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Abstract

Computing the effects of interventions from ob-
servational data is an important task encountered
in many data-driven sciences. The problem is ad-
dressed by identifying the post-interventional dis-
tribution with an expression that involves only
quantities estimable from the pre-interventional
distribution over observed variables, given some
knowledge about the causal structure. In this work,
we relax the requirement of having a fully specified
causal structure and study the identifiability of ef-
fects with a singleton intervention (X)), supposing
that the structure is known only up to an equiva-
lence class of causal diagrams, which is the out-
put of standard structural learning algorithms (e.g.,
FCI). We derive a necessary and sufficient graph-
ical criterion for the identifiability of the effect of
X on all observed variables. We further establish a
sufficient graphical criterion to identify the effect
of X on a subset of the observed variables, and
prove that it is strictly more powerful than the cur-
rent state-of-the-art result on this problem.

1 Introduction

Establishing cause-and-effect relations is one prominent task
throughout data-intensive sciences and engineering. In
medicine, for example, one commonly needs to evaluate the
effectiveness of a new drug, trying to disentangle its heal-
ing effect from that due to other factors (perhaps diet and
hygiene) that may somehow correlate with the administra-
tion of the drug. In Artificial Intelligence, one may need to
learn the effect of a robot’s actions, while not having con-
trol over what may motivate that robot to act in the way it
is behaving. These are a few applications of causal infer-
ence. There is a growing number of methods and techniques
that allow researchers to reason with cause-and-effect rela-
tionships in a principled and efficient manner [Pearl, 2000;
Spirtes et al., 2001; Bareinboim and Pearl, 2016].

One classical method to infer causal effects is to per-
form randomized experiments [Fisher, 1951], where the ac-
tion variables are randomized (e.g., the drug is randomly as-
signed to patients) and the outcomes observed (e.g., recovery
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of the patients). In many situations, however, it is not feasi-
ble to carry out an experiment of this sort for ethical, tech-
nological, financial, or other reasons. An alternative strat-
egy proposed to estimate the effect of interest is to combine
non-experimental (observational) data with some information
about the underlying causal model [Pearl, 1993]. The pri-
mary challenge here is the existence of unobserved (latent)
variables, which generates spurious association between ac-
tion and outcome. The difference between the association
between X and Y and the effect of X on Y is known as
confounding bias. For example, despite the strong correla-
tion observed between ice-cream consumption and drowning
on the beach, no one really believes that eating ice-cream
causes drowning during the holiday season. Formally, decid-
ing whether a causal distribution is computable from a com-
bination of the observational distribution and a causal model
is known as the problem of identification of causal effects
(identification, for short) [Pearl, 2000].

The problem of identification has been extensively stud-
ied in the literature, and a number of criteria have been pro-
posed [Pearl, 1993; Pearl and Robins, 1995; Galles and Pearl,
1995; Kuroki and Miyakawa, 1999; Halpern, 2000], includ-
ing the celebrated back-door criterion and the do-calculus
[Pearl, 1995]. In a series of results, a novel graphical de-
composition strategy was developed to solve the problem of
identification given a causal diagram, along with complete-
ness results for both observational and interventional iden-
tification [Tian and Pearl, 2002; Huang and Valtorta, 2006;
Shpitser and Pearl, 2006; Bareinboim and Pearl, 2012]. De-
spite the generality of such results, their applicability is con-
tingent upon the explicit articulation of a causal model, which
is, unfortunately, not always available in many practical,
large-scale settings. In fact, if one attempts to learn the causal
structure from observational data, allowing for the possibility
of latent confounders, in general only an equivalence class
of causal diagrams (with latent variables) can be consistently
inferred. A useful graphical representation of such an equiv-
alence class is known as a partial ancestral graph (PAG).

Identification from an equivalence class of causal diagrams
represented by a PAG is considerably more challenging than
from a single causal diagram due to the structural uncertainty
of both the direct causal relations among the variables and
the presence of latent variables that confounds causal rela-
tions between observed variables. Still, there is a growing
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interest in identifiability results in the context of equivalence
classes. [Zhang, 2008a] extended the do-calculus to PAGs,
but, in practice, it is computationally hard to decide whether
there exists (and, if so, find) a sequence of applications of the
rules of the generalized calculus to identify the causal distri-
bution. Another line of work [van der Zander et al., 2014;
Maathuis and Colombo, 2015; Perkovi¢ et al., 2015] estab-
lished a generalized back-door criterion for PAGs, and pro-
vided a sound and complete algorithm to find a back-door ad-
justment set, should such a set exist. However, the back-door
criterion is not nearly as powerful as the do-calculus, since no
adjustment set exists for many identifiable causal effects.!

In this paper, we generalize to PAGs the powerful identifi-
cation strategy for singleton interventions developed in DAGs
[Tian and Pearl, 2002]. This new approach is computationally
more attractive than do-calculus as it provides an algorithm to
identify a causal effect, if identifiable. It is also more power-
ful than the generalized back-door criterion, as we show later.
Specifically, we make the following contributions:

1. We derive a complete (necessary and sufficient) graphi-
cal criterion to identify the effect of a single variable X
on the set of all observed variables V (or, P, (v)).

2. We derive a graphical criterion to identify the effect of X
on a subset of observed variables S (i.e. P, (s)) and show
that it subsumes the state-of-the-art adjustment criterion.

2 Preliminaries

In this paper, bold capital letters denote sets of variables,
while bold lowercase letters stand for particular assignments
to those variables. Whenever it is clear from the context, we
write P(V = v) as P(v).

2.1 Structural Causal Models

We use the language of Structural Causal Models (SCM)
([Pearl, 20001, pp. 204-207) as our basic framework. For-
mally, an SCM M is a 4-tuple (U, V| F, P(u)), where U is
a set of exogenous (latent) variables and V is a set of endoge-
nous (measured) variables. F represents a collection of func-
tions F = {f;} such that each endogenous variable V; € V
is determined by a function f; € F, where f; is a mapping
from the respective domain of U; U Pa; to V;, U; C U,
Pa; C V\ 'V, and the entire set F' forms a mapping from
U to V. The uncertainty is encoded through a probability
distribution over the exogenous variables, P(u), which in-
duces a probability distribution over the measured (observed)
variables, P(v). A causal diagram associated with an SCM
encodes the structural relations among V U U, in which an
arrow is drawn from each member of U; U Pa; to V;, where
Pa; denotes the endogenous parents of V; in the causal dia-
gram. We assume the underlying structural system is acyclic.
The observational distribution, P(V), is a marginal over V
of the joint distribution of V U U, and it factorizes according
to the causal diagram.

! Another promising approach is based on SAT solvers [Hyttinen
et al., 2015]. Given its somewhat distinct nature, a closer compari-
son lies outside the scope of this paper.
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Within the structural semantics, performing an action X=x
is represented through the do-operator, do(X=x), which en-
codes the operation of replacing the original equation for X
by the constant x and induces a submodel M,. The result-
ing distribution is denoted by P,, which is the main target
for identification in this paper. For a more detailed discussion
of structural causal models, we refer readers to [Pearl, 2000;
Spirtes et al., 2001; Bareinboim and Pearl, 2016].

2.2 Identification Given a Causal DAG

We will build on the notion of c-components and the graph-
ical condition for the identification of P,(v) developed in
[Tian and Pearl, 2002].

Definition 1 (C-Component). In a causal DAG, two observed
variables are said to be in the same confounded component
(c-component) if and only if they are connected by a bi-
directed path, i.e. a path composed solely of such bi-directed
treks as Vi < U;; — V;, where Uy is an exogenous variable.

For convenience we will often refer to a bi-directed trek
like V; < U;; — V; as a bi-directed edge between V; and V.

Proposition 1 (Tian and Pearl). Given a causal diagram G,
let Vi < Vo < -+ < Vi, be a topological order over V, and
let V) = (Vi ... . ViYwithi = 1,...,nand V(O = ¢.
P, (v) is identifiable given G if and only if X is not in the
same c-component with any of its children. If identifiable, the
effect is given by

P.(v) =

e 2 T Pwr)

i—1
H{WGSX}P“'” )T sy

where SX is the c-component that X belongs to and x'
ranges over all the values of X.

2.3 Ancestral Graphs

We now introduce a graphical representation of equivalence
classes of causal diagrams. A mixed graph can contain di-
rected (—) and bi-directed edges («<+). A is a spouse of B if
A + B is present. An almost directed cycle happens when A
is both a spouse and an ancestor of B. An inducing path rela-
tive to L is a path on which every node V' ¢ L (except for the
endpoints) is a collider on the path (i.e., both edges incident to
V are into V') and every collider is an ancestor of an endpoint
of the path. A mixed graph is ancestral if it doesn’t contain
a directed or almost directed cycle. It is maximal if there is
no inducing path (relative to the empty set) between any two
non-adjacent nodes. A Maximal Ancestral Graph (MAG) is
a graph that is both ancestral and maximal. A MAG entails
a conditional independence model by a generalization of d-
separation called m-separation, and MAG models are closed
under marginalization [Richardson and Spirtes, 2002]. Al-
gorithm 1 is a procedure for marginalization of MAGs.
Given a causal DAG G(V, L) where V and L are observed
and latent variables, respectively, we can marginalize out L
and obtain a MAG Mg over V by Alg. 1. This MAG retains
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Algorithm 1: MAG Marginalization

Input : MAG G over VUL

Output: MAG Mg over V

1- for pair X,Y € V: X and Y adjacent in Mg iff there
exist an inducing path between them relative to L in G.

2- for each pair of adjacent nodes X,Y € Mg:

1. X =Y if Xisancestorof Y in G.
2. X < Y ifYisancestorof X inG.
3. X & Y otherwise.

both the independence and the ancestral relations among vari-
ables in 'V that are entailed by the original DAG. In general,
a causal MAG represents a set of causal DAGs with the same
set of observed variables that entail the same independence
and ancestral relations among the observed variables.

Different MAGs may be Markov equivalent in that they
entail the exact same independence model. A partial ancestral
graph (PAG) represents an equivalence class of MAGs [M(],
which shares the same adjacencies as every MAG in [M] and
displays all and only the invariant edge marks.

Definition 2 (PAG). Let [M] be the Markov equivalence
class of an arbitrary MAG M. The PAG for [M], P, is a
partial mixed graph such that:

i. P has the same adjacencies as M (and hence any mem-

ber of [M)]) does.
ii. Anarrowhead isin P iff it is shared by all MAGs in [M].
iii. A tailisin P iff it is shared by all MAGs in [M)].

iv. A mark that is neither an arrowhead nor a tail is
recorded as a circle.

A PAG is learnable from the conditional independence and
dependence relations among the observed variables [Zhang,
2008b], and represents an equivalence class of DAG models
with the same observed variables.

Given a PAG, a path between X and Y is potentially di-
rected (causal) from X to Y if there is no arrowhead on the
path pointing towards X. Y is called a possible descendant
of X and X a possible ancestor of Y if X =Y or there is
a potentially directed path from X to Y. We write An(Y) to
denote the set of possible ancestors of set Y. A set A is an-
cestral if An(A) = A. Y is called a possible child of X and
X a possible parent of Y if they are adjacent and the edge is
not into X.

A directed edge X — Y in a MAG or PAG is visible if
there exists no DAG G(V, L) in the corresponding equiva-
lence class where there is an inducing path between X and Y
that is into X relative to L. This implies that a visible edge
is not confounded (i.e. X < U; — Y doesn’t exist, for any
U; € L). Which directed edges are visible is easily decidable
by a graphical condition [Zhang, 2008al, so we will simply
mark visible edges by v. For brevity, we refer to any edge
that is not a visible directed edge as invisible.

If the edge marks on a path between X and Y are all cir-
cles, we call the path a circle path. For convenience, We use
an asterisk (*) to denote any of the possible marks of a PAG
(0,>,—)ora MAG (>, —).
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Figure 1: Causal query P, (v) over PAG P.

3 Identification of P,(v)

We first define the notion of identification in PAGs, which
generalizes the model-specific notion [Pearl, 2000, pp. 70].

Definition 3. Given a PAG P over V and a query Py(s)
where T, S C V. Py(s) is identifiable in PAG P if and only if
Py(s) is identifiable in all the Markov equivalent DAGs with
the same expression.

Let V denote the set of all nodes in a given PAG P. In
this section, we generalize Proposition 1 to PAGs and derive
an identification criterion for the effect of X on all variables
in V \ X, denoted by P,(v). The following challenges are
immediate when considering this more general setting:

1. Structural uncertainty regarding c-components.

2. Lack of a topological order over the variables with re-
spect to a PAG.

To address the first challenge, we generalize the notion of
c-component for MAGs and PAGs.

Definition 4 (PC-Component). Given a MAG or a PAG, two
nodes X and Y are in the same possible c-component (pc-
component) if there is a path between the two variables such
that (1) all non-endpoint nodes along the path are definite
colliders, and (2) none of the edges, if directed, are visible.

Given that all the non-endpoint nodes along the path, if
any, are colliders by the first condition of Def. 4, the second
condition is only concerned about the first and the last edges
on the path, as all the other edges must be bi-directed. For
instance, V7 and V} in Fig. 1 are in the same pc-component
due to the path (V1, X, Vi, Vi, V4). The following proposition
shows that being in the same pc-component in a MAG or PAG
is necessary for being in the same c-component in some DAG
in the corresponding equivalence class.

Proposition 2. Let X andY be two nodes in a MAG or PAG
P. If X and 'Y are not in the same pc-component in P, then
X and'Y are not in the same c-component in any DAG in the
equivalence class.”

For example, X and V3 in Figure 1 are not in the same
pc-component, and consequently they are not in the same c-
component in any DAG in the equivalence class.

The converse of Proposition 2 does not hold for PAGs
(though it does for MAGs). However, the following weaker
proposition holds and is sufficient for our purpose:
Proposition 3. Let X and Y be two nodes in a MAG or PAG
P.If X and Y are in the same pc-component in P, and either
X andY are adjacent or there is no circle path between them,
then X andY are in the same c-component in some DAG in
the equivalence class.

2See [Jaber ez al., 2018] for all the proofs.
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Algorithm 2: PTO Algorithm

Input :PAG G over V
Output: PTO over G
1- Create singleton buckets B; each containing V; € V.

2- Merge buckets B; and B; if there is a circle edge
between them (B; > X o—o Y € B;).
3- while set of buckets (B) is not empty do
(i) Extract B; with only arrowheads incident on it.
(i1) Remove edges between B; and other buckets.
end

4- The partial order is B; < --- < B, in reverse order
of bucket extraction, i.e. B is the last extracted bucket.

For example, the condition in Proposition 3 is satisfied for
X and V} in Figure 1. Hence, there exists a DAG in the equiv-
alence class where X and V, are in the same c-component.

A special case of pc-component is the following:

Definition 5 (DC-Component). In a MAG or PAG, two vari-
ables are in the same definite c-component, dc-component, if
and only if they are connected with a bi-directed path, i.e. a
path composed solely of bi-directed edges.

For instance, nodes X and Vg in Figure 1 are in the same
dc-component, which implies that they are in the same c-
component in every DAG in the equivalence class. It is im-
portant to consider when nodes are in the same c-component
in some or all the DAGs in the equivalence class.

In the sequel, we address the second challenge by showing
how to construct a partial topological order over a PAG that
is valid for all DAGs in the equivalence class. It is easy to see
that we can’t always find a complete topological order over
the nodes in a PAG that is valid for all DAGs (consider e.g.,
X ooY). Instead, Algorithm 2, called PTO, constructs a par-
tial topological order. We refer to the output of the algorithm
as Bucketed PAG (BPAG). Note that each BPAG’s bucket is
called in the literature as a circle component.

Consider the PAG in Fig. 1 where we intend to construct
a topological order. All the buckets are singleton sets since
there are no circle edges. Hence, a possible extraction order
sV < Vs < X < V3 < Vy < Vg, which is valid for all
DAG:s in the equivalence class.

Lemma 1. The PTO algorithm is sound, i.e. the partial order
is valid for all the DAGs in the equivalence class.

We are now ready to state the main theorem for the identi-
fication of P, (v).

Theorem 1. Let a partial topological order over PAG P be
B, < By < --- < By, and let BY) = [J{By,...,B;},
i =1...m, and B(") = (. P,(v) is identifiable if and only
if X is not in the same pc-component with any of its possible
children. When identifiable, the effect is given by

P.(v) = Pl

z/{i|B;CSX}

where SX is the dc-component of X.

5027

(i—1)
Moo, P2, 11 PEEC)

A

N

B o C D E

Figure 2: Sample PAG for the special cases.

Proof Sketch. Proposition 3 is sufficient to guarantee that if
X is in the same pc-component with a possible child in P,
then there is a DAG in the equivalence class in which X is
in the same c-component with a child, and so P,(v) is not
identifiable. Conversely, Proposition 2 entails that if X is not
in the same pc-component with any of its possible children
in P, then X satisfies the condition of Proposition 1 in ev-
ery DAG in the equivalence class. We can then show that in
every DAG, the identification expression is equivalent to the
expression above. See Appendix for details. O

Consider the PAG in Figure 1. Since X is not in the same
pc-component with any of its possible children, namely Vs,
P,(v) is identifiable by Theorem 1. The dc-component of
X is SX = {X,V5,Vs} , and we use the topological order
derived earlier (i.e. V7 < V5 < X < V3 < V4 < Vj). Hence,
the expression for the causal effect is given by

P,(v) = P(v)

P(vs|vy) P (1’|Ul,’05) (ve|v1,vs, 2, v3,v4)

ZP vs|vy) P

This example also illustrates why the expression in Thm. 1
discards nodes that are in the pc-component but not in the dc-
component of X. Vj is in the pc-component of X (i.e. X <+
V5 <> Vg +—oV),) and satisfies the condition in Prop. 3, hence
itis in the c-component of X in some DAG in the equivalence
class. However, the fact that V;, 1 X|(V4, V3, Vs) can be
used to simplify the expression to that in Thm. 1.

X (2)

|’U17'U’) (U6|U1,U57l‘/,’l}37’04)

3.1 Special Cases

In two special cases, analogous to those considered in the
context of DAGs [Tian and Pearl, 2002], the expression in
Theorem 1 can be considerably simplified. These simpler re-
sults are worth mentioning because the more compact iden-
tification expressions in these special cases entail a lower
sample and computational complexity when evaluating them
from data, and because the simpler graphical conditions allow
the causal analyst to decide identifiability (yes/no) almost im-
mediately by inspection. Let Pa, and Ch, denote the sets of
possible parents and possible children of X, respectively.

Corollary 1. If all the edges incident on X are visible, then
P, (v) is identifiable and is given by

P.(v) = P(v|x,pa;)P(pay)

Proof. The condition implies that X is not in the same pc-
component with any node, including its possible children, and
that S¥ = {X}. Hence, the condition of Th. 1 is satisfied and

the identification expression becomes P(v)/P(x|z(—1).
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(a) Sample PAG P.

(b) Marginal PAG due to Lemma 2.
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(c) Marginal PAG due to Lemmas 2 and 3.

Figure 3: Example of Definition 7.

Note that X I X~V \ Pa,| Pa, since every path p
between X and X =1\ Pa, includes either (1) an edge out
of X, in which case there is a collider along p in V' \ X () that
blocks p, or (2) a directed edge into X which is a definite non-
collider along p (pa, > V; — X) and so blocks p. Hence,
P(z|z~1) simplifies to P(z|pay). O

For example, consider the PAG in Figure 2 and the distri-
bution P;(v). The effect is identifiable by Corollary 1 as

P;i(v) = P(a,b,e|c,d)P(c)
The second case relaxes the previous condition on X but
imposes a condition on the possible children of X .

Corollary 2. If all the edges incident on the possible children
of X are visible, then P,(v) is identifiable and is given by

P =( I

{i|V;€Cha}

. P(v)
P(vi|p Z));H{ﬂ/,,echm} P(vilpa;)

Proof Sketch. The identification criterion of Theorem 1 is
satisfied as the nodes in Ch, are not in the same pc-
component with any other node, including X. The identifi-
cation expression can be rewritten as

P(B-|B(i_1) (v)
{ilBla_z[sx} l )ZH{zB gs<) P(B

We then simplify the expression using the independence
relations among the variables to obtain the expression above.
The detailed proof can be found in the Appendix. O

i‘B(i—l))

Consider, for example, the distribution P.(v) over the PAG
in Figure 2. The effect is identifiable and given by

P(v

= P(d|c) Z P(a,b,e|d,d)P(c)

P.(v) =

4 Identification of P, (s)

So far, we have derived a complete criterion to identify P, (v)
in a given PAG. Now, suppose that we are interested in es-
timating the effect of X on a subset of observed variables
(S € V\ X). One may be tempted to surmise that The-
orem 1 should be enough for this problem — namely, first
identify P,(v), and then marginalize out unintended vari-
ables (V \ S U X). For instance, for the query P,(v4) in
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Fig. 1, P,(v) can be computed first (i.e. Eq. 2), and then
V \ {X,V4} can be marginalized out. While this solution
is certainly sound when the conditions of the theorem are
met, the strategy is not necessary. To see this, consider the
query P, (y) over the PAG in Fig. 3a. As we will show later,
P, (y) is identifiable despite the non-identifiability of P, (v).
The aim of this section is to explain these subtleties and de-
rive a stronger graphical criterion to identify P,(s) where
S C V \ {X} is the outcome set. We start by introducing
a new construction called marginal PAG which allows us to
systematically eliminate nodes that need not be considered.

4.1 Marginal PAG

Definition 6 (Marginal PAG). Let [M] be a Markov equiv-
alence class of MAGs over V. For A C 'V, let [M]a =
{M\|M' € [M]} where M’y denotes the MAG over A that
results from marginalizing out V. \ A in M’ (Algorithm 1).
A marginal PAG for [M] relative to A is the partial mixed
graph that has the same adjacencies as every graph in [M]a
and displays all and only the shared edge marks in [M]a.

Note that in this definition, [M]4 is in general not a full
equivalence class of MAGs over A, but a subset of an equiv-
alence class. For example, let [M] be the equivalence class
represented by the PAG in Fig. 3a. Let A = {4, X, Y}.
Then, every MAG in [M]a, according to the above defini-
tion, contains an edge Vi X and an edge X — Y. Con-
sequently, the marginal PAG relative to A is the graph in
Fig. 3c. In this case, [M]4 is not a full equivalence class be-
cause, for example, V; < X < Y is also Markov equivalent
to graphs in [M]a but not contained therein. If we consider
the full equivalence class of which [M]4 is a subset, the cor-
responding PAG is V; o—o X o—o Y. Therefore, a marginal
PAG according to our definition is not an ordinary PAG, and
is in general more informative.

The following two lemmas describe two cases of construct-
ing a marginal PAG that are relevant to our purpose.

Lemma 2. Let A be an ancestral set in a PAG P. The
marginal PAG for the equivalence class represented by P rel-
ative to A is simply Pa, the induced subgraph of P over
A. Furthermore, a visible edge in ‘P remains visible in the
marginal PAG.

Lemma 3. Let P be a PAG over V and let B be a circle
component in P that is partitioned into two nonempty sets T
and C, i,e. TUC = B and T N C = (. If every possible
child of C is in B, then the marginal PAG relative to V \ C
can be constructed from P as follows:

1. Remove C and all the incident edges, and;
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2. Add a circle edge between two non-adjacent nodes in T
if there exists a circle path between them where every
node along the path is in C.

Moreover, all the visible edges in P remain visible in the
marginal PAG.

Although a marginal PAG is not necessarily an ordinary
PAG, for the marginal PAGs constructed according to Lem-
mas 2 and 3, we can show that they retain a crucial graphical
property of ordinary PAGs, namely:

Lemma 4. The following property holds in a marginal PAG
constructed according to Lemmas 2 and 3:

for any three nodes A, B, C, if Ax— B o—x C, then there is
an edge between A and C with an arrowhead at C, namely,
Ax— C. Furthermore, if the edge between A and B is A —
B, then the edge between A and C'is either A — C or Ao—
C (i.e., itisnot A+ C).

Proof. The proof is trivial for the marginal PAG in Lemma 2,
for a violation of it in the marginal PAG obviously implies its
violation in the original PAG, which is not possible.

As for the marginal PAG in Lemma 3, it can only introduce
new adjacencies between nodes in the form of circle edges
within a circle component (bucket). Hence, a violation of the
property in the marginal PAG also implies its violation in the
original PAG which is not possible. O

It follows from Lemma 4 that a marginal PAG constructed
by Lemmas 2 and 3 preserves the main properties established
for a PAG, and specifically all the properties needed for the
derivation in Section 3. We can then define a simplified PAG:

Definition 7 (79{(( ). Given a PAG P over V. 73{(( , referred to
as simplified PAG with respect to X and Y, is the result of
applying the marginalization in Lemma 2 relative to An(Y),

and then Lemma 3, if applicable, with respect to T = X,
where X = {X} NAn(Y)andCNY = 0.

For example, the simplified PAG P} for the PAG in Fig. 3a
is constructed as follows. The set An(Y) = {Y, X, V4, V52}
is ancestral in P, hence Lemma 2 can be applied, and the
marginal PAG over An(Y'), P’, is given in Fig. 3b. In P’,
nodes X and V5 correspond to the sets T and C in Lemma 3,
respectively. X is the only possible child of V5 and is con-
tained in the corresponding circle component. So, Lemma 3
is applicable, which yields the simplified PAG in Fig. 3c.

4.2 A Sufficient Criterion
The relevance of marginal PAGs is due to the following result:

Lemma 5. Given a PAG P, P,(s) is identifiable in P if Py(s)
is identifiable in P& where X = {X} N An(S).

In other words, we can focus our attention on the compo-
nent of X that persists in the simplified graph, and ignore all
the variables that are marginalized out. For instance, given
the query P, (y1) over the PAG Yio— X <—oY5, Lemma 5
suggests that we drop X along with Y5 from the simplified
PAG and the corresponding marginal distribution, i.e. P(y;).
Hence, the interventional distribution for this trivial query is
P(y1). We use this observation to prove the main result of
this section, an identification criterion for P, (s).

/\

Viem— X —> Vs —> Y1 —— Y2

Figure 4: P, (y) is not identifiable using the adjustment criterion.

Theorem 2. Given a PAG P, P.(s) is identifiable if X =
{X} N An(S) is not in the same pc-component with any of its
possible children in P .

Proof. Let V' be the set of variables in ng . By Lemma 5, it
is sufficient to consider the query Py (s) over Pg. As stated
in Subsection 4.1, all the properties required for the correct-
ness of the PTO algorithm and Theorem 1 remain valid in
P& . Since the condition here is just the condition of Thm. 1
over P&, Py(v') is identifiable using Theorem 1. We then
marginalize out V' \ SU { X'} to get Py (s). O

Given a query P, (s), Thm. 2 provides a sufficient condi-
tion over the simplified PAG P& such that the causal distri-
bution can be computed through the formula in Thm. 1. For
non-trivial queries of the form P,(v), note that the simpli-
fied PAG remains P and Thm. 2 reduces to Thm. 1. Con-
sider the example in Fig. 3a and the causal query P, (y). The
corresponding simplified PAG PsX is shown in Fig. 3c. We
compute P, (y,v1) by applying Thm. 1 over P5X, then we
marginalize out variable V7, obtaining

Px(y)=Z( D;":ly Zp loy) )
*ZPvl

4.3 Criterion Strength

The identification criterion for P, (s) in Theorem 2 is strictly
more powerful than the generalized adjustment criterion pro-
posed in [Perkovi¢ et al., 2016], which is proven to be
complete for adjustment. For example, the causal query
P, (y1,y2) over the PAG in Figure 4 is identifiable using the
criterion in Theorem 2 while it is not identifiable using the ad-
justment method. On the other hand, the following theorem
shows that there is no singleton intervention effect that can
be identified using the adjustment method but not identifiable
using Theorem 2.

Theorem 3. Let P be a PAG over a set of nodes V and let
P, (s) be a causal query where X € V, S C V\ X. If P,(s)
is not identifiable using Theorem 2, then there exist no set Z
that satisfies the generalized adjustment criterion.

(ylz,v1) = P(y|x)

5 Conclusion

In this paper, we investigated the problem of identification of
causal distributions with singleton interventions in a Markov
equivalence class represented by a PAG. We proved three
graphical criteria for the identification of P,(v), where V
is the set of all variables, including a general criterion that
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is necessary and sufficient for the identifiability of P,(v).
These results can already be used to identify causal queries in
challenging settings that backdoor-like methods cannot solve
(e.g., given the PAG in Fig. 4, P, (y1, y2) is identifiable using
Corollary 2, but not by adjustment). In addition, we intro-
duced a new construction called marginal PAGs, with which
we derived a sufficient graphical condition for the identifica-
tion of P, (s), where S is a subset of the variables. Our crite-
rion was shown to be strictly stronger than the state-of-the-art
adjustment method found in the literature. We expect that our
results will be helpful to causal analysts when studying com-
plex, high-dimensional settings where learning the full causal
model is often infeasible.
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