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ABSTRACT
Magnetic reconnection plays an important role in the energy conversion during solar eruptions.
In this work, we present a resistive magnetohydrodynamical study (2.5D) of a flux rope eruption
based on the Lin and Forbes model regarding cascading reconnection. We use a second-order
Godunov scheme code, to better understand the physical mechanisms responsible for high
reconnection rates and the internal structure, particularly in chaotic or turbulent regions, of the
coronal mass ejection (CME)/flare current sheet (CS). Two sets of simulations with Lundquist
numbers of 1.18 × 105 and 2.35 × 105 in the vicinity of the CS, generating a slow CME and a
moderate one, show global dynamic features largely consistent with the flare model. Looking
into the fine structure of the CS, magnetic reconnection employs simultaneously the Sweet–
Parker mode and time-dependent small-scale Petschek patterns in the early stage. As the flux
rope rises, the outflow region becomes turbulent, which further enhances the reconnection
rates. Our results show that coalescence and fusion processes of plasmoids provide a large
number of small, transient local diffusion regions to dissipate magnetic energy, and confirm
that the dissipation starts at macro-MHD scales rather than ion inertial lengths. The two runs
have the same range of the local reconnection rates (10−4–0.3) relevant to CMEs. The fast
rates are closely proportional to the square of the aspect ratio of multiple small-scale CSs.
The topology of the magnetic field and the turbulence spectrum of the energy cascade are
statistically addressed as well.

Key words: magnetic reconnection – MHD – turbulence – Sun: coronal mass ejections
(CMEs).

1 IN T RO D U C T I O N

In the process of solar eruptions, a long current sheet (CS) gener-
ally forms connecting the flare and coronal mass ejection (CME).
Magnetic reconnection modifies the magnetic topology and plays
a key role in the energy dissipation. It converts magnetic energy
into plasma kinetic and thermal energy, and accelerates particles.
When stretched or squeezed, the neutral region including an X-
type point collapses to a CS of complex structures (Priest & Forbes
2000). Several pieces of evidence indicate the presence of long re-
connecting CME/flare CSs, which are thought to be crucial in the
triggering and development of CMEs. Since the high temperature
emission line of [Fe XVIII] inside CME/flare CSs was reported by
Ciaravella et al. (2002), the high temperature emission of CS has
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been widely explored. Innes, McKenzie & Wang (2003) studied the
2002 April 31 event and reported emission of the high temperature
spectral line [Fe XXI] observed by SOHO/SUMER. For this event,
Raymond et al. (2003) pointed out that the [Fe XVIII] line observed
behind the front of the fast CME was likely the post-CME CS. The
high temperature lines also were studied by Bemporad et al. (2006),
Ciaravella & Raymond (2008), and Liu et al. (2010). Recently, Li
et al. (2018) and Warren et al. (2018) reported [Fe XXIV] emission
from the reconnection CS in the 2017 September 10 eruption, and
investigated its internal dynamical fine structure.

Many studies suggest that the reconnecting CS also can be de-
tected in white light observations. Webb, Burkepile & Forbes (2003)
reported that a bright ray appears in the wake of the CME and
lasts for hours or days in half of CMEs observed by LASCO (St.
Cyr, Plunkett & Michels 2000). Ko et al. (2003) and Lin et al.
(2005) made detailed studies of LASCO and UVCS observations
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and suggested that the bright band above the cusp structure indi-
cates the reconnection CS. And Ray-like features behind CMEs are
found to be related to a post-CME CS by Patsourakos & Vourl-
idas (2010) from multiviewpoint coronagraph observations. EUV
images of reconnecting CSs are seen in Solar Dynamics Observa-
tory/Atmospheric Imaging Assembly (SDO/AIA) observations. For
example, Reeves & Golub (2011) reported a likely CS above a C4.9
flare observed on 2010 November 3, in which the hot plasma has
been seen. For the same case, the inflow-outflow events in CSs have
also been seen with AIA by Savage et al. (2012).

Different magnetic configurations are considered for solar erup-
tion mechanisms. The famous Kopp–Pneuman model (Kopp &
Pneuman 1976) for the two-ribbon flare suggests that the erup-
tion jets form a fully open magnetic field enclosing a neutral CS.
The open field releases the energy stored in the force-free arcade via
magnetic reconnection in the CS and then relaxes into a closed struc-
ture. Lin & Forbes (2000) describe a catastrophe model that gives an
analytical solution for the equilibrium curve for the CME eruption.
When the pre-existing flux rope reaches the critical point, it erupts.
This model predicts the formation of a large-scale CS between the
flare and the CME and points out that magnetic reconnection plays
an essential role for the successful eruption. Alternative models for
triggering eruptions are available, such as the sheared arcade model
(Mikić & Linker 1994; Reeves et al. 2010), the breakout model
(Antiochos, DeVore & Klimchuk 1999; Karpen, S.K. & DeVore
2012), and the kink and torus instability models (Titov & Démoulin
1999; Török & Kliem 2005), which are not discussed here.

A great deal of theoretical and numerical work based on the 2D
catastrophe model of Lin & Forbes (2000) has been done. Wang,
Shen & Lin (2009) and Wang et al. (2015) studied numerically the
wave-like phenomena and the formation of EUV waves in solar
eruptions. On the other hand, Mei & Lin (2008) reported numeri-
cal experiments on the equilibrium curves associated with different
kinds of sources underneath the photosphere for triggering the erup-
tions. Recently, Mei et al. (2017) performed solar eruption simula-
tions driven by the T&D model (Titov & Démoulin 1999) to study
magnetic reconnection in three dimensions. Their results suggest
that the sectional view of the global magnetic structure as well as
the fine structure of the CS in the (x, z) plane shows an analogous
configuration with the previous 2D simulations.

How the internal structure of CS could be responsible for the en-
ergy conversion efficiency is still debated. To allow the eruption to
continue, the reconnection process generally needs to occur at a rea-
sonably fast rate. In MHD theory, the process of energy conversion
is divided into two steps: ideal MHD regime and non-ideal MHD
regime. The ideal MHD regime covers the scales of the energy
transfer without dissipation, while non-ideal effects introduce a re-
sistivity or magnetic diffusion in the MHD model. Cowling (1953)
points out that, if the ohmic dissipation is the only reason for flares,
the CSs with the thickness of several metres provide efficient means
to dissipate the energy necessary for flare eruption. However, in the
Sweet-Parker model conservation of mass limits the length of the
CS to roughly its thickness divided by the inflow Alfvén Mach num-
ber, which gives a reconnection rate too slow to account the rapid
energy release observed. Subsequently, Petschek (1964) found that,
as the MHD instabilities start developing, the aspect ratio of the CS
reaches an instability threshold which results in fast energy release
by magnetic reconnection and the generation of slow mode shocks
in outflow regions. The tearing mode is one of the most impor-
tant mechanisms responsible for breaking the CS into small-scale
magnetic islands or plasmoids (Furth, Killeen & Rosenbluth 1963).
Together with the plasmoid instability (Loureiro, Schekochihin &

Cowley 2007), externally generated turbulence (Lazarian & Vish-
niac 1999) or internally generated turbulence (Servidio et al. 2010),
these different dissipation styles may even work simultaneously to
yield a much more complex pattern and more efficient diffusion that
dominated only by a single mechanism (Mei et al. 2012).

Recent work with flare simulations shows that even as the en-
ergy cascades from large-scale structure into small-scale patterns,
the blobs undergo coalescence and fusion processes to form large
plasmoids again (Bárta et al. 2011; Shen et al. 2013; Ni et al. 2015).
Those simulations suggest that the further energy dissipation takes
place in local diffusive regions via cascading reconnection. At the
later stages of the reconnection process, a dynamic balance of the
evolution and reconnection rate eventually tends to be constant in-
dependent of the initial configuration (Loureiro et al. 2007; Shen
et al. 2013). Thanks to the rapid computing ability development
in the last decade, the cascading process can be observed at high
resolution in numerical experiments. The cascading reconnection
outer scale is found to be at least one order of magnitude smaller
than the global scale and significant dissipation at macroscale is
found in many works. The index of the power spectrum parallel to
the local magnetic field is k|| = 2.14 compared to the perpendic-
ular one k⊥ = 5/3, which reveals the anisotropy of the turbulence
in CSs. Recently, the analytical work of Forbes, Seaton & Reeves
(2018) also demonstrates that, to achieve fast reconnection, MHD
turbulence could be an important candidate to shorten the length of
the diffusion region.

In this study, we investigate the eruption of a pre-existing flux
rope driven by a quadrupole source buried below the photosphere,
including gravitational stratification, resistivity, and viscosity. A
realistic plasma environment is considered along the direction per-
pendicular to the surface of the Sun. Lin (2002) compared the
dynamical properties of CMEs in different plasma environments.
His work suggested that the S&G model (Sittler & Guhathakurta
1999) allows for a more reasonable correlation between CMEs and
flare properties as well as a better estimation of the reconnection
speed compared to an isothermal atmosphere. The adaptive mesh
refinement (AMR) technique is utilized inside the CS to reduce the
numerical dissipation and capture the plasmoid behaviour in the
global magnetic disruption background. We analyse exhaustively
both the global energy conversion and the energy flow around the
CS as well as the magnetic energy spectrum inside. Plasmoid coa-
lescence via magnetic reconnection and the local current geometry
are also studied for CMEs of different velocities.

The paper is organized as follows. In Section 2, we present
the resistive 2.5D MHD equations including the physical pro-
cesses incorporated in this work. The initial magnetic field is
computed from three sources: the quadrupole source, the flux
rope and its mirror image, and the boundary conditions are speci-
fied for the particular cases. We also compute the numerical dif-
fusion inside the CS over a period of time to make sure that
the accumulated errors would not introduce significant false cur-
rents via numerical reconnection. The numerical results are cat-
egorized by global evolution and local topology given in Sec-
tion 3. Lastly, the conclusions and the discussion are presented in
Section 4.

2 N U M E R I C A L M O D E L D E S C R I P T I O N

The MHD simulation investigated here is analytically formalized by
Forbes, Priest & Isenberg (1994). The evolution of the system can
be adequately described by a 2.5D magnetic disruption MHD model
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including gravity, viscosity, and resistivity in Cartesian geometry:

∂t ρ + ∇ · (ρv) = 0 (1)

∂t e + ∇ ·
[

(e + p + 1

2μ
|B|2)v − 1

μ
(v · B)B

]

= ρg · v + ∇ ·
[
vτ + η

μ
B × (∇ × B)

]
(2)

∂t (ρv) + ∇ ·
[
ρvv + (p + 1

2μ
|B|2)I − 1

μ
B B

]
= ∇ · τ + ρg (3)

∂t B = ∇ × (v × B − η∇ × B) (4)

where e = p/(γ − 1) + 1/2ρv2 + B2/2μ is the total plasma energy
per unit volume (including thermal energy, kinetic energy, and mag-
netic energy), η is the resistivity, μ is the magnetic permeability in
vacuum, τ = ν[∇v + (∇v)T − 2(∇ · v)I/3] is the stress tensor, ν is
the dynamic viscosity coefficient, ρg is the gravity force, and γ =
5/3 the ratio of specific heats. To complete the above equations,
the divergence-free condition (∇ · B = 0) should be satisfied at all
times of the evolution.

In the framework of the catastrophe mechanism for the solar
eruption, the loss of the equilibrium is purely mechanical, or ideal-
MHD, in which diffusion or dissipation of the magnetic field does
not occur. This happens when the coronal magnetic configuration
evolves gradually through a sequence of equilibrium states to certain
critical states at which any further evolution in the system turns
dynamic. At a critical state, the system tends to jump, within the
Alfven time-scale, from one equilibrium state to another one at a
lower energy, and this jump constitutes the ‘catastrophe’.

Since the energy driving the eruption comes from the photosphere
as a result of deformation of the coronal magnetic field, of which the
footpoints are anchored in the photosphere and move unceasingly
with the photospheric plasma, any attempt to explain the storage of
the energy in the coronal magnetic field must consider the photo-
sphere as a reservoir of the energy, namely variations of the coronal
magnetic field during the gradually evolutionary phase. Usually,
forms of the change in the photosphere include the plasma motion,
decay or enhancement of the photospheric magnetic field as a re-
sult of submerging or emerging of the magnetic structure, magnetic
reconnection (cancellation), and so on. Analytic studies, numerical
experiments, and observations have confirmed that all these causes,
except the enhancement of the photospheric magnetic field, could
play the role in triggering the eruption (Ding, Hong & Wang 1987;
Feynman & Martin 1995; Antiochos et al. 1999; Chen & Shibata
2000; Forbes 2000; Amari et al. 2003; Lynch et al. 2005; Forbes et al.
2006; Jiang et al. 2012; Yan et al. 2012; Schmieder, Démoulin &
Aulanier 2013).

For the eruption discussed in this work, the catastrophic loss of
equilibrium in the coronal magnetic configuration results from the
decay of the magnetic field in the photosphere, which has been
confirmed reasonable by the analytic investigation of Isenberg,
Forbes & Demoulin (1993), has recently further confirmed numer-
ically by Xie et al. (2017). They noticed that the system evolves
roughly following the way given by the analytic solution, and a crit-
ical state does exist, at which the loss of equilibrium in the system
eventually took place as a perturbation was imposed. Their results
definitely indicate that the loss of equilibrium in the system in the

catastrophic fashion does occur as the system eventually evolves to
the critical state driven by the decay of the photospheric magnetic
field. In this work, we further look into the dynamic behaviour of the
system after the loss of equilibrium. The initial state of the system is
selected slightly deviating from the critical one to push the system
to evolve faster so that we are able to more focus on the topic of our
interests.

This work is performed using the AMR embedded code NIR-
VANA3.8 (Ziegler 2004, 2005, 2008, 2011), which applies the block
clustering parallel infrastructure (Hilbert space-filling curve map-
ping) to manage the data communication. The NIRVANA code em-
ploys the second-order Godunov scheme using the finite volumes
method, and the integral system then turns into many local Riemann
problems solved by HLL-type (Harten–Lax–van Leer) solvers. The
divergence-free condition of the magnetic field can be guaranteed
by the constrained transport method and the conserved parameters
will be updated explicitly in time by the Runge–Kutta calculator
(RK3, RK4). We stress that the addition of Spitzer thermal conduc-
tion leads to an enormous computing time, and the current explicit
solver should be optimized to balance the computation cost and
the numerical stability. Therefore, the current simulation does not
include thermal conduction. However, the rise of the flux rope and
formation of large-scale CSs are not strongly affected by thermal
conduction, because the conduction time τ c = L2/κ considering the
Spitzer model for κ in corona is generally several orders of magni-
tude greater than the global evolution time of CMEs. Anisotropic
thermal conduction in the corona will be included in the future by
developing a new semi-implicit method to save the computation
resources.

We set the gravitational acceleration as g = −g0ŷ/(1 + y/R�)2,
with the solar radius R� = 6.961 × 108 m and the gravitational
acceleration near the solar surface g0 = 274 m s−2. Here, ŷ is the
unit vector in y-direction. Following the work of Isenberg et al.
(1993), no CS exists at the very beginning, but only one initial X-
point connects to the flux rope and the bottom layer. This X-point
collapses into a CS in a short time after the eruption initiates, and the
magnetic diffusion outside the CS is negligible so that we only set a
uniform resistivity η in a strip covering the CS since its formation.
In the simulation, we choose a reference length L0 = 108 m and
the strip is defined as (x, y) ∈ [ − 0.05L0, 0.05L0] × [p, q], where
the time-dependent p and q represent the lower and upper ends of
the CS. According to the existing numerical experiments of Shen,
Lin & Murphy (2011) and Mei et al. (2012), their results showed
that the initial electric resistivity or magnetic diffusivity is just used
as a triggering required for invoking the tearing mode in the CS,
as long as the tearing mode well develops, the dissipation due to
the consequent turbulence dominates the diffusion in the sheet. So
the initial set-up of the resistivity does not affect the final result
significantly. The CS develops with its lower end attached to the
bottom flare and is stretched by the motion of the flux rope. Imaging
the background magnetic field driven by a quadrupole source buried
under the photosphere at a distance d, the pre-existing flux rope is
set-up at the initial height h0 in the corona (see Mei & Lin 2008 for
more details).

Following the work of Forbes (1990) for the dipole case, we adopt
a smooth distribution of the current density inside the flux rope:

jz(R−) = j0J , 0 ≤ R− < (r − 	/2) (5)

jz(R−) = j0J {cos[π (R− − r + 	/2)/	] + 1}/2,

(r − 	/2) ≤ R− < (r + 	/2) (6)
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jz(R−) = 0, R− ≥ (r + 	/2), (7)

where r is the internal radius, 	 is the width of the shell connecting
to the outer region, j0 is the maximum current density at the centre of
the flux rope, J is the intensity of the electric current flowing inside
the flux rope in units of I0, with I0 the current intensity carried by
the flux rope, and R− = [x2 + (y − h0)2]1/2. Otherwise, the use of
a uniform profile inside the flux rope as in Nishida, Nishizuka &
Shibata (2013) causes a non-negligible error over the thin shell,
which eventually leads to a failure in convergence. As a result, the
azimuthal component of the flux rope magnetic field Bφ is

Bφ(R) = j0JR/2, 0 ≤ R < r − 	/2 (8)

Bφ(R) = j0J {(r − 	/2)2/2 − (	/π )2 + R2/2

+ (	R/π ) sin[π (R − r + 	/2)/	]

+ (	/π )2 cos[π (R − r + 	/2)/	]}/(2R),

r − 	/2 ≤ R < r + 	/2 (9)

Bφ(R) = j0J [r2 + (	/2)2 − 2(	/π )2]/(2R),

R ≥ r + 	/2. (10)

To balance the internal equilibrium of the flux rope, we add the axial
component of magnetic field within the flux rope Bz so that the flux
rope can be force-free. The force-free condition in cylindrical polar
coordinates is described as follows:

jz(R−)Bφ(R−) − jφ(R−)Bz(R−) = 0, (11)

where jφ is the azimuthal component of the electric current inside
the flux rope. And we have

jφ(R−) = − 1

μ

dBz

dR−
. (12)

Then it follows that

Bz(R−) =
√

2μ

∫ +∞

R−
jz(R)Bφ(R)dR, (13)

where Bz functions as a guide field confined in the radius of the flux
rope.

The initial configuration and the boundary conditions are as fol-
lows. The background magnetic field is driven by a quadrupole
source underneath the photosphere at a depth of d = 0.4L0 with a
strength 125σμI0/(96π ), where the background relative strength is
σ = 0.8 and the current intensity I0 is given from the predefined
j0J in equations (5–7). The initial height of the pre-existing flux
rope is given as h0 = 0.61d with a critical radius of r0 = 0.15d,
which allows for a catastrophic eruption (see the detailed equilibria
analysis in Forbes 1990; Mei & Lin 2008). Note that the CS does
not exist at the very beginning, but its formation is determined by
the motion of the flux rope. The expressions for the magnetic field
including the pre-existing flux rope in our simulation are described
by the following equations,

Bx = −Bφ(R−)(y − h0)/R− + Bφ(R+)(y + h0)/R+
+Bφ(r + 	/2)Md(r + 	/2)(d + y)(3x2 − (y + d)2)/R6

d ,

By = Bφ(R−)x/R− + Bφ(R+)x/R+
+Bφ(r + 	/2)Md(r + 	/2)x(−x2 + 3(d + y)2)/R6

d ,

(14)

where

	 = 0.025d, r = r0 − 	

R2
+ = x2 + (y + h0)2

R2
d = x2 + (y + d)2

M = 125σ

32
.

In the above equations, the terms R+ and Rd originate from its
mirror image below the photosphere and the quadrupole source,
respectively.

The simulation domain is (x, y) ∈ [ − 4L0, 4L0] × [0, 14L0],
in which y = 0 represents the photosphere, and the whole domain
covers approximately 2R� beyond the solar surface. The initial
density set-up near the bottom is specified to hold approximately
the boundary condition, because the line-tied boundary condition
utilized at the lower boundary is too complicated to be satisfied
analytically as described in Forbes & Priest (1984). We adopt instead
a very high density in the two thin layers below the corona with the
depths hp = hc = 1 × 106 m to satisfy the stratification following
the work of Forbes (1991), which in turn decreases the cost of the
calculation significantly. The temperature at the base of corona (i.e.
y = hp + hc) is given as Tc = 1.0648 × 106 K, while the temperature
at the photosphere is set to Tp = 4300 K when y ≤ hp (the lowest
value in fig. 9 of Linsky & Avrett 1970). We eventually treat the
temperature in the transition region (hp ≤ y ≤ hp + hc) by a simple
interpolation as Mei et al. (2012) as well as the density distribution.
Note that, in the practical simulations, we also execute a static mesh
refinement (SMR) of maximumly four levels to maintain the steep
density gradient in this particular region. Four successive layers are
initially set-up before the computation starts: level 1 for y ≤ 0.04L0,
level 2 for y ≤ 0.03L0, level 3 for y ≤ 0.02L0, and lastly level 4 for y
≤ 0.01L0. Then, we describe the plasma density distribution in the
corona following the S&G model (Sittler & Guhathakurta 1999). It
takes the form of ρ(y) = ρ0f(y), where ρ0 is the reference density
and f(y) is a dimensionless function of the height y (in units of the
solar radius) given by

f (y) = a1z
2(y)ea2z(y)[1 + a3z(y) + a4z

2(y) + a5z
3(y)], (15)

where z(y) = 1/(1 + y), a1 = 0.001292, a2 = 4.8039, a3 = 0.29696,
a4 = −7.1743, a5 = 12.321, with f(0) = 1. Consequently, the gas
pressure is computed by

p(y) = pc −
∫ y

hp+hc

ρgdy. (16)

Here, we have pc = 2ρ[(hp + hc)/R�]TckB/mH, the Boltzmann con-
stant kB = 1.38 × 10−23 erg K−1, the mass of the hydrogen atom
mH = 1.67 × 10−27 kg. Note that the pressure also includes elec-
trons.

Additionally, the work of Mackay & van Ballegooijen (2009)
points out that the flux rope consists of cold filament material com-
ing from the chromosphere, which is isolated from the hot corona
by a thin transition shell. Without losing generality, we simply set
a constant cool temperature in the internal radius and a smooth dis-
tribution in the outer shell of the flux rope to avoid the unexpected
sharp discontinuity as follows:

T (R−) = Tf , 0 ≤ R− < (r − 	/2) (17)

T (R−) = (Tamb − Tf )(R− − r + 	/2)/	 + Tf ,

(r − 	/2) ≤ R− < (r + 	/2) (18)
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T (R−) = Tamb, R− ≥ r + 	/2, (19)

where Tf = 5 × 104 K and Tamb is the ambient temperature sur-
rounding the flux rope obtained according to the ideal gas law.

In order to further study the fine structure responsible for the
cascading reconnection and energy conversion inside the CS during
the solar eruption, we use a uniform root grid of 800 × 1400 and
the AMR refinement of seven levels in the vicinity of the CS. This
yields the largest grid size of 	x = 	y = 0.01L0 and the smallest
grid corresponding to a length of 7.5 km.

Another important improvement includes the method for the open
boundary condition implementation along the three sides excluding
the bottom (y = 0). One can find the theoretical description of an
open boundary in the work of Forbes & Priest (1984) through which
the magnetic field and the plasma can enter or exit freely. By conven-
tion, people are used to approximating this condition with a simple
extrapolation method, more particularly the ‘outflow’ condition, to
abstain from the computational complexity. However, the simple
extrapolation boundary condition may cause unphysical wave re-
flection at the boundary, and the use of the ‘outflow’ condition will
cause small error near the boundary. Orlanski (1976) also mentions
that the boundary could produce a substantial effect on the system
as the moving MHD waves or the magnetic bubble surrounding the
flux rope approach the boundary. In our numerical experiments, we
observed that the flux rope was obstructed by the outflow boundary.
A larger simulation domain may reduce the impact of the boundary,
but the flux rope will stop and fluctuate at a certain height which is
still far away from the top. To solve that problem, we made a simple
extrapolation in a sense of zero gradient over the magnetic potential
instead of magnetic field so that the flux rope can propagate through
the boundary successfully.

For the parameter study of this model, we launched two sim-
ulations with different values of the electric current density in-
side the flux rope j0J in equations (5–7), which yields the initial
magnetic fields of different strengths. The reference density ρ0 is
1.67 × 10−11 kg m−3 at the surface of the Sun and we add a uni-
form resistivity η = 5 × 108 m2 s−1 in the strip defined above,
eventually leading to different Lundquist numbers S = VFRh0/η,
where VFR is the initial Alfvén velocity at the centre of the flux
rope. The locations p and q are taken as fitting functions obtained
by performing the same simulation several times. Thus, the re-
sistive diffusion time is calculated as τd = L2

0/η = 5.56 × 103 h
(for the characteristic length L0). The kinematic viscosity, ν, is
also set to be uniform with a value of 1 × 108 kg m−1 s−1, and it
corresponds to a viscous diffusion time, τν = L2

0/ν, or 5τ d. The
domain of AMR is also confined in a strip covering the CS de-
fined as (x, y) ∈ [ − 0.2L0, 0.2L0] × [p, q], rather than the entire
simulation volume, to save computational resources, because the
complex geometry and small-scale events inside the CS are what
we care about the most in this work. Run A and Run B correspond
to different p and q as reported in Table 1. Fig. 1(a) shows the
initial magnetic configuration for both runs. Before performing the
numerical experiments, it is appropriate to pay serious attention
to the numerical diffusion when the AMR is used. As we know,
the accumulated error can introduce false electric currents. If they
become substantial compared with the physical current, it causes
erroneous estimation of the geometry of the CS and its reconnection
rate. To estimate the effect of numerical diffusion, we rewrite the
magnetic induction equation by adding an extra diffusion term as

follows.

∂t A − v × B + η∇ × B = ηn∇ × B, (20)

where ηn is the equivalent numerical diffusivity.
We notice that the magnetic potential A is calculated by inte-

grating the magnetic field B at the given time, and the integration
originates at a fixed point (normally on the boundary) far from the
interesting area with an initial value A0 of zero at this point. This
allows the resulting magnetic potential terms A to be comparable
on the same frame, and hence the term ∂t A is deduced by the fi-
nite difference method. Fig. 1(b) plots the averaged ratio ηn/η in a
vicinity of the PX-point from t = 270 to t = 800 s computed from
the outputs using seven levels of AMR for Run A. As shown on the
plot, its percentage starts at 12 per cent, and drastically falls off to
4 per cent, then trends to be flat around 2 per cent afterwards. The
explanation is based on the fact that the use of AMR with a maxi-
mum of seven levels does not reach the highest level immediately.
When the structure inside the CS becomes more complex, the com-
putation needs to utilize the finer resolution to capture it. The plateau
of this curve indicates that the finest resolution is reached and the
amplitude of the ratio is of the order of 2 per cent, which is ignorable
in the computation. In other words, numerical diffusion does not
strongly affect the physical results in the area of interest. The entire
simulation was performed on Milkeyway-2 supercomputer centre
in Guangzhou employing 480 CPUs in an MPI–open-MPI parallel
environment.

3 SI MULATI ON R ESULTS

In this section, we compare the global evolution of the flux rope
eruption for Runs A and B as well as the dynamical features inside
CS responsible for the energy conversion when magnetic reconnec-
tion occurs. As we know, the difference between Run A and Run B
lies in the maximum current density j0J, which yields the magnetic
field of about 120 and 240 G at the origin, respectively.

3.1 Global evolution

The snapshots in Fig. 2 show the time evolution of the mass density
on a log scale in Run A and Run B. The top panels are for Run
A at different flux rope heights hFR = 2 × 108, 5 × 108, 8 × 108

m, and the bottom panels are for Run B at the same heights. The
upward reconnection jets collide with the ejected flux rope to form
a high-density envelope below the CME, while the downwards
reconnection jets collide with the closed magnetic field to form
the flare loops at the bottom. At hFR = 2 × 108 m, a fast shock
is formed by the motion of the flux rope. Run A generates a fast
shock of 350 km s−1 near the borders, while Run B has a fast shock
of 800 km s−1 which does not touch the borders yet. The global
current layer connecting the flux rope and the flare loops forms a
Y-structure at an early stage. At hFR = 5 × 108 m, a dimming region
between the fast shock and the CME edge is formed, and a high-
density shell is observed around the flux rope due the accumulation
of the plasmoids ejected from the reconnecting CS. The shell, the
flux rope, and the region in between constitute the so-called three
components of CMEs. At hFR = 8 × 108 m, Run B displays another
conspicuous dimming region over the flare loop, while Run A does
not. This phenomena can only be found in our numerical tests for
the moderate or fast CMEs, because the CS shrinks so quickly that
there is no time to replace the mass transported into the CS via
magnetic reconnection. One can also notice that the fine structure
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Cascading reconnection in solar eruptions 593

Table 1. Simulation parameters for Runs A and B. Here, j0J is the current inside the flux rope, S is the Lundquist
number, p and q are lower and upper ends of the CS.

j0J(A m−2) S = h0VFR/η p (m) q (m)

Run A 0.974 × 10−2 1.18 × 105 2.5 × 106 4.08 × 106 + 4.65 × 104t + 23.34t2

Run B 1.948 × 10−2 2.35 × 105 2.5 × 106 9.3 × 106 + 1.13 × 105t + 70.563t2

Figure 1. (a) Distribution of the initial magnetic field and mass density in the simulation domain. (b) Ratio of the numerical diffusivity ηn to the physical one
η versus time.

of CS for Run B is more turbulent for Run A due to the higher
Lundquist number in the vicinity of CS.

In Fig. 3, we show the time-distance plots of density ρ on a log-
scale along x = 0 line in Runs A and B. From that figure, we use
an automatic diagnosis to track several characteristic variables. The
fast shock and CME leading edge are detected as sharp changes
in the mass density, between which there is a dimming region.
The centre of the flux rope has the maximum mass density of
the cool material along the central line x = 0 in the corona. The
termination shocks towards the CME and sunward are detected as
the discontinuities of vy as shown in Fig. 4. The principal X-point
is identified as the location where the magnetic flux changes the
fastest in CS. By these methods, we are able to follow the dynamic
features appearing in the entire simulations, which are generally
consistent with the flare model (Reeves & Forbes 2005; Forbes
et al. 2018). The red line in Fig. 3 corresponds to the position of
the core of flux rope. We observe surprisingly that Run A presents
a sigmoid behaviour with two turning points at about t = 1000 and
t = 3000 s, as does the CME leading edge. The separated region
between the flux rope and the CS consists of a thin layer of the hot
and dense plasma that oscillates due to non-symmetric outflow jets.
When the region becomes turbulent because of the compression
between the ejected plasmoids and the CME, multiple magnetic
islands merge into a large one via reconnection and heat the plasma
again. The lower end of the CS is attached to the flare loops with the
termination shock and alternating plasmoid oscillations in between.
High-density plasma blobs start to appear at t = 220 s for Run A
and t = 100 s for Run B, being ejected from the CS. In Run A, we
calculate the length of the CS LCS right before the first plasmoid’s
appearance by differentiating the positions of the upper and lower
tips of the CS as well as the width δLS by measuring the half-

height current across the PX-point. They are LCS ≈ 1.15 × 104

km and δCS ≈ 90 km. This indicates that the aspect ratio of CS
LCS/δCS ≈ 127.8 for the onset of the tearing mode. As time goes on,
more and more plasmoids appear in the global layer and frequently
collide with each other before being ejected from the CS. This fact
is important to improve the understanding of the intermittency of
the magnetic reconnection speed. We also notice that the principal
X-point (solid line) is located near the bottom end of CS during
the entire eruption for both runs, causing the energy partition to be
unequal. The development of plasmoids is seen more clearly in the
time-distance diagram of the vertical velocity vy along the x = 0
line zooming in [0, 6 × 108] for both runs as shown in Fig. 4. In Run
A, the upper outflow has an average speed of vy ≈ 1258.3 km s−1,
while the average sunward speed is vy ≈ 723 km s−1. In Run B,
the corresponding upwards speed is vy ≈ 2345.4 km s−1 and the
sunward one is vy ≈ 944.5 km s−1. We notice that the upper and
lower outflows are not symmetric. The kinetic energy available in
the upper outflow is generally much larger than the lower one. In
addition, we calculate the typical Mach number at the shock front
for Run A, which gives MA = 3.75 for the upper termination shock
and MA = 1.80 for the lower termination shock, respectively. The
modest Mach numbers are important to understand the properties of
termination shocks, especially since shocks below Mach numbers
of about 2.7 are likely to be sub-critical and may not accelerate
particles efficiently. That is very consistent with the Mach number
for a solar flare termination shock given by both observations and
simulations (Chen et al. 2015).

To compare with CMEs in the corona, we plot the rising veloc-
ities of the flux rope as functions of height for both runs in Fig. 5.
The green dashed line presents the rising speed in the range 100–
240 km s−1 for Run A, while the blue solid line gives the speed
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594 J. Ye et al.

Figure 2. Snapshots of the magnetic field and the coronal mass density at different heights for both Run A and Run B.

Figure 3. Time evolution of the mass density along x = 0. (a) Run A. (b) Run B.

ranging from 240 to 660 km s−1 for Run B. Recently, Song et al.
(2018) studied the C1.1 flare on 2011 December 25 with AIA and
Helioseismic and Magnetic Imager (HMI) data, and they analysed
the contributions of non-equilibrium instability and magnetic re-
connection responsible for the two stages of acceleration. Their

results are consistent with our Run B, which shows also two stages
of acceleration under 1 R�. Since the flux rope is able to escape
smoothly from the top boundary at the end of both runs, recon-
nection is proven to be fairly efficient to drive the eruption. The
reasonable explanation is that the magnetic field for Run A is too
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Cascading reconnection in solar eruptions 595

Figure 4. Time-distance diagram of vy along the x = 0 line. (a) Run A. (b) Run B.

Figure 5. Comparison of the flux rope rising velocities versus height for both Run A (green dashed line) and Run B (blue solid line).

weak (<27 G on average at the low corona) to overcome gravity in
this model, which does not meet the minimum strength required in
the calculation of Lin (2002). However, a stronger background mag-
netic field generates a faster CME from the same non-equilibrium
state, but the general dynamical properties of slow and fast CMEs
show no difference in agreement with Svestka (2001).

3.2 Energy dissipation and spectrum study

In this section, we consider the energy integral for specific regions
of interest to quantify the various energy flows. By integrating both
sides of equation (2) over the specified volume and applying the
divergence theorem, we get the following expression:

∫ ∂

∂t
(E + K + W) =

∫
(ρv · g)dV

−
∫ [

(
γp

γ − 1
+ ρv2

2
)v + 1

μ
E × B + vτ

]
· dS, (21)

where E, K, and W are the internal, kinetic, and magnetic energy
densities. The energy is dissipated via reconnection to allow for
a successful escape. In the absence of reconnection and energy
dissipation, the flux rope will be trapped and oscillate at an upper
equilibrium altitude. Firstly, we calculate the dissipated magnetic
energy Em, the kinetic energy Ek, the generated thermal energy Ei

and their ratio Ek/Em over the entire simulation domain as functions
of the height of flux rope for both runs for a general comparison.
Since open boundaries are used, the system is not isolated, and
substantial energy flows through the upper boundary. Here, the
magnetic, kinetic, and thermal energy flowing into the simulation
volume through the upper open boundary from the beginning (t =
0) to time t is denoted by EMF, EKF, and ETF, respectively (note
that these quantities may have negative signs if energy flows out of
the simulation volume). The magnetic, kinetic, and thermal energy
confined in the full volume at time t are denoted by EML, EKL, and
ETL. Accordingly, the initial magnetic, kinetic, and thermal energy
is denoted by EMI, EKI, and ETI, respectively. As a result, we obtain
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596 J. Ye et al.

the relationship Em = EMI + EMF − EML, Ek = EKL − EKF − EKI,
and Ei = ETL − ETF − ETI for the above notations. The detailed
calculations for the mentioned quantities are similar to those in Ni
et al. (2012b).

As shown in Fig. 6, the dissipated magnetic energy in the left-
hand panel on the top manifests generally in a piecewise linear phase
with the only turning point at y ≈ 3 × 108 m, which corresponds to
the two stages of acceleration found in Fig. 5. The right-hand panel
on the top shows the kinetic energy converted from the magnetic en-
ergy, which reveals an accumulation of the kinetic energy below y ≈
2 × 108 m, and then a smooth decay afterwards. The left-hand panel
at the bottom shows the generated thermal energy, which shows a
quasi-linear regime versus the height of the flux rope. Thanks to
the high-resolution grids used in our simulations and conservative
numerical schemes with low diffusion of the code, the dissipated
magnetic energy equals almost the sum of the kinetic energy and
the generated thermal energy; the errors are under 1 per cent due
to the numerical dissipation. Although the energy flows (magnetic,
kinetic) for Run B are several times greater than Run A, the per-
centage curves of the kinetic energy versus the dissipated magnetic
energy are very similar as shown in the right-hand panel at the bot-
tom. Indeed, according to our calculation, even in the accumulation
phase of the kinetic energy at least half of the dissipated magnetic
energy goes into heating the plasma (here, we ignore the contri-
butions to particle acceleration and wave energy at MHD scales).
Until the end, the kinetic energy ratio is within 10 per cent for Run
A and 20 per cent for Run B, respectively. In other words, most of
the magnetic energy is converted into the thermal energy during the
dynamic process of CMEs.

In order to determine the details of the energy conversion me-
diated by plasmoid instability in the CS during the CME eruption,
we set an initial volume with the size of 2000 × 6000 km2, whose
top and bottom are the upper and the lower ends of the CS (see
Fig. 7a), following the entire CS since its formation in Run A . The
length of the volume changes with upper and lower tips of the CS
when stretched by the motion of the flux rope. The Poynting flux∫

E × B/μ · dS, the enthalpy flux
∫

[γ p/(γ − 1)]v · dS, the kinetic
energy flux

∫
(ρv2/2)v · dS and the viscosity flux

∫
τv · dS that flow

across the control volume are computed by integrating along the
associated boundaries. Fig. 7(b) shows the different components of
energy that flow across the inflow boundaries. The Poynting flux
dominates during the entire eruption, while the kinetic energy flux
and enthalpy fluxes are one or two orders of magnitude smaller than
the Poynting flux in the early stages, then converge to the same
order later. In Fig. 7(c), the bulk energy flow at the upper outflow
is due to the kinetic energy flux, and the enthalpy flux is nearly one
order smaller. In Fig. 7(d), we can observe that the enthalpy flux
is slightly greater than the kinetic energy flux at the lower outflow.
The kinetic energy flux is available for conversion to thermal energy
at the termination shock to heat the plasma in the quasi-stationary
flare loops. Comparing the Poynting flux in Figs 7(b–d), one can
find evidence that 99 per cent of the magnetic energy coming from
inflow region is converted to other sorts of energy by magnetic
reconnection. The viscous flux is not shown because it is several
orders of magnitude smaller than the others.

Looking into the energy distribution of magnetic islands in the
time evolution of the CS, we perform a 1D spectral analysis along
the CS (x = 0 line) for the magnetic energy using the Fourier trans-
form method for Run A. The left column of panels in Fig. 8 shows
the distribution of the Bx component of magnetic field, averaged
along x-axis, in a strip covering the evolving CS as well as the bot-
tom flare loops five cells wide at the AMR refinement level 5 for

times t = 505.29, t = 998.036, and t = 2001.02 s. The negative peak
located near the bottom boundary in the black lines is identified as
the flare loops enclosed by the magnetic field, and the null points
on the right side indicate small-scale magnetic islands or plasmoids
within the CS. One can also notice the significant bumps between
the termination shock and the flare, which yield many small-scale
magnetic islands as reported in the work of Takahashi, Qiu & Shi-
bata (2017) and Jelı́nek et al. (2017) recently. The right column of
panels in Fig. 8 are obtained by applying the Fourier transform to
the previous Em to plot the magnetic power spectrum as a function
of wavenumber k. As we know, the greater k is the smaller scale
structure it represents. We follow all the magnetic islands in the
developed CS driven by the motion of the flux rope at different evo-
lution stages and fit their spectra using a power law. We fit the spec-
trum using the function E = a0k−γ on doubly logarithmic axes with
identical error bars over the k range for the quasi-linear phase. The
solid line in Fig. 8(b) gives the discretized result from the Fourier
transform at time t = 505.29 s and the red straight line indicates the
magnetic spectrum index γ m obtained by linear regression. In this
stage, magnetic islands develop smoothly in the outflow direction
and the spectrum distribution is dominated by a single power law
of index 1.63. Fig. 8(d) shows the situation at t = 998.036 s and the
spectral index is 2.05, as the distribution starts to become steep due
to the growth of large plasmoids. The energy now mainly cascades
to large scales. In the later stage of Fig. 8(f), the magnetic spectrum
no longer follows a single power law, but more a gradual rollover
of slopes. Accordingly, the spectral indices are 1.83 for the inertial
range (1 < k < 1000) and 5.10 for the dissipation range (k > 1000),
respectively. We have also checked that the increasing profile for k
> 2000 is mainly related to the small-scale islands resulting from
the interaction between the flare and the termination shock. Note
that the magnetic spectrum here is more flattened compared to that
of Fig. 8(d) because of the appearance of secondary islands (Ni et al.
2012a; Ni, Lin & Murphy 2013), and magnetic islands engage in a
steady cascading reconnection process.

The fact is that the energy transfer ends at ≈200 km (or k ∼ 1000)
in Fig. 8(f), which is understood as the turning point between the
inertial range and the dissipative range and the smallest recognizable
CSs in this model. The typical width of the dissipative CS now
is Ld = 52.9 km as given by the full-width at half maximum of
the current density horizontally across the principal X-point. Some
numerical work suggests that the plasmoid dimensions along the CS
are one order (typically ×6) larger than that across the CS (Bárta
et al. 2011), the dissipation scale of the magnetic energy along the
CS is thus ≈6Ld = 300 km, which is already attained in Fig. 8(f).
The distribution of the Fourier spectrum reveals the filamented CSs
between plasmoids embedded within the global CS layer.

On the other hand, the evidence of dissipation at macroscales does
exist in the induction equation. By ignoring the effect of the fluid
movement, equation (4) reduces to ∂t B = η∇2 B with η constant.
So the energy dissipation is also related to the change of the mag-
netic field in space, and it reveals approximately τd = l2

c /η. In Run
A, the typical diffusion time for plasmoid coalescence processes
is considered as the average full time of two plasmoids merging
over τ d ≈ 120 s, thus the characteristic length for dissipation is lc

≈ 245 km with η used in Section 2. Both numerical experiments
and theoretical arguments state that dissipation starts at scales much
larger than kinetic scales.

Forbes et al. (2018) recently points out that outflow jets accelerate
only in the single diffusion region of the principal X-point and then
propagate at a constant speed in the advection region of the global
CS. Unlike his work, the existence of cascading plasmoids found in
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Cascading reconnection in solar eruptions 597

Figure 6. Dissipated magnetic energy Em, kinetic energy Ek, generated thermal energy Ei and their percentage Ek/Em( per cent) versus height for both Run
A and Run B over the entire simulation box.

our simulations provides many acceleration regions which enlarge
greatly the diffusion region. In Fig. 9, we have the distributions of
the outflow velocities at t = 213.16, 998.036 s, and the blue X is
the location of the principal X-point. R1 and R2 enclosed by red
dashed lines represent the diffusion region and the advection region,
respectively. The left-hand panel shows the result for t = 213.16 s,
and the outflow jets at both sides of the principal X-point accelerate
from 0 to almost 1000 km s−1 only in the diffusion region just before
the first plasmoid appears. Then outflow velocities are stopped by
termination shocks outside R1. The right-hand panel presents the
situation at t = 998.036 s, the fact is that the outflow jets accelerate
not only in the diffusion region, but also decelerate and accelerate
intermittently in the advection region, the entire CS consists of many
small-scale diffusion regions because of the cascading plasmoids.
Similarly, the outflow velocities are stopped by termination shocks
outside R1 and R2.

3.3 Fragmentation and cascading

The fragmentation happens everywhere within the global current
layer due to the tearing mode instability, and the energy cascades
from the large scale to the small scale via plasmoids. The fragmented
CSs provide multiple non-ideal regions where the dissipation can
take place, when plasmoids are subject to both separation and co-

alescence. During the simulation, a number of plasmoids are gen-
erated through magnetic reconnection. Some plasmoids merge into
bigger ones and move along the CME direction and sunward, and
eventually accumulate in the flux rope and flare loops. Figs 10(a)
and (b) show the mass density distribution and the velocity field at
the bottom of the flux rope and near the cusp structure of the flare
at t = 4283 s. They present different patterns of turbulence at two
ends of the global CS. At the top end, the ejected plasma accumu-
lates into a high-density turbulent region that oscillates underneath
the flux rope. The plasma from the outflow jets is dragged by the
gravity to float between the CS and the flux rope, then the subse-
quent jets crash into it to make the gas even hotter by compression
and push the mass to the top of the flux rope. At the lower end,
the turbulent gas only concentrates on the top of flare loops for a
short time before it is ejected downward along the loops to form
a dense shell. Meanwhile, their associated current density distri-
butions (Fig. 10c,d) represent the so-called turbulent reconnection
and the resulting CSs inside. In order to study the general impact
on reconnection efficiency dominated by cascading reconnection
and subsequent fragmentation of the CS, we follow the merging of
a group of plasmoids from t = 4082 to t = 4540 s in the 40–160
Mm interval for Run A. In Figs 11(a–c), we show zoom-ins of
the current density and velocity field for time t = 4091, 4106, and
4125 s, respectively, to follow a complete merging process of two
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598 J. Ye et al.

Figure 7. Time evolution energy fluxes around a size-changing box covering the CS for Run A.

individual plasmoids mediated by cascading reconnection. At time
t = 4091 s (Fig. 11a), they start to merge into one larger plasmoid
between which their X-point collapses smoothly. At t = 4106 s
(Fig. 11b), a CS of opposite polarity perpendicular to global cur-
rent layer then appears and the plasmoid above inverts its sense of
propagation to interact with the one below. At time around 4125 s
(Fig. 11c), the merging is almost complete and smaller pieces of
current layers appear inside the larger merged plasmoid. We plot
also the current density along the dashed y-direction line which
crosses the X-point at the beginning of coalescence. In Fig. 11(d),
the X-point is located near the largest peak with a positive valued
jz ≈ 1.3 × 10−2 A m−2. Then Fig. 11(e) indicates the opposite be-
haviour at the cascading spot, where jz ≈ −1.5 × 10−2 A m−2. At
the end of merging in Fig. 11(f), there exist still several fragmented
CSs within the large plasmoid, where even smaller scale events
take place. The fact is that the whole lifetime for a typical event
of double plasmoids merging can last over 34s (≈0.5 per cent of
the simulation time) and such events are happening at any time
once the global current layer reaches the tearing mode instability, at
places such as the bottom of the flux rope, the magnetic arcade and

sometimes within the CS. That definitely has an important impact
on reconnection efficiency.

To study the general reconnection dynamics in the global CS
layer, it is worth tracking all the magnetic nulls continuously.
To identify the neutral points, we develop an automatic diagno-
sis method by examining the Hessian matrix (Rana 2004) with the
second-order partial derivatives of the magnetic potential A, defined
as

Hij (x) = ∂2A

∂xi∂xj

, (22)

where xi, xj are either x or y. Conventionally, we locate the dis-
tribution of magnetic nulls using ∇A = 0 and then compute the
eigenvalues of Hij to determine the properties of each critical point.
In our simulations, these points are non-degenerate critical points,
whose Hessian matrix has two non-zero eigenvalues. If the Hessian
has both positive and negative eigenvalues, then x is an X-point;
otherwise, it is an O-point. Our interest is in the complex magnetic
topology when plasmoids coalescence, and critical points could be
very close to each other. Although we use the highest level (=7)
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Cascading reconnection in solar eruptions 599

Figure 8. Distributions of the Bx component of magnetic field along x = 0 line covering the entire CS (left) and the corresponding magnetic spectrum power
(right).

of AMR to visualize the data in the 40–160 Mm interval from t =
4082 to t = 4540 s, the magnetic nulls are usually not located on
the vertices of the computational grid. Therefore, we use the nearest
grid point instead of the real neutral point, under the assumption
that there is only one critical point in each grid cell. After applying
the above procedure, we are able to find an approximate way to de-
scribe the distribution of X-points and O-points in two dimensions
without introducing false critical points by interpolation. Fig. 12(a)
shows the kinematics of X- (blue cross) and O-points (red circle)

in the CS projected on the y-axis from t = 4082 to t = 4540 s. We
plot also the principal X-point of this CS pattern as a solid black
line. It is interesting to notice that the PX point (black solid line)
jumped between two points separated by a large plasmoid moving
from y ≈ 7.5 × 107 to y ≈ 1.32 × 108 m. Because the existence of
the upwards large plasmoid cuts the global current layer into two
quasi-independent patterns, each of them has a unique principal X-
point. The creation of an O-X-O configuration shows the plasmoid
merging, while the splitting of the X-point into an X-O-X configu-
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600 J. Ye et al.

Figure 9. Distributions of the vy component of the velocity along x = 0 line covering the entire CS.

Figure 10. Snapshots at t = 4283 s for Run A. (a) Mass density and velocity field at the bottom of the flux rope. (b) Mass density and velocity field near the
cusp structure of flare. (c) Current density at the bottom of the flux rope. (d) Current density near the cusp structure of flare.
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Cascading reconnection in solar eruptions 601

Figure 11. Current density and the velocity field, illustrating the two plasmoids coalescence for a period of 34s.

Figure 12. (a) Kinematics of magnetic nulls at t = 4082–4540 s: X-points (blue cross), O-points (red circle), and PX-point (black solid line). (b) Plasmoid
flux distribution function f(ϕ) versus ϕ.

ration maps the tearing mode instability to generate new magnetic
islands (a similar scenario is depicted by fig. 3 of Fermo et al. 2011).
Note also the fluctuation of temporary X-O pairs around the large
plasmoid indicates the tearing in the horizontal CS formed between
the coalescing plasmoids. The plasmoid flux distribution function

provides a statistical understanding of the plasmoid dynamics, so
it is appropriate to address that here. Using the same strategy as
mentioned in Loureiro et al. (2012), Shen et al. (2011), Ni et al.
(2015), we calculated the plasmoid flux distribution function de-
fined as f(ϕ) = −dN(ϕ)/dϕ numerically, where N(ϕ) is the number
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of plasmoids with magnetic flux larger than ϕ. Here, the magnetic
flux of a magnetic island ϕ is measured |ϕO − ϕX|, with ϕO and
ϕX are the magnetic potential at the O-point of the magnetic is-
land and the magnetic potential at the nearest X-point, respectively.
Fig. 12(b) gives the plasmoid flux distribution function by taking
account of all the plasmoids in Fig. 12(a). Fermo, Drake & Swisdak
(2010) established the rules for island merger: the merging of two
islands yields an island with an area A equal to the sum of the two
initial areas and a flux ϕ equal to the higher of the two initial fluxes.
As a result, the f(ϕ) in this steady cascading period behaves as a
power law close to f(ϕ) ∼ ϕ−1 in the intermediate ϕ regime and
falls off rapidly to ϕ−2 for large ϕ.

Following the above analysis, we are also interested in the effec-
tive reconnection properties at all filamented CSs, which provide
diffusion regions to dissipate the energy at the X-points that we
have identified. In particular, when a plasmoid is interacting with
another plasmoid or the flare loops, we will make some effort to
quantify the reconnection rates within and find out the dominant
mechanism responsible for the local rates. The fact is that the local
geometry of the diffusion region near each X-point is related to the
Hessian eigenvalues, so we have

λmax = ∂2A

∂s2
, λmin = ∂2A

∂l2
. (23)

Note that λmax and λmin are larger and smaller values in magnitude,
respectively. The coordinates s and l represent the minimum thick-
ness and the elongation of the local CS. To characterize the topology
of the diffusion region, we introduce the aspect ratio of the local CS
in an approximative way deduced from equation (23) as follows:

l

s
�

√
λR, where λR =

∣∣∣∣λmax

λmin

∣∣∣∣ . (24)

Following the same method of Servidio et al. (2010), a precise
way to measure the local reconnection rate of CSs is to compute
the electric field at the X-points. Indeed, considering the induction
equation in terms of the magnetic potential A, we have −dA/dt =
Ez, with Ez = −(v × b)z + j/σ the electric field in one dimension
and conductivity σ = 1/(μη). The reconnection rate is computed
as the rate of the change of the magnetic flux accumulated between
the O-point and its nearby X-point:

γ (t) = ∂(ϕX(t) − ϕO (t))

∂t

1

b0VA0
, (25)

where b0 and VA0 are the magnetic field and Alfvén velocity at the
centre of the initially existing flux rope. As we know, the change
of the flux at the O-point remains zero, so the reconnection rate
measured at each X-point is determined by

γ = Ez(X-point)/b0VA0 = j/σb0VA0. (26)

Since the resistivity η in our simulations is defined to be uniform
in the vicinity of the CS, the reconnection rates only vary with the
current density at X-points. Fig. 13 shows the local reconnection
rates of fragmented CSs as functions of their aspect ratios at different
times plotted in logarithmic axes for Run A and Run B. For a case
of the slow CME (Run A), the rates are plotted at t = 1293, 2649,
4118, 4282.83 s and vary in the range [10−4, 0.3]. For a case of
the moderate CME (Run B), the rates are plotted at t = 393.4,
508.3, 661.6 s and vary in the range [10−3, 0.22]. Although the
CME velocity of Run B is nearly three times larger than Run A,
the rates for both runs are quite similar and do not show much
dependence on the upward velocity of the flux rope. On the other
hand, from the scaling analysis of equation (23), the local rates for

both runs present close to a power law of 1 in terms of the geometry
of diffusion regions, which is

γ ∼ λR = l2

s2
. (27)

Although, the power-law fit in Fig. 13 is generally valid from slow
to fast reconnection events for both CMEs, the rates saturates at
λR ∼ 100 (or l/s ∼ 10) and remain flat afterwards. Considering
the Lundquist number of our simulation tests, the global Sweet–
Parker rate would be ∼0.003 for Run A and ∼0.002 for Run B.
However, most of the reconnection rates found in our tests are much
faster than expected from the Sweet–Parker model. The results
for λR < 3 depart strongly from a power law but tend to ∼λR

rapidly. According to the phase-randomizing analysis by Servidio
et al. (2010), we conclude that the non-linear, intermittent nature
of MHD is responsible for the faster reconnection rates. Therefore,
the rates from slow to fast could represent the different stages of
the tearing mode developing from linear to non-linear regimes, and
lastly reaching saturation.

Many analytical studies quantify the magnetic field in 3D null
point topologies (Brown & Priest 2001), the current distributions
near 3D null points (Rickard & Titov 1996), and solutions for fan,
spine, and separator reconnection (Craig & McClymont 1999; Craig
et al. 1999; Ji & Song 2001), which suggest that the magnetic re-
connection in 3D is profoundly different from that in 2D (or 2.5D).
As far as the discussion of the turbulent regime in 3D, the MHD
simulations of Huang & Bhattacharjee (2016) reveal that 3D plas-
moid instabilities in a reconnection layer can lead to a self-sustained
turbulent state as well as anisotropy of eddies with respect to local
magnetic field. In term of the flux rope formation, more resonant
surfaces and interactions at oblique angles are possible in 3D, while
2.5D results have too much symmetry. Also, the kink instability
can develop and interact with tearing mode resulting in the turbu-
lent evolution in these 3D experiments. Although the formation and
interaction of flux ropes lead to 3D turbulence, key aspects of 2D
reconnection physics are surprisingly robust regarding time-scales,
dissipation physics as well as particle acceleration. In particular,
Guo et al. (2014, 2015, 2016) have proven, using full PIC simula-
tions, that 3D turbulence does not significantly change the energy
conversion, reconnection rate, or particle acceleration. Therefore,
the consequences of our 2.5D MHD simulations regarding the en-
ergy cascading as well as turbulent reconnection can still provide a
preliminary analysis of magnetic energy conversion for comparison
with 3D models.

In addition, we need to point out that the CS develops in the
solar eruption as a result of the severely stretching of the coronal
magnetic field in a certain direction due to the loss of equilibrium
in the system, and the CS is elongated roughly in this direction as
well. This unfolds a scenario that the CME-flare CS indeed pos-
sesses a sheet-like feature globally with a certain amount extension
in the third direction. This may help us understand why a CS is
mostly observed as a straight feature, and a curved CS has never
been observed, similar to the extended CS case in the solar wind
at 1 au. Because of the stretching by the solar wind, an extended
CS is typically highly planar and no significant warping occurs in
the reconnection process (Phan, Gosling & Davis 2009). Recent 3D
numerical experiments by Mei et al. (2017) displayed a manifesta-
tion of the CS that also duplicated almost every single detail that
was shown in the 2D simulations by Mei et al. (2012). Furthermore,
the 2017 September 10 event produced a superfast CME associated
with an X-class flare, and a straight CS connecting CME to the flare
just in way that both 2D analytic solution and simulation, as well
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Figure 13. Local reconnection rates versus the geometry of diffusion CSs. (a) Run A for t = 1293 (black), 2649 (blue), 4118 (green), 4282.83 s (red). (b) Run
B for t = 393.4 (black), 508.3 (blue), 661.6 s (green).

as 3D simulation, showed (Li et al. 2018; Seaton & Darnel 2018;
Warren et al. 2018; Yan et al. 2018). However, future work of whole
3D simulations is needed to reveal cascading and fragmentation
processes.

4 SUMMARY AND DISCUSSION

To study the cascading energy conversion in solar eruptions via mag-
netic reconnection, it is always important to understand the physical
mechanisms responsible for the efficient energy dissipation and the
associated fast reconnection rates. Numbers of observations (Ko
et al. 2003, 2010; Webb et al. 2003; Yan et al. 2018) are consistent
with the predictions of the catastrophe model (Lin & Forbes 2000),
which follows the triggering and the development of typical CME
events due to the loss of equilibrium. To save computing resources
as well as focusing on the study of the kinetic behaviour of the flux
rope, we have simulated two CMEs of different velocities using
the NIRVANA code, with the eruptions starting immediately from
the non-equilibrium initial state. In this work, we used the 2.5D
MHD model including the resistivity, viscosity, and gravitationally
stratified atmosphere. The simulation domain covers 2 solar radii
above the solar surface and the empirical S&G plasma environment
is adopted. In comparison with the previous work based on the
Lin and Forbes model (Wang et al. 2009, 2015; Mei et al. 2012), we
have a more realistic background atmosphere than the isothermal
atmosphere to follow the rise of the flux rope at large altitudes (Lin
2002), a better approximation for the boundary condition set-up
and a higher resolution mesh using AMR in the vicinity of the CS
to capture small-scale features associated to the energy dissipation
mediated by plasmoids. This provides a straightforward way to find
the relationship between the overall evolution and the fine structure
inside the CS responsible for fast reconnection rates. Here is the
summary as follows.

(1) Two numerical experiments of CMEs of different velocities
are carefully investigated, and the global dynamics features are
fairly consistent with the flare model of Reeves & Forbes (2005).
The estimate of the reconnection speed is related to the Alfvén speed
field, and the use of S&G model yields a more reliable Alfvén speed
distribution which decays at large altitudes (Lin 2002). However,
the magnetic field determines the energetics of the process and
the CMEs of different velocities show no difference in dynamical

properties in principle. A slow CME is expected in a weak magnetic
field, but if the average strength at the low base of corona is less
than 27 G, the motion of the flux rope could be confined by the
gravitational force resulting in an unexpected deceleration near or
after 1 R�. On the other hand, a moderate CME in a stronger
magnetic field shows a continual acceleration until 1 R� and then
propagates at nearly a constant speed afterwards.

(2) The energy is dissipated via magnetic reconnection once the
CS forms. From the global view, in either the slow CME or the
moderate one, more than half of the dissipated magnetic energy
is converted into heating the plasma at MHD scales. The main
inflow Poynting flux is devoted into the conversion of both the
enthalpy flux and the kinetic energy flux of the same magnitude
in the sunward direction, but the kinetic energy is dominant in
the CME direction. The upper and lower termination shocks do
not propagate symmetrically, nor are the associated Mach numbers
symmetric.

(3) The fragmentation of the global current layer consists of both
tearing and coalescence processes, which form multiple CSs to
facilitate the magnetic energy dissipation. The CSs are filamented
down to the finest resolution due to the formation of plasmoids,
and the filamented CSs of coalescence are perpendicular to the
tearing ones as well as have the opposite current polarity. Moreover,
the typical lifetime of a plasmoid merging process could last over
0.5 per cent of the total simulation time, and these events occur
frequently when plasmoids interact with the flare loops at the bottom
of the flux rope and collide with other plasmoids inside the global
current layer. Therefore, the cascading reconnection definitely has
an important effect on the intermittency of the total reconnection
speed.

(4) The energy cascade ends at ≈200 km according to a 1D
Fourier spectrum analysis for magnetic energy, which is consis-
tent with the smallest recognizable CSs in these simulations. The
magnetic energy spectral index varies in the range [1.6, 2.1] for the
whole calculation. In the early stages, the spectrum follows a single
power law of index 1.6. When magnetic islands keep on growing,
the spectral distribution starts to change from the single power law,
but the largest dominant index is 2.1. After the appearance of sec-
ondary islands, the dominant spectrum index flattens. Investigating
the balance between the tearing and the cascading processes, we
have the index of 1.83 for the inertial range as well as that of 5.1
for the dissipative range. The shape of the spectrum does not fol-
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low a single power law anymore, and the dissipation takes place at
macroscales much greater than kinetic scales.

(5) We track also the kinematics of the magnetic nulls for a pe-
riod of time to study the crucial reason for the local reconnection
rates. We observe various configurations that signify the different
behaviours of plasmoids. The corresponding plasmoid distribution
function behaves as a power law close to ϕ−1 in the intermedi-
ate ϕ phase. However, the local reconnection rates for both runs
vary in the same range [10−4, 0.3] irrespective of the kind of CME
(slow or moderate), but they present a relationship to the local
topology of CSs which are closely proportional to the square of
the aspect ratios. No matter how strong the magnetic field or how
long the global current layer is, the local geometry of the fila-
mented CSs seems to be similar. The corresponding local rates fol-
low a scaling law ∼λR, and eventually saturate under 0.3 for both
cases.

Overall, the dynamic evolution and physical properties of the model
CME/flare CS in our simulations are greatly in agreement with ob-
servational results for typical large-scale CSs. These features in-
clude high-speed upward and downward outflows, slow condensa-
tion inflows, large-scale dense plasma blobs inside the CS (see Lin
et al. 2015 for more details). Although the energy released in our
simulations is several orders smaller than the observational estimate
in Emslie et al. (2005), the asymmetrical energy partition in solar
eruptions is consistent with Reeves et al. (2010). Also, recognizable
blobs in the wake of CME were found in LASCO C2 and C3, and
the change in the velocity of those blobs suggests a non-uniform
structure of the CS (Lin et al. 2005). Turbulent features inside the
post-CME CS reported by Li et al. (2018) can be explained by the
cascading process in this work, which could be important for rapid
reconnection. However, since no cooling mechanism is included
here, the simulated temperature is an upper limit to that in reality
and we cannot calculate the flare emissions to compare directly with
observations. Taking advantage of the simplicity and symmetry of
a 2.5D simulation, we plan to analyse the thermal structure of the
CME/flare CS as well as the plasma heating via turbulence by in-
cluding thermal conduction and optical thin radiative cooling in the
future.
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