while Figure 11 presents the

percentage of Slow Sentry and Bandwidth Stalls incurred for

the resulting configurations. The geomean IPC decline was

27.9% at 8GB/s, 15.2% at 16GB/s and 14.2% at 32GB/s. The
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Figure 11. Stalls induced by the Sentry while varying the

bandwidth (same configuration as Figure 10). X-axis labels

indicate the bandwidth: 1=8GB/s, 2=16GB/s, 3=32GB/s.

corresponding average of the percentage of bandwidth stalls

was 17.36% at 8GB/s, 1.73% at 16GB/s, and 0.00% at 32GB/s.

With cache mirroring, the processor need not send cache

data to the Sentry on L1 cache hits. Therefore, programs

with greater cache locality will save on communication. For

example, at 16GB/s, 445.gobmk with an L1 data cache hit rate

of 83.5% incurred bandwidth stalls for 10.57% of execution

cycles. By contrast, 456.hmmer with 98.7% data cache hit

rate incurred bandwidth stalls for only 0.004% of execution

cycles.

7.2 Link Utilization

When the processor-Sentry link is 16GB/s, the geomean

bandwidth usage across the eleven benchmarks is 9.2GB/s.

The highest usage is in 445.gobmk (12.4GB/s) while the low-

est is in 471.omnetpp (4.84GB/s). As for instantaneous band-

widths (bandwidth used in a particular cycle), 445.gobmk

uses more than 12GB/s of instantaneous bandwidth for 75%

of execution cycles while benchmarks like 471.omnetpp and

458.sjeng use less than 4GB/s for more than 60% of execution

cycles.

7.3 Instruction Verification Latency
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Figure 12. Average latency between committing of an in-

struction in the processor and its checking by the Sentry

(Processor Frequency=2GHz, Bandwidth=16GB/s).
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Output operations in TrustGuard cannot proceed until the

Sentry verifies them. Figure 12 shows the average latency for

each instruction from when untrusted processor commits

it to when the Sentry verifies it. This metric is the average

output operation delay. With increased Sentry parallelism

and frequency, the throughput of checking increases, which

results in a decline in the average latency. The geomean

average latency for each instruction is 155 processor cycles

(77.5ns) at 500MHz and RICU width 8, 137 processor cycles

(68.5ns) at 1GHz and RICU width 4, and 112 processor cycles

(56ns) at 1GHz and RICUwidth 8. Note that every instruction

incurs a latency of at least 100 processor cycles (the latency

of off-chip communication).

There is a clear difference between the SPECINT and

SPECFP benchmarks. At 1GHz and RICU width 4, SPECINT

has a geomean latency of 123 CPU cycles (61.5ns), while

SPECFP has a geomean latency of 220 CPU cycles (110ns).

SPECFP’s higher latency comes from the higher latency of

floating point operations compared to integer operations,

which is magnified by the fact the Sentry runs at half the

frequency of the untrusted processor.

7.4 Energy
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Figure 13. TrustGuard’s energy usage. Processor Fre-

quency=2GHz, RICU Width=8, Sentry Frequency=1GHz,

Bandwidth=16GB/s

We used McPAT v1.2 [55] to model the energy of the

TrustGuard processor and Sentry using execution statistics

from the performance simulation. Power for the MAC en-

gines was estimated using an HMAC-MD5 accelerator [101],

adapted to our design using technology scaling. Figure 13

shows the energy consumption of TrustGuard, normalized

to the energy consumption of the baseline untrusted pro-

cessor. The geomean energy consumption for TrustGuard

was 41.0% greater than the baseline, while instantaneous

power was 16.0% greater than the baseline. The untrusted

processor in TrustGuard showed a geomean 13.0% higher

energy consumption than the baseline processor. The ge-

omean energy consumption of the Sentry itself is 19.9% of

the energy consumption of the baseline processor, which

is significantly lower than the 100+% increase that would

come from a second redundant processor. The main factors

for Sentry’s lower energy consumption compared to the un-

trusted processor are its lower frequency, the absence of an

L2 cache, and the absence of the OoO support structures.

Furthermore, the linkśmodeled as a PCIe interconnect [88]

consumes a geomean 8.0% of the energy of the untrusted

processor. 429.mcf saw a large energy overhead due to its

memory intensive nature and, the majority of the overhead

comes from the Merkle tree accesses and hash computations.

8 Simplicity of the Sentry

Only the Sentry must be secured to ensure containment of

the entire system. The simpler the Sentry, the more confi-

dence there will be in its containment guarantees. To eval-

uate the design complexity of the Sentry, we use the obser-

vation by Bazeghi et al. [13] that lines of HDL code serve

as a good approximation of a design’s complexity. For this

purpose, we built an FPGA prototype of the Sentry support-

ing the RISC-V user-level ISA [71]. We chose RISC-V due to

the unavailability of a full, open-source ARM processor. We

synthesized the Sentry design onto a NetFPGA SUME FPGA

Board using Xilinx Vivado 17.2.

Table 2 shows the lines of code (LoC) our prototype Sentry,

along with the reported size of various open-source proces-

sors. The Sentry’s design complexity compares favorably

to in-order processors, some of which have been formally

verified [20, 58, 64, 83]. Table 2 shows that the Sentry pro-

totype’s LoC is an order of magnitude less than that of the

out-of-order (OoO) processors. Concerning area, we found

that a single-core BOOM configuration uses ∼4× the number

of LUTs and ∼3× the number of flip-flops compared to the

Sentry [71].

The Sentry is simpler than the processor in many ways. It

lacks both cache and memory controllers. Functional unit re-

execution in the Sentry is simpler than instruction execution

in a processor. The Sentry does not include out-of-order exe-

cution, branch predictors, memory dependence predictors,

register renaming units, dispatch units, reorder buffers, mul-

tiple cache levels, load/store queues, inter-stage forwarding

logic, bypass networks, memory control, and misspeculation

recovery support. Note that most of these components op-

timize overall performance rather than perform the actual

execution of instructions. The Sentry is incapable of initiat-

ing instruction execution on its own. Instead, it relies on the

processor to direct its work.

The cache checking unit (CCU) and parallel checking are

optimizations to the Sentry worth the added complexity. The

size and design complexity of the MAC engines in the CCU

is comparable to other functional units already present on

both the processor and the Sentry, and MAC engines have

been formally verified [91]. The processor performs much

of the Merkle tree and cache control logic for the Sentry,
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Processor Leon3 [13] PUMA [13] IVM [13] BOOM [71] Sentry

Description In-Order OoO no FP OoO no FP OoO This Work

Language VHDL Verilog Verilog Chisel Verilog

Lines of

Code (LoC)

for various

components

Pipeline 2814 Fetch 1490 Fetch 4972 Fetch 1974 OR 425

Memory 4456 Decode 3416 Decode 963 Decode 650 VG 392

ROB 913 Rename 2519 ROB 709 CH 60

Execute 9613 Issue 2704 Rename 456 CCU 1030

Memory 2251 Execute 4083 Issue 356 FPU 1636

Retire 2278 Execute 3898

Memory 5308 Memory 7407

Total 7270 Total 17683 Total 22827 Total 15450 Total 3543

Table 2. Comparison of implementation complexities in terms of lines of code (LoC) of various open-source processor designs

against that of the Sentry prototype. Note: Processor proof of correctness would not secure memory nor program integrity.

thus further reducing the Sentry’s complexity (§5.3). Parallel

checking requires relatively simple forwarding logic between

functional units compared to pipeline forwarding in OoO

engines.

9 Conclusion and Future Work

This paper proved the viability of the containment-based

security approach. The TrustGuard proof-of-concept imple-

mentation showed that a separate, simple Sentry can validate

the execution of a processor with less than 15% geomean

impact on performance. These results motivate further ex-

ploration of containment-based security techniques, tools,

and implementations.

Programmer-Enabled Selective Checking Not all of a

trusted program needs to be validated by the Sentry to ensure

the correctness of external communication. For example, the

Sentry does not need to check the execution of any program

that does not produce external communication.

Prior work has shown that a small piece of trusted

code can be used to validate the result of a large pro-

gram [53, 63, 111, 113]. This has inspired the exploration

of a Sentry programming model, where the validation code

is used to validate the execution of untrusted parts of the

program and the Sentry checks the validation code itself.

The creation of such a Sentry programming model would

allow programmers, perhaps with the help of tools, to divide

their programs into trusted and untrusted regions or to cre-

ate checking code to validate results produced by untrusted

code prior to output. Initial exploration has shown that SAT

solvers [61], filesystems [35], databases [67, 111, 113], and

iterative algorithms [80] are good candidates for applying

such selective checking mechanism to improve performance.

Multicore Support A natural next step of any single-core

feature is the extension to multicore. There are many ways

to support multicore, and we leave the exploration of that

space, for now, as work inspired by the success reported in

this paper. This space includes supporting multicore with a

Sentry per core. This method would increase the required

bandwidth between the processor and the Sentries to the

point of infeasibility. Since the Sentries would likely need to

be placed on the same die, the threat model of the system

will change.

Another possibility is to use selective checking to sup-

port validation of multithreaded programs, where trusted

code running on a single thread can validate the result of

a multithreaded program. Witness generating SAT solvers

provide an example for such a system. Such SAT solvers pro-

duce a witness that is validated by a verifier [61]. A single

threaded verifier, checked by the Sentry, could ensure correct

output by checking the proof witness generated rapidly by

an untrusted multithreaded SAT solver.

Cache Policy and Sentry Independence The current L1

cache mirroring scheme works well to simplify the inter-

face between the processor and Sentry. It also reduces the

overhead of managing the Sentry’s cache. A processor-

independent Sentry is desirable for many reasons, including

portability and reusability, but would require decoupling the

cache designs. An independent cache design also creates new

optimization opportunities. For example, the processor could

serve as an oracle for the Sentry since it is typically hundreds

of instructions ahead. Thus, a more optimized design may,

without loss of correctness guarantees, replace the cache on

the Sentry with a scratchpad memory.
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