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Abstract

Motivation: Ribosome profiling has been widely used to study translation in a genome-wide fashion. It
requires deep sequencing of ribosome protected mRNA fragments followed by mapping of fragments to
the reference genome. For applications such as identification of ribosome pausing sites, it is not enough to
map a fragment to a given gene, but the exact position of the ribosome represented by the fragment must
be identified for each mRNA fragment. The assignment of the correct ribosome position is complicated by
the broad length distribution of the ribosome protected fragments caused by the known sequence bias of
micrococcal nuclease (MNase), the most widely used nuclease for digesting mRNAs in bacteria. Available
mapping algorithms suffer from either MNase bias or low accuracy in characterizing the ribosome pausing
kinetics.
Results: In this paper, we introduce a new computational method for mapping the ribosome protected
fragments to ribosome locations. We first develop a mathematical model of the interplay between MNase
digestion and ribosome protection of the mRNAs. We then use the model to reconstruct the ribosome
occupancy profile on a per gene level. We demonstrate that our method has the capability of mitigating the
sequence bias introduced by MNase and accurately locating ribosome pausing sites at codon resolution.
We believe that our method can be broadly applied to ribosome profiling studies on bacteria where codon
resolution is necessary.
Availability: Source code implementing our approach can be downloaded under GPL3 license at
http://bioserv.mps.ohio-state.edu/RiboProP.
Contact: bundschuh@mps.ohio-state.edu
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Ribosome profiling, or Ribo-seq, has become increasingly popular since it
was introduced in 2009 (Ingolia et al., 2009). It allows for the simultaneous
quantification and localization of all translating ribosomes in a cell. There
are three categories of applications of ribosome profiling (Ingolia, 2014,
2016): (1) quantification of protein synthesis at the translational level,
(2) identification of open reading frames (ORFs), and (3) quantification
of translation kinetics and identification of ribosome pausing sites. In
the first two types of applications, the accurate positions of ribosomes
are not critical, since the focus of such studies is the relative abundance

of the ribosomes on individual genes or the regions of the genome that
are actually translated. However, for applications such as identification
of peptide-mediated ribosome pausing sites (Gong and Yanofsky, 2002;
Nakatogawa and Ito, 2002; Bhushan et al., 2011; Woolstenhulme et al.,
2015), ribosome positions at codon resolution are crucial for differentiating
a slowly translating codon from its nearby fast translating codons.

A typical ribosome profiling experiment requires deep sequencing
of ribosome protected mRNA fragments followed by mapping the
fragments to the reference genome. This mapping provides genome wide
ribosome density profiles for further analysis. Since the ribosome protected
fragments have a length of around 20 to 35 nucleotides, applications
that rely on precise locations of individual ribosomes require assigning
the functional sites of each ribosome to a particular nucleotide within
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the fragment it protects. While there are different conventions on which
position on the ribosome (such as, e.g., the central nucleotide of the P-site
codon or the final nucleotide of the A-site codon) to use as a reference,
these conventions are all equivalent to each other up to a known relative
offset. However, no matter the convention chosen, an important question is
how to identify the location of the chosen position of the ribosome within
every ribosome protected fragment sequenced in the experiment.

Sample preparation has important consequences for the assignment of
ribosomal positions to ribosome protected fragments. Ribosome profiling
has been performed on both prokaryotes and eukaryotes. The original
ribosome profiling experiment was conducted on budding yeast by Ingolia
et al., 2009, in which RNAase I was used for digesting the mRNA that is
not under the protection of ribosomes. RNAase I is an unbiased nuclease
and is known to be able to digest the mRNA almost to the “edge” of
the ribosomes, resulting in a narrow length distribution of the ribosome
protected fragments. Choosing a consistent location on these fragments has
not been much of a challenge. However, for ribosome profiling studies on
bacteria such as Escherichia coli, the best available nuclease for digesting
mRNA is micrococcal nuclease (MNase), since the activity of RNAase I is
inhibited by the 30S subunit (Datta and Burma, 1972) rendering it unusable
in bacterial systems (Woolstenhulme et al., 2015). Unlike RNAase I,
MNase has a strong sequence bias (Hörz and Altenburger, 1981). The
ribosome protected mRNA fragments obtained from MNase digestion
have a broad length distribution, making assigning the correct ribosomal
location to each read challenging. Ideally, to assign the correct ribosomal
location to a specific read one has to consider the sequence bias of the
MNase; however, this approach has not been available to date.

In the area of ribosome profiling in bacteria, there are three broad
categories of methods available for mapping the ribosome protected
fragments to the second nucleotide of the P site (which is for concreteness
the convention we will adopt for this study): (1) the most widely used
fixed offset method, where the read is mapped to a position at a fixed
distance from one extremity of the read (usually 14 or 15 nucleotides
from the 3’ end depending on the experimental conditions and the
organism) (Woolstenhulme et al., 2015; Balakrishnan et al., 2014); (2) the
variable offset method, which is similar to the fixed offset method except
that one separates the reads into length groups and chooses a specific offset
for each length group (Dunn and Weissman, 2016); and (3) the center
weighted method, where the score of a read is spread over one or more
adjacent positions in the center area of the read (Li et al., 2012; Oh et al.,
2011). None of these methods explicitly takes into account the sequence
of the read and thus the MNase sequence bias.

In this paper, we propose a new method for mapping the ribosome
protected fragments. We first develop a model which takes into account the
MNase sequence bias and the effect of ribosome protection against MNase
digestion. We then optimize the free parameters in the model and apply
this model to reconstruct the ribosome density profile on a per gene level.
To demonstrate the performance of our method, we test it on the ribosome
profiling data set by Balakrishnan et al., 2014 and compare the result to
all three other methods listed above. Through comparison, we show that
our method is able to significantly reduce the effect of MNase bias in
the process of mapping and accurately predict ribosome pausing sites at
codon resolution. We thus believe that this method has a broad impact
on ribosome profiling experiments in bacteria when codon resolution is
needed.

2 Methods

2.1 Sequence bias of micrococcal nuclease and ribosome
protection model

In this paper, we focus our discussion on bacterial ribosome profiling
studies, which use MNase for mRNA digestion. We consider two factors
when developing a mathematical model for the experimental system:
(1) sequence bias of micrococcal nuclease (MNase) and (2) ribosomal
protection against MNase digestion of mRNA. First, since MNase is known
to have strong sequence bias (Hörz and Altenburger, 1981), we assume
four separate cleavage rates sA, sU , sG and sC for mRNA cleavage 5’
of a given nucleotide A, U, G, and C, respectively. Second, we assume
that the ribosome completely protects nucleotides far inside the ribosome
from MNase cleavage and does not protect nucleotides far outside of
the ribosome from cleavage at all, while nucleotides in the vicinity of
the “edge” of the ribosome are partially protected from cleavage. To be
specific, we choose the protection induced relative cleavage efficiency
r(x) ∈ [0, 1] at nucleotide position x to be given by a Gaussian error
function

r(x) =
erf[a(x− b)] + 1

2
=

1
√

π

Z a(x−b)

−∞
e−t2dt (1)

which smoothly transitions from 0 at x ≪ b to 1 at x ≫ b over
a range of width 1/a. Then, the MNase cleavage rates and ribosome
protection function together yield the effective MNase cleavage rate at
the ith nucleotide ki = ri · sni = 1

2
{erf[a(i − b)] + 1} · sni , where

ni ∈ {A, U, G, C} is the nucleotide of the mRNA at position i relative
to a fixed position on the ribosome.

We then denote the time to complete the MNase digestion during the
ribosome profiling experiment as t. Since ki is the rate of cleavage 5’ of
the ith nucleotide, the probability of the backbone between the i − 1st

and the ith nucleotide not being cut after time t is e−kit. We assume that
protection is complete for any nucleotide in the ribosomal A and P site
and thus characterize the 3’ end of a ribosome protected fragment in terms
of the number m of nucleotides starting from the first nucleotide on the
3’ side of the ribosomal A site. In order for this 3’ end of a ribosome
protected fragment to be m nucleotides 3’ of the A site, cleavage cannot
have occurred at any of the m intervening positions and must have occurred
at the m + 1st position (the cleavage status at any nucleotide beyond the
m + 1st is irrelevant for the 3’ end of the ribosome protected fragment
due to the cleavage at the m + 1st position). Thus, the probability of the
ribosome protected fragment having m nucleotides beyond the ribosomal
A site is

P (m|n1 . . . nm+1) = e−k1t· e−k2t· e−k3t· . . . · e−kmt(1−e−km+1t)

=

"
mY

i=1

e−kit

#
· (1− e−km+1t),

(2)
which depends on the sequence n1 . . . nm of the ribosome protected
fragment 3’ of the ribosomal A site and the identity of the first nucleotide
nm+1 of the mRNA 3’ of the ribosome protected fragment since the ki

are given in terms of the nucleotide dependent MNase digestion rates sni .

2.2 Optimization of the model parameters

We optimize the parameters (a, b, sA, sU , sG and sC ) in equation (2)
by fitting the model to a subset of ribosome profiling data with known
ribosome positions. Because the time t for MNase digestion in a ribosome
profiling experiment only enters in terms of its product with the sN , we
combine the time variable t and the sequence specific MNase cutting rates
into single parameters sA ·t, sU ·t, sG ·t and sC ·t in the optimization. In
order to identify reads for which we know the position of the corresponding
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Fig. 1. Schematic of the ribosome protection of mRNA against MNase cleavage. In our
model, the bare, sequence dependent MNase cleavage rate is modulated by the ribosome
protection, whose efficiency is mathematically modeled by a gaussian error function (black
line). The ribosome completely protects nucleotides far inside of the ribosome and does not
protect nucleotides far outside of the ribosome, while near the âŁœedgeâŁž of the ribosome
the nucleotides are partially protected. The diagonally striped position corresponds to the
second codon position of the P site, which is used as the convention to define the ribosome
position i. The light blue object indicates the ribosome protected fragment, which in this
particular example ends by an MNase cut after base j = i + 12.

ribosome, we exploit the fact that in bacteria, ribosomes are known to
arrest at the stop codon for a while until they are released. Thus, the vast
majority of all reads in the vicinity of the 3’ ends of genes will be derived
from ribosomes located with the stop codon in the A site. In order to
optimize our parameters, we select these reads from the 40 genes with the
highest ribosome counts per length from the ribosome profiling dataset
by Balakrishnan et al., 2014. For each read j we obtain the number mj

of nucleotides it extends beyond the stop codon of its gene as well as the
sequence rj starting with the first base 3’ of the stop codon and extending
by one base beyond the end of the actual read with the help of the known
genomic sequence. Since we assume the read is generated from a ribosome
with the stop codon in its A site, the probability of a single such read is
given by equation (2), and the probability of the entire pool of M reads is
given by

P (pool) = P (m1|r1) · P (m2|r2) · P (m3|r3) . . . P (mM |rM )

=

MY
j=1

P (mj |rj)
(3)

We use maximum likelihood estimation to obtain the optimized
parameters, i.e., we insert equation (2) for every P (mj |rj) in equation (3)
to obtain P (pool) as a function of parameters a, b, sA · t, sU · t, sG · t
and sC · t. We then use simulated annealing to vary these parameters and
find the set of parameters that maximize P (pool).

2.3 Reconstruction of ribosome density profiles on a per
gene level

We use our model to reconstruct the ribosome density profiles on a per gene
level. For a given mRNA of ℓ nucleotides (not counting the stop codon),
we denote the (unknown) true ribosome density at nucleotide position i

(in our convention defined as the density of ribosomes with their P site
centered on nucleotide i, see Figure 1) as xi. For each position i, we
then calculate the expected distribution zj|i of the 3’ most nucleotide of
a ribosome protected fragment being at position j in the gene, given the
protecting ribosome is located with the P site centered on nucleotide i

Table 1. Length of the ribosome protected mRNA
read and its corresponding P-site offset used to
map the read to the reference genome. Note that
in the ribosome footprints data we use, the reads
≤33 nucleotides account for more than 99.9% of
the total, although we map the reads up to 42
nucleotides using variable offset method, we do not
expect the length dependent offset for reads >33
nucleotides to be accurately determined using the
termination peak near stop codon (Balakrishnan
et al., 2014) due to the limited amount of such
reads.

Length (nt) Offset (nt) Length (nt) Offset (nt)

20 15 32 16
21 14 33 20
22 12 34 9
23 13 35 15
24 14 36 25
25 15 37 5
26 14 38 8
27 14 39 13
28 15 40 14
29 16 41 9
30 15 42 28
31 16

based on our model as

zj|i =

8><>:
0 j ≤ i + 4

P (j − i− 4|ni+5 . . . nj+1) i + 5 ≤ j < i + 34

0 j ≥ i + 34

. (4)

Here, we for practical purposes do not consider the probability of the 3’
most nucleotide of the fragment to be at positions after i+34 because the
mRNA at these positions is far beyond the protection of the ribosome and
thus should be completely cleaved if the mRNA is digested for a sufficient
amount of time. Similarly, we set the probability of 3’ ends of fragments
to be in the A site or P site of the ribosome to be zero, since these areas
of the fragment are fully protected by the ribosome. The resulting overall
3’ end distribution yj of the ribosome protected fragments for the entire
gene is then given by

yj =

min{j,ℓ−4}X
i=−4

zj|i · xi 1 ≤ j ≤ ℓ + 30. (5)

In the equation above, negative indices indicate positions beyond the 5’ end
of the gene, which implies that our calculation allows for some ribosomes
to be located upstream of the start codon. Most likely, starting from a
random initial guess of the xi, the thus calculated (y1, y2, y3 . . . yℓ+30)

are different from the observed distribution (y′1, y′2, y′3 . . . y′ℓ+30) of
3’ ends in the actual ribosome profiling data (normalized by their mean
coverage). We then optimize (x−4, x−3, x−2, x−1, x1, x2, x3 . . .

xℓ−4) to make the calculated (y1, y2, y3 . . . yℓ+30) as close as possible
to the observed (y′1, y′2, y′3 . . . y′ℓ+30) using a simulated annealing
algorithm. The method we use to quantify the discrepancy between the
expected and the actual distribution of the 3’ ends of the fragments is the
Bhattacharyya distance d = − log(

Pℓ+30
j=1

q
yj · y′j). The resulting xi’s

(normalized by their mean) are the reconstructed ribosome coverages after
normalization.
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Fig. 2. Average ribosome footprint density around specific codons: (A) GAA codon (B)
ACC codon. We average ribosome footprint density around 6806 GAA and 3787 ACC
codons from the 500 most highly translated genes. The 0 on the horizontal axis is the
position of the first nucleotide within the codon. Negative indices are toward the 5’ end of
the window and positive indices are toward the 3’ end of the window. In this example, the
method for mapping the ribosome footprints to the reference genome is the conventional
fixed offset method. We count 14 nucleotides upstream of the 3’ end of the ribosome
protected fragment to obtain the corresponding position of the central nucleotide of the
P site (Balakrishnan et al., 2014). We apply this approach to all ribosome footprints to
obtain the genome-wide ribosome density profile. The upward peak at around -14 for the
GAA codon and the downward peak at around -14 for the ACC codon are quantitative
indications of the sequence bias of MNase used in ribosome profiling experiments. See
Figure S1 for the same analysis for all other possible codons.

2.4 Comparison between different mapping algorithms

To compare our method of assigning P-site locations to other available
methods, we selected three different mainstream methods and applied them
to the ribosome footprint data set by Balakrishnan et al., 2014.

Fixed offset: We use a similar method as described in (Balakrishnan
et al., 2014). Briefly, we select the ribosome densities in a±30 nucleotide
window around the stop codon of the 1000 genes with the largest ribosome
counts per length (with 0 representing the position of the third nucleotide of
the stop codon), normalize the coverages of 3’ ends of ribosome protected
fragments in the window by the average of the window for every gene,
and then average all 1000 windows to obtain the average 3’ end coverages
around the stop codon. The highest 3’ end density on the 3’ side of the
stop codon is located at the 10th nucleotide; thus, we calculate the most
likely central nucleotide of the P site to be 14 nucleotides upstream of the
3’ end of the fragments. We then use this fixed offset to map all reads.

Variable offset: Following Dunn and Weissman, 2016 we proceed
similarly to the fixed offset method, except that we separate reads into
different groups based on their length. For each length, we perform the
same analysis as for the fixed offset method resulting in the P-site offsets
for each read length shown in Table 1. We then map the reads using these
length dependent P-site offsets.

Center weighted: We use the method described in (Oh et al., 2011; Li
et al., 2012). We select the reads with a length of at least 21 nucleotides.
For reads that are 21 nucleotides long, we assign the center of the read
as the central nucleotide of the ribosomal P site. For reads that are longer
than 21 nucleotides, we first remove 10 nucleotides on both ends of the
read; for the remaining N nucleotides, we assign each position a weight
of 1/N .

3 Results

3.1 Ribosome density profiles around specific codons
reveal significant MNase biases

In order to illustrate the severity of MNase bias, we perform a metagene
analysis of ribosome density around particular codons. For each of the
61 non-stop codons, we identify all occurrences in the 500 most highly
translated genes in the ribosome profiling data set by Balakrishnan et al.,

2014, obtain the ribosome density in a 60 nucleotide window centered
on the first nucleotide of the selected codon, normalize this density in
the window, and average over all occurrences of the codon. Figure 2
shows these averaged profiles for two representative codons (GAA and
ACC) while supplementary figure S1 shows the profiles for all 61 non-
stop codons, both using a fixed distance of 14 nucleotides from the 3’ end
of the read to define the position of the ribosomal P site when calculating
ribosome density as it has been used in the original study (Balakrishnan
et al., 2014). As expected the averaged profiles show a pronounced
periodicity of three nucleotides consistent with the in frame localization of
ribosomes indicating the near nucleotide resolution of P-site assignments.

However, the three nucleotide periodicity of the ribosome density
profiles is interrupted by a striking feature at position -14. This feature
is a large apparent ribosome density increase for GAA codons and a large
apparent ribosome density decrease for ACC codons (Figure 2) and can be
found for many of the remaining non-stop codons as well (Figure S1). Since
it is unlikely that ribosome density truly consistently increases or decreases
significantly 14 nucleotides upstream of every GAA or ACC codon,
respectively, this feature must represent an artifact of the experimental
method. Since the assignment of ribosomal P sites to ribosome protected
fragments in this data is performed using the fixed distance of 14
nucleotides from the 3’ end of the ribosome protected fragment, the feature
represents precisely those ribosome protected fragments, the 3’ end of
which coincides with the fixed codon. We thus hypothesize that this feature
is a result of the MNase sequence bias and use it below as a diagnostic for
the impact of MNase sequence bias on different analysis approaches.

3.2 Quantitative modeling of MNase bias and ribosome
protection

To reduce the artifacts caused by MNase bias, we develop a ribosome
positioning algorithm based on the biophysical model of the sequence
bias of MNase and ribosome protection against MNase cleavage shown in
Figure 1. MNase is known to cleave mRNA at different rates based on the
nucleotide 5’ of the cleavage site (Hörz and Altenburger, 1981; Dingwall
et al., 1981). We thus allow four independent cleavage rates, one for each
nucleotide, in our model. These cleavage rates are further modulated by
the ribosome protection efficiency. We model the ribosome as a partially
flexible body that fully protects the nucleotides deep within the ribosome
from cleavage, allows the full cleavage rate for nucleotides far outside the
ribosome, and reduces the cleavage rates in a sequence independent manner
at the “edge” of the ribosome. Since it is well established that ribosome
protection of the 5’ ends of bacterial ribosome profiling fragments is much
more variable than protection of the 3’ ends (Woolstenhulme et al., 2015)
we apply this approach only to the 3’ side of the ribosome. Using this
model, we can then calculate the probability distribution of the 3’ ends
of ribosome protected fragments, given the positions of the ribosomes
at specific locations and the mRNA sequence. Fitting this model to the
observed profile of 3’ ends of ribosome protected fragments yields a
distribution of ribosome positions for every gene. See the methods section
for details on the model and the fitting procedures.

3.3 Our model captures the complex 3’ end distributions of
ribosome protected fragments near stop codons

Due to the known ribosome accumulation at stop codons in bacteria, we
expect that the ribosome footprints derived from the 3’ end of each gene
have accurately identified P-site and A-site positions (i.e. the vast majority
of these ribosome protected fragments should stem from ribosomes with
the stop codon located in the A site). Our model quantifies the distribution
of 3’ ends of ribosome protected fragments given the known position of
a ribosome using 6 fitting parameters a, b, sA · t, sU · t, sG · t and
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sC · t, (see section 2.2 for details). We optimize these parameters using
the ribosome protected fragments accumulated at the stop codons of the
40 genes with the highest ribosome counts per length. The resulting values
for the parameters are a = 0.16, b = 17, sA · t = 14.2, sU · t = 8.4,
sG · t = 0.4, and sC · t = 1, respectively. Thus, we find that that the
fastest cleavage rate sA is 35 times faster than the slowest cleavage rate sG,
while the average of sA and sU is about 15 times faster than the average
of sG and sC , consistent with previous reports on MNase bias (Hörz and
Altenburger, 1981; Dingwall et al., 1981).

In order to evaluate the validity of our model, we then apply our model
with the parameters fit to the 40 genes with the highest ribosome counts
per length to predict the distributions of 3’ ends of reads near the stop
codons of the next 20 genes (41 through 60) by ribosome counts per length
(Figure 3) and compare the predictions to experimental observations. The
predictions are visually very similar to experiment for at least 10 out of the
20 genes, such as rpmG, rpsJ, rplW and eno. Some genes, such as hupB
and rpsC, have significantly unpredicted peaks further downstream. These
peaks might be due to stop codon read through, i.e., due to ribosomes
actually being located 3’ of the annotated stop codon, which would not
be captured by our model that for the purpose of this calculation assumes
that all ribosomes are stalled right at the annotated stop codon and thus is
a topic beyond the scope of discussion in this paper.

3.4 The identity of the nucleotide 5’ of the cut site is much
more important than the identity of the nucleotide 3’ of
the cut site

Since the cutting rate of MNase is known to largely depend on the identity
of the nucleotide on the 5’ side of the cut site (Hörz and Altenburger, 1981;
Dingwall et al., 1981), the cutting rates in our model are assumed to depend
only on this nucleotide. However, in principle other factors of the library
preparation could be responsible for the observed sequence bias. Thus, we
asked how the MNase-inspired model with cutting rates depending solely
on the identity of the nucleotide on the 5’ side of the cut site compares
to analogous models, where the rate either only depends on the identity
of the nucleotide on the 3’ side of the cut site or on the identity of both
nucleotides surrounding the cut site. We thus repeated our analysis of the
ribosome fragment distributions around stop codons using a model with
four rates that depend on the nucleotide on the 3’ side of the cut site and
a model with 16 rates that depend on both nucleotides surrounding the
cut site. We again optimized parameters on the 40 genes with the highest
ribosome counts per length and then evaluated the validity of the models on
the next 20 genes (41 through 60) by ribosome counts per length. Table 2
shows the optimal fitting parameters for all three models. In addition, the
table shows the average Bhattacharyya distances (Kailath, 1967) between
the distributions predicted by the model with the optimal parameters and
the experimental ribosome protected fragment distributions in the vicinity
of the stop codon separately for the 40 most highly translated genes (which
have been used in the fitting) and the next 20 genes (which have not
been considered in the fitting). The Bhattacharyya distance between two
distributions measures their similarity and is zero if they are equal and
infinity if the two distributions do not have any overlap.

We find that the model that only considers the nucleotide on the 3’ side
of the cutting side learns optimal parameters that show only very weak
dependency on this nucleotide. The positional parameter b of the ribosome
protection function Eq. (1) is fit to 12, which is in stark contrast to what is
known about the distance between 3’ ends of ribosome protected fragments
and the ribosomal P-sites. The Bhattacharyya distances for this model
indicate a much worse correspondence between model and experiment
than the 5’-dependent model both for the 40 genes the model was fit to
and for the next 20 validation genes. We conclude that the model that only

Table 2. Fitting parameters and fitting quality of different models
for the 3’ end distributions of ribosome protected fragments near
stop codons. The columns correspond to models in which the
cutting rate depends only on the nucleotide 5’ of the cut site,
only on the nucleotide 3’ of the cut site, and on both nucleotides
surrounding the cut site, respectively. The first two rows show
the optimal values of the fitting parameters a and b for the slope
and the position of the ribosome protection function defined in
Eq. (1). The next four rows show the optimal values of the sequence
dependent cutting rates. For the model that depends on the identities
of both nucleotides surrounding the cut site, these rates are given
as four columns corresponding to the four different nucleotides on
the 3’ side of the cut site. The last two rows provide the average
Bhattacharyya distance (Kailath, 1967) between the predicted and
the experimentally observed distributions of 3’ ends of ribosome
protected fragments in the vicinity of stop codons for the 40 most
highly translated genes and the next 20 genes when ordered by
overall translation, respectively.

5’-dependent 3’-dependent both sides
AN UN GN CN

a 0.16 0.18 0.20
b 17 12 17

s(N)A · t 14.2 0.6 15.8 12.4 32.0 17.0
s(N)U · t 8.4 0.4 13.2 9.3 12.5 12.4
s(N)G · t 0.4 1.3 0.71 0.51 0.80 0.53
s(N)C · t 1.0 0.8 0.6 1.0 2.2 2.1

d1−40 0.3264 0.4545 0.3495
d41−60 0.3561 0.5082 0.4079

takes into account the identity of the nucleotide on the 3’ side of the cut
site is not consistent with the data.

When the rates are allowed to depend on both nucleotides surrounding
the cut site, the positional parameter b is again optimal at the same value
of 17 as for the model that only considers the nucleotide on the 5’ side
of the cut site. The optimal cutting rates themselves show a clear pattern
of strong dependence on the nucleotide on the 5’ side of the cut site and
weak dependence on the nucleotide on the 3’ side of the cut site. The
Bhattacharyya distance for the fragment end distributions of the 40 genes
the model is fit to is comparable to the distance for the 5’-dependent model
(note that the fitting itself is done by maximizing likelihood and not by
minimizing Bhattacharyya distance). However, the Bhattacharyya distance
of the distributions of the next 20 genes is quite a bit larger than the one
for the 5’-dependent model hinting at the presence of some overfitting
that impedes generalizability of the model to genes it was not trained on.
We conclude that including a dependence of the rates on both nucleotides
surrounding the cut site does not improve the performance of the model
and the optimal parameters mostly revert to a dependence only on the
nucleotide on the 5’ side of the cut site. Thus, the original, 5’-dependent
model is most consistent with the experimental data, in agreement with
the known MNase biases.

3.5 Reconstructed ribosome coverages show reduced
MNase bias compared to other methods

Currently, in the context of ribosome profiling studies on bacteria such as
Escherichia coli, there are three broad categories of methods for mapping
ribosome footprints: (1) the fixed offset method (Balakrishnan et al., 2014),
where a fixed distance from one extremity of the read, identified using
the translation initiation or termination peak, is applied to all ribosome
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Fig. 3. 3’ end distribution of ribosome protected fragments near the stop codon of the genes with the 41st to 60th highest ribosome counts per length (gene names shown above; the 40

genes with the highest ribosome counts per length were used to fit the model parameters and thus cannot be used in this verification of the model). 0 on the horizontal axis represents the
first nucleotide 3’ of the stop codon, and positive indices are toward the 3’ direction of the genes. Blue: ribosome density profile predicted by our ribosome protection model based on the
sequence alone. Orange: ribosome density profile from the ribosome profiling experiment by Balakrishnan et al., 2014. The vertical dashed lines at +10 represent the position of the peak
from metagene analysis in reference (Balakrishnan et al., 2014), which is the site where the 3’ ends of ribosome footprints near the stop codons from all genes accumulate on average.

protected reads to locate the position of the second nucleotide of the P site;
(2) the variable offset method (Dunn and Weissman, 2016), which applies
a specific fixed distance to the reads with specific length but allows for this
distance to be different for different read lengths; (3) the center weighted
method (Li et al., 2012; Oh et al., 2011), where the position of the second
nucleotide of the P site associated with a read is fractionated over several
consecutive positions, making each of the positions a possible location for
the real second nucleotide of the P site. We compare our method to these
three methods using the same approach as in section 3.1 (Figure 4A and B).
We find that, compared to the fixed offset and variable offset methods,
our method is capable of significantly reducing the effect of MNase bias.
Figure 4A as an example, shows the average ribosome density on the 5’
side of all GAA codons in the 41st through 60th most highly translated
genes, with 0 being the first nucleotide of the codon. The reduced height
of the upstream peak serves as an quantitative indicator of the reduced
MNase bias. Figure 4B shows the difference between the highest and
lowest average ribosome coverage in a -30 to +30 window for all codons
and demonstrates the general ability of our method to reduce the MNase
bias. The center weighted method has a similar capability of correcting
MNase bias as our method. We also notice that the result of our method
shows less periodicity than the fixed and variable offset method, which we
believe is the consequence of the probability based nature of our algorithm.
The loss of periodicity is also true for the center weighted method.

3.6 The model localizes ribosome pausing sites at codon
resolution

While our method is comparable to the center weighted method in the
ability to reduce MNase bias, one advantage that differentiates our method
from the center weighted method is the ability to more accurately predict
ribosome pausing sites at codon resolution. We look into two well known
ribosome pausing sites: the stop codon and the peptide-mediated pausing
site GGCCCU (encoding Gly165 and Pro166) in secM. Figure 4C shows
the comparison at the stop codon for the 500 most highly translated genes.
While all four methods show the ribosome pausing peak near the stop
codon, one disadvantage of the center weighted method is that, due to its
nature, it smears out the peak across several adjacent positions. Another
example in Figure 4D shows the comparison at the extensively studied
pausing site in secM (Nakatogawa and Ito, 2002; Bhushan et al., 2011).
Our method accurately predicts the P-site stalling site at Gly165, while the
pausing site determined by the center-weighted method is spread to 5 to
6 nucleotides downstream. In this example, the fixed offset and variable
offset methods, likely due to the effect of MNase bias, show the peak at
a wrong position, which is off by about a codon. We conclude that our
method allows more precise codon localization of ribosome density than
the other methods, laying the groundwork to being able to differentiate
slowly translating codons from fast translating codons.
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Fig. 4. A comparison between different mapping methods: RiboProP (black), fixed offset (blue), Variable offset (red) and center weighted (green). (A) Average ribosome density near all
6806 GAA codons in the 500 most highly translated genes with the first nucleotide of the GAA codon being at 0; the positive axis points in the 3’ direction of the gene containing the
GAA codon. The peak at 14 nt upstream of GAA from the fixed offset and variable offset methods is a quantitative indication of the MNase bias, which is significantly reduced in RiboProP
and the center weighted method. (B) The difference between the highest and lowest ribosome density in a 60 nucleotide window around all 61 codons in the 500 most highly translated
genes (colors represent the four different methods as in A). Large differences indicate large MNase biases. (C) Average ribosome density near stop codons in the 500 most highly translated
genes. The shaded area indicates the position of the codon on the 5’ side of the stop codon where the P site of stalled ribosomes should be located. (D) Average ribosome density near the
peptide-mediated ribosome pausing site GGCCCU (encoding Gly165 and Pro166) in secM. The shaded area indicates the position of the GGC codon where the P site of the paused ribosome
is located.

4 Discussion
In summary, we propose a new algorithm for mapping ribosome
protected fragments from ribosome profiling studies on bacteria. In
these experiments, micrococcal nuclease, although a biased nuclease,
is considered to be the best option for digesting mRNAs, since
unbiased nucleases such as RNAase I cannot be used in bacterial
systems (Woolstenhulme et al., 2015). The micrococcal nuclease digests
the mRNAs in a sequence dependent manner, resulting in a broad length
distribution of ribosome protected mRNA fragments and introducing
challenges in accurately locating the corresponding P site positions for
individual reads. Commonly used methods, including the fixed offset
method, the variable offset method, and the center weighted method suffer
from either strong sequence bias, which results in less accuracy in locating
correct ribosome pausing sites, or a strong spreading out of ribosome
density especially noticeable at ribosome pausing sites, which results in
less accuracy in determining the relative ribosome pausing time at different
locations. Our method has the ability to predict the ribosome pausing events
at codon resolution while minimizing the effect of MNase bias. Since it
focuses on sequence dependence of MNase digestion, it can in principle be
combined with other sophisticated, but not sequence dependent methods
of analyzing ribosome profiling data such as, e.g., (O’Connor et al., 2016).

We note that while the motivation for our model is the known sequence
bias of MNase, in the end our model cannot distinguish between MNase
bias and any other possible sequence dependent biases that may be
introduced at any step of the library preparation (such as, e.g., adapter
ligation biases). The sequence-dependent cutting rates we find and the fact
that they largely depend on the nucleotide 5’ of the cut site as described in
section 3.4 are consistent with the known behavior of MNase (Hörz and
Altenburger, 1981; Dingwall et al., 1981). Also the fact that these effects

do not seem to play a major role in eukaryotic ribosome profiling, where
RNAase I is used instead of MNase seem to point toward MNase being the
main reason for the biases corrected by our model. However, in the end our
model is able to accomodate sequence biases at the 3’ end of fragments no
matter their origin, making the demonstrated improvements in ribosome
localization independent of the reason for the sequence biases.

One notable shortcoming of our method is that we restrict the prediction
region on a gene from the 4th nucleotide upstream of the start codon to the
stop codon. Our method does not include potential ribosome occupancy
further upstream of the start codon (possible uORFs) or downstream of
stop codons (read through). Both areas are considered to be important
applications of ribosome profiling studies. Ideally, one could apply
our algorithm to predict the ribosome occupancy both upstream and
downstream of the gene, however, the detailed mechanisms of possible
translation at uORFs and locations beyond the stop codon are not clear
at this point, thus the basis of our algorithm, the ribosome protection and
MNase digestion model, may or may not entirely hold.

We believe that our approach can also be more broadly applied to
other sequencing experiments involving the usage of biased enzymes
for digestion. An example are MNase-seq experiments for determining
nucleosome positions within chromatin (Barski et al., 2007). Studies show
that the sequence specificity of MNase may affect the accuracy of the
nucleosome positioning data from MNase-seq experiments and thus a
mitigation method is needed (Chung et al., 2010). Another example is
the DNAse-seq experiment for determining transcription factor binding
sites (He et al., 2014). DNAse is also known to digest the DNA in a
sequence dependent way and mitigation of the sequence bias may be
beneficial.
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