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Abstract—Apache Mesos, a two-level resource scheduler, pro-
vides resource sharing across multiple users in a multi-tenant
cluster environment. Computational resources (i.e., CPU, mem-
ory, disk, etc. ) are distributed according to the Dominant Re-
source Fairness (DRF) policy. Mesos frameworks (users) receive
resources based on their current usage and are responsible for
scheduling their tasks within the allocation. We have observed
that multiple frameworks can cause fairness imbalance in a multi-
user environment. For example, a greedy framework consuming
more than its fair share of resources can deny resource fairness to
others. The user with the least Dominant Share is considered first
by the DRF module to get its resource allocation. However, the
default DRF implementation, in Apache Mesos’ Master allocation
module, does not consider the overall resource demands of
the tasks in the queue for each user/framework. This lack of
awareness can result in users without any pending task receiving
more resource offers while users with a queue of pending tasks
starve due to their high dominant shares.

In a multi-tenant environment, the characteristics of frame-
works and workloads must be understood by cluster managers
to be able to define fairness based on not only resource share
but also resource demand and queue wait time. We have
developed a policy driven queue manager, Tromino, for an Apache
Mesos cluster where tasks for individual frameworks can be
scheduled based on each framework’s overall resource demands
and current resource consumption. Dominant Share and demand
awareness of Tromino and scheduling based on these attributes
can reduce (1) the impact of unfairness due to a framework
specific configuration, and (2) unfair waiting time due to higher
resource demand in a pending task queue. In the best case,
Tromino can significantly reduce the average waiting time of
a framework by using the proposed Demand-DRF aware policy.

I. INTRODUCTION

In clouds and large clusters, several different types of ap-

plications are executed and multiple users/groups can demand

difference resources to execute their tasks. In such shared

environments, Fairness needs to be defined and maintained.

Apache Mesos [1] is a data center Operating System that

combines resources from all participating cluster nodes and

provides a global view as a single giant pool of resources.

Fairness for multiple resources in this multi-tenant environ-

ment is defined using the Dominant Resource Fairness (DRF)

policy, introduced by Ghodsi et al. [2].

Apache Mesos acts as a resource manager and different

Mesos frameworks act as resource consumers. One of the

widely known frameworks, Apache Aurora [3], was devel-

oped by Twitter for running services and short-lived jobs.

Mesosphere developed, Marathon [4], a framework for long-

running services and container orchestration. The Chronos [5]

framework was developed for periodic execution of cron jobs.

In our previous work, we developed Scylla [6], which is a

Mesos framework for running MPI jobs on cloud-based HPC

systems. Apache Mesos has proven scalability of running

on more than 10K nodes[7] in a production setup, and it

seamlessly supports Docker [8] as its primary choice for

containerized applications.

The introduction of Apache Mesos and its DRF based

allocation module led to widespread acceptance by the cloud

computing community, as workload fairness and optimal re-

source utilization are essential for multi-framework execution

environments. In our previous work [9], we identified how

resource allocation and fairness could be affected due to

framework settings such as offer refusal period, resource

holding period, task arrival rate, and second level scheduling.

Each framework in a Mesos cluster is typically designed for

a specific type of application, but its configuration properties

can hinder fairness and induce starvation in a cluster.

To observe the unfairness in an Apache Mesos cluster, we

set up a cluster environment of 4 nodes where each node

contains < 8 CPU, 16 GB memory > of resources. We

orchestrated synthetic jobs, launched by Scylla and Marathon,

wherein each required < 1 CPU, 2 GB memory > of re-

sources. In an ideal fair distribution scenario, each framework

should be able to run 16 jobs each. As each job is identical in

terms of resource requirements, the number of jobs launched

by each framework is proportional to the amount of resources

consumed by each framework.

In Figure 1, we can observe how Marathon utilizes more

resources and launches more tasks in the cluster while Scylla

uses comparatively low amount of resources. We measure the

unfairness UA to framework A by using the following formula

proposed in earlier work [9]:

UA = (
Areai,j by frameworkA
Areai,j by fair graph

) ∗ 100

Areai,j is the area under the curve from point i to j

In Figure 1, the dotted horizontal line shows the fairness

baseline, which indicates the number of tasks each framework

should be able to execute in a fair distribution manner. Two

vertical dotted lines represent the beginning and end of the

period for which we have calculated the fairness.

In Figure 4, the flow diagram shows how the Mesos

allocation module distributes resources to multiple frameworks
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in a Mesos cluster. Apache Mesos’ implementation of DRF

does not consider the overall resource demands of all the

tasks pending in each framework’s queue. While allocating

resources, it only considers the current resource consumption

of each framework. This can lead to a situation where a

framework with a higher number of tasks in its queue faces

an extended waiting time for the tasks to be launched. This

phenomenon can increase the cluster’s overall waiting time

by imposing unfair waiting time to frameworks with higher

demands.While allocating resources, the Mesos Master picks

agent nodes with available resources in a random order. It does

not validate if the available resources are useful to a frame-

work, or if they are aligned with the resource demands. We

have used of-the-shelf allocation module of Apache Mesos to

study this phenomenon and present schemes on how demand

awareness can be achieved while allocating resources.

We have developed a queue manager, Tromino, which is

aware of DRF and the dominant share of each framework in

the cluster. Tromino controls the waiting task queue of each

framework and releases tasks based on the dominant share

for better fairness. We have also considered a situation where

few frameworks in a cluster have higher demands compared

to others. Releasing tasks only based on the dominant share

may improve resource fairness but could also increase the total

waiting time of tasks for that framework.

The key contributions of this work are the following:

• We have designed and developed a queue manager, Tromino,

on top of the Apache Mesos scheduler, which keeps track

of incoming tasks of all the registered frameworks in the

cluster and their current resource consumption.

• Tromino monitors the resource demands and resource con-

sumption information from the waiting queue of jobs and

Mesos Master respectively to control task dispatching.

• We have shown how our demand aware scheduling on top

of Mesos’ default DRF, can reduce the average waiting time

across all frameworks.

• We present and show how different policies of task dispatch-

ing, based on the demand and dominant share, affect fairness

in four different case scenarios.

Figure 1. Scylla and Marathon are chasing for resources in a
Mesos cluster. Marathon is able to launch several more tasks
than Scylla. Scylla’s tasks face longer wait times due to unfair
distribution.

II. BACKGROUND

A. Apache Mesos

Figure 2 shows the architectural components of Apache

Mesos. It consists of three major components. Mesos Agent,

Mesos Framework, and Mesos Master. Mesos Agent consists

of the computational resources like CPU, memory, disk, etc.

that are required to execute tasks. Each Mesos Agent needs

to have a Mesos Executor installed to receive task execution

requests. Mesos executor is a program that resides in all the

Mesos agent nodes and executes tasks upon requests from the

Mesos master. Mesos Frameworks are the users that have

a pending queue of tasks to be launched, along with user-

defined resource demands. They also have a scheduler that

decides the task that has to be launched on an each agent

node after resources are offered to them. During framework

registration, each framework needs to provide the executable

path of the Mesos Executor, or else the default Mesos Executor

takes care of the requested tasks. For example, Apache Aurora

uses Thermos [10] as the Mesos Executor whereas Mesosphere

Marathon [4], developed by the core developers of Apache

Mesos, uses the default Mesos Executor. Mesos Master
negotiates between the Mesos frameworks and Mesos agents

to allocate resources based on current resource consumption

by each framework. In a distributed production setup, multiple

Mesos Masters are installed, and one of them is elected as

a leader by zookeeper [11] to serve as the resource broker

for the cluster. Mesos Master consists of a resource allocation

module, which decides to allocate resources to each framework

periodically based on the DRF policy [2]. The Mesos setup

follows the following steps to allocate resources for executing

tasks on the agent nodes.

• Step 1 - Advertising Resources. At the beginning of an

allocation cycle each Mesos Agent advertises its available

resources like CPU, memory, disk, etc. to the Mesos Master.

• Step 2 - DRF based Resource Allocation. Based on the

current resource consumption by each framework, the Mesos

Master’s allocation module decides the resource allocation

for each framework for executing the tasks. The Mesos

Master does not take into account the resource needs of a

framework before sending it offers. This step is considered

as the 1st level scheduling in a Mesos setup.

• Steps 3 - Generating Matching List of Tasks and Agents.

Now, each framework decides how to schedule tasks across

the resources in the agent nodes allocated to it. The frame-

work takes into account the hardware, device, or other task

specific constraints provided by the user to the framework.

Once a framework makes its decision on using or rejecting

the resources from each allocated agent, it makes a list of

tasks matching with the Mesos agents and sends it to the

Mesos Master. The matching of resources offered by the

Mesos Master to the requirements of tasks in a framework

is called the 2nd level scheduling.

• Step 4 - Assigning Tasks to Allocated Agents. If the

framework’s request for resources for each task does not

exceed the available resources in the agent nodes, the
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Mesos Master request Mesos agents to execute the task. If

the frameworks’ resource requirements do not match the

availability on the agent nodes, the execution request is not

sent to the agents. The resources that are not used by each

framework are returned to the pool of available resources

and offered during the next allocation cycle as explained in

Figure 4.

Figure 2. Apache Mesos Architecture: This diagram shows
the primary architectural components and resource allocation
steps from Mesos Agents to Mesos Framework (user) through
DRF based resource allocation by Mesos Master.

B. DRF and Apache Mesos

Resource allocation policies, such as Max-Min, or its more

generalized version like the weighted Max-Min, can provide

fairness to multiple users in a multi-tenant environment. How-

ever, they are designed for a single type of resource. For

multiple resources, slot based allocation has became popular

with YARN [12] for Hadoop and map-reduce tasks. However,

the slot based allocation has a shortcoming of over or under

allocation of resources. In cloud and modern cluster computing

environments users can request different types of resources.

Multiple jobs can be co-scheduled on the same physical node.

The Dominant Resource Fairness (DRF) [2] algorithm was

introduced to bring fairness among multiple users competing

for various kinds of resources. Apache Mesos is one of the

leading cluster resource managers to incorporate DRF. Its

resource allocation module is based on DRF.

To explain how DRF works in Apache Mesos, we illus-

trate using a simple example how the dominant resource

and dominant share are calculated. Figure 3 shows a pool

of computing resources and two frameworks competing for

different amount of resources for various tasks in their own

queues. Framework A is currently consuming 4 CPUs and 6

GB of memory for all its running tasks. Similarly, Framework

B’s tasks are consuming 2 CPUs and 6 GB of memory. The

Figure 3. Dominant Share: This diagram pictorially repre-
sents the concept of Dominant Share, which decides the avail-
able resource allocation to each framework, while consuming
multiple types of resources to execute pending tasks in the
queue.

total pool of resources in this example consists of 10CPUs and

20 GB memory. Figure 3 shows how the dominant share and

dominant resource are determined for both the frameworks.

The flowchart in Figure 4 explains how DRF is implemented

in Apache Mesos and how the allocation cycle works.

Figure 4. Resource Allocation Cycle: Periodic resource al-
location cycle by Mesos Master’s allocation module to al-
locate computational resources from Mesos Agents to Mesos
Frameworks determined by dominant share of each framework
(user).
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III. TROMINO ARCHITECTURE AND STRATEGY

A. Tromino

Figure 5 shows how the Tromino queue manager fits in a

Mesos setup to manage the task queues for several Mesos

Frameworks. Tromino fetches cluster and task information

periodically form the Mesos Master and keeps track of the

tasks in the queue for each framework. In a conventional

Mesos setup, the end user submits tasks directly through

the frameworks, and each framework’s tasks are executed

using the steps listed in Section II-A. Unlike a conventional

setup, in the presence of Tromino, a user submits tasks

directly to Tromino. Tromino maintains separate queues for

each framework. Tromino takes into account the following

information to decide the task and framework to dispatch: (1)

current resource consumption of each framework; (2) the total

available resources in the cluster; and (3) the resource demands

of tasks in each framework’s queue.

Figure 5. Tromino Architecture: Tromino communicates with
the Apache Mesos Master to understand the current resource
consumption of each framework and based on the chosen
policy it releases tasks from the queue associated with each
framework.

B. Tromino Manager

Figure 6 shows the components and flow involved in

dispatching tasks through Tromino. Tromino consists of three

major elements (1) Tromino Dispatcher, (2) Tromino Manager

and (3) Tromino Scheduler.

Tromino Dispatcher consists of a dispatcher and a task

queue for each framework registered with the Mesos cluster.

Based on the user’s preference for a framework as specified to

the Tromino client, Tromino moves the task to the appropriate

dispatcher. Each dispatcher collects information on all the

resource demands of the tasks in its queue and the current

dominant resource demand of the queue.

Tromino Manager periodically communicates with the

Mesos Master to fetch information regarding resource con-

sumption of all the frameworks, the dominant share of each

framework, and the available resources in the cluster.

Tromino Scheduler controls the release of the tasks from

each dispatcher’s queue to the corresponding frameworks. The

tasks are released based on the chosen scheduling policy (see

Section III-C). It consults with the Tromino Manager to decide

how many tasks need to be released.

Figure 6. Tromino Manager: Tromino Managers consists of
multiple Tromino Dispatchers, one for each framework, and
it can communicate with Mesos Master to get information
about current resource consumption of each registered active
framework. Tromino Manager also communicates with each
dispatcher to understand the current resource demand to make
decisions regarding the release of tasks from each dispatcher.

C. Tromino Policies

We have designed three scheduling policies for the Tromino

Scheduler: DRF Aware Policy, Demand Aware Policy, and

Demand-DRF Aware Policy. These policies can be extended

further based on the scheduling needs of users and applica-

tions. In Section II-B, we discused how the Dominant Share

(DS) is calculated for any DRF based algorithm. We introduce

the Dominant Demand Share (DDS) attribute in this section.

Later in this section, we explain how the Tromino policies use

the DS and DDS values.

For example, let us consider a cluster with a total

of 20 CPUs and 40 GB of memory, where two frame-

works (Framework A and Framework B) are competing

for shared resources. Each of the frameworks can have a

different number of tasks waiting in their queues to be

dispatched. In this example, Framework A has 10 tasks

each with < 1 CPU, 4 GB memory > as the resource

demands. Framework B has a total of 5 tasks each with

< 2 CPU, 1 GB memory > demand waiting in the

queue to be dispatched. In Table 1, we present how the

calculation is carried out for the Dominant Demand Shares

(DDSA and DDSB) and the dominant demand of each

framework.

DDSA = max[(10∗1)/20, (10∗4)/40] = max[0.5, 1.0]

DDSB = max[(5∗2)/20, (5∗1)/40] = max[0.5, 0.125]

Table 1. Dominant Demand Share (DDS) calculation for both
frameworks in the example, before Tromino starts dispatching
any tasks to the Mesos cluster.
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Also, let us consider that Framework A is executing 3

tasks each consuming < 1 CPU, 4 GB memory > of

resources, and Framework B is executing 5 tasks wherein each

is consuming < 2 CPU, 1 GB memory > of resources. Now,

the Dominant Shares (DSA and DSB) for both frameworks

and their dominant resources are shown in Table 2.

DSA = max[(3∗1)/20, (3∗4)/40] = max[0.15, 0.3]

DSB = max[(5∗2)/20, (5∗1)/40] = max[0.5, 0.125]

Table 2. Dominant Share (DS) calculation for both frameworks
in the example, before Tromino starts dispatching any tasks to
the Mesos cluster.

In Table 1 and 2, we show the calculation of DDS and DS

for both the frameworks. For Framework A, the values are 1.0

and 0.3 respectively. Similarly, for Framework B, the values

are 0.5 and 0.5 for DDS and DS respectively.

• DRF Aware Policy. In this policy, we assign a higher

priority to the framework with lesser dominant share and

let its corresponding dispatcher release a task. After a

task is dispatched, Tromino recalculates the dominant share

and decides the next dispatcher from which a task can

be released. For example, as shown in Table 1, Tromino

allows Framework A to release the task. After the first

task is dispatched, the DS for Framework B becomes

0.4. Subsequently, Tromino allows another two tasks to be

released from Framework A’s dispatcher until its dominant

share becomes 0.6, which is higher than the dominant share

of Framework B. Now, Tromino allows two more tasks

DSA = max[(6 ∗ 1)/20, (6 ∗ 4)/40] = max[0.3, 0.6]

DSB = max[(5∗2)/20, (5∗1)/40] = max[0.5, 0.12]

Table 3. Dominant Share of both frameworks after Tromino
dispatches 3 tasks from Framework A’s dispatcher.

from Framework B’s dispatcher to be released and then

the dominant share for both the frameworks is as shown

in Table 4. At this point, Tromino stops from any further

DSA = max[(6 ∗ 1)/20, (6 ∗ 4)/40] = max[0.3, 0.6]

DSB = max[(7∗2)/20, (7∗1)/40] = max[0.7, 0.15]

Table 4. Dominant Share after Tromino dispatches 2 more
tasks from Framework B’s dispatcher until no more resources
are available in the cluster.

dispatching as there are no more resources available in the

cluster. Finally, Tromino follows the same steps in the next

dispatching cycle if more resources become available.

• Demand Aware Policy. In this policy, we consider the

Dominant Demand Share (DDS) to control the dispatching

of tasks from each framework’s dispatcher. The framework

that has more demand in terms of Dominant Demand Share

is given higher priority to dispatch its tasks first. Then,

every time a task is dispatched, Tromino recalculates the

DDS and decides which dispatcher gets a chance to release

the next task. We observe that in the example discussed

in Table 1, Framework A has higher demand compared

to Framework B. In that particular case scenario, Tromino
allows the dispatcher corresponding to Framework A to

dispatch the task. It cycles until Framework A dispatches

5 more tasks from its dispatcher queue. At this point, Table

5 shows the DDS for both Frameworks. Now, both the

Frameworks have similar DDS, but Framework A cannot

launch any tasks as its resource demands cannot be satisfied

with the available resources in the cluster. Thus, Framework

B’s dispatcher dispatches one task from the queue. Tromino
stops this cycle and waits for resources to once again become

available so that they could be used in the next cycle. After

this cycle, the DDS for both frameworks are presented in

Table 6. In the next dispatching cycle, Framework A may

get priority if it still has a higher DDS than Framework B.

The DDS of Framework B may go up if it gets new tasks

before the next cycle.

DDSA = max[(5∗1)/20, (5∗4)/40] = max[0.25, 0.5]

DDSB = max[(5∗2)/20, (5∗1)/40] = max[0.5, 0.12]

Table 5. Dominant Demand Share after Tromino dispatches 5
more tasks from Framework A’s dispatcher.

DDSA = max[(5∗1)/20, (5∗4)/40] = max[0.25, 0.5]

DDSB = max[(4∗2)/20, (4∗1)/40] = max[0.4, 0.1]

Table 6. Dominant Demand Share after Tromino dispatches
5 tasks from Framework A’s dispatcher and 1 task from
Framework B’s dispatcher.

• Demand and DRF Aware Policy. In this approach, we

consider both the demands of each framework and their

dominant share. Scheduling based just on the demand may

cause unfairness. A framework could end up consuming

the entire cluster due to its higher demand while another

framework that has significantly fewer number of tasks to

execute could starve for resources. We have combined both

the dominant share and dominant demand share to generate

a Demand-DRF factor in each cycle to decide the number

of tasks to be dispatched from each framework’s dispatcher.
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Software Version
Ubuntu Ubuntu 16.04.2 LTS (Xenial)

Apache Aurora 17.06.0-ce

Marathon 1.4.0

Apache Mesos 1.3.0

Table 7. Software Stack and Version

IV. EXPERIMENTAL RESULTS AND EVALUATION

For our experimental setup, we have considered two widely

known Mesos frameworks, Apache Aurora and Marathon,

along with Scylla, a framework developed by our team. The

cluster consists of 8 nodes each with 8 CPUs and 16 GB

of memory. We have instrumented Tromino to receive tasks

for Apache Aurora, Marathon, and Scylla at a different task

arrival rate. We have kept the resource requirements of each

task identical (i.e., < 0.5 CPU, 1 GB memory >). The

cluster at its peak utilization can execute 128 tasks with such

requirements. As all the tasks are identical, the number of

tasks that each framework is executing at any instance of time

is proportional to the amount of resources consumed by that

framework. Our aim with the experiments is to understand

the way resource fairness and task awaiting time varies in

different case scenarios. Also, we want to examine how

Tromino policies can achieve better cluster-wide fairness and

a reduced average waiting time, over Mesos’ default DRF

implementation. Our experimental results show the unfairness

caused in a Mesos cluster and quantify the fairness in terms

of average waiting time for different case scenarios.

A. Experiment 1. Framework with default configurations and
different arrival rates.

In this experiment, we present a case scenario where Mesos’

default DRF based allocation fails to provide cluster-wide

fairness due to each framework’s varying attributes and task

arrival rates. We have instrumented Tromino to receive tasks

for Aurora at a slower rate and receive tasks for Scylla at

a higher frequency. Aurora’s default implementation enforces

holding resources for a period of time for better scheduling

of tasks. On the other hand, Marathon is configured with a

relatively greedier second level scheduling policy compared to

Aurora. The second level scheduling can significantly affect a

framework’s individual resource utilization. In our particular

case scenario, due to a greedier scheduling policy, Marathon is

able to orchestrate more tasks upon receiving resources offers

from the Mesos Master. So, Marathon’s greedier scheduling

policy, and Aurora’s characteristic of holding on to resources,

affects Aurora because it struggles to launch a fair number

of tasks. For Aurora, holding resources makes its Dominant

Share stay higher, even though the resources are not used

for scheduling tasks. Unlike Aurora, Scylla does not hold

resources, and the second level scheduling policy is less greedy

compared to Marathon. In Table 8, we show the number of

tasks for each framework along with task arrival rate and

attributes that can impact the resource distribution.

# of tasks
Arrival Rate
(sec)

Attribute

Marathon 1000 1 Bin-Packing

Scylla 700 1.5 –

Aurora 500 2 Holds resources

Table 8. Configuration: Aurora, Marathon and Scylla with
different task arrival rate along with attributes that may affect
the resource fairness in the cluster.
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Figure 7. Aurora is not able to launch its pending tasks until
Marathon and Scylla are done with executing their tasks.
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Figure 8. Tromino improves the fairness by incorporating
DRF-Aware policy in the task dispatcher.

Figure 7 shows the fairness graphs of Aurora, Marathon,

and Scylla competing for resources. Aurora could not launch

a fair number of tasks. This can be attributed both to its default

configuration of holding on to offers without using them for

a long period of time and the other competing framework’s

greedy second level scheduling. We have incorporated DRF-

Aware scheduling in Tromino to address such scenarios.

The results in Figure 8 show that each of the frameworks

can launch close to a fair number of tasks, which is 42 in the

cluster. In the following experiments, we configured Tromino
with DRF awareness as the baseline to compare other Tromino
policies in different case scenarios.

B. Experiment 2: Frameworks with equal number of tasks,
but with fast and slow arrival rates.

In this experimental setup, we have instrumented Aurora,

Marathon, and Scylla to launch tasks in our experimental
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Mesos cluster. Tromino receives tasks for Aurora at a faster

rate than Scylla, and Marathon at a slower rate than Scylla as

shown in the Table 9. All three frameworks receive an equal

number of tasks to be executed. Each task is identical in terms

of resource requirement as mentioned in section IV. The fair

number of tasks at any point in time for each framework is

42.

# of tasks Arrival Interval (sec)
Aurora 733 1

Marathon 733 1.5

Scylla 733 2

Table 9. Configuration: Aurora, Marathon and Scylla with
different task arrival rate for launching same number of tasks.

Figure 9a, 9b, and 9c show the fairness plots when Tro-
mino is configured with different task dispatching policies in

the cluster. Tromino receives Aurora’s tasks at a faster rate

than Marathon and Scylla’s tasks. During DRF-Aware policy

configuration, Aurora faces a higher waiting time compared

to Marathon and Scylla. Aurora is affected by a 44% higher

waiting time compared to the cluster’s average for all tasks.

For the Demand-Aware policy, Aurora’s average waiting time

is reduced by 30% below the cluster’s average. However, due

to the lower task demand from Scylla, Tromino increased its

waiting time to 27% above the cluster average. For Marathon,

both the policies’ average waiting time stays within 10% the

cluster’s average. In Demand-DRF-Aware policy, the average

waiting time of the other two frameworks is within 2% of the

cluster’s average. Figure 10a presents the total waiting time for

all three frameworks for different Tromino policies. Similarly,

Figure 10b shows and compares the average waiting time per

every 100 tasks to be scheduled by each framework for each

Tromino policy. Lastly, Figure 10c compares the total waiting

time for each policy for all the tasks in the cluster. Table10

provides the results for the above mentioned figures.

Aurora Marathon Scylla
DRF Aware 44.24% -6.37% -37.87%

Demand Aware -30.42% 2.57% 27.85%

Demand-DRF Aware -1.06% 1.19% -0.13%

Table 10. Result: Difference between average waiting time of
each framework from average waiting time of the cluster for
different Tromino policies in Experiment 2.

C. Experiment 3: Large number of tasks with higher arrival
rates, and lower number of tasks with slower arrival rates.

In this experimental setup, Tromino receives fast arriv-

ing tasks for Aurora, slow arriving tasks for Scylla, and

Marathon’s task arrival rate is in between Aurora and Scylla’s

rate. Tromino receives a higher number of tasks for Aurora

and fewer tasks for Scylla compared to the number of tasks

received for Marathon. The task arrival rate and the number of

tasks for each framework is mentioned in Table 11. Tromino
is configured with all three policies as discussed in section

III-C. In Figures 11 and 12, we present our observations

about resource fairness and how waiting time varies for all

the policies.

# of tasks Arrival Interval (sec)
Aurora 1000 1

Marathon 700 1.5

Scylla 500 2

Table 11. Configuration: Tromino receives more tasks and at
a fast rate for Aurora, and lesser number of tasks at a slower
rate for Scylla.

Figure 11 shows the resource fairness for all three frame-

works after configuring Tromino with all three policies. In

DRF aware policy configuration, Aurora’s average waiting

time is 73% more than the overall average waiting time of

the cluster. For Scylla, with slow arriving tasks, the waiting

time is 55% less. After changing the configuration to follow

the Demand-Aware policy, the average task waiting time

difference changed to 31% less and 34% more for Aurora and

Scylla respectively. The average waiting time difference for all

three frameworks is aligned better with the cluster’s average

when Tromino is configured with Demand-DRF aware policy.

Figure 12a presents the total waiting time for all three

frameworks for different Tromino policies. Similarly, Figure

12b shows and compares the average waiting time per every

100 tasks to be scheduled by each framework for each Tromino
policy. Lastly, Figure 12c compares the total waiting time for

each policy for all the tasks in the cluster. Table 12 provides

the results for the mentioned figures.

Aurora Marathon Scylla
DRF Aware 73.33% -18.16% -55.17%

Demand Aware -31.07% -3.30% 34.37%

Demand-DRF Aware 2.30% -1.42% -0.88%

Table 12. Results: Difference of average waiting time of each
framework compared to average waiting time of the cluster
for different Tromino policies in Experiment 3.

D. Experiment 4: Large number of tasks with slower arrival
rates, and lower number of tasks with faster arrival rates.

In this experimental setup, a fewer number of Aurora tasks

are received by Tromino at a faster arrival rate, and unlike

the previous experimental setup, Tromino receives more Scylla

tasks at a slower rate. In Table 13, we present the number of

tasks received for each framework and the arrival rate.

# of tasks Arrival Interval (sec)
Aurora 500 1

Marathon 700 1.5

Scylla 900 2

Table 13. Configuration: Fewer tasks, but at a faster rate, for
Auroras tasks; and a larger number of slow arriving Scylla
tasks for Experiment 4.
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(a) Fairness Graph when Tromino is DRF
aware
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(b) Fairness Graph when Tromino is Demand
Aware
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(c) Fairness Graph when Tromino is Demand
and DRF aware

Figure 9. Resource Fairness for Experiment 2: Results show the fairness obtained by the cluster when Tromino is configured
with different policies and equal number of tasks are launched in the cluster with different task arrival rates for each framework.
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Figure 10. Results for Experiment 2: Equal number of tasks are launched by Aurora, Marathon and Scylla in a Mesos cluster.
Experimental results show how total waiting time and average waiting time varies for Aurora, Marathon and Scylla when
Tromino is configured with different policies.
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(a) DRF Aware.
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Figure 11. Resource Fairness for Experiment 3: Resource fairness obtained when Tromino is configured for different policies.
Tromino receives more tasks for Aurora at a fast rate whereas Scylla’s tasks arrive at a slower rate and are lesser in number.
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Figure 12. Results for Experiment 3: Results show how total waiting time and average waiting time varies for Aurora, Marathon
and Scylla when Tromino is configured with different policies. Tromino receives higher number of tasks for Aurora in a higher
arrival rate than Marathon and Scylla (Table: 11).
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Figure 14a presents the total waiting time for all three

frameworks for different Tromino policies. Similarly, Figure

14b shows and compares the average waiting time per every

100 tasks to be scheduled by each framework for each Tromino
policy. Lastly, Figure 14c compares the total waiting time for

each policy for all the tasks in the cluster. Table 14 shows the

difference of average waiting time of each framework with

each policy configuration compared to the overall cluster’s

average waiting time.

Aurora Marathon Scylla
DRF Aware 16.67% 7.61% -24.28%

Demand Aware -35.93% 8.78% 27.15%

Demand-DRF Aware -10.70% 4.03% 6.67%

Table 14. Result: Difference of average waiting time of each
framework compared to average waiting time of the cluster
for different Tromino policies in Experiment 4.

V. RELATED WORK

We have proposed a few policies to evaluate the fairness

of an Apache Mesos cluster based on average waiting time.

In our previous work [13] [14] we have shown how Apache

Mesos can be integrated with scientific workflow managers

like Apache Airavata [15] to run science application through

Docker containers [16]. The community can take advantage

of Mesos based fairness to distribute resources across users.

Khaled et al. [17] designed and developed Resource De-

mand Aware Scheduling (RDAS) for scientific workflows

to reduce the overall completion time. RDAS considers the

structure of workflows and based on the resource demands

of each stage it tries to optimize the resource allocation for

better throughput. However, in our Mesos cluster, we have

considered short living tasks from different users with specific

resource requirements and scheduled them based on the overall

demand from each user.

Boyang et al. [18] developed R-Storm, which is aware of

the resource demand and availability in a Storm based stream

processing environment to increase the overall throughput of

the cluster. Multiple Storm applications in a cluster yield

better performance in the presence of R-Storm than the default

Apache Storm configuration. Fahad R et al. [19] developed

Baarat, a task aware scheduler over the network, which dy-

namically schedules multiple tasks together based on the task’s

network bandwidth requirements. It dynamically changes the

level of multiplexing in the network to optimize the average

and tail completion time for data center applications.

VI. CONCLUSION

• Individual framework configuration and attributes such as

offer holding period and second level scheduling policy

can impose unfairness in a Mesos cluster. DRF aware task

dispatching by Tromino can overcome the unfairness and

establish better fairness distribution in the cluster.

• A Framework with a higher task demand needs to get more

resources than a framework with a lesser demand to keep the

overall waiting time low. Tromino can schedule tasks based

on the resource demand and current resource consumption

of frameworks in the cluster.

• We orchestrated frameworks with different task arrival rates

and different number of tasks to execute. Demand awareness

is vital to optimize the average waiting time for each

framework.

• Demand and DRF awareness on top of Mesos’ default DRF

based resource allocation can decrease the average waiting

time for a framework.

VII. FUTURE WORK

In the scope of our current work, we have developed a

queue manager, Tromino, external to Apache Mesos, which

can dispatch tasks based on the dominant share and demands

by monitoring the cluster information and pending task queues.

Mesos’ allocation module does consider the resource demands

from each user. However, it can be extended and a new

allocation module can be designed that checks the available

resources on each agent and can allocate resources based on

the demands. In a production environment, where thousands of

nodes are configured, scanning through all the nodes with its

available resources can take longer time for a single allocation

cycle. It will be useful to study the trade-offs between demand

aware allocation for meeting better resource constraints against

current random resource allocation that may not fit and wait

for future cycles to get a better allocation.

We would like to investigate and develop new policies to

consider not only total resource demands but also the demand

of each task at a more finer granularity. Tasks of different

frameworks can have different resource requirements that can

differ in the magnitude and may come with priorities. We

would like to develop and test new policies to consider all

such task constraints of a data center for further improvement

and better resource allocation.
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receives fewer tasks for Aurora at a fast rate whereas Scylla’s tasks arrive at a slower rate but are more in number.
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