

1 **Repeatable patterns of small-scale spatial variation in intertidal mussel**
2 **beds and their implications for responses to climate change**

3

4 Luke P. Miller¹ and W. Wesley Dowd²

5 ¹ San Diego State University, Department of Biology, San Diego, California

6 ² Washington State University, School of Biological Sciences, Pullman, Washington

7 Keywords: thermal stress; environmental variation; intertidal zone; gaping behavior; *Mytilus californianus*

8 **Abstract**

9 The interaction of ocean conditions and weather with small-scale physical features of a habitat can have
10 profound effects on the experiences of individual organisms. On topographically complex shorelines, and
11 particularly within dense aggregations of organisms such as mussel beds, a mosaic of environmental
12 conditions can develop, and the resulting variation in conditions within the aggregation could drastically
13 alter the performance of neighboring individuals. Using a suite of sensors mounted to individual *Mytilus*
14 *californianus* mussels over two summer field deployments, we have characterized the temperature
15 variation and valve gaping behavior differences found at two spatial scales: within a group separated by
16 centimeters, and between groups of mussels located at the upper and lower extents of the natural mussel
17 zone separated by meters. While temperature conditions near the lower edge of the mussel bed were
18 generally more benign, temperature extremes were similar at both heights in the bed, and variation in
19 body temperature among neighbors increased as the daily mean temperature increased. These patterns
20 were similar across years despite a 3.8°C difference in mean air and seawater temperatures between
21 years. Gaping behavior was also highly variable among individuals, though that variability diminished at

22 the high end of the mussel bed where the total time mussels spent submerged was much more
23 constrained. These data indicate that an individual mussel's physiological status and past history can be
24 drastically different than those of its nearby neighbors, complicating our ability to characterize
25 representative conditions within a habitat. These observations also provide for the possibility that the
26 impacts of future climate change will be highly specific to certain individuals based on their relative
27 exposure or protection within the mosaic. To address such possibilities, future work must examine the
28 correlation between genotypic and physiological traits that determine performance and individuals'
29 unique experiences in their disparate micro-environments.

30 Introduction

31 The manner in which an organism experiences and responds to fluctuations in its local environment is
32 driven by extrinsic factors that the organism may have no control over, and intrinsic factors that the
33 organism can control to some extent. Characterizing the physiological status and stress tolerance of a
34 species under current and future climate regimes requires insight into the range of inter-individual
35 variation in how organisms experience their environment (Logan et al., 2012). At small spatial scales that
36 are most relevant to individual organisms (particularly sessile organisms), the environment may be
37 relatively stable, or highly variable, and the experiences of neighboring individuals just a few body lengths
38 away might be radically different (Chapron and Seuront, 2011; Chapron et al., 2017; Denny et al.,
39 2011; Lathlean et al., 2016; Miller and Dowd, 2017; Pincebourde et al., 2016). The potential for wide
40 variation in how individuals experience their environment increases the chances that local populations
41 might tolerate environmental extremes that extirpate certain individuals, leaving behind other members
42 of the population that either tolerate the extreme conditions (Denny et al., 2011), or avoid the extreme
43 conditions altogether through behavioral means (Miller and Denny, 2011) or by virtue of living in refuge
44 microhabitats (Chapron and Seuront, 2011; Garrity, 1984; Harper and Williams, 2001).

45 The intertidal zone, particularly rocky shores with high topographic complexity, is commonly
46 characterized by large variation in environmental parameters driven by the oceanic and atmospheric
47 conditions that alternate their effects on the habitat as the tide cycles high and low (Denny et al., 2009;
48 Mislan et al., 2009). Relatively benign conditions may quickly transition to stressful situations as the
49 confluence of tide height, wave splash, air temperature, water temperature, sun, and wind can create
50 extremely hot, cold, desiccating, or high-flow stresses that exceed the physical or physiological limits of
51 individual organisms (Denny et al., 2006; Helmuth et al., 2011). The extent and severity of these extreme
52 conditions may be highly dependent on local physical and biological factors, so that neighboring
53 individuals experience very different temperatures, desiccation stress, or water flow (Broitman et al.,
54 2009; Helmuth, 2002).

55 Topographic complexity can create wide variation in microhabitat environmental conditions over the
56 space of centimeters to meters. A particularly well-studied example is the effect of substratum orientation
57 (slope and aspect) on solar exposure and resultant temperatures during low tide (Denny and Harley, 2006;
58 Harley, 2008; Helmuth and Hofmann, 2001; Miller et al., 2009; Wethey, 1984). The orientation of the
59 substratum, in concert with tide cycles, will influence the timing and severity of solar exposure that can
60 lead to temperature extremes (Denny et al., 2006). East-facing surfaces can have more stressful
61 temperature conditions during morning low tides, while west-facing surfaces are more likely to have
62 stressful temperature conditions during afternoon low tides, and south-facing surfaces (or north-facing in
63 the southern hemisphere) should endure the most extreme conditions during midday low tides (Harley,
64 2008; Hayford et al., 2015; Wethey, 1984). The orientation of the substratum may also influence exposure
65 to wave splash, which can lower the 'effective' shore level by allowing splash or wave run-up to submerge
66 a plot earlier than the still water level would predict (Gilman et al., 2006; Harley and Helmuth, 2003;
67 Mislan et al., 2011). High topographic relief, particularly the presence of crevices that can funnel wave

68 splash (O'Donnell and Denny, 2008) or shade an organism, can create thermal refuges in an otherwise
69 thermally challenging location (Chapperon and Seuront, 2011; Chapperon et al., 2016).

70 In addition to the role of substratum complexity, biogenic structures can contribute to the patchwork of
71 stressful or non-stressful conditions, and aggregations of sessile organisms, such as mussels and oysters,
72 can create refugia within the three dimensional structure of the group (Chapperon et al., 2017; Helmuth,
73 2002; Lathlean et al., 2016; McAfee et al., 2018; Mislan and Wethey, 2015). Shading of neighbors or multi-
74 layer aggregations can promote the retention of moisture during low tide and moderate temperature
75 swings, so that individual animals might experience relatively low-stress conditions while their nearby
76 neighbors are exposed to extremes (Harley, 2008; Jurgens and Gaylord, 2017; Mislan and Wethey, 2015;
77 Nicastro et al., 2012). Two-dimensional and three-dimensional structural complexity created by
78 aggregations of organisms can also be a cause and consequence of wave-driven dislodgement that can
79 create patchworks of gaps in aggregations (Cole and Denny, 2014; Denny, 1987; Guichard et al., 2003)
80 that then create small-scale differences in water flow and solar exposure that could impact organismal
81 behavior and performance (O'Donnell, 2008).

82 The cycling of the tides and ocean swell interact with shoreline topography and biogenic three-
83 dimensional structures to control the opportunities for feeding, aerobic respiration, and waste removal,
84 particularly for sessile bivalve filter feeders such as mussels and oysters (Mislan et al., 2011). At the scale
85 of meters, particularly up and down the shore, the duration of submergence and aerial emersion can vary
86 on the order of hours per day (Mislan et al., 2011), and these differences can affect gene expression
87 patterns and physiological status differences over those scales (Place et al., 2012). Even at smaller spatial
88 scales, the effect of wave run-up, splash, and neighbors or nearby topographic features could impact
89 when individuals are submerged or emersed, and when they elect to open the valves to carry out the
90 necessary tasks of feeding, aerobically respiring, and excreting wastes, or when they decide to close the
91 valves, curtailing these processes, and waiting for more favorable conditions (Bayne et al., 1976).

92 Our primary goal in this study is to synthesize data from two summers of individual-scale observations to
93 illustrate the range of variation in body temperature and gaping behavior that can be found within a
94 mussel bed. We use the California mussel, *Mytilus californianus*, which is a dominant space holder in the
95 mid-intertidal zone along much of the northeastern Pacific coast, and which can construct multi-layer
96 beds that cover many square meters and provide structure for a multitude of other mobile and sessile
97 species (Dayton, 1971; Lohse, 1993; Suchanek, 1979). These observations were carried out during summer
98 with the goal of characterizing the amount of inter-individual variation in temperature stress during warm
99 weather and periods of calm ocean swell. Although the hottest conditions for mussels occasionally occur
100 outside of summer at this site (Helmuth et al., 2006), greater wave splash in other seasons might tend to
101 homogenize individual temperature and valve gape patterns, so we targeted our observations to the
102 calmer summer season. Using sensors to measure internal body temperature, valve gape, and orientation,
103 we show that mussels living only centimeters apart at the same shore height can differ substantially in
104 their individual experiences of environmental conditions, and that both the lower and upper ends of the
105 mussel zone on the shore can experience these wide variations between individuals. We show consistency
106 in the inconsistency of thermal stress and valve gaping behavior over small spatial scales across years,
107 increasing confidence in the persistence of these patterns. We then discuss potential implications of these
108 patterns for physiological variation within mussel aggregations and for efforts to forecast the biological
109 outcomes of climate change. The existence of large differences in individual experiences of environmental
110 variation may be key to estimating the resistance of this important foundation species to environmental
111 stresses under future climate change.

112 **Methods**

113 **Data acquisition system**

114 During July and August of 2015 and 2016, we deployed MusselTracker datalogger systems in groups of
115 adult *M. californianus* placed in the field at Hopkins Marine Station, in Pacific Grove, CA (HMS hereafter,
116 36.6217°N, 121.9043°W). The MusselTracker system has been previously described in Miller & Dowd
117 (2017), and consists of custom designed microcontroller dataloggers that record data from a suite of
118 sensors attached to live mussels. Each instrumented mussel had a 30 gauge K-type thermocouple wire
119 inserted through a hole drilled at the midpoint of the ventral margin of the left valve, a combination 3-
120 axis accelerometer and 3-axis magnetometer glued near the anterior end of the right shell valve, and a
121 Hall effect magnetic sensor and neodymium magnet glued to opposite valves at the posterior end of the
122 shell. From these sensors, we could obtain high frequency (1 Hz) measurements of internal body
123 temperature, valve gape, and orientation (4 Hz).

124 The focal mussels were originally collected from two mussel beds at the same shore height at HMS, one
125 relatively wave-exposed, and one relatively wave-protected (Denny et al., 2011; Dowd et al., 2013;
126 Jimenez et al., 2015). Instrumented mussels (mean shell length = 66.5 mm, range = 60.8 to 72.0 mm in
127 2015; mean shell length = 65.1 mm, range = 60.6 to 69.1 mm in 2016) were placed on acrylic plates (45 ×
128 30 cm), with watertight boxes attached to two ends of the plates to house the dataloggers and batteries.
129 Additional 40-70 mm adult mussels collected from the shoreline at HMS were packed around the
130 instrumented mussels to form a densely packed single-layer bed, creating densities ranging from 777 to
131 955 mussels m⁻². These densities were lower than nearby natural mussel beds composed primarily of
132 mussels in the 40-70 mm size range, which have densities ranging from 1000 to 3325 mussels m⁻² (L. Miller,
133 pers. obs.). The mussels were held in flow-through seawater tables at HMS while sensors were being
134 attached. While the mussels were held in the water table, they had the opportunity to attach to the acrylic
135 plate and their neighbors using byssal threads. Prior to deployment in the field, the plates were covered
136 with 5 mm plastic mesh to help hold the mussels in place for the first two days of the deployment.

137 **Field deployment**

138 In July 2015 and July 2016, we deployed experimental plates, each containing 12 instrumented mussels,
139 to locations near the lower edge and upper edge of the *Mytilus* zone at HMS. The low-shore location (1.04
140 m above mean lower low water [MLLW]) was situated on a rock face tilted 45 degrees from horizontal
141 and facing southwest, while the high-shore location (1.72 m above MLLW) was on a horizontal rock
142 surface. The two locations were separated by 4.5 m horizontal distance across the shore, with the low-
143 shore location located closer to the ocean, and the high-shore site situated inshore. Data from the 2015
144 deployment have previously been described in Miller & Dowd (2017), along with a third plate deployed in
145 a high-shore tide pool, which will not be considered here. The 2015 deployment ran from 15 July to 6
146 August (21 full days and two partial days), while the 2016 deployment spanned a similar period of the
147 year, running from 3 July to 3 August (29 full days and two partial days). During the 2015 deployment, we
148 lost three mussels at the high-shore location to predation by black oystercatchers, (*Haematopus*
149 *bachmani*, detailed in Miller and Dowd, 2019), and one mussel to predation during 2016. One high-shore
150 mussel may have died due to high temperature exposure during the 2016 deployment after reaching a
151 maximum temperature of 37.2 °C, and one low-shore mussel appears to have been dislodged by wave
152 action.

153 **Environmental data**

154 We obtained measured tide height values at 6 min intervals from the NOAA tide gauge located in the
155 Monterey Harbor, approximately 2.3 km from the field site. A caretaker at HMS sampled water
156 temperature each morning on a beach adjacent to the field site. A weather station at the field site
157 collected air temperature. The Hopkins Marine Life Observatory manages a repository of water
158 temperature and weather station data (<http://mlo.stanford.edu>). A wave rider buoy situated
159 approximately 400 m north of the field site reported significant wave height twice per hour (Coastal Data
160 Information Program buoy 158, Scripps Institute of Oceanography). Summary statistics for the
161 environmental conditions are shown in Table 1.

162 **Statistical analyses**

163 We used R version 3.5.1 for all analyses (R Core Team, 2018). We refer to data from our previous 2015
164 deployment at the same locations on the low shore and high shore for comparison across years, and the
165 summary statistics reported here were calculated using the same methods as the 2015 analysis (Miller
166 and Dowd, 2017). Because a primary focus of this work was to elucidate variation among individuals in
167 close proximity to each other, each mussel was treated as a biological replicate, but the fact that we only
168 had a single experimental plate per shore location does limit the inferences that could be drawn about
169 other mussel beds in other locations. Nonetheless, for adult populations of long-lived organisms such as
170 mussels it is this highly local variation that influences individual and population success.

171 Although we originally collected temperature and valve gape data at 1 s intervals, we elected to subset
172 the large datasets and analyze temperature and gape data on 10 s intervals. For these relatively slow-
173 changing quantities, this reduced dataset should not substantially alter the derived statistics.

174 **Temperature analyses**

175 For daily summary statistics related to body temperature, we analyzed all mussels on a plate that had no
176 more than 1.5 h of missing data in a given day. Missing data were due mainly to battery failures or wire
177 breakage of the delicate thermocouple leads. For each day, we extracted the maximum and minimum
178 temperatures achieved by each mussel. The maximum heating rate and cooling rate on each day were
179 estimated iteratively by fitting a linear regression fit to 45 min data windows throughout the day, shifting
180 the window by 5 min each time. Among the available mussels on a plate on each day, we calculated the
181 range of maximum and minimum temperatures achieved and the range of fastest heating and cooling
182 rates, along with the mean and standard deviation of those ranges. To generate metrics of thermal history
183 of mussels during the course of the deployment, we used the subset of mussels on each plate that had
184 nearly complete temperature records, missing no more than 2 days out of 21 full days in 2015, or 7 days

185 of data out of the 29 full days of the deployment. For these mussels, we calculated average daily maximum
186 temperature and cumulative time spent at body temperatures above 25°C, a temperature that generally
187 marks the start of the stress response in intertidal ectotherms from this habitat (Buckley et al., 2001; Dong
188 et al., 2008; Lockwood et al., 2010; Miller et al., 2009). For this same subset, we calculated the ranking of
189 each mussel in terms of daily maximum temperature and used a Kruskal-Wallis test to determine if some
190 individuals were consistently hotter than their neighbors on the same experimental plate. Using hourly
191 temperature data derived from these mussels with interpolated temperature time series, we estimated
192 autocorrelation functions for time lags up to two weeks.

193 We fit regression models to the average daily maximum temperature data for the subset of mussels with
194 nearly complete temperature records on the two plates in 2016, using relative location on the plate as a
195 predictor to look for evidence of a spatial gradient in temperature stress. On the horizontal high-shore
196 plate, location was expressed as distance in cm from the northeast corner of the plate along the east-west
197 and north-south axes. For the low-shore plate, which was situated on a rock tilted 45 degrees above
198 horizontal, location was expressed as a distance along the east-west axis, and along the upshore-
199 downshore axis. We ran Mantel tests to examine potential correlations between the distance matrix of
200 daily maximum temperatures and the distance matrix of mussel locations on each plate, both calculated
201 using simple Euclidean distances and 9999 permutations using the R package *vegan* (Oksanen et al., 2019).

202 **Valve gape analyses**

203 Because of the potential for unique individual gaping behavior syndromes, we limited our comparison of
204 inter-individual gaping behavior to mussels that had near-complete data records. During the 2015
205 deployment, 9 mussels at the low-shore site and 6 mussels at the high-shore site had nearly complete
206 gape records, missing no more than 3 days out of the 21 full days of the deployment. For the 2016
207 deployment, both the high and low-shore plates had 5 mussels missing no more than 3 days out of the 29

208 full days of the deployment. The number of available mussels varied from day to day due to battery failure,
209 sensor failure, or loss of the magnet. Based on plots of the empirical cumulative density functions for all
210 mussels, we used a 20% gape opening as our threshold for delineating “closed” mussels from “gaped”
211 mussels (Miller and Dowd, 2017). We calculated the maximum, minimum, mean, standard deviation and
212 coefficient of variation of time mussels spent gaped wider than 20% on each day.

213 We examined the relationship between temperature variation and gape time variation by fitting models
214 to data on the maximum temperatures achieved by individual mussels during a low tide period and their
215 gape behavior during the subsequent 24 hr using the 2016 data. We fit a linear model with the overall
216 group maximum temperature during low tide as a predictor and range of gape time among mussels as the
217 response, as well as a model with the range of maximum temperatures among the group of mussel during
218 low tide as the predictor, and range of gape time as the response. Finally, we fit linear models of individual
219 mussels’ maximum temperatures during each low tide as a predictor against their individual time spent
220 gaping wider than the 20% threshold during the subsequent 24 h, with a random effect for individual
221 mussel identity to account for the repeated measures of mussels through the course of the deployment,
222 using the R package *nlme* (Pinheiro et al., 2018). Models were fit for the high and low-shore locations
223 separately.

224

225 **Results**

226 **Body temperature**

227 Temperature data from both the 2015 and 2016 summer field deployments showed similar maxima,
228 minima, and ranges in most cases (Table 2). At the upper end of the mussel zone at HMS, we observed
229 slightly higher average differences in individual daily maximum temperatures in 2016 (7.8°C) compared
230 to 2015 (7.0°C), but average differences in daily maxima at the low-shore location were reduced in 2016

231 (2.9°C vs. 4.5°C in 2015). The greatest range of maximum temperatures achieved during a single day
232 during each year was similar on the high-shore plate (14.2 and 14.0 °C, 2015 and 2016 respectively),
233 although the low-shore location had a greater range of maximum temperatures within a single day in
234 2016 (15.8°C) than 2015 (12.8 °C). On days with calmer wave conditions and warmer weather conditions,
235 leading to higher maximum body temperatures, the difference in maximum temperatures achieved by
236 the warmest and coolest individual mussels on a plate increased (Figure 1, Figure 2). The breadth of the
237 range of maximum temperatures within a location actually varied more day to day at the low-shore site
238 in both years (s.d. of the range of T_{\max} = 3.63 to 4.29 °C) than the high site (s.d. = 2.6 °C), indicating that
239 although the high location had a broader range of maximum temperatures each day, the low site was
240 more variable day to day in how large that range might be. At the high-shore location in 2016, among the
241 mussels with nearly complete temperature records, certain mussels had consistently higher daily
242 maximum temperatures than their neighbors (Kruskal-Wallis rank sum test, $\chi^2_5 = 39.1, P < 0.001$), but
243 there were not consistent differences among the mussels at the low-shore location. During the 2015
244 deployment, both the high and low-shore plates had a single mussel that was consistently ranked cooler
245 than its neighbors (Kruskal-Wallis rank sum test, high shore: $\chi^2_5 = 18.9, P = 0.002$; low shore: $\chi^2_6 =$
246 13.2, $P = 0.039$), but the remaining mussels did not consistently rank warmer or cooler than the others.
247 Minimum temperatures showed a similarly small range of variation among individuals in both 2015 and
248 2016 (average range between 0.58 and 1.3 °C across both locations and years). Minimum temperatures
249 were set either by ocean temperature or by nighttime low tide conditions. In both 2015 and 2016, the
250 high-shore mussels experienced lower average minimum temperatures than the low-shore mussels (1 °C
251 cooler on average in 2015, 0.7 °C cooler in 2016), primarily due to their more frequent nighttime aerial
252 emersions during low tide.

253 Heating and cooling rates varied substantially in both 2015 and 2016 (Table 2, Figure 3). The maximum
254 heating rate measured at the high-shore location in 2016 was $15.6\text{ }^{\circ}\text{C h}^{-1}$, which was slower than the
255 fastest heating rate observed in 2015 ($20.2\text{ }^{\circ}\text{C h}^{-1}$). We found isolated examples of very high heating rates
256 at the low-shore location, with a maximum rate of $14.2\text{ }^{\circ}\text{C h}^{-1}$ that exceeded the fastest heating rate we
257 measured there in 2015 ($12.4\text{ }^{\circ}\text{C h}^{-1}$). These occasional high heating rates were accompanied in some
258 instances by large differences in individual heating rates on the same day (maximum range of $13.0\text{ }^{\circ}\text{C h}^{-1}$
259 on the high-shore plate, $12.5\text{ }^{\circ}\text{C h}^{-1}$ on the low-shore plate in 2016), although the average range in heating
260 rates across days tended to be much more restricted ($5.4\text{ }^{\circ}\text{C h}^{-1}$ on the high shore in both years, 1.8 to 2.7
261 $^{\circ}\text{C h}^{-1}$ on the low shore in 2015 and 2016 respectively). The fastest rates of cooling were faster in 2016 on
262 the high and low-shore than in 2015. Fast cooling rates appear to be driven by warm mussels being
263 suddenly splashed by the incoming tide, rather than cooling off while still emersed as the sun transits the
264 sky, but both modes of cooling were present in our data set.

265 For mussels with nearly-complete temperature records, we found wide variation in the month-long
266 thermal history of high temperature exposures among mussels at the high-shore location. The average
267 daily maximum temperature among the six high-shore mussels with long term records in 2016 was $23.6\text{ }^{\circ}\text{C} \pm 2.43\text{ }^{\circ}\text{C}$ (mean ± 1 s.d.), with a range of $21.2\text{ }^{\circ}\text{C}$ to $27.7\text{ }^{\circ}\text{C}$. The accumulated hours where individual
268 mussel body temperatures exceeded 25°C ranged from 65.4 to just 0.6 h (mean ± 1 s.d.: 22.5 ± 25.7 h)
269 among those high-shore mussels. The nine mussels with nearly-complete temperature records at the low-
270 shore site in 2016 yielded more homogeneous average daily maximum body temperatures of 16.1 ± 0.56
271 $^{\circ}\text{C}$ (mean ± 1 s.d.). Only one of the nine mussels at the low-shore site with nearly-complete records
272 exceeded 25°C during the month, for a total of 47 min, although one other mussel on the plate with an
273 incomplete temperature record exceeded 25°C for 3.6 h over three days prior to the thermocouple failing.
274 None of the other mussel temperature records from the low-shore location exceeded 25°C during the
275 2016 deployment.

277 High-shore mussel body temperatures in 2015 and 2016 displayed positive autocorrelation peaks at time
278 lags that corresponded to multiples of a 24 h cycle, so that for a given time of day, temperatures near the
279 same time on subsequent days were positively correlated. Strong negative autocorrelation peaks
280 occurred at time lags offset from the positive peaks by 12 hours, indicating that body temperatures
281 measured during the opposite phase of the tidal or diurnal cycle were negatively correlated. Low-shore
282 mussels in both years had positive body temperature autocorrelations at time lags encompassing the first
283 48 h, and then became consistently negatively correlated for time lags between 3 and 9 days.
284 Autocorrelation data from only one representative mussel per site are shown in Figure 4, but each of the
285 neighboring mussels with nearly-complete time series in each combination of shore location and year
286 showed the same pattern as those displayed.

287 For the high-shore location in 2016, the regression model of temperature fit against relative location
288 (distance from the northeast corner of the plate) showed no significant effect of east-west or north-south
289 location on the plate (east-west: $F_{1,3} = 5.49, P = 0.1$; north-south: $F_{1,3} = 4.49, P = 0.3$). A Mantel test
290 of the daily maximum temperature and distance between mussels on the plate revealed no relationship
291 between distance and temperature dissimilarities among the six mussels with near-complete records
292 (Mantel $r = 0.36$, pseudo- $P = 0.1$), although there was evidence of increasing temperature dissimilarity
293 as distance increased when all available mussels on each day were included ($n = 5-12$ mussels per day,
294 Mantel $r = 0.40$, pseudo- $P = 0.01$; Figure 2A). On the low-shore experimental plate, which was oriented
295 on a sloped rock so that one axis of the plate ran east-west, while the other axis ran upshore-downshore,
296 the regression of average daily maximum temperature was associated with a significant effect of height
297 on the plate ($F_{1,8} = 10.3, P = 0.012$) and no effect of east-west location ($F_{1,8} = 3.6, P = 0.1$), with
298 mussels near the upper edge of the plate experiencing warmer temperatures more frequently than those
299 nearer the bottom edge of the plate (Figure 2B).

300 **Gaping behavior**

301 We observed large differences in the amount of time mussels spent with the valves gaped open at the
302 low and high-shore sites in both years (Table 3, Figure 5A), with mussels situated on the low-shore plate
303 spending an average of $17.3 \pm 2.1 \text{ h d}^{-1}$ (mean \pm 1 s.d.) with the valves opened in 2016, while high-shore
304 mussels had a much more restricted average of $5.4 \pm 0.95 \text{ h d}^{-1}$ in 2016. The difference in time per day
305 spent with the valves opened between the mussels that spent the most and least amount of time with
306 valves gaped was $5.0 \pm 2.87 \text{ h d}^{-1}$ (mean \pm 1 s.d.) on the low shore in 2016 (Figure 5B). There was a smaller
307 range of time per day spent gaped at the high-shore location ($2.2 \pm 1.4 \text{ h d}^{-1}$ in 2016, mean \pm 1 s.d.), likely
308 due to the overall shorter time per day that these mussels spent submerged and the associated need to
309 prevent desiccation during low tide by closing the shell valves tightly. The averages and ranges of time
310 spent with the valves gaped open in 2016 are similar, though slightly higher than the values previously
311 recorded in summer 2015 (Miller and Dowd, 2017). During the 2015 deployment, the average time gaped
312 open was $14.4 \pm 2.87 \text{ h d}^{-1}$ (mean \pm 1 s.d.) at the low-shore location and $4.4 \pm 1.21 \text{ h d}^{-1}$ at the high-shore
313 site (Table 3). This difference was likely driven by the longer deployment in 2016 encompassing more days
314 with spring tide conditions which would submerge both shore locations for longer during high tide, as well
315 as higher swell conditions that kept the locations, particularly the high-shore location, wetted for longer
316 before and after low tides.

317 When we analyzed the range in gape time against temperature data, we found no significant effects of
318 either overall maximum temperature during a low tide (high shore: $F_{1,49} = 1.49, P = 0.23$, low shore:
319 $F_{1,47} = 2.76, P = 0.10$), or range in maximum temperatures among mussels during a low tide (high shore:
320 $F_{1,49} = 0.33, P = 0.57$, low shore: $F_{1,47} = 1.25, P = 0.27$). When we analyzed individual mussel gape
321 time in the 24 h following each low tide against their maximum temperature achieved during the low tide,
322 we found a significant negative relationship at both the high and low-shore sites. As maximum
323 temperature during a low tide increased, time spent gaping in the following day declined (high shore:

324 $\chi_1^2 = 13.1, P < 0.001$, estimate = $-4.2 \pm 1.4 \text{ min C}^{-1}$, s.d. of random intercepts = 0.94; low shore: $\chi_1^2 =$
325 68, $P < 0.001$, estimate = $-44.9 \pm 5.4 \text{ min C}^{-1}$, s.d. of random intercepts = 2.45).

326 Discussion

327 **Persistent patterns of inter-individual differences across years**

328 The structural complexity created by dense aggregations of mussels can greatly influence the body
329 temperatures experienced by individual mussels, so that the short-term and long-term thermal histories
330 of nearby neighbors might be quite different. Over the scale of centimeters within our high-shore mussel
331 bed, we found individual mussels that differed in terms of daily maximum temperatures by an average of
332 7.0 to 7.8 °C across 21 and 29 d in two different summers, and daily maximum body temperature ranges
333 of up to 14-14.2 °C within a single low-tide period. These small-scale differences are not just restricted to
334 the upper edge of the mussel zone with its longer emersion times. Surprisingly, the most extreme
335 difference in daily maximum temperatures on a single day (15.8 °C) occurred at our low-shore site when
336 one mussel heated to 35.0 °C while a neighboring mussel located approximately 20 cm lower on the same
337 plate only reached 19.2 °C during the same low tide exposure. Although the frequency of extreme
338 temperature conditions may be lower on the low shore, the severity of thermal stress for some individuals
339 may be similar to conditions higher on the shore, so that future climate change may cause impacts
340 throughout the vertical range of *M. californianus* (Helmuth et al., 2011). The relative rankings of individual
341 mussels in terms of their daily maximum body temperatures were only consistent for the warmest or
342 coolest mussels in some locations in the two years; therefore, orientation and position in the bed alone
343 make imperfect predictors of potential past and future thermal experiences (see also Miller and Dowd,
344 2017). At the high shore location, body temperatures at a given time were generally positively correlated
345 with body temperature around the same time on subsequent days, and were negatively correlated with
346 temperatures offset by approximately 12 h, presumably reflecting the strong influence of diurnal

347 temperature fluctuations (Supplemental Figure S1) and the influence of high and low phases of the tide.
348 Mussels at the low shore site showed a pattern of autocorrelation of body temperatures that followed
349 the autocorrelation of sea surface temperatures during both deployments (Supplemental Figure S1), with
350 positive correlations throughout a 0 to 48 h time lag, followed by negative correlations for time lags from
351 approximately 72 h to 216 h.

352 The observed range of variation in body temperature over small scales illustrates the potential difficulty
353 of obtaining a representative sample of mussels or other intertidal organisms from a location for the
354 purposes of characterizing physiological performance (Logan et al., 2012) at broader spatial scales. Within
355 a single shore, physical characteristics of groups of mussels, such as their shore height, exposure to wave
356 splash, compass orientation etc. may have short-term and long-term consequences for the mussels living
357 within those aggregations (Gracey et al., 2008; Harley, 2008; Helmuth and Hofmann, 2001; Jurgens and
358 Gaylord, 2017; Place et al., 2012), necessitating carefully designed sampling schemes. For example,
359 studies have shown evidence for differential stress tolerance for mussels originating from or growing in
360 wave-exposed or wave-protected beds separated by only a few meters (Gleason et al., 2017; Helmuth
361 and Hofmann, 2001; Jimenez et al., 2015) that could result from post-settlement selective processes
362 linked to the particular microhabitat the mussels grew in or from developmental plasticity (Gleason et al.,
363 2018). However, fine-scale physiological studies among individuals separated by a few to 10's of cm are
364 likely to provide further insight (see below).

365 Although *M. californianus* is known to gape during aerial emersion in some laboratory conditions (Bayne
366 et al., 1976; Dowd and Somero, 2013), mussels in our field experiments kept their valves closed until a
367 rising high tide had begun to splash them following warm low tide exposures. Closed mussels transition
368 to anaerobic respiration relatively rapidly (Bayne et al., 1976), and an oxygen debt accumulates during
369 this time, presumably at a faster rate when body temperatures are warmer (notwithstanding potential
370 downregulation of certain traits such as heart rate). Despite these potential costs, we see scant evidence

371 for mussels increasing their time spent gaping the shell valves following prolonged warm aerial
372 emersion in our field experiment. Analyzing individual mussels, we find that higher low-tide body
373 temperatures were often followed by a shorter amount of time spent gaping the valves widely in the
374 ensuing 24 h period, and as a group there was no relationship between mussels reaching higher
375 temperatures and the variation in gaping behavior among members of the same bed. These patterns are
376 complicated by other factors, such as the effects of wave splash and the timing of the tide cycle versus
377 daily sun and wind conditions (Miller and Dowd, 2017), but in general it appears that *M. californianus*
378 are limited when it comes to their ability to expand the time spent gaping to recover oxygen debt
379 accumulated during low tide, because of an unwillingness to gape the valves before the incoming tide
380 arrives.

381 This lack of a characteristic behavioral response following thermal stress is reflected in the astonishing
382 amount of variation in time spent with the valves gaping within a single bed on a single day. The
383 differences in mean time spent gaping between high and low-shore mussels were expected due to
384 differences in time immersed in seawater, but the within-bed mean inter-individual ranges of time spent
385 gaping were high in both years (e.g., 5.0 to 8.1 h day⁻¹ at the low-shore site; Table 3). This high degree of
386 variation in time spent gaping warrants further attention, in terms of clarifying the pattern (e.g., are
387 there behavioral 'syndromes' of gapers and non-gapers?; Shick et al., 1988), identifying other potential
388 drivers (e.g., does plankton density influence individual gaping patterns?; Riisgård et al., 2003; Riisgård
389 et al., 2006), attributing physiological consequences (e.g., does reduced time spent gaping correlate
390 with reduced growth rate?), and delineating the possible implications for ecological interactions (e.g.,
391 are gapers more susceptible to predation?; Miller and Dowd, 2019; Robson et al., 2010).

392 We have documented substantial small-spatial-scale variation in both temperature and gaping behavior
393 among mussels, but it is important to note that these data represent only part of the summer season.
394 We speculate that these differences might be lessened in other seasons, particularly when increased

395 wave splash associated with larger winter waves might serve to keep body temperatures cooler and
396 allow mussels to gape their valves for more of the day. However, the most extreme temperatures
397 measured in mussel beds along the central coast of California often occur outside of the summer
398 season, when midday extreme low tides occasionally coincide with calm ocean swell conditions and
399 moderate or warm air temperatures (Helmuth et al., 2006). Thus, the large degree of variation among
400 neighbors has the potential to arise in seasons other than summer.

401 **Implications of These Patterns for Global Change and Future Directions**

402 These data indicate that the physiological status and history of individuals separated by only a few body
403 lengths might be radically different. The inconsistency of experiences among individual mussels within
404 our experimental mussel beds was similar across two summer periods, despite a 3.8 °C difference in
405 both the local mean sea surface temperature and air temperature between the two experiments.
406 Temperatures in summer 2015 were much warmer than summer 2016 due to the presence of the
407 widespread “blob” of warm ocean water in the northeastern Pacific during 2015 (Gentemann et al.,
408 2017). Serendipitously, our two years of field experiments thus cover a range of mean temperatures
409 comparable to the magnitude of temperature change expected due to human activities over the coming
410 century. The survival, growth, and reproductive output of mussels will be impacted by a number of
411 exogenous physical and biotic factors, as well as behavioral choices of the mussels themselves, and our
412 data indicate that individual mussels occupying the same mussel bed may differ greatly in their
413 experience of these factors, both now and in the future.

414 There are several conclusions now well supported by these and other field data for *M. californianus*.
415 First, nearby individuals experience their environment in substantially different ways. From an
416 environmental forcing perspective, micro-scale variation in abiotic conditions generates substantial
417 variation in body temperatures that manifests in two potentially important ways: considerable

418 differences among individuals in time spent at body temperatures likely to impose cellular stress (here
419 defined as temperatures greater than 25 °C, yielding a 3-fold difference in time in 2015 and a greater
420 than 100-fold range at the high-shore location in 2016), along with variation in the magnitude of acute
421 stress (i.e., the peak temperature experienced) on any single day. These observations are not unique to
422 the intertidal zone (Pincebourde et al., 2016; Pincebourde and Woods, 2012), but few if any datasets
423 offer comparable detail on the experiences of individual organisms within a complex environmental
424 mosaic. From a biological perspective, adjacent individuals perform what are often assumed to be
425 mundane tasks (gaping to respire, acquire food, and secrete wastes) with surprisingly different patterns.
426 The remaining challenge is to examine the links between these relatively short-term measures of
427 variation in experience (or behavior), variation in genotype, and, ultimately, variation in integrative,
428 fitness-related metrics of physiological performance such as growth or reproductive output (Tanner and
429 Dowd, this issue). For example, we have shown that individual mussels that experience warmer body
430 temperatures tend to accumulate greater antioxidant defenses and quantities of putatively
431 thermoprotective osmolytes (Gleason et al., 2017), but we have yet to link these instantaneous
432 physiological observations to differential growth, survival, or reproductive output. Instead, most studies
433 that incorporate micro-scale variation into their analyses focus on simple physiological metrics such as
434 thermal safety margins and survival of isolated events (Denny et al., 2011; Dong et al., 2017). Integrating
435 these approaches through time and across relevant spatial scales is difficult, particularly in light of the
436 other conclusions presented below.

437 The second conclusion is that warmer average conditions result in increased levels of inter-individual
438 variation in maximum body temperatures (Figure 1B; Miller and Dowd, 2017). The observed
439 heteroscedasticity in body temperature harbors potentially profound implications for biological
440 responses to present-day extreme events and for global change as mean temperatures march
441 increasingly higher. For example, current theory regarding the influence of micro-scale environmental

442 variation on survival of single extreme events is founded on the (now disproven for mussels) assumption
443 that variation in maximum temperature does not change as the mean temperature rises (Denny, 2018;
444 Denny et al., 2011). Future work should incorporate a more realistic relationship between the mean and
445 variance of body temperature, and we should extend the theory to repeated events. In the context of
446 climate change, if this pattern of heteroscedasticity holds as temperatures continue to rise, we may
447 expect the degree of inter-individual variation on the warmest days to continue to increase. Some
448 individuals will find themselves in relative thermal refugia, while some will certainly perish during
449 extreme episodic events (Denny et al., 2011), and the gap between the two ends of this spectrum will
450 grow wider. Even during events that might not be considered "extreme," this widening disparity in
451 thermal experience could have cumulative effects on individual performance and fitness, particularly if
452 future environmental shifts expose underlying inter-individual variation that is masked in more benign
453 conditions (see Tanner and Dowd, this issue).

454 The third conclusion, an extension of the previous two, is that micro-scale variation complicates
455 simplistic forecasts of the biological consequences of environmental change (Chapron et al., 2016;
456 Mislan and Wethey, 2015). For example, if individual sites (e.g., a 1 m² mussel bed) harbor as much
457 thermal variation as entire coastlines (Denny et al., 2011; Helmuth et al., 2006), expectations of uni-
458 directional 'marches to the poles' start to appear questionable. For example, it is increasingly recognized
459 that thermal refugia, perhaps acting in concert with behavior in some species, can mitigate at least some
460 of the local impacts of warming (e.g., Dong et al., 2017; Sunday et al., 2014).

461 The fourth conclusion is that most present-day experimental designs are inadequate at capturing the
462 complexity of current and likely future environmental scenarios. The desire to focus on simple, easily
463 interpretable results is certainly understandable, but nature is complex and noisy. Considering
464 temperature manipulations, shifts in mean temperature are straightforward to implement, but climate
465 change will involve shifts in the variability around that mean as well (IPCC, 2013). Characterizing and

466 implementing forms of that relevant variation in controlled circumstances can be challenging, but this
467 approach can provide unique insight into the outcomes of biological processes (Pincebourde et al.,
468 2012). These considerations apply to both longer-term acclimation-style experiments and single acute
469 thermal stress trials. For instance, what is the appropriate temperature ramp rate for determining
470 critical thermal maxima (or minima) or physiological responses to acute thermal stress (Harada and
471 Burton, 2019; Peck et al., 2009; Rezende et al., 2011; Tomanek and Somero, 2000)? Our heating rate
472 data for mussels in the field show that mean heating rates are less than half as fast as the maximum
473 observed heating rates on the high shore, while the ranges of heating rates between neighboring
474 mussels within a single day make values at either end of that scale (or even slower) plausible for some
475 subset of mussels living near each other in a bed. Importantly, maximum heating rates are greatest for
476 individuals that achieve the highest body temperatures, an important correlation to consider in the
477 design of thermal tolerance studies. In acclimation studies where we wish to experimentally impose
478 realistic inter-individual variation in body temperatures over time, our observations indicate that this
479 variation should be considerable around daily maximum temperatures while being negligible for daily
480 minimum temperatures, at least in the case of mussels.

481 The fifth conclusion is that attempts to distinguish forces such as balancing selection from others such as
482 lottery recruitment or physiological plasticity in complex, mosaic environments will be confounded until
483 we can better map individual experience to individual genotypes/phenotypes. For example, the barnacle
484 *Semibalanus balanoides* maintains polymorphisms in certain metabolic genes that may be a result of
485 balancing selection within local populations due to small-scale (vertical) environmental variation (Flight
486 et al., 2010; Schmidt et al., 2000; Schmidt and Rand, 2001). The grain of environmental variation in a
487 barnacle bed may be coarse enough to allow differing selective forces to act over small spatial scales on
488 groups of barnacles in a manner sufficient to maintain the polymorphism within the population at a site.
489 Our data suggest that the more complex matrix of a mussel bed may create a more fine-grained

490 environmental variation relative to the size of a mussel. Attributing potential patterns in genotypes or
491 phenotypes within a mussel bed or across mussel beds to the effects of selection by environmental
492 stress may require detailed individual histories rather than attempting to infer those histories based on
493 nearby dataloggers or local weather data. It is imperative that these sorts of longitudinal studies are
494 pursued. For example, theory highlights the possibility of certain counter-intuitive outcomes, such as
495 reduced survival rates within a population when individuals acclimatize strongly to their unique thermal
496 experience (Denny, 2018). However, the results will be highly contingent on how functional variation
497 "maps" in nature onto variation in experience.

498 The sixth conclusion is a cautionary reminder that a focus on temperature, or other major factors such
499 as ocean acidification, can perhaps overlook other equally important, interacting factors. For example,
500 variation in food and nutrient availability can have effects that rival those of temperature on
501 physiological state (Dowd et al., 2013; Fitzgerald-deHoog et al., 2012; Gilman and Rognstad, 2018; Place
502 et al., 2012). If we truly wish to forecast the effects of future ocean regimes on organismal function,
503 attention must be given to interactions between the various factors that impinge on organisms, while
504 acknowledging spatial and temporal patterns of variation in those interactions. The outcomes of such
505 studies are likely to be surprising.

506

507 Acknowledgements

508 We wish to acknowledge the generosity of Mark Denny and the staff of Hopkins Marine Station for hosting
509 us during our summer field seasons. L. U. Gleason and S. Alves assisted during the field work. This work
510 was supported by the National Science Foundation (LPM: OCE-1904184 and OCE-1904185; WWD: IOS-
511 1256186 and IOS-1655822). Data and analysis code are deposited in the Dryad Digital Repository at
512 <https://dx.doi.org/10.5061/dryad.5270k42>

513 **References**

514 Bayne, B.L., Bayne, C.J., Carefoot, T.C., Thompson, R.J., 1976. The physiological ecology of *Mytilus*
515 *californianus* Conrad 2. Adaptations to low oxygen tension and air exposure. *Oecologia* 22, 229-250.

516 Broitman, B.R., Szathmary, P.L., Mislan, K.A.S., Blanchette, C.A., Helmuth, B., 2009. Predator-prey
517 interactions under climate change: the importance of habitat vs body temperature. *Oikos* 118, 219-224.

518 Buckley, B.A., Owen, M.-E., Hofmann, G.E., 2001. Adjusting the thermostat: the threshold induction
519 temperature for the heat-shock response in intertidal mussels (genus *Mytilus*) changes as a function of
520 thermal history. *J. Exp. Biol.* 204, 3571-3579.

521 Chapperon, C., Seuront, L., 2011. Space-time variability in environmental thermal properties and snail
522 thermoregulatory behavior. *Funct. Ecol.* 25, 1040-1050.

523 Chapperon, C., Studerus, K., Clavier, J., 2017. Mitigating thermal effect of behaviour and microhabitat on
524 the intertidal snail *Littorina saxatilis* (Olivier) over summer. *J. Therm. Biol.* 67, 40-48.

525 Chapperon, C., Volkenborn, N., Clavier, J., Séité, S., Seabra, R., Lima, F.P., 2016. Exposure to solar
526 radiation drives organismal vulnerability to climate: Evidence from an intertidal limpet. *J. Therm. Biol.*
527 57, 92-100.

528 Cole, A., Denny, M., 2014. United we fail: group versus individual strength in the California sea mussel,
529 *Mytilus californianus*. *Biol. Bull.* 227, 61-67.

530 Dayton, P.K., 1971. Competition, disturbance, and community organization - Provision and subsequent
531 utilization of space in a rocky intertidal community. *Ecol. Monogr.* 41, 351-389.

532 Denny, M.W., 1987. Lift as a mechanism of patch initiation in mussel beds. *J. Exp. Mar. Biol. Ecol.* 113,
533 231-245.

534 Denny, M.W., 2018. Survival in spatially variable thermal environments: Consequences of induced
535 thermal defense. *Integrative zoology* 13, 392-410.

536 Denny, M.W., Dowd, W.W., Bilir, L., Mach, K.J., 2011. Spreading the risk: Small-scale body temperature
537 variation among intertidal organisms and its implications for species persistence. *J. Exp. Mar. Biol. Ecol.*
538 400, 175-190.

539 Denny, M.W., Harley, C.D.G., 2006. Hot limpets: predicting body temperature in a conductance-
540 mediated thermal system. *J. Exp. Biol.* 209, 2409-2419.

541 Denny, M.W., Hunt, L.J.H., Miller, L.P., Harley, C.D.G., 2009. On the prediction of extreme ecological
542 events. *Ecol. Monogr.* 79, 397-421.

543 Denny, M.W., Miller, L.P., Harley, C.D.G., 2006. Thermal stress on intertidal limpets: long-term hindcasts
544 and lethal limits. *J. Exp. Biol.* 209, 2420-2431.

545 Dong, Y.-w., Li, X.-x., Choi, F.M.P., Williams, G.A., Somero, G.N., Helmuth, B., 2017. Untangling the roles
546 of microclimate, behaviour and physiological polymorphism in governing vulnerability of intertidal snails
547 to heat stress. *Proceedings of the Royal Society B: Biological Sciences* 284, 1-10.

548 Dong, Y., Miller, L.P., Sanders, J.G., Somero, G.N., 2008. Heat-shock protein 70 (Hsp70) expression in
549 four limpets of the genus *Lottia*: interspecific variation in constitutive and inducible synthesis correlates
550 with *in situ* exposure to heat stress. *Biol. Bull.* 215, 173-181.

551 Dowd, W.W., Felton, C.A., Heymann, H.M., Kost, L.E., Somero, G.N., 2013. Food availability, more than
552 body temperature, drives correlated shifts in ATP-generating and antioxidant enzyme capacities in a
553 population of intertidal mussels (*Mytilus californianus*). *J. Exp. Mar. Biol. Ecol.* 449, 171-185.

554 Dowd, W.W., Somero, G.N., 2013. Behavior and survival of *Mytilus* congeners following episodes of
555 elevated body temperature in air and seawater. *J. Exp. Biol.* 216, 502-514.

556 Fitzgerald-deHoog, L., Browning, J., Allen, B.J., 2012. Food and heat stress in the California mussel:
557 Evidence for an energetic trade-off between survival and growth. *Biol. Bull.* 223, 205-216.

558 Flight, P.A., Schoepfer, S.D., Rand, D.M., 2010. Physiological stress and the fitness effects of *Mpi*
559 genotypes in the acorn barnacle *Semibalanus balanoides*. *Mar. Ecol. Prog. Ser.* 404, 139-149.

560 Garrity, S.D., 1984. Some adaptations of gastropods to physical stress on a tropical rocky shore. *Ecology*
561 65, 559-574.

562 Gentemann, C.L., Fewings, M.R., García-Reyes, M., 2017. Satellite sea surface temperatures along the
563 West Coast of the United States during the 2014–2016 northeast Pacific marine heat wave. *Geophysical*
564 *Research Letters* 44, 312-319.

565 Gilman, S.E., Harley, C.D.G., Strickland, D.C., Vanderstraeten, O., O'Donnell, M.J., Helmuth, B., 2006.
566 Evaluation of effective shore level as a method of characterizing intertidal wave exposure regimes.
567 *Limnology and Oceanography: Methods* 4, 448-457.

568 Gilman, S.E., Rognstad, R.L., 2018. Influence of food supply and shore height on the survival and growth
569 of the barnacle *Balanus glandula* (Darwin). *J. Exp. Mar. Biol. Ecol.* 498, 32-38.

570 Gleason, L.U., Miller, L.P., Winnikoff, J.R., Somero, G.N., Yancey, P.H., Bratz, D., Dowd, W.W., 2017.
571 Thermal history and gape of individual *Mytilus californianus* correlate with oxidative damage and
572 thermoprotective osmolytes. *J. Exp. Biol.* 220, 4292-4304.

573 Gleason, L.U., Strand, E.L., Hizon, B.J., Dowd, W.W., 2018. Plasticity of thermal tolerance and its
574 relationship with growth rate in juvenile mussels (*Mytilus californianus*). *Proceedings of the Royal*
575 *Society B: Biological Sciences* 285, 20172617.

576 Gracey, A.Y., Chaney, M.L., Boomhower, J.P., Tyburczy, W.R., Connor, K., Somero, G.N., 2008. Rhythms
577 of gene expression in a fluctuating intertidal environment. *Curr. Biol.* 18, 1501-1507.

578 Guichard, F., Halpin, P.M., Allison, G.W., Lubchenco, J., Menge, B.A., 2003. Mussel disturbance
579 dynamics: signatures of oceanographic forcing from local interactions. *Am. Nat.* 161, 889-904.

580 Harada, A.E., Burton, R.S., 2019. Ecologically relevant temperature ramping rates enhance the protective
581 heat shock response in an intertidal ectotherm. *Physiol. Biochem. Zool.* 92, 152-162.

582 Harley, C.D.G., 2008. Tidal dynamics, topographic orientation, and temperature-mediated mass
583 mortalities on rocky shores. *Mar. Ecol. Prog. Ser.* 371, 37-46.

584 Harley, C.D.G., Helmuth, B.S.T., 2003. Local- and regional-scale effects of wave exposure, thermal stress,
585 and absolute versus effective shore level on patterns of intertidal zonation. *Limnol. Oceanogr.* 48, 1498-
586 1508.

587 Harper, K.D., Williams, G.A., 2001. Variation in abundance and distribution of the chiton *Acanthopleura*
588 *japonica* and associated molluscs on a seasonal, tropical, rocky shore. *Journal of Zoology, London* 253,
589 293-300.

590 Hayford, H.A., Gilman, S.E., Carrington, E., 2015. Foraging behavior minimizes heat exposure in a
591 complex thermal landscape. *Mar. Ecol. Prog. Ser.* 518, 165-175.

592 Helmuth, B., 2002. How do we measure the environment? Linking intertidal thermal physiology and
593 ecology through biophysics. *Integr. Comp. Biol.* 42, 837-845.

594 Helmuth, B., Broitman, B.R., Blanchette, C.A., Gilman, S.E., Halpin, P.M., Harley, C.D.G., O'Donnell, M.J.,
595 Hofmann, G.E., Menge, B.A., Strickland, D., 2006. Mosaic patterns of thermal stress in the rocky
596 intertidal zone: implications for climate change. *Ecol. Monogr.* 76, 461-479.

597 Helmuth, B., Yamane, L., Lalwani, S., Matzelle, A., Tockstein, A., Gao, N., 2011. Hidden signals of climate
598 change in intertidal ecosystems: What (not) to expect when you are expecting. *J. Exp. Mar. Biol. Ecol.*
599 400, 191-199.

600 Helmuth, B.S.T., Hofmann, G.E., 2001. Microhabitats, thermal heterogeneity, and patterns of
601 physiological stress in the rocky intertidal zone. *Biol. Bull.* 201, 374-384.

602 IPCC, 2013. *Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the*
603 *Fifth Assessment Report of the Intergovernmental Panel on Climate Change*, in: T.F. Stocker, D. Qin, G.-
604 K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P.M. Midgley (Eds.), Cambridge
605 University Press, Cambridge, United Kingdom and New York, NY, USA.

606 Jimenez, A.G., Jayawardene, S., Alves, S., Dallmer, J., Dowd, W.W., 2015. Micro-scale environmental
607 variation amplifies physiological variation among individual mussels. Proceedings of the Royal Society of
608 London B: Biological Sciences 282, 1-9.

609 Jurgens, L.J., Gaylord, B., 2017. Physical effects of habitat-forming species override latitudinal trends in
610 temperature. Ecol. Lett., 1-7.

611 Lathlean, J.A., Seuront, L., McQuaid, C.D., Ng, T.P.T., Zardi, G.I., Nicastro, K.R., 2016. Cheating the locals:
612 invasive mussels steal and benefit from the cooling effect of indigenous mussels. PLoS ONE 11,
613 e0152556.

614 Lockwood, B.L., Sanders, J.G., Somero, G.N., 2010. Transcriptomic responses to heat stress in invasive
615 and native blue mussels (genus *Mytilus*): molecular correlates of invasive success. J. Exp. Biol. 213, 3548-
616 3558.

617 Logan, C.A., Kost, L.E., Somero, G.N., 2012. Latitudinal differences in *Mytilus californianus* thermal
618 physiology. Mar. Ecol. Prog. Ser. 450, 93-105.

619 Lohse, D.P., 1993. The importance of secondary substratum in a rocky intertidal community. J. Exp. Mar.
620 Biol. Ecol. 166, 1-17.

621 McAfee, D., Bishop, M.J., Yu, T.-N., Williams, G.A., 2018. Structural traits dictate abiotic stress
622 amelioration by intertidal oysters. Funct. Ecol. 32, 2666-2677.

623 Miller, L.P., Denny, M.W., 2011. Importance of behavior and morphological traits for controlling body
624 temperature in littorinid snails. Biol. Bull. 220, 209-223.

625 Miller, L.P., Dowd, W.W., 2017. Multimodal *in situ* datalogging quantifies inter-individual variation in
626 thermal experience and persistent origin effects on gaping behavior among intertidal mussels (*Mytilus*
627 *californianus*). J. Exp. Biol. 220, 4305-4319.

628 Miller, L.P., Dowd, W.W., 2019. Dynamic measurements of black oystercatcher (*Haematopus bachmani*)
629 predation on mussels (*Mytilus californianus*). Invertebr. Biol. 138, 67-73.

630 Miller, L.P., Harley, C.D.G., Denny, M.W., 2009. The role of temperature and desiccation stress in limiting
631 the local-scale distribution of the owl limpet, *Lottia gigantea*. Funct. Ecol. 23, 756-767.

632 Mislan, K.A.S., Blanchette, C.A., Broitman, B.R., Washburn, L., 2011. Spatial variability of emergence,
633 splash, surge, and submergence in wave-exposed rocky-shore ecosystems. Limnol. Oceanogr. 56, 857-
634 866.

635 Mislan, K.A.S., Wethey, D.S., 2015. A biophysical basis for patchy mortality during heat waves. Ecology
636 96, 902-907.

637 Mislan, K.A.S., Wethey, D.S., Helmuth, B., 2009. When to worry about the weather: role of tidal cycle in
638 determining patterns of risk in intertidal ecosystems. Glob. Change. Biol. 15, 3056-3065.

639 Nicastro, K.R., Zardi, G.I., McQuaid, C.D., Pearson, G.A., Serrão, E.A., 2012. Love thy neighbour: group
640 properties of gaping behaviour in mussel aggregations. PLoS ONE 7, e47382.

641 O'Donnell, M.J., 2008. Reduction of wave forces within bare patches in mussel beds. Mar. Ecol. Prog.
642 Ser. 362, 157-167.

643 O'Donnell, M.J., Denny, M.W., 2008. Hydrodynamic forces and surface topography: Centimeter-scale
644 spatial variation in wave forces. Limnol. Oceanogr. 53, 579-588.

645 Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., O'Hara, R.B.,
646 Simpson, G.L., Solymos, P., Stevens, M.H.H., Szoecs, E., Wagner, H., 2019. vegan: Community Ecology
647 Package, R package version 2.5-4 ed.

648 Peck, L.S., Clark, M.S., Morley, S.A., Massey, A., Rossetti, H., 2009. Animal temperature limits and
649 ecological relevance: effects of size, activity and rates of change. Funct. Ecol. 23, 248-256.

650 Pincebourde, S., Murdock, C.C., Vickers, M., Sears, M.W., 2016. Fine-Scale Microclimatic Variation Can
651 Shape the Responses of Organisms to Global Change in Both Natural and Urban Environments. Integr.
652 Comp. Biol. 56, 45-61.

653 Pincebourde, S., Sanford, E., Casas, J., Helmuth, B., 2012. Temporal coincidence of environmental stress
654 events modulates predation rates. *Ecol. Lett.* 15, 680-688.

655 Pincebourde, S., Woods, H.A., 2012. Climate uncertainty on leaf surfaces: the biophysics of leaf
656 microclimates and their consequences for leaf-dwelling organisms. *Funct. Ecol.* 26, 844-853.

657 Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., Team, R.C., 2018. nlme: Linear and Nonlinear Mixed Effects
658 Models, 3.1-137 ed.

659 Place, S.P., Menge, B.A., Hofmann, G.E., 2012. Transcriptome profiles link environmental variation and
660 physiological response of *Mytilus californianus* between Pacific tides. *Funct. Ecol.* 26, 144-155.

661 R Core Team, 2018. R: A language and environment for statistical computing. R Foundation for Statistical
662 Computing, Vienna, Austria.

663 Rezende, E.L., Tejedo, M., Santos, M., 2011. Estimating the adaptive potential of critical thermal limits:
664 methodological problems and evolutionary implications. *Funct. Ecol.* 25, 111-121.

665 Riisgård, H.U., Kittner, C., Seerup, D.F., 2003. Regulation of opening state and filtration rate in filter-
666 feeding bivalves (*Cardium edule*, *Mytilus edulis*, *Mya arenaria*) in response to low algal concentration. *J.*
667 *Exp. Mar. Biol. Ecol.* 284, 105-127.

668 Riisgård, H.U., Lassen, J., Kittner, C., 2006. Valve-gape response times in mussels (*Mytilus edulis*) - effects
669 of laboratory preceding-feeding conditions and in situ tidally induced variation in phytoplankton
670 biomass. *J. Shellfish Res.* 25, 901-911.

671 Robson, A.A., Garcia De Leaniz, C., Wilson, R.P., Halsey, L.G., 2010. Behavioural adaptations of mussels
672 to varying levels of food availability and predation risk. *J. Molluscan Stud.* 76, 348-353.

673 Schmidt, P.S., Bertness, M.D., Rand, D.M., 2000. Environmental heterogeneity and balancing selection in
674 the acorn barnacle *Semibalanus balanoides*. *Proceedings of the Royal Society of London. Series B:*
675 *Biological Sciences* 267, 379-384.

676 Schmidt, P.S., Rand, D.M., 2001. Adaptive maintenance of genetic polymorphism in an intertidal
677 barnacle: habitat- and life-state-specific survivorship of MPI genotypes. *Evolution* 55, 1336-1344.

678 Shick, J.M., Widdows, J., Gnaiger, E., 1988. Calorimetric studies of behavior metabolism and energetics
679 of sessile intertidal animals. *Am. Zool.* 28, 161-181.

680 Suchanek, T.H., 1979. The *Mytilus californianus* community: studies on the composition, structure,
681 organization, and dynamics of a mussel bed, Department of Zoology. University of Washington, Seattle,
682 285.

683 Sunday, J.M., Bates, A.E., Kearney, M.R., Colwell, R.K., Dulvy, N.K., Longino, J.T., Huey, R.B., 2014.
684 Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation.
685 *Proceedings of the National Academy of Sciences* 111, 5610-5615.

686 Tomanek, L., Somero, G.N., 2000. Time course and magnitude of synthesis of heat-shock proteins in
687 congeneric marine snails (Genus *Tegula*) from different tidal heights. *Physiol. Biochem. Zool.* 73, 249-
688 256.

689 Wethey, D.S., 1984. Sun and shade mediate competition in the barnacles *Chthamalus* and *Semibalanus*:
690 a field experiment. *Biol. Bull.* 167, 176-185.

691

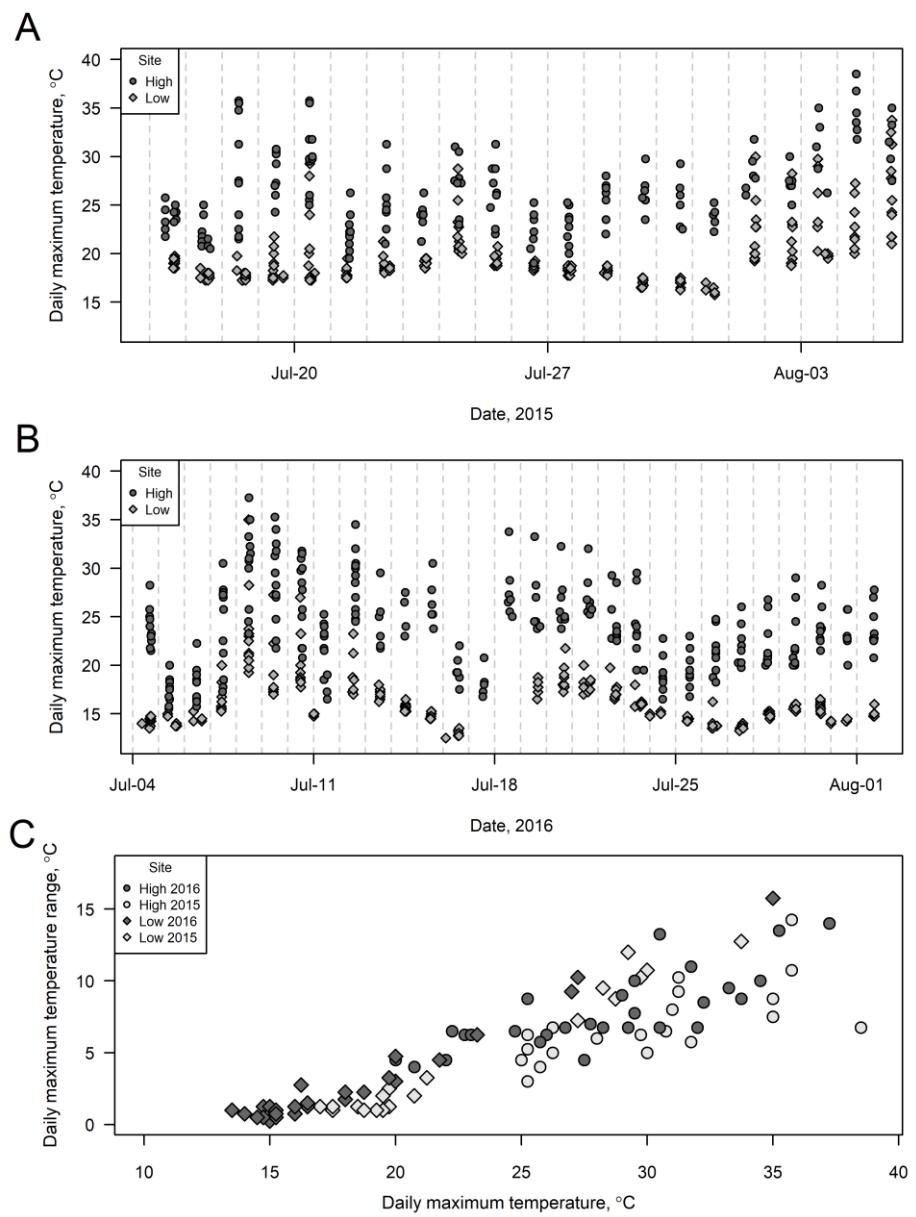
692 **Table 1.** Environmental conditions at Hopkins Marine Station during experimental deployments from July
 693 15 to August 6 2015 and July 3 to August 2 2016.

Variable (units)	Overall maximum		Mean \pm s.d. of daily maximum	
	2015	2016	2015	2016
Solar irradiance (W m^{-2})	1107	1010	914 ± 116	853 ± 195
Air temperature ($^{\circ}\text{C}$)	24.1	17.4	19.1 ± 2.0	15.3 ± 1.08
Sea surface temperature ($^{\circ}\text{C}$)	21.0	15.1	17.1 ± 1.1	13.3 ± 0.9
Significant wave height (m)	1.45	1.51	0.61 ± 0.18	0.8 ± 0.12

694

695 **Table 2.** Inter-individual temperature variation and temperature change rate statistics for mussels
 696 deployed in the field during July and August 2015 or 2016. Sample sizes on each day ranged from 5 to 12
 697 at the high-shore site (mean = 9 mussels per day), and 5 to 11 at the low-shore site (mean = 8 mussels per
 698 day).

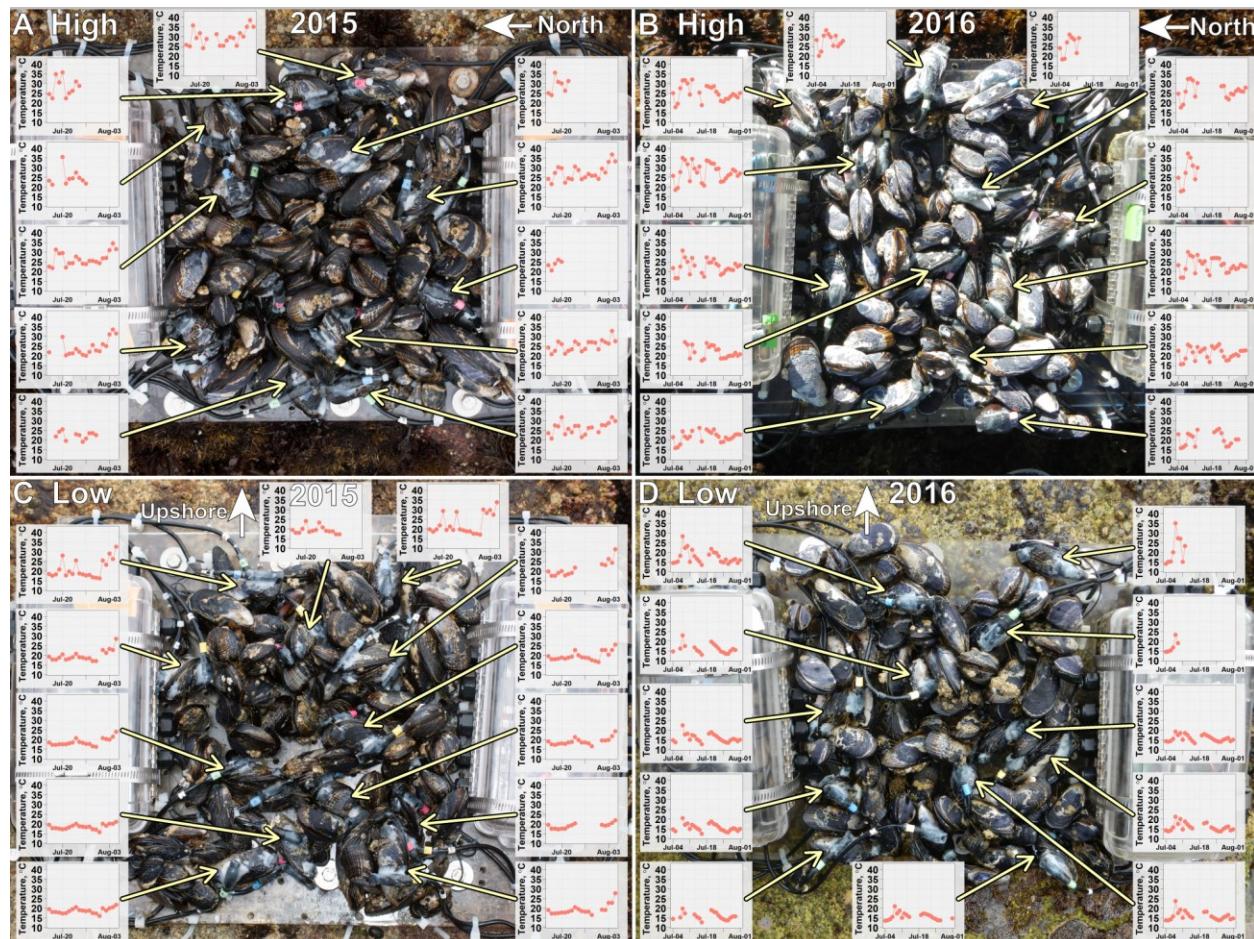
Variable (units)	High shore		Low shore	
	2015	2016	2015	2016
Overall maximum temperature T_{max} ($^{\circ}\text{C}$)	38.5	37.2	33.8	35.0
Mean range of T_{max} ($^{\circ}\text{C}$)	7.0	7.8	4.5	2.9
s.d. of range of T_{max} ($^{\circ}\text{C}$)	2.6	2.65	4.29	3.63
Max. range of T_{max} ($^{\circ}\text{C}$)	14.2	14.0	12.8	15.8
Mean individual T_{max} ($^{\circ}\text{C}$)	25.8	24.2	19.8	16.7
Overall minimum temperature ($^{\circ}\text{C}$)	11.8	10.0	12.2	11.0
Mean range of T_{min} ($^{\circ}\text{C}$)	0.94	0.58	1.3	0.62
s.d. of range of T_{min} ($^{\circ}\text{C}$)	0.25	0.19	0.61	0.43
Max. range of T_{min} ($^{\circ}\text{C}$)	1.5	1.0	2.75	1.8
Mean individual T_{min} ($^{\circ}\text{C}$)	13.9	12.0	15.0	12.7
Overall maximum heating rate Q_{max}^+ ($^{\circ}\text{C h}^{-1}$)	20.2	15.6	12.4	14.2
Mean range of Q_{max}^+ ($^{\circ}\text{C h}^{-1}$)	5.4	5.4	1.8	2.7
s.d. of range of Q_{max}^+ ($^{\circ}\text{C h}^{-1}$)	4.15	3.28	2.58	3.63
Max. range of Q_{max}^+ ($^{\circ}\text{C h}^{-1}$)	14.7	13.0	10.8	12.5
Mean individual Q_{max}^+ ($^{\circ}\text{C h}^{-1}$)	6.8	6.1	1.3	2.1
Overall maximum cooling rate Q_{max}^- ($^{\circ}\text{C h}^{-1}$)	-22.8	-22.4	-16.8	-35.5
Mean range of Q_{max}^- ($^{\circ}\text{C h}^{-1}$)	6.2	7.9	2.4	4.1
s.d. of range of Q_{max}^- ($^{\circ}\text{C h}^{-1}$)	3.10	3.75	3.99	6.61
Max. range of Q_{max}^- ($^{\circ}\text{C h}^{-1}$)	13.5	17.2	16.0	30.7
Mean individual Q_{max}^- ($^{\circ}\text{C h}^{-1}$)	-7.9	-8.3	-1.3	-2.9


699

700

701 **Table 3.** Inter-individual variation in length of time per day spent gaped wider than a threshold of 20% for
 702 mussels deployed at a high-shore and low-shore site during July – August 2015 and 2016. For each metric,
 703 the value was calculated among the available mussels with nearly-complete time series for each full day
 704 of the deployment, up to 21 days (2015) or 29 days (2016), and mean values were calculated across all
 705 days within each deployment. Sample sizes were n = 6 for the high shore 2015, n = 9 for the low shore
 706 2015, and both locations had n = 5 in 2016.

Variable (units)	High Shore		Low Shore	
	2015	2016	2015	2016
Mean maximum time gaped>20% (h day ⁻¹)	6.0	6.5	18.1	19.8
Mean time gaped>20% (h day ⁻¹)	4.4	5.4	14.4	17.3
Mean s.d. of time gaped>20% (h day ⁻¹)	1.21	0.95	2.87	2.09
Maximum range of time gaped>20% (h day ⁻¹)	6.2	4.7	14.1	13.7
Mean range of time gaped>20% (h day ⁻¹)	3.0	2.2	8.1	5.0
Mean s.d. of range of time gaped>20% (h day ⁻¹)	1.6	1.38	3.1	2.87
CV of range of time gaped>20%	0.54	0.63	0.38	0.57


707

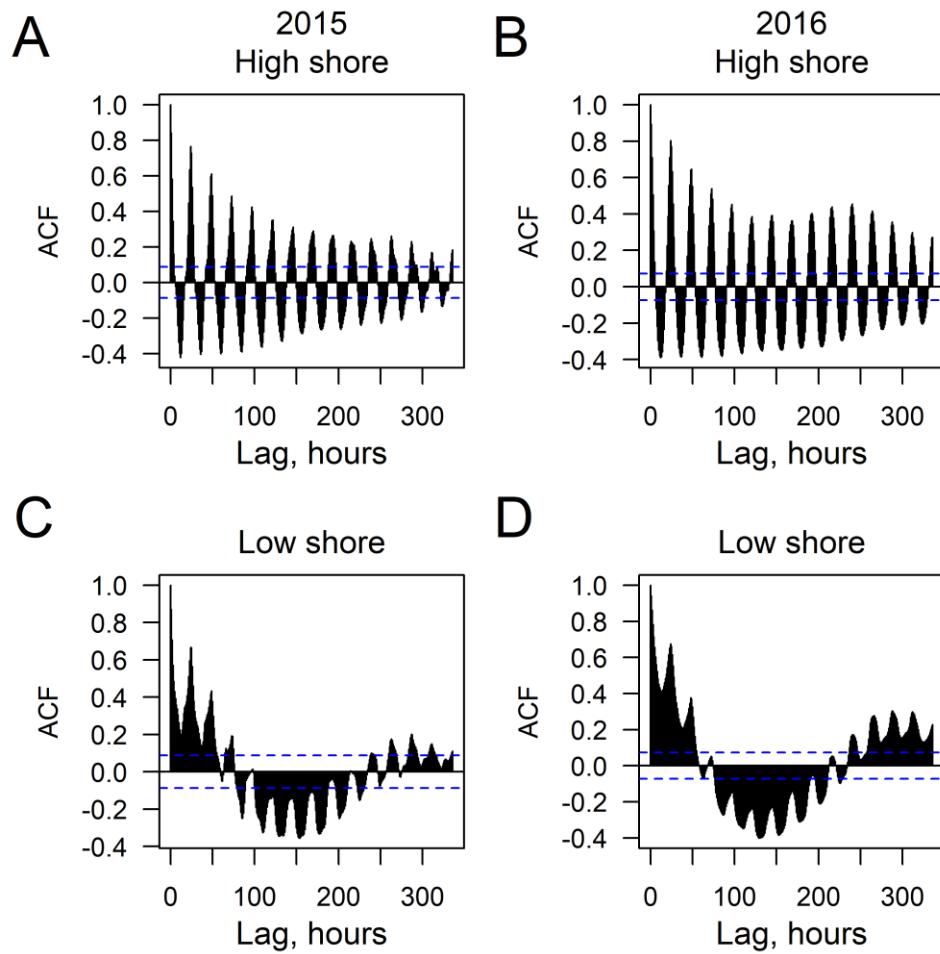
710 **Figure 1.** Daily maximum temperatures for mussels at the high and low-shore locations during the (A)
 711 2015 and (B) 2016 deployments. Points are arranged horizontally by the time of day the maximum
 712 temperature was achieved. No data were available for the low-shore location on July 17 & 18, 2016. C)
 713 Daily range between the hottest and coolest maximum mussel body temperatures on an experimental
 714 plate plotted against the maximum temperature of the hottest mussel on a given day during the 2015 and
 715 2016 deployments. Each point represents data from one of the 21 or 29 full days of the deployment (2015
 716 and 2016, respectively). High site $r = 0.68$ and Low site $r = 0.96$, $p < 0.001$ for both correlations. The
 717 data shown in each plot include all mussels from each day that were missing fewer than 1.5 h of data on
 718 that day. Sample size per day varied from $n = 5-12$ at the high-shore location and $n = 5-11$ at the low-shore
 719 location.

720


721

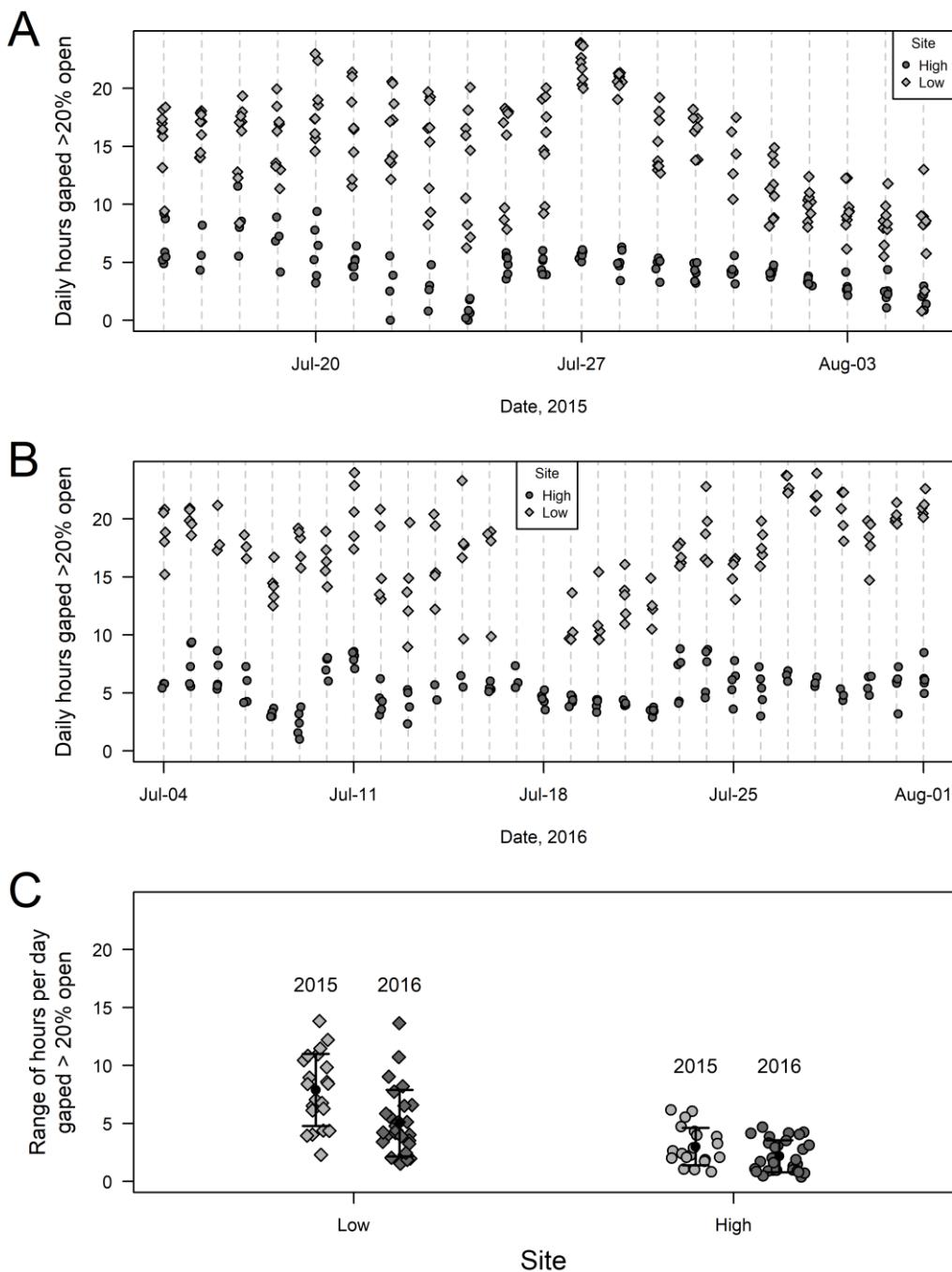
722

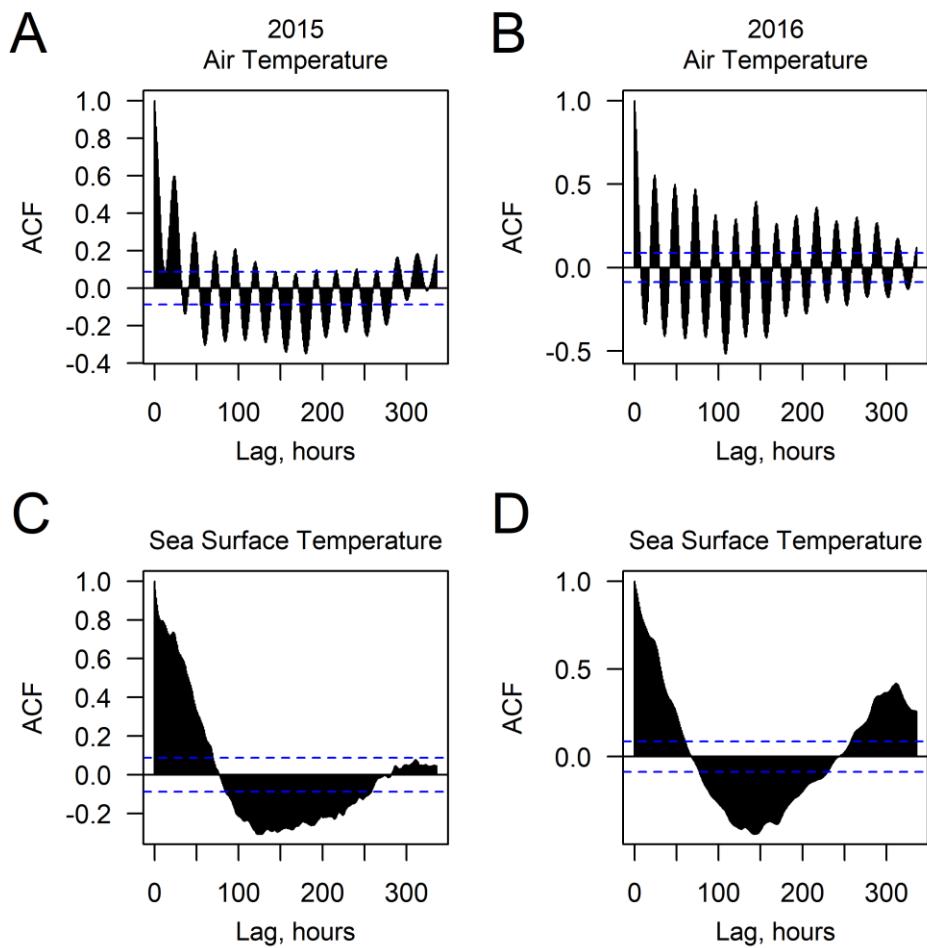
723 **Figure 2.** Experimental plates deployed in 2015 and 2016 on the high shore (A, B) and low shore (C,D),
 724 with inset panels showing daily maximum temperatures for each day where an individual mussel had
 725 sufficient data. Arrows point from each graph to the respective mussel on the plate. The high-shore
 726 plate was horizontal, with the shoreward side of the plate at the top of the images and north indicated
 727 with an arrow. The low-shore plate was oriented 45 degrees above horizontal, with the upshore
 728 direction labeled in the image. Due to malfunctioning temperature sensors, data for one additional
 729 mussel each on the high shore 2015 and low shore 2016 plots are not shown.


730

731

732 **Figure 3.** Daily maximum temperature versus daily maximum heating rate over a 45 min period for each
 733 mussel for each day in 2015 and 2016. High site $r = 0.76$ and Low site $r = 0.75$, $p < 0.001$ for both
 734 correlations. The plot includes data from all mussels on each day that were missing fewer than 1.5 h of
 735 data on that day. Sample size per day varied from $n = 5-12$ at the high-shore location and $n = 5-11$ at the
 736 low-shore location.


737


738

739 **Figure 4.** Representative autocorrelation plots of hourly body temperatures of high-shore (A, B) and low-
 740 shore (C, D) mussels in 2015 (left column) and 2016 (right column). Dashed lines represent 95% confidence
 741 limits, where values within the limits are not distinguishable from autocorrelation produced by a random
 742 stationary time series. Data shown are for a single mussel in each location and year, but other neighboring
 743 mussels in the same location and year showed similar autocorrelation patterns.

744

747 **Figure 5.** Daily time spent with the valves gaped >20% for each of the mussels at each shore location
 748 that had nearly-complete valve gape records in A) 2015 and B) 2016. Horizontal positions of points on
 749 each day are jittered slightly for clarity. C) Range of time between the longest-opened (>20% gape
 750 opening) and shortest-opened mussels on each day at two shore locations in 2015 and 2016. Grey
 751 symbols represent values for each of 21 or 29 full days of the deployment (2015 and 2016, respectively),
 752 while black circles and error bars represent the overall mean and 1 standard deviation for each site.

753

754 **Supplemental Figure S1.** Autocorrelation functions for hourly air temperatures (A, B) and sea surface
 755 temperatures (C, D) during the 2015 (left column) and 2016 (right column) deployments.

756