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Abstract

Modern societies have developed insatiable demands for

more computation capabilities. Exploiting implicit paral-

lelism to provide automatic performance improvement re-

mains a central goal in engineering future general-purpose

computing systems. One approach is to use a separate thread

context to perform continuous look-ahead to improve the

data and instruction supply to the main pipeline. Such

a decoupled look-ahead (DLA) architecture can be quite

effective in accelerating a broad range of applications in a

relatively straightforward implementation. It also has broad

design flexibility as the look-ahead agent need not be con-

cerned with correctness constraints. In this paper, we explore

a number of optimizations that make the look-ahead agent

more efficient and yet extract more utility from it. With these

optimizations, a DLA architecture can achieve an average

speedup of 1.4 over a state-of-the-art microarchitecture for

a broad set of benchmark suites, making it a powerful tool

to enhance single-thread performance.

Keywords-single thread performance; decoupled lookahead
architecture;

I. INTRODUCTION

Modern societies have developed insatiable demands for

more computation capabilities. While in certain segments,

delivering higher performance via intense human labor

(manual parallelization and performance tuning) is justifi-

able, in many other situations, such effort is not necessar-

ily effective nor is it particularly efficient when the extra

resources (energy and loss of productivity) are properly

accounted for. Automatic performance improvement remains

a central goal in engineering future general-purpose comput-

ing systems [13]. After all, the systems have always been

designed to increase automation and productivity and to free

human from drudgery (including debugging a parallel code).
The two traditional drivers for single-thread performance

(faster cycles and advancements in microarchitecture) have

This work is support in part by NSF under grants 1514433 and 1722847,
and by a gift from Huawei. Due to space constraints, some details are left
out and can be found in the extended version of this paper [22].

all but stopped in recent years – and for good reasons, since

further gains from these approaches will come at significant

costs. However, the level of implicit parallelism is quite high

even in non-numerical codes. The real question is whether

we can realize the potential without undue costs. The typical

monolithic out-of-order microarchitecture appears to have

significant challenges exploiting this level of parallelism. In

particular, the instruction and data supply subsystem shoul-

ders a significant responsibility. Fig. 1 illustrates this point.

When data and instruction supply subsystem is idealized, the

average level of implicit parallelism is significantly higher

(about 5x) than when it is not, suggesting the subsystem as

a target for improvements.
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Figure 1. Implicit parallelism of integer applications. The
three bars on the left indicate the amount of available
parallelism (instructions per cycle) in the application when
inspected with a moving window of 128, 512, or 2048
instructions. The three bars on the right repeat the same
experiments only this time under a realistic branch mispre-
diction and cache miss situation that further constrains the
available parallelism to be exploited. Note that the vertical
axis is in log scale.

One possible way of strengthening this subsystem is to

use a decoupled look-ahead (DLA) architecture. In DLA, a

self-sufficient thread guides the look-ahead activities largely

independent of the actual program execution. Simply having

a thread for continuous look-ahead is not enough. Many

elements have to function properly and efficiently to create

a system that can offer sustained, deep, and high-quality

look-ahead that will provide significant benefits at acceptable

costs. In this paper, we discuss four optimizations on top of a

basic DLA architecture. Their effects are mainly to increase

the efficiency of the look-ahead thread and simultaneously

extract more utility out of it. The spirit of techniques are
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somewhat analogous to the “reduce, reuse, and recycle”

mantra in waste reduction, hence the name R3-DLA.

The rest of the paper is organized as follows: Sec. II

discusses variants of DLAs and the related concepts of

helper threads; Sec. III explains the design details of the pro-

posed optimizations; Sec. IV performs experimental analysis

on these optimizations; and finally Sec. V summarizes the

findings.

II. BACKGROUND AND RELATED WORKS

A basic on-demand caching system is only part of the

solution to a high-performance instruction and data supply

subsystem. Anticipating needed data and prefetching them

is an indispensable component. Various types of prefetchers

have been proposed over the years targeting various proper-

ties of the applications’ address stream [14], [18], [21], [28],

[29], [36].

Ultimately, not all accesses can be described by simple

address patterns. Obtaining addresses through partial execu-

tion of the program represents a broad class of prefetching

approaches. On one extreme of the design spectrum, many

short threads are launched as helpers to precompute infor-

mation for data or instruction supply [7], [8], [11], [17],

[25], [26], [37]. Although these micro helper threads are an

immensely useful concept, marshalling a very large number

of micro threads can bring practical issues [22].

On the other extreme of the spectrum, an idle core in a

multicore system is used to execute a different copy of the

original program on a separate thread context [3], [10], [19],

[20], [27], [38], [42]. This copy is often a reduced version

of the program (which we referred to as the skeleton) so

that it can run faster to look ahead. This style of design can

be traced back to the Decoupled Access/Execute architec-

ture [35]. Unlike in DAE, however, the leading thread in

this group of designs does not affect the architectural state

and only performs look-ahead functionality. We therefore

refer to these designs as Decoupled Look-Ahead (DLA)

architectures.

DLA designs sidestep some of the practical problems

facing micro helper threads. But the key challenge becomes

how to create a look-ahead thread that is sufficiently au-

tonomous and yet fast enough to permit deep look-ahead.

Various ways are devised to improve the look-ahead thread’s

speed in order to stay ahead of the main program thread.

For instance, Slipstream [38] removes predicted dead in-

structions and biased branches; Dual-core execution skips

memory access instructions that miss in the L2 cache [42];

Tandem uses architectural pruning to make the hardware

faster [27]. Garg and Huang experimented with a more

purposeful-built look-ahead thread using a stripped-down

version of the original program [9].

In this past work, only a small number of ideas are

discussed at a time. By themselves these ideas have a

limited benefit – no different from ideas for conventional

microarchitectures. The limited benefit coupled with the

perceived disadvantage of doubling the resources needed

can hardly make DLA appear as a promissing solution that

we believe it is. Keep in mind, the extra thread context is

an infrastructure whose cost is amortized over future ideas.

As we will show in this paper, there are many conceivable

optimizations that can lower the overhead even more while

improving performance.

III. OPTIMIZATIONS OF DLA ARCHITECTURE

In this section, we first discuss a basic platform of

DLA (Sec. III-A), then discuss four optimizations in de-

tail: reducing look-ahead workload with prefetch offload-

ing (Sec. III-C); reusing value (Sec. III-D1) and control

flow information (Sec. III-D2); and recycling the skeleton

(Sec. III-E);

A. Baseline DLA

Our baseline DLA architecture is based on the one

proposed in [9]. Specifically, a skeleton of the original

program binary is generated which includes all the control

instructions and their backward dependence chain. A subset

of memory instructions is also included in the skeleton as

prefetch payloads along with their backward dependence

chain. During execution, this skeleton forms the static code

of the look-ahead thread (LT) and runs on a different core.

It passes relevant information (e.g., branch outcomes) which

speeds up the execution of the main thread (MT). At first

glance, it may seem wasteful to execute the same program

twice. But in reality, LT only executes a small portion of the

code (about a third in our design). Even when it does execute

an instruction, the actions involved may not be redundant.

For instance, wrong path instructions are mostly limited to

the LT; off-chip accesses are only time-shifted, not repeated;

We will present quantitative description on this point later

in Sec. IV and only note here that the energy overhead is

less than 25%.

Such an architecture requires the following support on

top of a generic multi-core architecture, ordered from least

to most special-purpose:

i) Containment of speculation: LT usually involves spec-

ulative optimizations and thus cannot be allowed to

update the architectural state. The support is simple as

most of the state is already naturally confined to the

thread context. The only additional support needed is

about dirty lines in the private caches (in our study,

the L1 data cache and the L2 cache). In the look-

ahead mode, they are not used to supply coherence

requests from other cores and are not written back

upon eviction, but simply discarded. In other words,

when a core executes in look-ahead mode, its private

caches only obtain data uni-directionally from the rest

system and never supplies data. It only supplies hints

as follows.
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ii) Communication of look-ahead results: In a multicore

architecture with shared lower level caches, LT can

already warm up the shared caches without any ad-

ditional support. However, a mechanism to explicitly

pass on hints from LT is valuable. First, we can send

over the branch outcomes via the Branch Outcome
Queue (BOQ). The BOQ also acts as a natural mech-

anism to detect when LT veers off the correct control

flow; and to keep it from running too far ahead. In the

case an incorrect branch outcome is detected, a reboot
is triggered by MT which re-initializes LT. In addition

to the BOQ, we can also send other information such

as branch target addresses and prefetch addresses. We

use a Footnote Queue (FQ) for such less frequent

but wider data. On average, one footnote is generated

every 30 instructions. FQ is also used during reboot

to copy the architectural registers from MT to LT.

iii) Support for instruction masking: Finally, we find it

convenient to have the code of LT being a subset

of MT, thus allowing us to use the same program

binary and a set of bits to mask off instructions not on

the skeleton. These unwanted instructions are deleted

immediately upon fetch in LT. These mask bits can be

generated either offline or online through dependence

analysis of the program binary. In this paper, we model

a system where these bits are generated offline and

stored inside the program binary. At runtime, the I-

cache will combine the separately fetched mask bits

and instructions.

Summary of operations: To put these elements together,

we now describe the overall operation of the system (Fig-

ure 2). We assume the program binary is analyzed and

augmented with mask bits offline, the system always runs

in DLA mode, and that the two threads (the real program

thread and its look-ahead instance) run on individual cores

connected by the various queues discussed above. Note that

these are not intrinsic requirements to implement DLA. They

describe the most basic incarnation.

Binary 

Figure 2. Architectural support for baseline DLA.

When a semantic thread is launched or context-switched

in, its architectural state is also used to initialize LT. Both

threads proceed to execute the code largely conventionally:

fetching, dispatching, executing, and committing instructions

according to the content of its architectural and microarchi-

tectural states. They differ from conventional cores in the

following way.

For the core executing the actual program thread (MT),

its fetch unit draws branch direction predictions from the

BOQ instead of its branch predictor. If the queue is empty,

we stall the fetch. The dequeued entry of BOQ may have a

footnote bit set. In that case, the control logic will dequeue

one or more entries from FQ and act according to the content

type. For example, if the entry is a branch target hint, then

the content from the entry (rather than from the core’s own

BTB) will be used for target prediction.

For the core executing in look-ahead mode, there are

three main differences. First, upon an instruction fetch, the

logic will delete unwanted instructions. Beyond the I-cache,

however, the masks are assumed to be stored in a different

location in the program binary for backward compatibility.

The masks are thus stored separately from the instructions

in the lower level caches. During an I-cache miss, the

controller will issue two read requests to the L2 cache for

the instructions (at the address Ai) and their masks stored

in address Am = f(Ai).

Second, LT will write hints into the queues for MT.

Specifically, at commit time, the outcome of a conditional

branch (“taken” or “not taken”) will be stored in FIFO order

in the BOQ. The BOQ serves a multitude of purposes. � It

passes a branch outcome as a prediction to MT. This ensures

that in the steady state, the majority of branch mispredictions

are experienced only in LT. � It is a simple and effec-

tive mechanism to detect incorrect look-ahead control flow.

When a branch prediction fed by LT turns out wrong, which

is relatively rare (0.06 per kilo instructions), it means that LT

is executing down the wrong path. We will reboot LT from

the current state of MT. � We can easily know and control

the depth of look-ahead: the number of unread entries in the

BOQ equals the number of dynamic basic blocks LT is ahead

of MT. To prevent run-away prefetching, we only need to

limit the size of the BOQ (512 entries in this paper). � It is a

convenient way to allow delayed (just-in-time) prefetching.

When a prefetch hint is generated, it can be associated with

a branch entry and released only upon the dequeuing of that

BOQ entry.

Finally, in addition to the continuous branch direction

hints, occasionally LT has other hints. Whenever it encoun-

ters a miss in TLB, L1 data cache, or BTB, it will pass the

relevant address through FQ and set the footnote bit in the

most recent BOQ entry.
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B. R3-DLA: Overview

Before we discuss the proposed optimizations, it may be

helpful to put these ideas into the context of the vision

for DLA. As we have seen, there is significant implicit

parallelism in normal programs. It is not yet clear to us

what the best approach to exploiting this parallelism is.

Our current DLA design follows a path that first targets

instruction and data supply issue, basically because we

have to start somewhere. The baseline DLA design is also

just a starting point, intuitively with many low-hanging

optimization opportunities.

Indeed, as it turns out, there are a number of simple

things to do to either make the LT more efficient and/or

get more utility from it. In the first category, we can offload

certain type of look-ahead code to a finite state machine

(Sec. III-C), making the LT smaller and thus faster. In the

second category, we find that LT can provide more than

just branch prediction and addresses for prefetching. Both

the intermediate values and control flow information can be

reused, for example for value prediction (Sec. III-D). Finally,

the heuristic-driven skeleton in the baseline DLA is clearly

not optimal and can be adjusted online to other predefined

versions which, depending on the specific situation, can

make LT more efficient and/or more effective (Sec. III-E).

C. Reduce: offloading strided prefetch

The first optimization speeds up LT by reducing its work-

load. The intuition is simple. LT serves as a software-guided

prefetch engine which is far more flexible and precise than

hard-wired, finite-state machine (FSM) driven prefetchers.

The cost, however, is that we need to execute a sequence

of instructions to compute the address for prefetching. For

simple, strided accesses, such a software-driven approach is

an overkill. Instead, we build a hardware FSM (which we

call T1) to offload this type of prefetch.

Note that there is an important difference in the design

goal between T1 and a traditional stride prefetcher. The

latter needs to extract the stride in the presence of unrelated

addresses and in the absence of any certainty that there

is a strided stream to begin with. Moreover, to improve

coverage, practical prefetcher designs target variations of

strided accesses. All these are non-trivial challenges and

often involves memorizing and cross-comparing a non-trivial

number of addresses. T1, on the other hand, merely carries

out the mundane task of address calculation and issuing

prefetches. In other words, compared to a traditional stride-

detecting prefetcher, T1 is only a dumb FSM carrying out

simple orders. Additionally, T1 only targets one common

situation and does not try to be general-purpose.

1) Overview of operation: The common situation targeted

by T1 is a loop with one or more memory access instructions

whose address gets incremented by a (run-time) constant

every iteration. In such a case, all we need for effective

prefetching is the stride (δ), the prefetch distance (n), and

the identity of the strided access instructions. When we

encounter a strided instruction, we can take its address (A)

and simply prefetch A+nδ. Given the identity of the strided

instructions, we can easily derive the stride and prefetch

distance: The former is simply the difference between the

addresses of two consecutive instances of the same static

instruction; The latter is the average access latency divided

by the time interval between two consecutive instances.

Instead of including these necessary instructions in the

skeleton to generate proper prefetches, we mark them in

MT and let T1 handle the prefetches. LT is thus smaller and

faster than otherwise.

2) Instruction marking: To summarize the discussion

above, all the T1 hardware needs is the identities of the loop

branch and the strided access instructions. These instructions

are marked with another bit (the S bit). The S bits are

generated the same time the skeleton masks are generated,

however they are a marker on the binary for MT1. They are

fetched from the program binary by MT in the same manner

as the skeleton’s mask bits. Note that the T1 hardware

located in MT’s core will use information from MT to pro-

duce corresponding prefetches for the instructions marked

with the S bit. Hence, the skeleton generation process will

completely ignore these instructions and their backward

dependencies while generating the skeleton for LT.

Figure 3. T1 prefetch register fields.

3) Operations of FSM: With marking of S bits done, the

run-time operation is to calculate two parameters: stride and

prefetching distance. To accomplish these tasks, we use a

small prefetch table. An entry of this table is shown in Fig-

ure 3. All entries begin in an invalid state. Upon execution

of a strided instruction, an entry is allocated in the prefetch

table. T1 starts issuing prefetches (with a fixed prefetch

degree) as soon as the first instance of a stride is calculated.

Each entry in the table gradually moves from an invalid state

through transient states to the steady state. Transient states

help guard T1 against identifying incorrect strides resulting

from out-of-order execution. They also aid in calculating

appropriate prefetching distance using the information on

iteration time and average memory access latency. When

prefetching distance is calculated, T1 launches multiple

prefetches to “catch up” with the prefetching distance. T1

then transitions into a steady state in which it launches one

prefetch every iteration. All entries in the table are cleared

when a loop terminates.

1So, the skeleton now includes two bits per instruction: a mask for LT
and a mark for T1
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D. Reuse of Value and Control Information
The software-controlled nature of the baseline DLA

makes it a very flexible branch predictor and prefetcher. The

cost for such flexibility is the extra execution. As we will see

later, even with offloading discussed above, LT still executes

about half of the dynamic instructions of the program. The

next two optimizations try to increase the benefit of this

work already done. In particular, since a significant portion

of the values have already been computed, we seek to reuse

them in the form of value prediction. Also, the content of

BOQ is highly accurate future control flow information and

can help improve instruction fetch for the trailing MT.
1) Value Reuse: A variety of techniques have been

proposed to predict values [30], [39]–[41]. Most of these

techniques rely on the history of the values produced to

predict future values. Unlike branch outcomes, a typical

value usually has non-trivial entropy and thus defy easy

predictions. However, in our system, many instructions have

already been executed in LT. Empirical observations show

that over 98% of them have the same result as their coun-

terpart in MT and thus lend themselves to reuse.
The basic support is similar to any value predictor: � the

predicted value will be used to allow dependent instructions

to execute early; � the instruction producing the value will

check the outcome with the prediction and, upon disagree-

ment, trigger a replay. In our system, instead of coming

from a value prediction table, the predictions are read in

FIFO order fed by LT. In our design, we extend the footnote

queue for this purpose: every instruction that we decide to

apply value reuse will allocate an FQ entry containing the

value and an offset indicating distance from the preceding

branch.
Again, unlike traditional value predictions, we have an

abundance of highly accurate results. Thus the key design

issue for our value reuse is to minimize the costs, which

includes communication from LT to MT and the perfor-

mance loss due to incorrect values. Our approach is to limit

value only to ”slow” instructions with a high confidence of

successful reuse. After some experiments, it quickly became

obvious that many different heuristics can achieve the goal.

We describe one runtime version below.
At the beginning of a new loop (Sec. III-E2), MT spends a

few iterations (8 in our experiments) identifying these slow

instructions, defined as having dispatch-to-execute latency

of at least 20 cycles. Their PCs will be recorded in a bloom

filter (let us call that Slow Instruction Filter or SIF). LT

checks this table at commit stage and if the instruction is

there, allocates a value reuse entry in FQ. The SIF is cleared

upon entering a new loop.
Our confidence mechanism is simplistic: when a value

prediction turns out incorrect, the entry of that static instruc-

tion is deleted from the SIF and LT will no longer provide

a prediction for that instruction. However, we observe that

this is infrequent (less than twice per million instructions).

Figure 4. Example of skipping value prediction validation.

There is one small optimization to this basic support.

In some cases, we do not need to validate all predicted

values. We can skip those ALU instructions that only depend

on other instructions that have produced a predicted value.

Figure 4 shows an example. i4 sources from i1 and i2,

both of which produce a value prediction. When we see

this case, we can directly use i4’s value prediction as the

outcome and there is no need to execute i4 in MT. This is

because in our system, we have no speculative optimization

that can corrupt functional units in LT. So, if both values

are correct, then i4’s result is correct (barring hardware

reliability issues). If either value is incorrect, eventually,

there will be a value misprediction recovery upstream. i5,

on the other hand, cannot skip validation as it depends on a

value that is not predicted. This optimization will save about

11% of validations.

We implement this optimization with a simple score-

boarding logic at the decode stage in the MT core. When

an ALU instruction i produces a value prediction, we mark

its destination register as validated. Other instructions (e.g.,

loads, or instructions not producing a value prediction) will

clear the marking for its destination register. If an instruction

has a value prediction and its source registers are all marked

validated, it will not be executed for validation.

Finally, once the value prediction framework exists, we

can add some critical-path instructions back to the skeleton.

Clearly the trade-off is faster execution of MT at the

expense of slowdown of LT. In general, whether adding

an instruction to the skeleton speeds up the whole system

or not depends on the balance of the duo. It opens up a

general optimization problem of choosing the right skeleton

that maximizes system performance. In this paper, we only

follow a simple heuristic to find candidates: they have a long

dispatch-to-execute latency (more than 20 cycles on average)

and have more than one dependent instruction. The skeleton

construction algorithm will include the necessary backward

dependence chain.

2) Control flow information reuse: Instruction fetch can

sometimes be a source of pipeline bubbles. In DLA, the

presence of future control flow information allows us to

ameliorate this problem to some extent for MT. For instance,

a trace cache [32] can increase the number of fetched

instructions per cache access. Having a highly accurate
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stream of branch predictions from the BOQ is a significant

advantage to leverage when using a trace cache. However,

trace cache is an expensive form of instruction caching. In

this paper, we opt for a simpler approach that is in fact more

effective in our setup.

The basic idea is to reduce idling for the instruction fetch

unit by allowing it to continue even if the decode stalls.

In other words, we want to decouple the fetch unit from

the rest of the pipeline – or in the case where this has

already been done to the baseline architecture, increasing

the degree of decoupling with a bigger buffer. The key

point to emphasize is that the BOQ offers a much higher

degree of branch prediction accuracy. Without this accu-

racy, fetching too much down the predicted control flow

is unlikely to pay off, and indeed can even backfire and

slow the whole processor down. In fact, in a conventional

architecture, sometimes a more constrained fetch unit is

beneficial as it slows down the pollution created by the

relatively common wrong-path instructions. In other words,

the benefit of having a fetch buffer is clear for DLA, but

not necessarily so for a conventional architecture. We will

show this in the experimental analysis later in Sec. IV-C.

E. Re-cycling the Skeleton

In DLA, the skeleton is constructed using simple heuris-

tics. Given this basic skeleton, if we add one more memory

instruction (and its backward dependence chain), LT is

likely to run a bit slower but potentially helping MT avoid

more misses. Depending on which thread tends to be the

bottleneck, this small change may increase or decrease

system performance. We can see that there is a vast number

of possible variations and the basic skeleton is unlikely to

be optimal. The question is, therefore, are there significantly

better options than our default? If so, how can we system-

atically and efficiently arrive at such options?

These are all questions beyond the scope of this paper.

Nevertheless, we do know that simple tunings can effectively

improve the performance. The general approach is to create

a few versions of skeleton and cycle through them to find

out the best empirically.2

1) Versions of skeleton: The most basic version of the

skeleton includes all branches and their backward depen-

dence chains and is produced with a binary parser. From

this starting point, we may add or subtract instructions using

a few broad heuristics coupled with static-time profiling. In

our experiments we collect these statistics by executing the

programs with training inputs and use them to build skele-

tons that are used during the actual run. We experimented

with five options:

• L2 prefetch targets: Instructions that account for signifi-

cant portions of L2 misses can be added to the skeleton;

2This process may repeat a few times to average out noise. Admittedly,
the analogy with recycling in the normal sense is tenuous.

• L1 prefetch targets: Instructions that account for signifi-

cant portions of L1 misses can be added to the skeleton;

• Value reuse targets: Instructions that have a long dis-

patch to execute latency can be added to the skeleton;

• T1 targets: Memory instructions that are handled by

T1 are by default removed from the skeleton. However,

they may be added back (as they might warm up cache

for LT).

• Biased branches: Conditional branches with a bias over

a threshold can be converted to unconditional branches

in the skeleton.

These independent options naturally lead to many differ-

ent combinations. Our empirical observation shows that a

very small number of combinations need to be searched to

obtain noticeable benefits. We evaluate a design that cycles

through six versions of skeleton empirically observed to be

most often helpful. Changes to the number of options, the

number of versions, or the thresholds used in identifying

target instructions will likely affect the exact outcome. The

key point to note is that this is not an effort to find the

optimal points in the design space, but simply an attempt

to pick a few different points so that we can avoid poor

design points due to simplistic heuristics. Also note that the

skeleton generation process (Fig. 5) is an offline, automated

process just as in the baseline, except it produces more than

one skeleton.
2) Controller: With a number of skeleton options, the

goal of the controller is to find the skeleton version that

maximizes the benefit. To do this, we divide the execution

into repeating code units, or loosely speaking, loops. For

each loop, we cycle through different versions to find out

the best.
To identify the current loop, we capture the backward

“loop branch” (Figure 6). Two consecutive instances of the

loop branch without an interleaving instance of another

loop branch marks the two ends of an iteration. Note that

units need to be of sufficiently coarse granularity, otherwise

we can neither accurately measure execution statistics nor

profitably adjust the system configuration. So, a unit of

execution is one or more iterations lasting, say, at least

10,000 instructions.
Note that recursive functions can represent a significant

portion of the execution time without having a detectable

loop. To deal with these cases, we treat certain function call

instructions as if they are loop branches. In such a case, an

“iteration” may not have the same meaning as we are used

to. But it is still a valid strategy to observe the behavior of

a unit of multiple iterations to predict that of a future unit.
During execution, the controller will run each loop for

enough iterations under a particular skeleton. This will

allow an accurate measurement of the speed (instructions

committed per unit time) of that loop under that skeleton.

After cycling through all skeletons, the controller selects

the skeleton showing the highest speed and use it for the
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steady state. The identity of the loop (PC of the loop branch)

and the corresponding best configuration is then stored in a

Loop-Config Table (LCT as shown in Figure 6). If a loop PC

is found in the LCT, the controller selects the corresponding

configuration.

Note that all the steps involved in re-cycling skeleton can

be done either on-line as the application runs, or off-line

using training runs. For the simple recycling discussed in

this paper, we believe the offline approach is more advisable

as we need no architectural support (other than performance

counters). However, an online recycling support (like the one

we discussed) may be a better alternative in a more dynamic

environment. We will compare the effect later in Sec. IV-C.

F. Recap

To sum up, a basic DLA design uses one core to execute

a look-ahead thread and passes information through two

queues (BOQ and FQ) to help accelerate MT. On top of

this basic design, we propose to add a number of supporting

elements (Figure 7) to accelerate either LT or MT:

• T1: A prefetching FSM to offload prefetching of loop-

based strided accesses;

• Value reuse: logic to pass register values from LT

through FQ and used as predictions in the front-end

of MT;

• Fetch buffer: using an extended buffer to fetch instruc-

tions down the path predicted in the BOQ;

• Re-cycle controller (hardware support optional): cycles

through a number of skeleton mask bits to pick the best

performing configuration.

With these elements, the R3-DLA becomes significantly

more effective as we will show next. More importantly, these

optimizations are merely examples of what can be done to

make the DLA models more effective. We believe that there

are plenty of opportunities in DLA to keep on extracting

more implicit parallelism.

IV. EXPERIMENTAL ANALYSIS

In this section, we perform experimental analyses of

the proposed design. After detailing the simulation setup

(Sec. IV-A) we first show bottom-line results of a complete

system (Sec. IV-B) and then provide more detailed analyses

to gain insight of the individual design decisions (Sec. IV-C).

A. Simulation Setup

For simulation purposes, we use Gem5 [4] simulator

to model our proposed architecture. Our baseline is an

aggressive out-of-order pipeline with a Best Offset [28]

prefetcher (BOP) at L2. This prefetcher is selected because

in our experiments it provided the best average performance

gain among a group of 7 state-of-the-art prefetchersover all

application suites experimented [22]. The prefetcher is con-

figured with 256 RR table entries and 52 offsets as described

in [28]. Additional technical details about the baseline are

provided in Table I. Unless otherwise mentioned, we use this

baseline configuration in all of our experiments. For DLA

reboots, we add a 64 cycle delay to account for copying of

the architectural registers from the trailing thread to the look-

ahead thread. Note that since the chances of reboots are rare

in DLA (0.6 on average in a 10k instruction window), their

impact on performance is minimal e.g., increasing the reboot

cost to 200 cycles will degrade the overall performance of

R3DLA by less than 2%.

For comparison, we have also modeled a number of

similar approaches [11], [16], [31] ranging from earlier

Figure 7. Architectural support for R3-DLA. The gray colored rectangle on the left represents the lead core and the one on the
right represents the main core. Structures included by DLA are patterned and the connections are indicated with the dashed lines.
Structures included by R3-DLA are shaded and the connections are indicated with the dotted lines.
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Figure 5. A pseudo code outlining the steps involved in
generating different skeletons used by the recycle optimiza-
tion. A few seed vectors are constructed using profiling
information obtained from the program binary and training
runs. A skeleton is generated from a seed vector by including
backward dependencies of each seed present in it. Multiple
combinations of these seed vectors can therefore produce
multiple skeletons. The recycling optimization we used in
our evaluations uses six of these skeletons (Line 21 in the
figure).

design of SlipStream to the recently proposed state-of-the-

art runahead execution scheme called Continuous Runahead

Engine (CRE). Under our baseline configuration (Table I),

CRE outperforms other designs. It generates its helper

threads at runtime and executes them on a custom processor

located at the memory controller. We modified CRE’s design

to prefetch data into L1 which on average provides higher

overall performance than just prefetching into LLC. Note

that since we do not ignore any of the applications in

our evaluations and since our baseline configuration uses 3

levels of cache hierarchy with BOP as a L2 prefetcher, our

performance numbers for CRE appear different than the ones

reported in [11]. For similar configuration and applications,

the average performance gain of CRE on our platform is

within 5% of the ones reported in [11]. In the case of [9],

the factors like memory model, improved prefetcher/branch

predictor and an overall aggressive baseline all contribute to

the variation in the reported performance benefits.

For CPU’s energy consumption modeling, we use Mc-

PAT [24] and assume a 22nm technology node. We mod-

ified McPAT to correctly model our proposed architecture

and additional hardware structures shown in Figure 7. To

compute main memory energy, we use DRAMPower [5].

found 

update if  
not equal not found insert best 

performing  
skeleton 

Loop 
Register 

(LR) 

++  

++  

++  

runtime search  
for best skeleton 

Recycle Controller (RC) 

Figure 6. Skeleton recycling flow chart. As a loop branch
retires, the Loop Config Table (LCT) is queried for the
skeleton that is optimum for the current loop. If none of
the entries in LCT match the loop branch, different fields
in the Loop Register (LR) are used to cycles through each
of the available skeletons for a few iterations of the loop
and identify the optimum skeleton for the loop. The LCT is
updated when an optimum skeleton is found and that skeleton
is used by lead thread until a new loop branch retires from
ROB.

Processing
Node

20-stage pipeline, out-of-order, 4-wide, 192 ROB, 96 LSQ,
128INT/128FP PRF, 4INT/ 2MEM/ 4FP FUs, Tage SC-L Predictor
(configured as the 256kBits predictor described in [33]), 4K Entry
BTB, 32-entry RAS

Operating
Points

0.8V, 3.0GHz

L1 Caches 32KB I-cache and 32KB D-cache, 4-way, 64B blocks, 3 ports, 1ns,
32 MSHRs, LRU

L2 Cache 256KB, 8-way, 64B blocks, 2 ports, 3ns, 32 MSHRs, LRU, BOP [28]

L3 Cache 2MB, 16-way, 64B blocks, 12ns, LRU

Main
Memory

4GB, DDR3 1600MHz, 1.5V, 2 channels, 2 ranks/channel,
8 banks/rank, tRCD=13.75ns, tRAS=35ns, tF AW =30ns,
tW T R=7.5ns, tRP =13.75ns

DLA Support

BOQ 512 entries (512x2 bits = 128B)

FQ 128 entries (128x64 bits = 1KB)

R3-DLA Support

T1 16 prefetching entries (512B)

FB 32 instructions (256B)

VPT 32 Entries (32x64 bits = 256B) (used by VR)

LCT 16 Entries (136B) (used by RC)

Table I. System configuration.

We evaluate our proposal on a broad set of bench-

mark suites. In addition to the SPEC2006 [12] benchmark

suite, we use CRONO [1] (a graph application suite),

STARBENCH [2] (embedded applications), and scientific

workloads from NAS Parallel Benchmarks (NPB). For

SPEC2006, we use reference inputs. For STARBENCH

we use large inputs. NPB is simulated with C class of

workloads. For CRONO we use graph input data structures

from google, amazon, twitter, mathoverflow and california

road-networks. All benchmarks are compiled using gcc with

-O3 option. To reduce simulation time, we use SimPoint

sampling methodology. To accurately capture all phases of

the application we use the SimPoint Tool [34] to generate

five simpoints per benchmark with 10 million instruction

intervals. We warm up the caches for 100 million instruc-

tions before beginning each of the simpoint intervals. All

the simulation results are obtained from these simpoints.
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B. Overall Benefits

It is worth noting that in this paper, we assume DLA is

only used as a turbo-boosting technique – when there is

an idle core/thread. We assume otherwise exploiting explicit

parallelism yields better results.3

1) Performance: We first measure the overall perfor-

mance of R3-DLA and compare it to that of the underlying

microarchitecture and that enhanced by our baseline DLA.

We show these three configurations both without a hardware

prefetcher (left group of 3 bars In Figure 8-a) and with BOP

prefetcher (right group of 3 bars). All performance results

are normalized to the microarchitecture with BOP, which

represents the best we can do today without using DLA

techniques.

For clarity, we summarize the results of an entire bench-

mark suite into a single bar showing the geometric mean

of the whole suite and an I-beam showing the range of

values. This figure contains a lot of information that can

be organized into a number of observations:

i) R3-DLA provides high performance compared to

the underlying microarchitecture with an advanced

prefetcher. The speedup ranges from 1.06x to 2.24x

with a geometric mean of 1.4x. While the average

performance gain is significant, there is also a wide

range of result. DLA is most likely to be selectively

applied when the benefit is large. For instance, for

the top half of the applications, the geometric mean

speedup would be 1.51x.

ii) R3-DLA is also significantly faster than more basic

DLA designs. On average, R3-DLA outperforms the

baseline DLA by about 1.25x. This shows that the

proposed optimizations are effective. Figure 8-b briefly

compares the overall performance among a set of

related approaches: B-fetch [16], SlipStream [31] and

CRE [11].

iii) DLA is a fully-flexible prefetcher and thus has over-

lapping targets with a standalone prefetcher such as

BOP. When used with R3-DLA, BOP can still help

as it frees up DLA’s attention to better handle the

remaining targets, making the system a bit more

efficient. However, the “collaboration” between the

two mechanisms is unplanned for and the benefit

is somewhat limited: while BOP can improve the

baseline architecture by 1.27x, its effect on an R3-

DLA system is only 1.13x. We conjecture that a

more conscious collaboration between a standalone

prefetcher and DLA will be more effective.

2) Efficiency: One common concern of DLA architec-

tures is the energy cost. While it is tempting to assume

the energy cost (or at least power) doubles in DLA due

3Note that this is not always true anymore. And as more ideas are
developed, we may reach a point where the decision whether to use resource
for one type of parallelism or the other becomes a non-trivial one.

to executing the program twice, it would be a significant

overestimation even for the baseline DLA design, not to

mention R3-DLA, which further lowers the overhead.

First and foremost, LT is a much lighter thread, with an

average length of only 36% that of MT. Second, not all

LT activities are overheads. Some are time-shifted activities

(e.g., most memory accesses). Others help MT avoid almost

all wrong-path instructions. Finally, faster execution lowers

fixed energy costs. Note that LT-to-MT communication

is insignificant (averaging 2.2 bits per instruction) and is

faithfully modeled. To see this in a bit more detail, in

Table II, we show the amount of activities, the resulting

dynamic and static power in both LT and MT, all normalized

to the baseline microarchitecture. We see that LT expends

much less dynamic energy or power than baseline. Also,

despite running much faster than baseline, MT’s power is

comparable to the latter since it significantly reduces waste.

D X C Dyn.
Energy

Dyn.
Power

Static
Power

Power

DLA
LT 49% 48% 48% 48% 54% 94% 71%
MT 77% 86% 100% 88% 96% 99% 97%

R3-DLA
LT 35% 29% 29% 30% 42% 93% 64%
MT 77% 82% 100% 80% 110% 95% 103%

Table II. Average of activities (in Decode, eXecution, and
Commit stages), energy, and power for both threads in DLA
and R3-DLA all normalized to baseline. Note that for every
instruction committed in the baseline processor, 1.16 are
executed and 1.25 decoded.

Combining these factors together, our energy estimates

(Figure 9) suggest that the average normalized energy for

R3-DLA is 1.11x for the processor and 0.9x for memory

(all geometric means). There is significant variation among

individual benchmarks (with arithmetic mean 1.19x and 0.92

respectively.) In terms of energy delay product, DLA is 6%

worse than baseline while R3-DLA is 19% better on average.

(a) (b)

Figure 9. Comparison of energy normalized to baseline spent
in (a) cpu (b) dram by DLA and R3-DLA.

3) Application in SMT cores: Finally, with increased

efficiency and sophistication, R3-DLA opens up the DLA

architecture to more usage scenarios e.g., in SMT cores.

Since SMT presents new opportunities for optimizing DLA

architectures, a more complete treatment of the subject is

left in [23].
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(a) (b)

Figure 8. Performance gain over an aggressive baseline with BOP at L2. NoPF shows the normalized performance of a baseline
configuration with no prefetcher.

C. Detailed Analysis

We now look at the contribution of each individual

element in the design and some aspects of their interaction.

1) Offloading strided prefetch: With offloading stride

prefetching, we move the comparatively simpler task of

prefetching for certain strided accesses to a hardware FSM.

This alone reduces the skeleton size (from 66% to 45% on

average, more on that later), allowing LT to run faster, and

in turn making it more likely to succeed in other prefetches.

To understand the effect, we compare three different options

of prefetching these strided accesses: a modified stride

prefetcher [15],the baseline DLA, and R3-DLA. We show

the mean and median L1 MPKI (misses per kilo instructions)

for strided and the remaining accesses in Table III.

strided others

config. BL BL +
stride

DLA DLA
+ T1

BL BL +
stride

DLA DLA
+ T1

mean 12.4 8.4 5.9 2.1 7.4 6.9 6.1 4.8

median 10.0 4.8 4.0 1.1 3.9 3.5 2.8 3.2

Table III. L1 MPKI divided between strided accesses and
non-strided accesses, corresponding to four different config-
urations. For brevity, only means and median are shown.

We can imagine that T1 is far from perfect, requiring

the loop to start a few iterations before catching up. This

is why there is still a non-trivial 2.1 MPKI remaining for

strided accesses. But in comparison, both baseline DLA and

a hardware prefetcher are worse with 5.9 and 8.4 MPKI re-

maining respectively. Additionally, the offloading improved

DLA’s ability to target non-strided misses, reducing it from

6.1 to 4.8 MPKI on average. The medians show a similar

trend.

Figure 10 evaluates both performance and memory traffic

metrics among the various choices. For brevity, we only

show the aggregate result as the suite-wide average (repre-

sented by the bar) and range among individual applications

(represented by the I-beams).

First, we see that offloading works very well with DLA

across all four suites, achieving a geometric mean speedup of

1.14x over all benchmarks. Second, this offloading arrange-

ment is noticeably more effective as well as more efficient

than simply adding a hardware stride prefetcher. In terms

of performance, offloading never slows down the system in

(a) (b)

Figure 10. Comparison of (a) speedup and (b) normalized
memory traffic of two different configurations: DLA with a
stride prefetcher and DLA with offloading (DLA+T1).

any benchmarks and has a high mean speedup (compared

to 1.06x for adding a stride prefetcher). This is because the

T1 hardware does a much more limited and easier job than

a conventional stride prefetcher [6]. This can be seen by

the memory traffic result shown in Figure 10-b: the total

memory traffic is lower with adding T1 than with adding a

stride prefetcher. Some of the extra prefetches from the stride

prefetcher are useless and create pollution, which contributes

to the lower performance.

2) Reusing control flow information: Using a fetch buffer

to decouple fetch stage and decode stage is not a new

idea. The key point here is that DLA makes it far more

effective due to the much higher branch prediction accuracy.

Figure 11-a shows the performance gains obtained by adding

a fetch buffer over a baseline system and a DLA system.

We see from the figure that the impact of a fetch buffer

can be negative in the baseline system. In fact, for NPB suite,

the overall effect is negative. When averaging over all ap-

plications, the benefit is relatively small (4% improvement).

In contrast, when driven by the highly-accurate prediction

sequence from BOQ, the fetch buffer almost never hurts and

the benefit can be as high as 1.28x. Overall, the speedup due

to this addition is 1.08x.

3) Re-cycling skeleton: Re-cycling does not add new

direct mechanisms for better look-ahead. It merely searches

the configuration space for a better solution. Figure 12 shows

the distribution of the skeleton being chosen in re-cycling of

skeleton. Each color shows a different configuration being

chosen. Although some simulation windows have a single

choice for a major portion of the window, all of them

have chosen a number of different solutions for different

loops. This suggests that using simplistic heuristics to design
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(a) (b) (c)

Figure 11. (a) Comparison of performance gains obtained by a Fetch Buffer over BL system and over DLA system (b) The speedup
differences between dynamic and static tuning (c) Speedup when an optimization is applied first or after other optimizations.

Figure 12. The distribution of skeleton versions chosen
during online tuning.

the default skeleton is unlikely to pick an optimal design

for a particular situation. Some dynamic tuning is perhaps

necessary.

Our experiments show that re-cycling skeleton improves

performance by about 1.08 on average and up to 1.27x

as shown in Figure 11-b. The figure also compares the

difference between dynamic on-line and static off-line (using

training inputs) tuning. We see that static tuning consistently

shows better result. This is partly due to the fact that in

dynamic tuning, more time is spent trying out suboptimal

configurations. We note that in both approaches, the tuning

is done in a very crude way and in a coarse-grain manner.

This observation suggests that a more methodical, fine-grain

tuning may be able to further improve the performance of a

DLA system.

4) Synergy of individual optimizations: While some op-

timizations proposed improve the speed of the look-ahead

thread, others extract more benefit from the look-ahead

thread to improve the main thread. There is an additional

synergy when all these techniques are combined: in a DLA

system, the overall speed in a given phase is limited by

the slower of the two threads. So, if a technique speeds

up only one thread, the system performance will increase

but only to the point where the other thread becomes the

new bottleneck. The rest of the benefit will only manifest

when something is done to improve the other thread. So,

when multiple techniques are applied, their combined benefit

will usually be higher than implied by the benefit of each

individual technique measured in isolation. We show this

visually in Figure 11-c.

In this experiment, we take the baseline DLA platform

and measure the performance impact of applying only one

of the three techniques. We compare that to applying the

same technique last, that is, when the platform already

incorporated other techniques. We see that in all three cases,

if we measure the technique’s benefit when it is applied as

the first step, then none looks especially promising averaging

about 2-5% gain. However, if we measure the difference

it makes as the last technique to be applied, the same

technique now appears to have a noticeably higher 6-8%

benefit. Thus, as we add more optimizations to the design,

more performance benefit may be unlocked.

V. CONCLUSIONS

Today’s general-purpose applications continue to have

significant levels of implicit parallelism. However, data and

instruction supply subsystem presents significant barriers to

exploiting this parallelism in a conventional microarchitec-

ture. Decoupled look-ahead systems are a potential solution.

In this paper, we have explored a number of optimizations

to such an architecture. They include � reducing the look-

ahead thread workload by offloading simple prefetch pattern

to a finite state machine; � reusing available values and con-

trol flow information to improve execution and instruction

supply to the main thread; and � fine-tuning by cycling

through a number of pre-made skeletons. Each of these

techniques makes a seemingly limited contribution when

applied in isolation. But combined together, they improve the

performance of a basic DLA system by 1.25x and achieves

a speedup over a conventional architecture with a state-

of-the-art prefetcher by 1.4x on average. This performance

advantage differs from application to application and can

be as high as 2.24x, suggesting that if used selectively and

judiciously, an optimized R3-DLA system is already a high-

performance solution of exploiting the available implicit

parallelism. Furthermore, analyses of the system suggest the

potential for further improvements.
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