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A B S T R A C T

While anatomical pathways between forebrain cognitive and brainstem autonomic nervous centers are well-defined, autonomic–central interactions during sleep and
their contribution to waking performance are not understood. Here, we analyzed simultaneous central activity via electroencephalography (EEG) and autonomic
heart beat-to-beat intervals (RR intervals) from electrocardiography (ECG) during wake and daytime sleep. We identified bursts of ECG activity that lasted 4–5 s and
predominated in non-rapid-eye-movement sleep (NREM). Using event-based analysis of NREM sleep, we found an increase in delta (0.5–4 Hz) and sigma (12–15 Hz)
power and an elevated density of slow oscillations (0.5–1 Hz) about 5 s prior to peak of the heart rate burst, as well as a surge in vagal activity, assessed by high-
frequency (HF) component of RR intervals. Using regression framework, we show that these Autonomic/Central Events (ACE) positively predicted post-nap im-
provement in a declarative memory task after controlling for the effects of spindles and slow oscillations from sleep periods without ACE. No such relation was found
between memory performance and a control nap. Additionally, NREM ACE negatively correlated with REM sleep and learning in a non-declarative memory task.
These results provide the first evidence that coordinated autonomic and central events play a significant role in declarative memory consolidation.

1. Introduction

It is now well-established that specific electrophysiological central
events during sleep support the transformation of recent experiences
into long-term memories, i.e., memory consolidation. Another direction
of research has demonstrated evidence for a critical role of autonomic
activity during waking in memory and learning. We have recently
shown that autonomic activity during sleep may also be related to
consolidation. What is not known is whether the coupling of central and
autonomic systems during wake or sleep plays a role in memory con-
solidation. Here, we identify a novel coupling between the autonomic
and central nervous systems during sleep, but not wake, that predicts
the outcome of the memory consolidation.

Research has consistently shown that a period of non-rapid eye
movement (NREM) sleep yields greater memory retention of declara-
tive memories (e.g., explicit, episodic memories) than a comparable
period of rapid eye movement (REM) sleep or waking activity (Gais &
Born, 2004). Several EEG features of NREM sleep have been linked with
memory consolidation, with most studies focusing on spectral power in
the slow wave activity (0.5–4 Hz) and sigma (12–15 Hz) bands, or
specific events including hippocampal sharp wave-ripples
(∼150–250 Hz), cortical slow oscillations (SO, ∼0.5–1Hz), and tha-
lamic sleep spindles (∼12–15 Hz). In fact, co-occurring SOs and sigma/
spindles may be a key mechanism of memory consolidation during

sleep (Staresina et al., 2015).
In humans, increases in sigma power during the SO up-states has

been shown following learning of a declarative memory task (Mölle,
Eschenko, Gais, Sara, & Born, 2009). Furthermore, pharmacologically
increasing spindles with zolpidem resulted in greater coupling of
spindles and SOs (Niknazar, Krishnan, Bazhenov, & Mednick, 2015) and
declarative memory improvements (Mednick et al., 2013); (also see
(Arbon, Knurowska, & Dijk, 2015) (Hall et al., 2014)). In rodents, the
replay of neural activity from encoding during sleep has been proposed
to occur through the temporal coupling of thalamic spindles, hippo-
campal sharp wave ripples, and cortical slow oscillations (Staresina
et al., 2015). Thus, although a full mechanistic understanding of sleep-
dependent memory consolidation is far from realized, research suggests
that the coordination of brain rhythms from several cortical and sub-
cortical regions may be critical.

A different line of research has demonstrated a significant con-
tribution of the autonomic nervous system for memory consolidation
during waking (McGaugh, 2013). These studies implicate the tenth
cranial “vagus” nerve as the primary pathway of communication be-
tween the autonomic and central nervous systems. The vagus commu-
nicates information about peripheral excitation and arousal via pro-
jections to the brainstem, which then project to many memory-related
brain areas, including the amygdala complex, hippocampus and pre-
frontal cortex (PFC) (Packard, Williams, Cahill, & McGaugh, 1995).
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Descending projections from the PFC to autonomic/visceral sites of the
hypothalamus and brainstem create a feedback loop allowing for bi-
directional communication between central memory areas and per-
ipheral sites (Thayer & Lane, 2009). In male sprague-dawley rats, post-
encoding vagotomy impairs memory (Williams & Jensen, 1993). In
humans, vagal nerve stimulation during verbal memory consolidation
enhances recognition memory (Clark, Naritoku, Smith, Browning, &
Jensen, 1999). Thus, the autonomic nervous system (ANS) appears to
play a substantial role in waking memory consolidation.

We have recently shown that ANS activity during REM sleep is also
associated with memory consolidation (Whitehurst, Cellini, McDevitt,
Duggan, & Mednick, 2016). In this study, subjects were given a memory
test before and after a daytime nap. Along with measuring central ac-
tivity during sleep, we also measured ANS activity using the traditional
approach of heart rate variability (HRV), defined as the variance be-
tween consecutive heartbeats averaged within each sleep stage, as well
as during a pre-nap wake period. We found that vagally-mediated ANS
activity during sleep (1) is associated with the consolidation of implicit
and explicit information, and (2) is sleep stage specific.

Given the evidence of independent contributions of central and
autonomic activity during sleep for memory consolidation, it is not
known whether there is coupling between these systems and whether
this coupling may support long-term memory formation. Prior work
hints at a possible coordination between central features and autonomic
activity. For example, auditory-evoked K-complexes were associated
with increased heart rate (de Zambotti et al., 2016) and have been
shown to appear frequently 250 and 650ms after the onset of the P

wave in the electrocardiogram (ECG) (Fruhistorfer, Partanen, & Lumio,
1971). Furthermore, the QRS complex of ECG has been shown to
modulate sleep spindle phases (Lechinger, Heib, Gruber, Schabus, &
Klimesch, 2015). In addition, the high frequency component of HRV,
which reflects parasympathetic activity, has been shown to correlate
with slow wave activity in the brain (Brandenberger, Ehrhart, Piquard,
& Simon, 2001). Finally, volitional effort during wake correlates both
with increases in hippocampal activity and heart rate (Norton,
Luchyshyn, & Shoemaker, 2013); and phase-locking between central
hippocampal theta and autonomic R-waves has been shown in guinea
pigs during wake, slow wave sleep (SWS) and REM sleep (Pedemonte,
Goldstein-Daruech, & Velluti, 2003). Together, these findings suggest
that cardiac autonomic activity may be coupled with hippocampo-
thalamocortical communication that has been shown to underlie
memory consolidation during sleep. Despite these intriguing associa-
tions, very little is known about the coupling of central and autonomic
activity and its functional consequences.

Here, we used a high-temporal precision time-series approach to
examine coupling between central and autonomic nervous system ac-
tivity during wake and sleep and its impact on memory consolidation.
Using this approach, we identified novel cardiovascular events during
NREM sleep, heart rate bursts, which are temporally coincident with
increases in electrophysiological central events that have previously
been shown to be critical for sleep-dependent memory consolidation. In
addition, these Autonomic/Central Coupled Events (ACE) are directly
following by a surge in vagal activity, indexed by the high-frequency
component of RR intervals. Using a regression framework, we assessed

Fig. 1. Study timeline and characteristic properties of the EEG and RR time-series signals across wake and sleep stages (for one participant). (A) Subjects completed
two memory tasks: a declarative face-name association (FNA) task and a non-declarative texture discrimination task (TDT). The order of tasks was counterbalanced
across subjects. Before and after the daytime nap, declarative and non-declarative memory performance was tested. (B) RR time-series power spectrum during wake
and sleep stages. (C) EEG power spectrum (0–35 Hz) during wake and sleep stages. (D) Detected heart rate bursts within a 150-s bin during Stage 2. (E–H)
Simultaneous presentation of ECG, RR time-series, and raw EEG within 60-s windows during wake, Stage 2, SWS, and REM, respectively. The boxes show the
coincidence of heart rate bursts and EEG events during Stage 2 and SWS.
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the contribution of ACE events versus non-ACE central and autonomic
activity to declarative memory improvement following a nap, and show
that ACE events predict performance improvement to a greater extent
than by either activity alone. No such relation was found between
memory performance and a control nap. We, thus, demonstrate a
heretofore-unrecognized important role of coordinated autonomic and
central activity during sleep that supports declarative memory con-
solidation.

2. Results

We analyzed the RR (inter-beat interval) time-series from the ECG,
and electrical brain activity from frontal and central EEG recording
sites, during a daytime nap in 45 young, healthy subjects (see Fig. 1A
for Study Timeline). First, we assessed ANS activity using the tradi-
tional method of analyzing heart rate in the frequency domain – heart
rate variability (HRV). In the frequency domain, the low frequency (LF;
0.04–0.15 Hz) component of RR is considered a reflection of sympa-
thetic nervous activity (Malik et al., 1996) (although this is not uni-
versally accepted (Billman, 2013)), while the high frequency (HF;
0.15–0.4 Hz) component reflects parasympathetic (vagal) activity
(Malik et al., 1996). Prior studies have demonstrated a decrease in LF
and an increase in HF components in NREM during nighttime sleep
(Vanoli et al., 1995) and naps (Cellini, Whitehurst, McDevitt, &
Mednick, 2016). In agreement with this literature, we found that the
power spectrum of the RR time-series was modulated by sleep stages
(Fig. 1B). Furthermore, different sleep stages showed distinct properties
in the EEG frequency-domain. Peaks emerged in delta (0.5–4 Hz), theta
(4–8 Hz), alpha (8–13 Hz), and sigma (12–15 Hz) bandwidth of EEG
power spectrum (Fig. 1C).

We also employed a time-domain analysis approach to the ECG
signal to investigate the events that last for few seconds and might be
neglected by classic HRV analyses in 3–5min epochs. After confirming

the detected ECG R peaks by visual inspection, we intentionally ana-
lyzed all artifact-free RR intervals without rejecting RR intervals that
were too short or too long (a common practice in traditional HRV
studies (Malik et al., 1996)), thereby retaining a larger amount of RR
intervals than typical for HR analysis. Using this approach, we observed
large bursts in heart rate (i.e., decreased RR intervals) over periods of
4–5 s (Fig. 1D). Further, these heart rate (HR) bursts were visually
noted to co-occur with events in the EEG (see boxes in Fig. 1E–H). In the
next section we provide a detailed analysis of these heart rate bursts
and their coincidence with events in the EEG.

2.1. Temporal analysis of RR intervals reveals distinct, intermittent
reductions in RR intervals

The heart rate bursts sporadically emerged in the time series of RR
intervals (Fig. 1D). The signature of these heart rate bursts was an in-
crease in HR from baseline to the peak of the heart rate bursts (Wake:
21.62% (s.d.= 11.05); Stage 2: 20.69% (s.d.= 7.53); SWS: 14.49%
(s.d.= 6.02); REM: 21.40% (s.d.= 8.85)). The densities of the heart
rate bursts for Wake, Stage 2, SWS, and REM were 0.71 per minute
(s.d. = 0.52), 1.04 per minute (s.d.= 0.32), 1.11 per minute
(s.d. = 0.34), and 1.00 per minute (s.d. = 0.38), respectively. Shapiro-
Wilk and Chi-square tests on inter-event-intervals revealed that these
events are generally aperiodic (Fig. S1).

Following the visual observation of the co-occurrence of heart rate
bursts and EEG events we assessed the degree to which the heart rate
bursts correlated with changes in EEG activity (Fig. 1E–H). We found
that EEG delta amplitude during heart rate bursts was significantly
higher than during non-bursting periods of the RR signal in both Stage 2
(t(84)= 2.14, p= .035)) and SWS (t(70)= 1.70, p= .046), but not
Wake (t(62)= 1.14, p= .257) and REM (t(56)= 0.38, p= .706).
Traditional measures of HR in the frequency domain examine LF and
HF power by collapsing across time. However, given our interest in

Fig. 2. Temporal analysis of the RR intervals. (A) A simultaneous presentation of delta amplitude and filtered components of RR time-series (i.e., LF and HF) showing
the coincidence of large troughs in the LF component and elevated delta amplitude. (B) The distribution of delta amplitude in LF phase is non-uniform and peaks at a
preferred phase (LF troughs are assigned phase 0). (C) The density of heart rate bursts does not significantly affect the LF power. (D–G) The average EEG/ECG
comodulograms, constructed from RR phase and EEG amplitude, across participants during wake, Stage 2, SWS, and REM, respectively. Error bars show standard
error of the mean.

M. Naji et al. Neurobiology of Learning and Memory 157 (2019) 139–150

141



moment-to-moment changes in ANS/CNS signals, we filtered the RR
time-series by LF and HF frequency bands (RRLF and RRHF, respec-
tively), thereby maintaining the integrity of the time-series data. Si-
milarly, we filtered the EEG time-series within the delta frequency to
analyze the dynamics of the ANS/CNS interaction. We noted that
during Stage 2 and SWS, bursts in delta amplitude co-occurred with
large troughs in RRLF (corresponding to heart rate bursts), which were
followed by increases in RRHF (see an example in Fig. 2A). We further
investigated this coincidence by examining the the phase/amplitude
coupling (PAC) between delta and RRLF, where the slow frequency RRLF

provides the phase and the faster frequency delta provides the ampli-
tude. During Stage 2 and SWS, the distribution of delta amplitude in the
LF phase was non–uniform and peaked at a preferred phase (Fig. 2B).
Across participants, the average preferred phase was
−70.1°(s.d.= 26.7°) for Stage 2 and −79.4° (s.d. = 67.6°) for SWS.
This also indicates that the elevation in EEG delta activity preceded the
peak of the Heart rate bursts (which occurred at LF phase of 0°). In-
terestingly, when we compared the density of the heart rate bursts to
the traditional FFT analysis of LF power (i.e., likely sympathetic ac-
tivity) within Stage 2 and SWS, total LF power was not significantly
associated with heart rate burst density in Stage 2 (r=−0.04, p= .81;
Fig. 2C) or SWS (r=−0.08, p= .64). We next set out to investigate the
PAC between EEG and RR across a broader frequency range.

2.2. EEG power is modulated by RR phase

We used the comodulogram method, utilizing normalized modula-
tion index (nMI) as the PAC measure, to examine how the fast EEG
signal was nested within the slower RR time-series signal across Wake,
Stage 2, SWS and REM sleep. Conceptually, for each frequency pair in
the comodulograms the modulation of EEG amplitude by RR phase was
compared to amplitude-shuffled surrogate data. Fig. 2E shows the phase
of the RR time-series in frequencies below 0.2 Hz strongly modulated
the amplitude in EEG in frequencies below 4Hz, slow wave activity
(SWA), during Stage 2. The same relation was apparent for SWS, but to
a lesser extent (unpaired t-test between LF–SWA nMI of Stage 2 and
SWS: (t(77)= 3.21, p= .002) (Fig. 2F). The LF–SWA modulation
during Stage 2 and SWS was significantly higher than that of other RR/
EEG frequency pairs (i.e., LF–theta, LF–alpha, LF–sigma, HF–SWA,
HF–theta, HF–alpha, and HF–sigma; Stage 2: F7,336=5.83,
p= .000002; SWS: F7,280=2.97, p= .005). Taken together, the time
series analysis indicates that EEG SWA amplitude in Stage 2 and SWS
was modulated by the LF component of the RR time-series (RRLF).

Though LF–SWA modulation was the strongest effect observed, the
comodulogram also revealed other bands of EEG (< 16Hz) that were
modulated by LF phase in Stage 2 compared with Wake and other sleep
stages (LF-SWA: F3,145=10.44, p= .00001; LF-theta: F3,145=13.20,
p= .004; LF-alpha: F3,145=17.58, p= .0005; LF-sigma:
F3,145=13.93, p= .003). For REM sleep (Fig. 2G), HF-modulated EEG
theta activity was significantly higher than that of Wake (t(69)= 4.85,
p= .000007) and SWS (t(66)= 2.06, p= .043) (F2,103=7.34,
p= .002) but not Stage 2 (t(73)= 0.45, p= .65). The other clusters
visualized by the SWS comodulograms were not significantly different
from Wake and sleep stages. In the following section, we will test the
hypothesis that the above-mentioned modulation results from temporal
coupling of autonomic and central events (ACE).

2.3. Coordination between heart rate bursts and EEG

We investigated ACE coupling during wake and sleep stages by
tracking fluctuations in the EEG in a 20-s window from 10 s before to
10 s after the peak of the Heart rate burst (Fig. 3A–B). In addition to the
rapid acceleration in HR, we also noted a slowing of HR after the burst
or peak of the HR. We chose to use the peak of the Heart rate burst as
reference points because we found a larger number of heart rate bursts
compared to HR troughs. The percentage of heart rate bursts which

were followed by HR declines was 12.61 ± 2.71% during Wake,
20.30 ± 2.14% during Stage 2, 13.30 ± 2.65% during SWS, and
27.02 ± 4.00% during REM. Therefore, the detection of the peaks was
a more reliable metric of the heart rate bursts compared to detection of
slower and smaller changes in HR. Furthermore, the magnitude of the
HR slowing after the peak of HR was highly variable across heart rate
bursts (see Fig. S2).

As we were specifically interested in EEG activity related to memory
consolidation, we narrowed our frequencies of interest to SWA (and
SOs) and sigma activity (and spindles). EEG data were binned into 5-s
intervals within the 20-s windows around the Heart rate burst.
Repeated measures ANOVAs indicated significant differences in SWA
(Fig. 3E) across the 5-s bins and periods with no Heart rate burst
(baseline) during Stage 2 (F4,168=94.37, p < .00001) as well as
during SWS (F4,140=21.59, p < .00001). Post hoc comparisons re-
vealed the highest SWA occurred during the 5-s bin prior to the Heart
rate burst during Stage 2 (t(84)= 8.94, p < .00001) as well as during
SWS (t(70)= 2.05, p= .044). Interestingly, the change in SWA in the
5-s bin prior to the heart rate bursts was significantly correlated with
the increase in HF power in the 5-s bin after the Heart rate burst
(Fig. 3C) during Stage 2 (r= 0.54, p= .002), likely reflecting a com-
pensatory increase in vagal activity. This elevated increase in HF power
after the Heart rate burst was also present during other sleep stages
(Fig. 3C; Wake: t(44)= 1.78, p= .082; SWS: t(70)= 1.94, p= .056;
REM: t(36)= 2.12, p= .041, nonsignificant after FDR correction). Si-
milar to SWA, density in SOs in the 5-s bin prior to the Heart rate burst
was significantly increased in Stage 2 (Fig. 3D, t(84)= 8.83,
p < .00001) as well as during SWS (t(70)= 3.10, p= .007). Note that
SWA without SO events (1–4 Hz, 33.25 ± 2.88% of incidences) was
also increased prior to the Heart rate burst (t(82)= 2.77, p= .003)
during Stage 2. No significant correlation between heart rate bursts and
SWA was found during Wake (F3,112=1.41, p= .24) or REM
(F3,116=0.24, p= .87). To summarize, we found that ACE in Stage 2
and SWS, but not wake and REM sleep, were characterized by an in-
crease in EEG SWA that occurred 5-s before the peak of the Heart rate
burst and ended simultaneously with the heart rate bursts.

Repeated measures ANOVAs also indicated significant differences in
sigma activity (Fig. 3F) across the 5-s bins and periods with no Heart
rate burst during Stage 2 (F4,168=56.87, p < .00001). The highest
sigma power occurred during the 5-s bin prior the Heart rate burst (t
(84)= 4.71, p= .00001). The early change in sigma power (10 s prior
the peak of the Heart rate bursts) was not significant after FDR cor-
rection (t(84)= 1.90, p= .061; Fig. 3F). Similarly, repeated measure
ANOVA indicated significant differences in spindle density across the 5-
s bins and periods with no Heart rate burst (F4,168= 2.93, p= .022,
Fig. S3). Post hoc paired-samples t-tests between baseline spindle
density and the spindle density during the 5-s bins revealed a significant
density difference during the 5-s bin prior the Heart rate burst peak (t
(84)= 3.679, p= .0004) and a nonsignificant significant difference
during the 5-s bin started 10 s before the Heart rate burst peak (t
(84)= 1.871, p= .065). No significant modulation in sigma power was
found during SWS (t(70)= 0.17, p= .86).

In addition to SWA and sigma activity, the coupling of SO and
spindles as a function of the HR was investigated. For each subject, the
average SO/spindle modulation index (Tort, Komorowski, Eichenbaum,
& Kopell, 2010) was calculated for two groups of SOs: (1) SOs occurred
during the 20-s windows around heart rate bursts and (2) SOs during
periods with no Heart rate burst. Paired t-test showed no difference in
MI for the two SO groups (t(87)= 0.177, p= .860). That is, ACE-re-
lated sleep activity did not have any measurable impact on the temporal
coupling of SO and spindles.

In summary, Sigma and SWA power in Stage 2 and SWA in SWS
increased from baseline (periods with no Heart rate burst) to a max-
imum level prior to the peak of the heart rate bursts, and returned to
baseline post-burst. Although we focused on slow wave and sigma
frequencies here, we conducted exploratory analyses on theta and beta
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activity, which are presented in the Supplementary Materials. These
data are consistent with the hypothesis that cortical EEG activity pre-
cedes and perhaps catalyzes these sudden and short-lived surges in HR
in NREM sleep. We next investigated the functional impact of ACE
events on memory consolidation during sleep.

2.4. Correlations with cognitive tasks

In this section, we investigated the contribution of ACE coupling to
post-nap memory consolidation. For this purpose, we computed the
change scores for both performance and EEG features coupled with ACE
(i.e., ACE difference scores). The following EEG features were analyzed:
density of SOs and magnitude of SWA and sigma power in Stage 2 and
SWS, and a linear composite of SWA and sigma power changes (i.e., a
simple sum of z-scores of SWA and sigma power changes) in Stage 2
(Fig. 4); we focused on Stage 2 and SWS, as ACE were not significantly
modulated during wake or REM. ACE difference scores were calculated
as average values of each EEG feature of interest 5 s prior to the peak of
the heart rate bursts subtracted from baseline. We conducted ex-
ploratory analyses on the application of modulation index between

heart rate bursts and EEG activities, which are presented in the
Supplementary Materials (see Fig. S5). Two memory tasks were con-
sidered for this study: declarative memory for face-name associations
and non-declarative perceptual learning on a texture discrimination
task. We calculated difference scores between pre-nap and post-nap
memory performance for total (first and last name) recall and percep-
tual learning thresholds.

2.4.1. Declarative memory
Recall difference scores were positively correlated with ACE dif-

ference scores in density of SOs in Stage 2 (r= 0.47, p= .002, sig-
nificant after FDR correction; Fig. 4A) and SWS (r= 0.47, p= .004,
significant after FDR correction; Fig. 4D), as well as SWA (r= 0.32,
p= .039, marginally significant after FDR correction; Fig. 4B), sigma
power (r= 0.3, p= .05; Fig. 4C), and the linear composite of SWA and
sigma power in Stage 2 (r= 0.38, p= .012, significant after FDR cor-
rection; Fig. 4F). The correlation between changes in performance and
SWA in SWS was not significant (r= 0.11, p= .54; Fig. 4E). Ad-
ditionally, the ACE difference score for HF power in Stage 2 sleep (5-s
bin after the peak of the Heart rate burst) was significantly correlated

Fig. 3. The event-related analysis of changes in ACE events. (A) The Heart rate burst events within a 20 s window for wake and different sleep stages. (B) Grand
average of the heart rate bursts. (C) Average amplitude of HF component of the heart rate bursts in 5-s bins show a significant increase in the 5-s bin after the peak of
the heart rate bursts. (D) Event-locked EEG trials (Sorted based on the time difference between the Heart rate burst at t= 0 and the largest minimum of the EEG
trials) show concentration of SOs prior the peak of heart rate bursts in NREM stages. (E–F) average delta and sigma amplitude in 5-s bins (with the grand average of
Delta amplitude on top of them) around the heart rate bursts, respectively. Asterisks in €, (E), and (F) show the significant differences after FDR correction (*p < .05
and **p < .001) between an amplitude in a bin and the average amplitude in periods with no Heart rate burst (baseline). Error bars show standard error of the mean.
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with recall improvement (r= 0.32, p= .03, marginally significant after
FDR correction).

To assess the relative importance for memory performance of in-
dependent autonomic and central events as well as their coupling, we
utilized a hierarchical, linear regression framework. For Stage 2 and
SWS, two linear regression models were calculated to predict recall
difference. In Model 1, SO density, spindle density, burst density, and
baseline HF power in each sleep stage were the independent variables.
In Model 2, we added the ACE difference scores for SO density and
spindle density before and HF power after the heart rate bursts. The
regression results for Stage 2 and SWS variables are tabulated in Table 1
and Table 2, respectively. Stage 2 results showed that Model 1 was not
significant (F4,37=0.08, p= .99; adj R2=−0.10), whereas Model 2
significantly predicted performance (F7,34=2.77, p= .022; adj

R2=0.23) with both ACE SO density change and HF amplitude change
as significant predictors. Comparing Model 1 and 2, we found that
Model 2 explained significantly more of the variance in recall than
Model 1 (change in adj R2=0.33, F3,34=6.30, p= .002). For SWS,
Model 1 was not significant (F4,30= 0.36, p= .84; adj R2=−0.08),
but adding the ACE measures in Model 2 elevated the model to a
marginal significance level (F7,27=1.53, p= .20; adj R2= 0.10), with
SO density change the only significant predictor. Again, Model 2 ac-
counted for significantly more of the variance in recall improvement
than Model 1 (change in adj R2= 0.21, F3,27= 3.01, p= .048). In
summary, while the baseline HF power, SO, spindle, and Heart rate
burst densities did not independently predict recall difference, ACE
events predicted up to 23% of the variance in performance improve-
ment on this declarative memory task.

Fig. 4. Impact of ACE on memory consolidation. (A–F) Scatter plots for relationships between the recall improvement in the declarative memory (face-name task)
and ACE difference scores of SO density, delta power, and sigma power during Stage 2 (n= 42) and SWS (n=36). Note, that performance (i.e., less forgetting) was
positively correlated with increase in ACE difference scores. (G–L) Scatter plots for relationships between improvement in the perceptual learning (texture dis-
crimination task) and ACE difference scores of SO, delta power and sigma power during Stage 2 and SWS. Note, negative correlation in all cases. (M and N) Scatter
plots for relationships between minutes in REM sleep and texture discrimination task learning and ACE difference scores of delta power in SWS, respectively.
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2.4.2. Perceptual learning
We found perceptual learning was negatively related to the ACE

SWA increase in Stage 2 (r=- 0.30, p= .048; Fig. 4H) and SWS
(r=−0.35, p= .035; Fig. 4K), as well as with the linear composite of
SWA and sigma power changes in Stage 2 (r=−0.34, p= .025;
Fig. 4L). In addition, non-significant negative correlations were ap-
parent between perceptual learning and ACE SOs increases in Stage 2
(r=− 0.07, p= .67; Fig. 4G) and SWS (r=− 0.27, p= .11; Fig. 4J)
and Stage 2 sigma power (r=−0.25, p= .11; Fig. 4I). Thus, in con-
trast with the positive association between ACE-mediated increases in
NREM sleep events and declarative memory, perceptual learning was
negatively associated with these ACE events. Given that prior studies
have demonstrated the critical importance of both NREM and REM
sleep for perceptual learning, the trade-off between ACE-NREM features
supporting declarative memory and REM features supporting percep-
tual learning may not be surprising. Indeed, Fig. 4M shows a similar
significant positive correlation between REM sleep and perceptual
learning (r= 0.37, p= .013, marginally significant after FDR correc-
tion). We also showed a reciprocally negative correlation between ACE
SWA difference score and minutes in REM (r=−0.36, p= .029;
Fig. 4N). These negative associations with REM and REM-dependent
learning may be related to the experimental conditions of the nap, in
which subjects have a two-hour nap opportunity. Such restrictions on
sleep provide boundaries on the total sleep time and may thus create a
trade-off between NREM and REM sleep.

In summary, we find that sleep features associated with consolida-
tion of hippocampal-dependent memories (SO events, SWA, and sigma
power) are specifically boosted during heart rate bursts and that these
ACE increases may be an important contributor in hippocampal-de-
pendent memory consolidation. However, these benefits to declarative
memory during a nap may come at the expense of REM sleep and REM-
dependent perceptual learning.

2.5. Control nap

A subset of subjects (n=22) were given a control nap one week
after the experimental nap. The rationale we then employed was to test
whether ACE coupling during a separate napping consolidation period
was associated with individual differences in memory consolidation on
the experimental day. On both experimental and control days, subjects
were tested on cognitive tasks in the morning and evening and had a
nap between test sessions, however, different cognitive tasks were
tested on these days. This is an appropriate within-subjects control
because the subjects had the same magnitude of cognitive burden, but
with different information to encode, which allows us to test the spe-
cificity of the relationship between changes in the autonomic/central
events during sleep and the specific memories learned. Underscoring
this point, we found similar levels of Heart rate burst density (0.97 per
minute) and changes in HF power (control: 20.07%, experimental:
18.61%), delta power (control: 17.65%, experimental: 21.37%), and

Table 1
Regression models from Stage 2 variables to predict FNA total recall difference.

Variables Model 1 Model 2

B SE t β B SE t β

Heart rate burst density 0.39 1.84 0.21 0.04 −1.69 1.66 −1.02 −0.15
SO density −0.13 0.40 −0.31 −0.06 −0.12 0.35 −0.35 −0.05
Spindle density −0.16 0.90 −0.22 −0.03 0.61 0.81 0.76 0.11
Baseline HF amplitude −5.79 26.32 −0.22 −0.04 19.98 23.53 0.85 0.13
SO density change score 6.27 2.26 2.77 0.44**

Spindle density change score 2.17 0.81 1.09 0.17
HF amplitude change score 8.56 3.46 2.47 0.38*

(Constant) −2.83 3.32 −0.85 −8.94 3.22 −2.77
F 0.08 2.77*

R2 0.01 0.36
Adjusted R2 −0.10 0.23
Change in Adjusted R2 0.33***

* p < .05.
** p < .01.
*** p < .001.

Table 2
Regression models from SWS variables to predict FNA total recall difference.

Variables Model 1 Model 2

B SE t β B SE t β

Heart rate burst density −0.43 0.55 −0.78 −0.15 −0.83 1.69 −0.49 −0.08
SO density −0.01 0.02 −0.53 −0.10 0.03 0.08 0.42 0.07
Spindle density −0.13 0.21 −0.62 −0.11 −0.04 0.64 −0.06 −0.01
Baseline HF amplitude 2.02 8.49 0.24 0.04 21.97 27.09 0.81 0.14
SO density change score 11.85 4.27 2.77 0.48**

Spindle density change score 0.09 1.37 0.07 0.01
HF amplitude change score −9.11 7.38 −1.23 −0.21
(Constant) −2.83 3.32 −0.85 −8.94 3.22 −2.77
F 0.36 1.53
R2 0.05 0.28
Adjusted R2 −0.08 0.10
Change in Adjusted R2 0.18***

*p < .05.
** p < .01.
*** p < .001.
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sigma power (control: 7.64%, experimental: 8.63%) in the experimental
and control naps during Stage 2 and SWS.

Next, we confirmed that these subjects had the same magnitude of
effect size for the association between nap ACEs and memory on the
experimental day as the entire sample. We re-ran the regression models
from Table 1, in which Model 1 compared non-ACE predictors to de-
clarative memory, and Model 2 added the ACE predictors. Indeed, a
model with baseline variables did not significantly predict the de-
clarative learning (adj R2=−0.23, p= .95), whilst adding ACE dif-
ference scores in Model 2 significantly improved the prediction (adj
R2=0.47, p= .04).

Finally, in order to confirm the specificity of the encoded material
on the experimental day, correlations between control nap ACE dif-
ference scores and memory changes on the experimental day were
tested. Here, evidence of no relation between the control nap ACE
features and experimental memory performance would indicate a high
degree of specificity to the encoded material on the experimental day.
For the declarative memory task, no significant correlation was found
with ACE SO density difference score in control nap Stage 2
(r=−0.04, p= .85) and SWS (r=−0.14, p= .61), as well as with
the SWA changes in Stage 2 (r= 0.26, p= .24) and SWS (r=−0.35,
p= .16), and sigma power changes in Stage 2 (r= 0.11, p= .63) and
SWS (r= 0.14, p= .60). Unlike experimental day, there was no cor-
relation between declarative learning and HF power change in Stage 2
(r= 0.15, p= .49). Similarly, no significant correlation was found
between perceptual learning and ACE SO density increase in Stage 2
(r= 0.05, p= .82) and SWS (r=−0.18, p= .49), as well as with the
SWA changes in Stage 2 (r= 0.02, p= .93) and SWS (r= 0.07,
p= .78), and sigma power changes in Stage 2 (r= 0.12, p= .59) and
SWS (r= 0.08, p= .75). In summary, ACE changes in the control nap
were not associated with memory consolidation of information encoded
on the experimental day.

3. Discussion

Here, we have identified for the first time an autonomic cardiac
event (heart rate bursts) during NREM sleep that is temporally-coupled
with a significant boost in central oscillations associated with systems
consolidation. Specifically, we show (1) increases in the EEG amplitude
in SWA and sigma bands directly preceded these large-amplitude heart
rate bursts, (2) a surge in vagal activity (measured in the HF component
of heart rate) directly following the Heart rate burst, (3) that the uptick
in autonomic/central events (ACE) (SO, delta, sigma) and vagal activity
were positively associated with declarative memory improvement and
negatively associated with non-declarative memory, and (4) ACE
changes in the experimental nap were only associated with memory
consolidation of information encoded on the experimental day (al-
though we note that given that the specificity of this finding is based on
the absence of such associations in one control nap, further research is
required with more extensive controls). Together these results present
compelling evidence of a coupling between signals from the brain and
heart that have a critical and specific impact on memory consolidation
during sleep.

Traditional calculations of EEG/ECG signals in the frequency do-
main using 3–5min bins of uninterrupted nocturnal sleep have found
results that differ from the present outcomes. One such study reported
no association between delta power and normalized HF power at peak
of SWA (Rothenberger et al., 2015). Also different from the present
result, cardiac changes have been found to precede EEG changes by
several minutes (Brandenberger et al., 2001). Here, unlike typical HRV
analyses that discard large changes in HR, we intentionally analyzed all
artifact-free RR intervals, which allowed for the discovery of these heart
rate bursts. In addition, we used a time-domain analysis within short 20
s windows around the heart rate bursts to examine fluctuations in the
EEG/ECG signals, which allowed for more fine-grained assessment of
event-related changes in both signals. Similarly, using an event-related

analysis in near-infrared spectroscopy, Mensen and colleagues (Mensen,
Zhang, Qi, & Khatami, 2016) reported an oscillating blood flow signal
at HR frequency that was time-locked to the onset of slow waves. This
study posited that the arterial pulsation evokes a down-state, or that a
third generator regulating HR and slow waves may be involved. More in
line with our findings, another event-based analysis revealed an in-
crease in HR followed by a deceleration after spontaneous and tone-
induced K-complexes (de Zambotti et al., 2016). Besides HR, other
physiological responses such as pupil diameter in mice has been shown
to be tightly coupled with brain activity during NREM sleep (Yüzgeç,
Prsa, Zimmermann, & Huber, 2018). Pupil diameter is further known to
be influenced by neuromodulator levels (Larsen & Waters, 2018) and
thus suggesting a link between HR and neuromodulatory state.

By focusing on fine resolution of HR events for our event-based
analysis, we found distinct bursts in HR during wake and sleep. heart
rate bursts of similar duration have been identified in REM sleep in cats,
with the average incidence rate of 1 burst per 6.1min of REM sleep.
These heart rate bursts were accompanied by ponto-geniculo-occipital
waves and theta activity (Rowe et al., 1999), which have been asso-
ciated with memory consolidation in rats (Datta, 2006). Our event-
based analyses showed SWA modulation in both Stage 2 and SWS, and
sigma modulation in Stage 2 by the LF component of the RR time-series.
Our results suggest that the mechanism of SWA modulation was an
increase in density of SOs, and power in SWA, and sigma activity ∼5 s
prior to the peak of the Heart rate bursts that returned to baseline di-
rectly after the heart rate bursts. In addition, there was no significant
SWA modulation in wake and REM, which is not surprising due to low
SWA activity in these stages. The characteristics of the SWA and sigma
modulation in NREM sleep resemble the cyclic alternating pattern
(CAP) (Terzano et al., 1985) in NREM sleep which is characterized by
repeated sequences of transient events and which clearly break away
from the ongoing background rhythm recurring at intervals up to 1min
long. However, the average duration of SWA reactivation in CAP was
reported as 12.66 s which is longer than our ACE observations. Lecci
et al (Lecci et al., 2017) found periodic sigma activity (but not SWA)
that was more prevalent in Stage 2 sleep than SWS and associated with
memory consolidation in a declarative task (human) as well as hippo-
campal ripple activity (in mice). The present results, on the other hand,
identified a heretofore undescribed burst in HR activity, that correlated
with prominent, aperiodic, ACE-related increases in SWA and sigma, as
well as parasympathetic activity, that predicted gains in declarative
memory during Stage 2 and SWS. Differences between findings may be
due to the focus of the Lecci paper on periodic changes in EEG activity,
as opposed to using ECG as the reference point for analysis. Notwith-
standing these differences in approach and outcomes, both studies point
to an important link between memory consolidation and autonomic/
central events during sleep.

The present data also showed no significant correlation between
heart rate bursts and traditional frequency based analysis of total LF
power. This lack of relation may suggest a dissociation between me-
chanisms underlying LF-related sympathetic activity and heart rate
bursts. In contrast, the increase in HF power directly following the heart
rate bursts may instead implicate vagal inhibition (Chapleau &
Sabharwal, 2011). Although specific mechanisms of ACE events are not
known, we speculate that overlapping neural pathways between brain
and heart centers may be an appropriate place to begin, and further
investigation is needed to tease apart these mechanisms

Several candidate brainstem and cortical regions may be involved in
the interaction between HR and sleep oscillations. One possibility, is
that the nucleus of the solitary tract (NTS) and the rostral ventrolateral
medulla (RVLM) mediate this interaction, since they act as one of the
main bridges between CNS and cardiovascular systems (Guyenet,
2006). NTS is one of the critical components of the central autonomic
network with afferent and efferent connections to the cardiovascular
system and it receives projections from many cortical regions (van der
Kooy, Koda, McGinty, Gerfen, & Bloom, 1994). Further, NTS, through
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its projections to RVLMs, influences activity in the locus coeruleus
(Samuels & Szabadi, 2008) and indirectly influences the basal fore-
brain. Indeed, increased NTS activity is associated with reduced HR,
and NTS stimulation has been shown to augment EEG theta and beta
power during wake in cats (Martínez-Vargas, Valdés-Cruz, Magdaleno-
Madrigal, Fernández-Mas, & Almazán-Alvarado, 2016) potentially
through the input to RVLM. The Heart rate burst may be a consequence
of increases in spindle and slow oscillations through wide spread cor-
tical projection to NTS (van der Kooy et al., 1994). On the other hand,
one potential mechanism for SO reduction post-Heart rate burst may be
via NTS projections to basal forebrain and locus coeruleus. Stimulation
of these areas by the NTS increases acetylcholine and norepinephrine
release in cortex, which is known to reduce slow oscillations (Krishnan
et al., 2016). Taken together, this suggests that the increase of SO prior
to Heart rate burst could mediate an increase of HR through combi-
nation of sympathetic and parasympathetic pathways and that the re-
duction of SO following Heart rate burst may arise from increased ac-
tivity of NTS through parasympathetic output via the vagal nerve.
However, several other pathways are known to be involved in the in-
teraction between neocortex and heart and have be examined to make
definite conclusions.

A large prior literature suggests a critical role of the ANS during
wake for memory consolidation (McGaugh, 2013). Studies have found
that direct modification of peripheral hormonal activity following ac-
quisition can enhance or impair the memory storage of new information
(Roozendaal & McGaugh, 2012) via vagal afferent nerve fibers, which
communicate information about ANS excitation via projections to the
brainstem, which then project to memory-related areas including the
hippocampus, amygdala complex, and prefrontal cortex (Packard et al.,
1995). Bidirectional projections from the prefrontal cortex to the hy-
pothalamus and brainstem create a feedback loop for communication
between peripheral sites and central memory areas (Thayer & Lane,
2009). Lesions of the vagus nerve impair memory (Williams & Jensen,
1993), whereas pairing vagal nerve stimulation with auditory stimuli
reorganizes neural circuits, strengthens neural response to speech
sounds in the auditory cortex, and enhances extinction learning of fear
memories in rodents (Peña, Engineer, & McIntyre, 2013). In humans,
vagal nerve stimulation enhances consolidation of verbal memory
(Clark et al., 1999) and working memory (Sun et al., 2017). Recently,
Whitehurst and colleagues used traditional methods to detect total
sympathetic and parasympathetic power of the HRV signal during sleep
and showed a correlation between parasympathetic activity during
REM sleep (but not SWS) and implicit learning (Whitehurst et al.,
2016). In contrast the current study used a fine-grained temporal ana-
lysis of EEG/ECG signals to reveal how the coupling of ANS/CNS Events
(ACE) significantly improved the prediction of declarative memory, but
not non-declarative memory, over and above total power of HR com-
ponents and sleep events alone. Importantly, these effects are specific to
the encoded memories directly preceding the nap. Follow-up experi-
ments require interventions to better understand the mechanism pro-
moting these effects, as well as probing different clinical populations
that may have dampened autonomic tone during sleep, including older
adults and sleep apnea. Taken together, these findings implicate a sig-
nificant role of ANS modulation of plasticity and memory consolidation
during sleep that is likely mediated by vagal afferents to the cortex via
NTS brainstem.

4. Methods

4.1. Participants

Data reported here come from the first visit of a larger, mini-long-
itudinal study that included up to 7 visits per participant. Data from this
study have been reported elsewhere (McDevitt et al., 2018) (Whitehurst
et al., 2016) (Cellini et al., 2016) (Sattari et al., 2017). Fifty-five (30
females) healthy, non-smoking adults between the ages of 18 and 35

with no personal history of sleep disorders, neurological, psychological,
or other chronic illness gave informed consent to participate in the
experimental nap protocol explained below. A subset of this sample
(n= 22) also participated in a one-day control nap study, whereas the
other subjects did not. We therefore had the opportunity to have half
the subjects tested on a different hippocampal cognitive task to match
the cognitive load as the experimental day. All experimental procedures
were approved by the Human Research Review Board at the University
of California, Riverside and were in accordance with federal (NIH)
guidelines and regulations. Participants were thoroughly screened prior
to participation in the study. The Epworth Sleepiness Scale (ESS; http://
www.epworthsleepinessscale.com) and the reduced Morningness-
Eveningness questionnaire (rMEQ (Adan & Almirall, 1991)) were used
to exclude potential participants with excessive daytime sleepiness (ESS
scores > 10) or extreme chronotypes (rMEQ < 8 or > 21). Ad-
ditionally, potential participants were interviewed about their medical
history and quality and quantity of their sleep, including questions from
the DSM-IV used to diagnose sleep-wake disorders. Participants in-
cluded in the study had a regular sleep-wake schedule (reporting a
habitual time in bed of about 7–9 h per night), and no presence or
history of sleep, psychiatric, neurological, or cardiovascular disorders
determined during screening. Participants received monetary compen-
sation and/or course credit for participating in the study.

4.2. Data acquisition and pre-processing

4.2.1. Study procedure
Participants wore actigraphs to monitor sleep-wake activity for one

week prior to the experiment to ensure participants were not sleep-
deprived and spent at least 6.5 h in bed the night prior to their visit. On
both the experimental and control nap days, subjects arrived at the UC
Riverside Sleep and Cognition lab at 9 AM for Test Session 1. On the
experimental day, cognitive tasks included a declarative and non-de-
clarative memory task (see below), as well as a creativity measure
(Whitehurst et al., 2016). On the control day, subjects were tested in a
spatial navigation task and verbal memory task. The order of tasks was
counterbalanced across subjects. In total, the declarative memory task
took about 40min to complete, and the non-declarative task took about
20min to complete (the creativity measure took about 50min, and all
testing was done by approximately 11 AM). Between completing the
tasks and starting the nap, participants were allowed to leave the lab
and go about their normal activities, except avoiding caffeine and
napping. At 12:30 PM, electrodes were attached for polysomnography
(PSG) recording. At 1:30 PM, subjects took a PSG-recorded nap. They
were given up to 2 h time-in-bed to obtain up to 90min total sleep time.
Sleep was monitored online by a trained sleep technician. Nap sessions
were ended if the participant spent more than 30 consecutive min
awake. Naps were completed at approximately 3–3:30 PM, electrodes
were removed, and participants were given a break where they could
leave the lab. At 5 PM, subjects returned to the lab for Test Session 2.

4.2.2. Sleep recording
Polysomnography (PSG) data including electroencephalogram

(EEG), electrocardiogram (ECG), chin electromyogram (EMG), and
electrooculogram (EOG) were collected using Astro-Med Grass Heritage
Model 15 amplifiers with Grass GAMMA software. Scalp EEG and EOG
electrodes were referenced to unlinked contralateral mastoids (F3/A2,
F4/A1, C3/A2, C4/A1, P3/A2, P4/A1, O1/A2, O2/A1, LOC/A2, ROC/
A1) and two submental EMG electrodes were attached under the chin
and referenced to each other. ECG was recorded by using a modified
Lead II Einthoven configuration. All data were digitized at 256 Hz.

4.2.3. Sleep scoring
Raw data were visually scored in 30-s epochs according to

Rechtshaffen and Kales (Rechtschaffen & Kales, 1968). Wake and four
sleep stages (i.e., Stage 1, Stage 2, SWS, and REM) were reclassified in
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continuative and undisturbed 3-min bins and the bins were used for
further analysis. The rationale of using 3-min bins was based on HRV
guidelines for assessing the LF and HF components (Malik et al., 1996),
as well as to have enough RR intervals to set the adaptive thresholds for
heart rate burst detection.

4.2.4. Data reduction
Ten subjects were excluded from further analyses for the following

reasons: (1) Four subjects did not have ECG recordings, (2) three sub-
jects had disconnected/loose ECG reference electrodes and we were not
able to detect heart beats from those subjects, (3) Three subjects had no
3-min Stage 2 and SWS epochs. Nine subjects out of the 45 subjects did
not have any 3-min continuous epochs of SWS. This led to lower
number of samples for SWS group. Two subjects from Stage 2 group
were also considered as outliers, due to artifacts. The total number of 3-
minute epochs analyzed across subjects in Wake, Stage 2, SWS, and
REM were 223, 415, 275, and 147, respectively.

4.2.5. Heart-beat detection and RR time-series extraction
The ECG signals were filtered with a passband of 0.5–100 Hz by

Butterworth filter. R waves were identified in the ECG using the Pan-
Tompkins method (Pan & Tompkins, 1985), and confirmed with visual
inspection. In order to extract continuous RR tachograms, the RR in-
tervals were resampled (at 4 Hz for power spectrum estimation; at
256 Hz for co-modulogram analysis) and interpolated by piecewise
cubic spline. Zero-phase Butterworth filters were applied to the inter-
polated RR time-series to extract RRLF and RRHF.

4.2.6. Heart rate burst detection
Within 3-min bins during wake and sleep stages, the Heart rate burst

events were detected as the minima in RR time-series with amplitude
greater than two standard deviations below the mean of the RR time-
series.

4.2.7. Power spectra
The EEG power spectrum was computed using the Welch method (4

s Hanning windows with 50% overlap). For RR time-series, the power
spectral estimation was performed by the autoregressive model and the
model order was set at 16.

4.3. Phase-amplitude analysis

For a given frequency pair in each stage, the RR time-series (slow or
phase-providing signal) and the EEG signal (fast signal or amplitude-
providing frequency) were filtered (zero-phase infinite-impulse-re-
sponse bandpass filters). Phase-providing frequencies ranged from 0.04
to 0.4 Hz (0.01 Hz increments, 0.02 Hz filter bandwidth) and ampli-
tude-providing frequencies ranged from 0.25 to 16 Hz (0.5 Hz incre-
ments, 1 Hz filter bandwidth). The Hilbert transform was applied to the
3-min binned data. EEG amplitude and RR phase were then extracted
and concatenated across the bins to construct the amplitude and phase
time series, respectively. The phase time-series were binned into 36 10°
bins (nbins=36) and the mean of the EEG amplitude over each bin was
calculated and then normalized by dividing it by the sum over the bins.
Given the normalized amplitude distribution, P, the modulation index
(MI) was calculated by dividing the Kullback–Leibler distance (Tort
et al., 2010) of distribution P from the uniform distribution (U) by log
(nbins). We then computed for each frequency pair the normalized
modulation index (nMI) by generating surrogate MIs based on the
method provided in supplement of (Canolty et al., 2006).

For statistical analysis, the nMIs were recalculated in 8 frequency
pairs: LF (0.04–0.15 Hz)–delta (0.05–4 Hz), LF–theta (4–8 Hz),
LF–alpha (8–13 Hz), LF–sigma (12–15 Hz), HF (0.15–0.4 Hz)–delta,
HF–theta, HF–alpha, and HF–sigma.

The preferred phase for LF–delta modulation was calculated as
angle of the average composite signal of ADelta(t) exp(i ϕLF(t)) (Canolty

et al., 2006).

4.4. Event-based analysis

4.4.1. Slow oscillation
The EEG signals of frontal and central channels were filtered (zero-

phase bandpass, 0.1–4 Hz). Then, the SO were detected based on down
to up-state amplitude (> 140 µV), down-state amplitude (<−80 µV),
and duration of down-state (between 0.3 and 1.5 s) and up-states (< 1
s) (Dang-Vu et al., 2008).

4.4.2. Spindles
Sleep spindles were detected by applying the wavelet transform,

using an 8-parameter complex Morlet wavelet with center frequency
13.5 Hz and calculating the moving average in 100ms sliding windows.
A spindle event was identified whenever the rectified signal exceeded
threshold (Wamsley et al., 2012).

4.4.3. SO-spindle coupling
The SO-spindle coupling was measured by calculation of modula-

tion index (Tort et al., 2010) between spindle activity (Morlet wavelet-
filtered sigma activity (Wamsley et al., 2012)) and filtered (0.1–4 Hz)
SO phase (within 2.5-s windows centered at the SO negative peak).

4.4.4. Time-locked analysis
In order to calculate changes in delta and sigma power around the

Heart rate burst, the Hilbert transform was applied on filtered EEG
signals in bands of interest (0.5–4 Hz for SWA and 12–15 Hz for sigma
band). To assess the HF amplitude change around the Heart rate burst,
the Hilbert transform was applied on RRHF.

4.4.5. Event-locked averaging
The analyses were subject-based. We first performed a within-sub-

ject average and then averaged those averages across subjects.

4.4.6. Change scores
The density of SOs (number of SOs per minute; SO negative peak

was considered for counting) and spindles (spindle maximum ampli-
tude point was considered for counting), as well as average delta and
sigma amplitudes were calculated in both the 5-s window prior the
heart rate bursts, as modulated values, and in periods with no Heart
rate burst, as reference (baseline) values. That is, the baseline activities
were calculated by excluding the 20-s periods (the segments around the
heart rate bursts) from the entire stage data. For example, if we found 6
heart rate bursts during 9min of Stage 2, the baseline Stage 2 SWA
would be calculated over 7min of non-bursting periods (9–6 * 20 s/
60 s). For HF change score, the modulated values were calculated in the
5-s window after the heart rate bursts. The subtraction between
modulated and reference values divided by summation of those values
were calculated as the changes scores.

4.5. Statistics summary

Statistical analyses were conducted using MATLAB 2015b
(MathWorks). p < .05 was considered significant.

4.5.1. Controlling the false discovery rate
In order to control for multiple comparisons, we implemented the

Benjamini-Hochberg procedure of false discovery rate (FDR) correction,
which compares each individual P value to its critical value, (i/m)Q,
where m is the total number of comparisons, i is the P value rank, and
Q=0.05 is the FDR (Benjamini & Hochberg, 1995). We reported the
raw P-values, not the adjusted p-values, in the entire paper. In addition,
we reported “marginally significant” when the rounded values (P values
and their critical values) to two decimal places were equal.
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4.5.2. Comodulogram analysis
For wake and sleep stage, the normalized modulation index (nMI)

was calculated in 8 frequency pairs: LF–SWA, LF-theta, LF–alpha,
LF–sigma, HF–SWA, HF–theta, HF–alpha, and HF–sigma. Within each
sleep stage, the nMI pairs were compared using one-way ANOVA. The
Kruskal-Wallis test was used to compare a specific nMI across sleep
stages. Two-tailed unpaired-samples t-test was used to compare nMI of
a specific frequency pair across two sleep stage.

4.5.3. Event-locked analysis
For wake and sleep stages, repeated measures ANOVAs followed by

post hoc paired-samples t-tests were used to compare SWA as well as
sigma activity across non-bursting periods and four 5-s bins around the
heart rate bursts.

4.5.4. Test of periodicity of heart rate bursts
We calculated the inter-heart rate burst (HRB) intervals (IHBI). For

a periodic system, the Poincaré map (i.e., return map) of IHBIn+1 versus
IHBIn contains one point. In a corresponding biological system with
noise, this single point becomes a normally distributed single-point
cluster. The Poincaré map data was considered to be a normally dis-
tributed single-point cluster if the data points along the Poincaré map
axes passed a test for normality (Del Negro, Wilson, Butera, Rigatto, &
Smith, 2002).

4.6. Memory performance tests

4.6.1. Face-Name association (FNA) task
Face stimuli were chosen from a UC Riverside IRB-approved data-

base of photographs of highly diverse UC Riverside undergraduate
students. All students whose photographs were included in the database
provided informed consent for their picture to be used to create ex-
perimental stimuli. All faces were forward-facing, shown from the
shoulders up against a plain gray background, and edited to be gray
scale. First and last names were selected from the 2010 United States
Census data. The five most frequent male names, female names, and last
names (e.g., Smith) were eliminated. Unisex names that are commonly
used for both men and women were also eliminated, as were last names
that are commonly used as first names (e.g., Thomas) or contain a
common first name base (e.g., Richardson). Individual face-name pair-
ings were randomly generated for each participant so that no two
participants saw the same face-name pairs. During session 1, 44 faces
(22 men and 22 women) were presented in the center of the screen with
a first and last name shown below the face. The first two and last two
face-name pairs were discarded after encoding (i.e., not tested) due to
primacy and recency effects. Each face/name pair was presented four
times for duration of 4000ms, with an inter-stimulus-interval of
500ms. Subjects were instructed to view each face-name pair and to do
their best to remember each person’s name for a later test. Immediately
following encoding, as well as after an 8-hr retention interval, subjects
completed a recall memory test. During recall, 10 faces were presented
and subjects were asked to recall the first and last names associated
with each face. That is, they had the opportunity to recall 20 names
(first and last names) total in each session. The ten faces tested in
session 2 were different than those tested in session 1, the remaining 20
faces were used for a recognition task, and those results are reported
elsewhere (Sattari et al., 2017). Total recall was calculated as the sum
of first and last names recalled correctly. The difference in total recall
between sessions (PM-AM) was calculated as a measure of declarative
memory consolidation.

4.6.2. Texture discrimination task (TDT)
Subjects performed a texture discrimination task similar to that

developed by Karni & Sagi (Karni & Sagi, 1991). Visual stimuli for the
TDT were created using the Psychophysics Toolbox (Brainard, 1997).
Each stimulus contained two targets: a central letter (‘T’ or ‘L’), and a

peripheral line array (vertical or horizontal orientation) in one of four
quadrants (lower left, lower right, upper left, or upper right) at
2.5°–5.9° eccentricity from the center of the screen. The quadrant was
counterbalanced across subjects. The peripheral array consisted of three
diagonal bars that were either arranged in a horizontal or vertical array
against a background of horizontally oriented background distracters,
which created a texture difference between the target and the back-
ground.

An experimental trial consisted of the following sequence of four
screens: central fixation cross, target screen for 33ms, blank screen for
a duration between 0 and 600ms (the inter-stimulus-interval, or ISI),
mask for 17ms, followed by the response time interval (2000ms) and
feedback (250ms, red fixation cross with auditory beep for incorrect
trials and green fixation cross for correct trials) before the next trial.
Subjects discriminated two targets per trial by reporting both the letter
at central fixation (‘T’ or ‘L’) and the orientation of the peripheral array
of three diagonal lines (horizontal or vertical) by making two key
presses. The central task controlled for eye movements.

Each block consisted of 25 trials, each with the same ISI. A threshold
was determined from the performance across 13 blocks, with a pro-
gressively shorter ISI, starting with 600ms and ending with 0ms. The
specific sequence of ISIs across an entire session was (600, 500, 400,
300, 250, 200, 167, 150, 133, 100, 67, 33, 0). A psychometric function
of percent correct for each block was fit with a Weibull function to
determine the ISI at which performance yielded 80% accuracy. TDT
performance was calculated as the difference in threshold between
Session 1 and Session 2, such that a positive score indicates perfor-
mance improvement (i.e., decreased threshold in Session 2), whereas a
negative score indicates deterioration.

Subjects were given task instructions and practiced the task during
an orientation appointment prior to starting the study. During this
practice, the peripheral target was located in a quadrant that was not
used during the study. This practice ensured that subjects understood
the task and accomplished the general task learning that typically oc-
curs the first time a subject performs a task. Additionally, on the study
day, subjects were allowed to practice an easy version of the task (ISI of
1000–600ms) prior to starting the test session to make sure subjects
were able to discriminate the peripheral target between 90% and 100%
correct on an easy version of the task.
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