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Abstract

Ocean acidification is a global phenomenon with highly regional spatial and temporal patterns. In order to address the
challenges of future ocean acidification at a regional scale, it is necessary to increase the resolution of spatial and
temporal monitoring of the inorganic carbon system beyond what is currently available. One approach is to develop
empirical regional models that enable aragonite saturation state to be estimated from existing hydrographic measure-
ments, for which greater spatial coverage and longer time series exist in addition to higher spatial and temporal
resolution. We present such a relationship for aragonite saturation state for waters off Northern California based on in
situ bottle sampling and instrumental measurements of temperature, salinity, and dissolved oxygen. Application of this
relationship to existing datasets (5 to 200 m depth) demonstrates both seasonal and interannual variability in aragonite
saturation state. We document a deeper aragonite saturation horizon and higher near surface aragonite saturation state in
the summers of 2014 and 2015 (compared with 2010–2013), associated with anomalous warm conditions and decadal
scale oscillations. Application of this model to time series data reiterates the direct association between low aragonite
saturation state and upwelled waters and highlights the extent to which benthic communities on the Northern California
shelf are already exposed to aragonite undersaturated waters.
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Introduction

The Earth is undergoing significant changes due to the
anthropogenic input of carbon dioxide (CO2) into the at-
mosphere. The oceans have, to date, absorbed a quarter to a
third of these emissions (Canadell et al. 2007; Sabine et al.
2004; Sabine and Feely 2007), initiating an ongoing shift
in marine chemistry known as Bocean acidification^ or OA
(Caldeira and Wickett 2003; Doney et al. 2009; Feely et al.
2004; Fabry et al. 2008; Feely et al. 2009; Kleypas et al.
1999; Orr et al. 2005; Sabine et al. 2004). While the sur-
face ocean as a whole becomes more acidic and decreases
in pH, the carbon system exhibits substantial spatial and
temporal variability on regional scales (e.g., Alin et al.
2012; Feely et al. 2008; Hofmann et al. 2011; Juranek
et al. 2009). These regional patterns overprint the global
trend of OA (Kelly et al. 2013; Parker et al. 2011; Walther
et al. 2010), and require an understanding of seasonal and
interannual variability at a local level in order to monitor
ongoing and anticipate future conditions in a more acidic
ocean.
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In the California Current System (CCS), deep waters already
naturally rich in CO2 are showing increased enrichment due to
anthropogenic CO2 as they upwell onto the continental shelf
from central Canada to northern Mexico (e.g., Chan et al.
2017; Feely et al. 2008; Feely et al. 2016; Harris et al. 2013).
Under these conditions, carbonate ion concentrations ([CO3

2−])
within the water column are lower, creating a more stressful
environment for shell-forming organisms that precipitate calcium
carbonate structures. Moreover, evidence from recent decades
and model projections suggests that rates and intensities of up-
welling will continue to increase in the future (e.g., Bakun 1990;
Bakun et al. 2015; Garcia-Reyes and Largier 2010; García-Reyes
and Largier 2012; Sydeman et al. 2014; Varela et al. 2015;Wang
et al. 2015; Snyder et al. 2003), although not all models agree and
different regions may respond differently (Mote and Manuta
2002; Varela et al. 2015). Any increase in the strength or duration
of upwelling intensity would increase organismal exposure to
low [CO3

2−] waters in coastal upwelling regions (Gruber et al.
2012; Hauri et al. 2013). The interplay between these ongoing
alterations in ocean chemistry and the regional dynamics of OA
specific to the CCS highlight the need for higher-resolution OA
monitoring in the CCS.

One important metric that can be used to quantify seawater
conditions is aragonite saturation state (Ωarag), defined as
Ωarag = [Ca2+][CO3

2−] / Ksp, where [Ca
2+] is the concentration

of calcium cations and Ksp is a phase-specific, temperature-,
and salinity-dependent constant. In general, Ω operates as a
measure of the thermodynamic favorability of precipitation of
a mineral, in this case of the aragonite crystalline form of
calcium carbonate, with values Ωarag < 1 describing an arago-
nite undersaturated environment, where dissolution of arago-
nite shells is favored over precipitation. Although Ωarag alone
does not describe the entire marine inorganic carbonate sys-
tem nor the full range of impacts on organisms, it is an often-
used threshold for organismal response to OA.

At present, the paucity of existing OA measurements often
impedes the use of Ωarag as a useful index for characterizing
local- and regional-scale carbonate system conditions. Most
instrumental records suitable for determining Ωarag span only
years (in rare cases, decades), and therefore are of limited
value for teasing apart interannual and decadal scale signals.
These existing datasets are furthermore often confined to dis-
crete locations or sampling stations. One solution for increas-
ing both the temporal and spatial resolution of OAmonitoring
is the development of empirical models to estimate OA local-
ly. These empirical models are based on more commonly re-
corded hydrographic properties such as temperature, salinity,
and dissolved oxygen (DO). Such models have been success-
fully developed in both the Southern CCS byAlin et al. (2012)
and the Northern CCS by Juranek et al. (2009), for use in
estimating Ωarag.

Here, we present a model for waters off Northern
California that define a relationship for Ωarag specific to the

Central CCS, based on shipboard measurements of tempera-
ture, salinity, and DO, and laboratorymeasurements of pH and
alkalinity to constrain Ωarag. A second regional dataset was
used to validate this relationship. The resultant relationship
is compared to previous studies (Alin et al. 2012; Juranek
et al. 2009) and applied to characterize key aspects of the
regional spatial and temporal variability in Ωarag along the
Northern California shelf, in the Central CCS.

Methods

Study Region

The CCS includes the shallow (< 300 m), equatorward-
flowing California Current (CC) and the poleward flowing
California Undercurrent (CUC) with a core of maximum ve-
locity between 100 and 300 m near the continental slope
(Hickey, 1979; Lynn and Simpson 1987). The CC is fed by
water masses from the North Pacific Current, characterized by
relatively cold, less saline (33–34), oxygen-rich, nutrient-
poor, and higher pH conditions (Pickard 1964; Reid et al.
1958). The CUC, by contrast, is fed by water masses originat-
ing from Pacific Equatorial Waters (PEW) and characterized
by relatively warm, salty (> 34), oxygen-poor, nutrient-rich,
and low pH conditions (Gay and Chereskin 2009; Hickey
1979; Huyer et al. 1998; Lynn and Simpson 1987; Pickard
1964; Sverdrup et al. 1942). As the CUC flows northward,
warm and salty PEWwaters mix with colder, less saline water
masses from the subarctic North Pacific, which results in a
progressive dilution of PEW (Thomson and Krassovski,
2010). This study focuses on the region inshore of the primary
CC, where wind driven coastal upwelling brings colder, sub-
surface water to the surface (Fig. 1).

The CCS, like other Eastern Boundary Current
Systems, includes a seasonal wind-driven coastal upwell-
ing regime, which usually begins in early spring along the
Northern California coast (García-Reyes and Largier
2012; Hickey 1998; Pennington and Chavez, 2000). This
phenomenon is driven by strong, northwesterly winds that
induce net transport of surface water offshore and cause
the upwelling of deep, cold, nutrient-rich, oxygen-poor
waters onto the continental shelf and into the euphotic
zone. As deeper water masses in the North Pacific
Ocean are naturally enriched in CO2 (Broecker and
Peng, 1982), they are additionally characterized by low
pH and low carbonate saturation states (Alin et al. 2012;
Fassbender et al. 2011; Feely et al. 2008; Hales et al.
2005; Juranek et al. 2009). Along the CCS, shelf waters
originate from depths between 100 to 300 m during up-
welling, with the core of the CUC located along
isopycnals 26.4–26.6 kg m−3 (Gay and Chereskin, 2009;
Lynn and Simpson 1987; Pierce et al. 2012). Prior studies
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identify the depth of the 26.0–26.2 kg m−3 isopycnal as a
key derived variable within the CCS, with the Ωarag satu-
ration horizon at 26.2 kg m−3 (Feely et al. 2008).

As the strength and extent of coastal upwelling vary spa-
tially and temporally along the CCS, coastal waters also ex-
perience a wide range of pH due to the varying relative in-
fluences of upwelled waters. For example, in 2013, the
Bodega Ocean Observing Node (BOON; 38° 19.110′ N
123° 04.294′ W) offshore mooring recorded surface pH
values ranging from 7.4 to 8.2 (total scale), a ~ 85% change
in hydrogen ion ([H+]). Ongoing changes in the seasonality,
duration, and intensity of upwelling along with the increasing
influence of anthropogenic CO2 on upwelled waters are likely
to have wide-ranging effects on Eastern Boundary Current
ecosystems such as the California Margin (García-Reyes
et al. 2015), where benthic and planktic communities will
be more frequently exposed to waters undersaturated with
respect to aragonite.

Data Collection

Paired water samples and hydrographic measurements were
collected on Applied California Current Ecosystem Studies
(ACCESS) cruises from 2013 to 2015 and as part of the UC
Davis Bodega Marine Laboratory (BML) BBodega Line^
cruises between 2012 and 2015. ACCESS sampling took
place along five transects, from 37° N to 39° N, with efforts
focused on the continental shelf (Fig. 1). Cruise transects were
repeated up to three times annually between May and
September onboard the R/V Fulmar. A conductivity-
temperature-depth (CTD) profiler (Sea-Bird Electronics,
SBE 19, equipped with a SBE 63 optical DO sensor) was used
to obtain vertical profiles of temperature, salinity, and DO
versus depth at up to six stations along each transect
(Fig. 1). DO sensors were factory calibrated annually for an
initial accuracy of ± 3 μmol/kg (~ 0.07 ml/L) or ± 2%.
Discrete water samples were collected at the bottom of each

Fig. 1 Map of collection sites in the Gulf of the Farallones, over Cordell
Bank and the regions directly offshore from Bodega Head, located within
the California Current System. Stations sampled along the Bodega Line

(BL) are shown in black, and transects sampled on ACCESS cruises are
shown in white
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CTD profile for measurement of pH and total alkalinity. Water
was collected from depths between 27 and 224 m using a 3-L
Niskin bottle and immediately dispensed into duplicate
100 mL borosilicate glass bottles and preserved shipboard by
the addition of mercuric chloride (HgCl2). Additional samples
were collected year-round from five on-shelf locations along
the Bodega Line transect, at depths between 1 and 200 m,
consistent with methods onboard ACCESS cruises (Fig. 1).
Temperature, salinity, and DO measurements were also ob-
tained from the BOON located at Bodega Line Station 1.
This 32 m deep mooring is equipped with SBE microCAT
and Precision Measurement Engineering (PME) miniDOT
sensors at ~ 30 m depth. The miniDOT sensor has a reported
accuracy of ± 10 μmol/kg or ± 5%.

Water Chemistry Analyses

Water samples were analyzed at BML spectrophotometrically
for pH (total scale) using either a Sunburst SAMI (Submersible
Autonomous Moored Instrument) modified for benchtop use
(SD ± 0.009) or an Ocean Optics Jaz Spectrophotometer
EL200 (SD ± 0.003) using m-cresol purple (Dickson et al.
2007). The SAMI was calibrated at Sunburst by determining
molar absorbtivities specific to each batch. This was then
corrected to Dickson CRM by pHmeasured and pH calculated
from DIC. For samples run on the Jaz Spectrophotometer, a
calibration regression was generated for each batch of dye and
calibrated against Tris for a < 0.1 pH unit offset. Total alkalin-
ity was run via automated Gran titration on a Metrohm 809
Titrando (SD ± 4.2 μmol/kg), with acid concentrations stan-
dardized to Dickson certified reference materials.
Measurements of pH and total alkalinity were used together
with CTD measurements of temperature and salinity to calcu-
late Ωarag using the software CO2calc (Robbins et al. 2010)
with CO2 equilibrium constants pK1 and pK2 from Millero
(2010) and KHSO4 from Dickson (1990).

Model Development and Evaluation

Relationships between Ωarag and environmental variables
were developed based on shipboard data from ACCESS
cruises using R (R Core Team 2013), while holding the
Bodega Line measurements in reserve for model validation.
Stepwise regression was utilized in selecting predictive vari-
ables from shipboard measurements (temperature, salinity,
DO, and depth), season, wind speed, and the Pacific
Fisheries Environmental Laboratory (PFEL) upwelling index.
Varying degrees of interactivity between parameters were test-
ed and a best-fit model was selected based on a combination
of Akaike Information Criterion (AIC), a frequently used tool
for comparing candidate models based on maximum likeli-
hood values (Akaike 1974), and fit to calculated values from
both ACCESS and Bodega Line Data. Model validation was

undertaken both by testing the model against Bodega Line
data and by bootstrap resampling of the ACCESS dataset in
which subsamples of our dataset were tested against our cho-
sen model, as implemented in the R software package, Bboot^
(Fig. 2; Canty and Ripley 2016).

Results

Empirically Determined Model

We present a new regional relationship for Northern
California shelf waters developed from data collected onboard
ACCESS cruises between May and July, 2013–2015, months
in which ocean conditions are dominated by wind-driven up-
welling (Largier et al. 1993; García-Reyes and Largier 2012).
The relationship includes temperature (T (°C)), salinity (S),
and DO (μmol/kg), as well as interactions between the three
variables (Eq. 1):

Ωarag ¼ α0 þ αT Tð Þ þ αS Sð Þ þ αDO DOð Þ

þ αTS T*Sð Þ þ αTDO T*DOð Þ

þ αDOS DO*Sð Þ þ αTSDO T*S*DOð Þ

ð1Þ

where all α constants are shown in Table 1. Estimated values
fit well to observed values (R2 = 0.92, p < 0.005) with a root
mean squared error of 0.09 and better predictive power
shallower than 150 m (Fig. 2).

A simplified model requiring only salinity and DO was an
equally good fit for ACCESS data and actually yielded the
minimum AIC value:

Ωarag ¼ α02 þ αS2 Sð Þ þ αDO2 DOð Þ þ αDOS2 DO*Sð Þ ð2Þ
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Fig. 2 Correlation between estimated and observed Ωarag for samples
taken onboard ACCESS cruises in 2013–2015, with deeper samples
represented in blue and shallower samples in red. Ideal (1:1) fit is
represented by the black line, withΩarag ± 0.1 shown in dashed gray lines
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where all α constants are shown in Table 1. While the reduced
number of inputs may make such a simplified model optimal
for the ACCESS calibration dataset, it was found to be less
predictive of the Bodega Line dataset during model validation
(Table 1). Thus, Eq. 1 was deemed preferable for covering the
region.

Model Validation

Model validation was achieved by two approaches. The first
was bootstrap resampling of the ACCESS data used for model
development, which with 500 iterations produced the highest
frequency of R2 values between 0.9 and 0.95 (Fig. 3). Our
chosen model was also tested against independent data from
the Bodega Line, which included higherΩarag values and low-
er salinities than observed in ACCESS cruise samples and
resulted in a good fit (R2 = 0.79, p < 0.005) with a slight bias
towards overestimating Ωarag (Fig. 3). Although the ACCESS
data were limited to May through July samples, the resulting

relationship was found to be applicable year-round to the
Bodega Line data (1–200m water depth), with the exception
of September, discussed further below.

Exclusion of September Data

During model development and validation, samples taken be-
tween August 20 and September 20 from both ACCESS and
Bodega Line datasets in 2012–2015, referred to hereafter as
BSeptember,^ deviated from modeled relationships. All three
model parameters (temperature, salinity, and DO) display a
less robust linear relationship with observed Ωarag values as
compared to spring and early summer cruises (Fig. 4), and
inclusion of September data consistently resulted in a worse
model fit. September data were therefore excluded to produce
a model that accurately estimates Ωarag at other times. No
modeling attempts based on September data exclusively pro-
duced reasonably predictive models (R2 < 0.56, p < 0.005).
Where model-inferred Ωarag time series are presented here,

Table 1 Comparison between
several models tested including
the parameters included,
constants and standard deviation,
fit of the model to both the
ACCESS data used for
calibrations, and the Bodega Line
dataset used for validation and the
ΔAIC from the minimum AIC
value achieved. Our favored
model is in bold and should yield
Ωarag = 1 when T = 9, S = 33.8,
and DO = 105

Parameters Constants ± standard deviation R2 fit to
ACCESS

ΔAIC R2 fit to
Bodega Line

S, DO, DO ∗ S α0 = −36.97997 ± 6.65924 0.92 0 0.62
αS = 1.10990 ± 0.19656

αDO = 0.40585 ± 0.04478

αDOS = −0.01191 ± 0.00133

T, S, DO, T ∗ S, T ∗ DO,
DO ∗ S, T ∗ S ∗ DO

α0 = −222.7 ± 132.2 0.92 4 0.79
αT = 21.80 ± 15.11e

αS = 6.653 ± 3.920

αDO= 1.340 ± 0.5434

αTS = −0.6499 ± 0.4484

αTDO= −0.1121 ± 0.06431

αDOS = −0.03990 ± 0.01621

αTSDO = 0.003355 ± 0.001920

T, DO, DO ∗ T α0 = 2.2277895 ± 0.6013926 0.87 15 0.80
αT = −0.1691366 ± 0.0658708

αDO= −0.0131453 ± 0.0030623

αTDO= 0.0016624 ± 0.0003009
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September data has been identified, and while providing po-
tentially valuable data in context, may not be as quantitatively
robust. September data are discussed further in BThe associa-
tion of low Ωarag with upwelled waters.^

Comparison to Previously Published Models

Calculated Ωarag values were compared to estimated values
from other empirical relationships for the Northern and
Southern CCS (Alin et al. 2012; Juranek et al. 2009). Both
models provided a significant correlation but a notably poorer
fit for ACCESS data: Juranek et al. (2009) model, R2 = 0.63,
p < 0.005; Alin et al. (2012) model, R2 = 0.59, p < 0.005

(Fig. S1). The Alin et al. (2012) relationship slightly overes-
timates Ωarag values while the Juranek et al. (2009) relation-
ship underestimates Ωarag in deeper waters and overestimates
Ωarag in shallower waters (Fig. S1).

Application to Regional Time Series

The relationship developed here was applied to three regional
time series: ACCESS data (available from 2010 to 2015),
Bodega Line data (2012–2015), and BOON mooring data
(2014–2015). Parts of the first two datasets (2012–2015) were
used inmodel development and verification whereΩarag could
be derived from bottle samples, as described above.
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Application of model results allow estimation of Ωarag depth
profiles from CTD data and calculation of Ωarag time series
from mooring data, thus resolving high-frequency variations
and small-scale spatial patterns (Figs. 5–8) as well as
hindcasting Ωarag at sites where measurements have been ei-
ther absent or present at lower temporal or spatial resolution
than other hydrographic parameters.

Application of our model to CTD casts from ACCESS
cruises reveals spatial variability in on-shelf Ωarag. Transects
show the Ωarag saturation horizon (depth at which Ωarag

crosses one) shoaling to the east and north in most years,
towards the upwelling center at Point Arena (Largier et al.
1993; Figs. 6 and 7). Waters at ACCESS Line 6, near
Southeast Farallon Island, are more saturated with respect to
aragonite (e.g. Fig. 6), consistent with air-sea interaction and
mixing with productive, higher saturation state, surface waters
as they flow away from the upwelling center towards and past
Point Reyes (Halle and Largier 2011). Interannual variability
is also observed in this dataset. For example, a largely under-
saturated water column (from a depth of ~ 50–75 m) is ob-
served in 2010 as compared with 2015, along with reduced
north-south variability in 2010 (Fig. 7).

The temporal variability in Ωarag depth profiles estimated
from Bodega Line data are presented in Fig. 5, showing
changes in the Ωarag saturation horizon depth. During winter
months, the Ωarag saturation horizon deepens to > 100 m

through the majority of the season. Water undersaturated with
respect to aragonite shoals with the onset of upwelling in
spring to < 20 m in the spring of 2012. However, the Ωarag

saturation horizon remains deeper in the spring of 2014 than in
previous years.

Aragonite saturation state was also estimated for high-
frequency data from instruments moored at 30 m depth on
the nearshore BOON mooring, 1.2 km offshore Bodega
Head (Fig. 1). Estimated bottom water Ωarag shows both sea-
sonal and synoptic variability, with low Ωarag values associat-
ed with upwelling (stronger upwelling favorable winds and
colder water) and higher Ωarag values associated with warmer
waters during relaxation (Fig. 8). Synoptic variability is
superimposed on a seasonal cycle with high Ωarag values
through winter. Although only at one location, these high-
frequency data provide a fuller picture of the temporal vari-
ability of benthic Ωarag, which is found to be undersaturated
(Ωarag < 1) 24% of the time (Fig. 8).

Estimated Ωarag also documents the interannual variability
found along the Northern California Margin. For example,
summer Ωarag data, both calculated and estimated, at Bodega
Line Station 4 in 2014 and 2015 indicates a deeper Ωarag

saturation horizon and overall higher Ωarag compared to pre-
vious years (Fig. 5). Years with a deeper Ωarag saturation ho-
rizon are coincident with oceanographically unusual warm
anomalies: the appearance of North Pacific sea surface tem-
perature anomalies that start in late 2013 and continue through
2014 and 2015, overlapping with the onset of the 2015–2016
El Niño.

Discussion

A Regionally and Seasonally Specific Model for Ωarag

Measurements of carbonate chemistry obtained over 4 years
along the Northern California margin document a relationship
between Ωarag, temperature, and DO that is comparable with
relationships developed elsewhere in the CCS but show that
Ωarag in this region is not well estimated by the relationships from
other regions (Alin et al. 2012; Juranek et al. 2009). In addition to
being latitudinally distinct, the relationship between Ωarag, tem-
perature, salinity, and DO may be influenced by the focus on
mainly, near-shore and on shelf sites, as well as San Francisco
Bay outflow.We find that previously employed parameters (tem-
perature and DO) can be used together with salinity and interac-
tive parameters to construct a more robust, regionally specific
predictive model for Ωarag. The inclusion of both salinity and
temperature increases the utility of the empirical model across
datasets in the region (Table 1), likely as an additional signature
of upwelled water masses associated with low Ωarag. Further,
salinity may help differentiate between the influence of runoff
and San Francisco Bay outflow that is transported northward past
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Point Reyes during periods of relaxation in upwelling winds
(Largier et al. 2006; Send et al. 1987). Thus inclusion improves
model performance in relation to the Bodega Line data, exclu-
sively collected nearer Bodega Bay (Fig. 1). We documented
seasonal variation in model accuracy, with substantial deviations
from model predictions in September, when upwelling is gener-
ally weaker.

The Association of Low Ωarag with Upwelled Waters

A direct relationship between the inorganic carbon system
(including low Ωarag) and upwelled source waters has been
shown multiple times elsewhere in the CCS (Alin et al.
2012; Fassbender et al. 2011; Feely et al. 2008; Hales et al.
2005; Juranek et al. 2009). This association is reaffirmed here,
first by observation of seasonal shoaling of undersaturated
waters in association with the onset of upwelling favorable
winds (negative along-shore wind stress; Fig. 5) and second
by bottomwater observations from the BOON offshore moor-
ing, where denser waters are linked to low Ωarag (Fig. 8).
Interestingly, here, we observe aragonite undersaturation in

waters with densities as low as 25.2 kg m−3 (Fig. 8), notably
lower than the densities of deep source waters reported in prior
studies associated with Ωarag < 1 (26.2 kg m−3; Feely et al.
2008). The presence of relatively less dense water associated
with low Ωarag is especially prominent in July 2014 and is
presumably the result of net respiration over the shelf, which
is expected to be stronger in sub-surface waters during unusu-
ally strong stratification observed in summer 2014, associated
with the warm anomaly at that time (see further discussion
below; Fig. 8). Such a mechanism has previously implicated
in decreasing saturation state in upwelling regions
(Fassbender et al. 2011) and is supported by the observation
of persistent low DO at the site even as temperatures rise and
salinity decreases.

September Data

Shelf DO concentrations are influenced by source water var-
iability associated with upwelling as well as by productivity
and respiration in the water column over the shelf. Both influ-
ences impact Ωarag proportionally to DO when driven
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primarily by net respiration (drawdown of oxygen O2 and
increase in CO2), though not necessarily if dominated by air-
sea gas exchange. The poor predictive power of the proposed
model during September is due to a change in the relationship
between predictors (temperature, salinity, and DO) and Ωarag

(Fig. 4). Recognition of such temporal limitations is important
in regions where variability in modeling parameters (temper-
ature, salinity, and DO) and their relationship to Ωarag can be
influenced by seasonal processes like changes in source wa-
ters, the relative importance of productivity/respiration pro-
cesses, air-sea exchange, or the influence of shelf carbonates.
We outline each of these mechanisms further below.

Early fall in Northern California is characterized by a re-
laxation in upwelling, though upwelling can still occur and the
influence of upwelled waters on the shelf may linger, resulting
in a mixed upwelling/relaxation signal. Relaxation is accom-
panied by net northward transport of southerly waters (Kaplan
and Largier 2006; Largier et al. 1993, 2006; Send et al. 1987),
including waters influenced by San Francisco Bay outflows.
Thus, salinity and temperature, in particular (though DO as
well), might reflect the duel influence of upwelled and later-
ally transported surface waters and therefore a more complex

relationship with Ωarag than at other times of year and in other
places. August and September are also characterized by sig-
nificant stratification, which limits air-sea exchange to a shal-
low near-surface layer and by phytoplankton blooms that are
dominated by dinoflaggelates and the pseudonitzschia diatom
(Paquin 2012). These blooms appear as sub-surface chloro-
phyll maxima offshore—thus inserting the production effect
sub-surface, rather than in the least-dense surface waters, in
contrast to diatom-dominated blooms in other seasons.
Moreover, if the influence of upwelling-driven productivity
outlasts that of upwelled water masses, due to remnant nutri-
ents and the longer lifespans of higher trophic level con-
sumers, this transitional periodwould be distinct in the relative
importance of the primary productivity (high Ωarag) and respi-
ration (lowΩarag) signal compared to upwelling (lowΩarag) in
determining local Ωarag. It is also possible that a change in the
type of productivity during this period results in altered
Redfield C:O ratios.

One additional possibility is the interaction of upwelled
waters with shelf sediment carbonates or those in San
Francisco Bay. During upwelling season, water masses with
low DO and low Ωarag are brought onto the shelf, and as these
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water masses have extended contact with the shelf, they may
be buffered by dissolution of carbonate shells in the shelf
sediments and water column, increasing Ωarag, independent
of DO. Such an interaction would be poorly predicted by
measured parameters (temperature, salinity, and DO) and
could become more pronounced towards the end of upwelling
season, when increased stratification and decreased upwelling
would allow corrosive upwelled water masses increased con-
tact time at the sediment-water interface and within pore wa-
ters. In fact, while the expected proportional relationship be-
tween total CO2 and DO is present in all ACCESS data col-
lected (May–September), it is more robust in May–July (R2 =
0.64) than in September (R2 = 0.49) and the measured Ωarag

during September is indeed often higher than estimated by our
model. One or more of these mechanisms could account for
the failure of the upwelling-driven model to estimate
September Ωarag values. Continued data collection may yield
a September-specific model that better represents these
mechanisms.

Oceanographic Variability

From late 2013 to late 2015, the North Pacific experienced a
marine heat wave, a warm anomaly popularly called BThe
Blob^ (Bond et al. 2015). Sea surface temperature anomalies
were accompanied by a switch to a positive Pacific Decadal
Oscillation (PDO) phase (Leising et al. 2015) which may have
precipitated a series of unusual global climate patterns (Lee
et al. 2015), including reduced upwelling in the Central CCS
in 2014 (Gentemann et al. 2017; Leising et al. 2015). Marine
heat waves are statistically common in the Eastern North
Pacific with a frequency of one every 4 years (Scannell et al.
2016). However, BThe Blob^ is notable for being the most
extreme such anomaly observed since at least 1980 (Bond
et al. 2015). It was accompanied by numerous, productivity
shifts and species observation ranging from unusual sightings
of seabirds and Vellela vellela to temporal and range shifts in
valuable fisheries catches including skipjack tuna and sockeye
salmon in the Pacific Northwest (Bond et al. 2015; Whitney
2015) and along the California coast (Leising et al. 2015).
BThe Blob^ was also associated with a reduction in upwelling
at these latitudes (Leising et al. 2015). Coastal upwelling oc-
curred off Northern California in spring 2014 and 2015, with
anomalously warm surface waters only being sustained after
May (Gentemann et al. 2017), accompanied by anomalously
strong stratification. Our observations show this upwelling in
early 2014 (Fig. 8) and early 2015 (Fig. 5), and during the
summer and fall 2014, although Ωarag estimated at the BOON
mooring (Fig. 8) is lower than that from shipboard measure-
ments (Fig. 5). This is consistent with a shoreward shoaling of
the Ωarag saturation horizon as seen in cross-shelf transects
(Fig. 6; Fig. 7), due to shoaling of upwelled waters and the
effect of net respiration as waters move onshore.

El Niño events have been associated with an overall de-
crease in and shift to a later onset of upwelling at the latitudes
of our study location (Bograd et al. 2009; Jacox et al. 2015). In
fall 2015, El Niño conditions were observed in the Eastern
Pacific (Stramma et al. 2016), following effects of the 2014–
2015 marine heat wave. This explains the deeper Ωarag satu-
ration horizon observed in 2015, due to a regional change in
upwelling. Given a demonstrated link between El Niño and
upwelling in this region and upwelling and Ωarag more broad-
ly, an association between ENSO and Ωarag saturation horizon
depth is likely to be observered again in future years. Thus, the
records presented here illustrate an important link between
interannual and decadal scale variability in Pacific climate
and shelf exposure to aragonite undersaturated waters. A
deeper Ωarag saturation horizon is expected to persist in con-
junction with reduced or late season upwelling during marine
heat waves and El Niño events.

By contrast, a shallower summer Ωarag saturation horizon
depth would be associated with stronger upwelling, which
appears to be intensifying off California (García-Reyes and
Largier 2012) and also during La Niña conditions. The latter
is apparent in transects from the July ACCESS Cruises when
years with weak upwelling (2015) and strong upwelling
(2010) are compared (Fig. 6; Fig. 7). In 2015, waters highly
saturated with respect to aragonite are present at the surface,
with a relatively deep summerΩarag saturation horizon, similar
to observations from Bodega Line Station 4 during the same
year (Figs. 5 and 6). By contrast, in 2010, the Ωarag saturation
horizon depth is shallower and less spatially variable than in
July 2015 (Fig. 7). During this La Niña year, the water column
is largely undersaturated with respect to aragonite across
ACCESS transects, with the Ωarag saturation horizon depth
shoaling to < 50 m on the shoreward end of all lines (Fig. 7).

Given the relatively short extent of this 6 year time series, it
is unclear how unusual the deep Ωarag saturation horizon ob-
served in 2014–2015 is for the Northern California region.
However, the anomalies seen in these years are representative
of a type of interannual variability in Ωarag that has been dif-
ficult to capture on a regional scale. Because calibration data
were collected both prior to and during the anomalous years of
2014 and 2015, there is confidence in the ability of this re-
gional model to detect an interannual diversity of Ωarag

regimes.

Community Exposure

These time series show the extent to which shelf commu-
nities in the central CCS are already exposed to aragonite
undersaturated conditions. For example, sensors on the
shallow BOON mooring, located 1 km offshore at a water
depth of 30 m (Fig. 1), were exposed to Ωarag < 1 waters
for 24% of the time in 2014. Non-motile shelf communi-
ties would thus have been exposed to undersaturated
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conditions for roughly a quarter of the year, beginning
with the spring shoaling of the Ωarag saturation horizon,
and to strongly aragonite undersaturated (Ωarag < 0.5) con-
ditions in June and July (Fig. 8). Given that this was an
anomalous year, with the Ωarag saturation horizon deeper
offshore than in preceding years (Fig. 5), estimated Ωarag

at the BOON mooring may in fact represent a shorter
duration or intensity of aragonite undersaturation than
would be expected at the site in other years. A greater
understanding of exposure thresholds and tolerances in
these specific communities is imperative for evaluating
the risks of the combined threat of global OA and inten-
sified upwelling.

Conclusions

We present an empirical relationship for estimating Ωarag in
waters off Northern California. The relationship relies onmea-
surements of temperature, salinity, and DO and can be applied
to regional datasets to increase the temporal and spatial reso-
lution of ocean acidification monitoring in the region. From
estimated Ωarag, we can begin to quantify seasonal and inter-
annual variability in the upwelling-associated shoaling of the
Ωarag saturation horizon. Documentation of this variability
provides an essential baseline in a highly variable region
where both ocean-wide decreases in Ωarag and changes in up-
welling strength will impact marine communities. Shelf com-
munities in the area as shallow as 30 m already experience
extended exposure to waters undersaturated with respect to
aragonite and thus may be particularly sensitive to ongoing
changes.
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