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Abstract

We report individual dynamical masses for the brown dwarfs € Indi B and C, which have spectral types of T1.5 and
T6, respectively, measured from astrometric orbit mapping. Our measurements are based on a joint analysis of
astrometric data from the Carnegie Astrometric Planet Search and the Cerro Tololo Inter-American Observatory
Parallax Investigation, as well as archival high-resolution imaging, and use a Markov chain Monte Carlo method.
We find dynamical masses of 75.0 & 0.82 M)y, for the T1.5 B component and 70.1 & 0.68 M), for the T6 C
component. These masses are surprisingly high for such cool objects and challenge our understanding of
substellar structure and evolution. We discuss several evolutionary scenarios proposed in the literature and find that
while none of them can provide conclusive explanations for the high substellar masses, evolutionary models
incorporating lower atmospheric opacities come closer to approximating our results. We discuss the details of our
astrometric model, its algorithm implementation, and how we determine parameter values via Markov chain Monte

Carlo Bayesian inference.
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1. Introduction

The ¢ Indi system (GJ 845, LHS 67) is a nearby triple system,
and its B and C components are among the T dwarfs closest to our
solar system. It is a hierarchical system comprising a K5V primary
widely separated from a brown dwarf binary of spectral types T1.5
and T6 for which we find an 11.4 yr orbit. Some previously known
properties of the system are listed in Table 1. The brown dwarf
component was first announced by Scholz et al. (2003), who
established common proper motion to ¢ Indi A at a projected
separation of 402”3. The B component was soon thereafter
resolved as a close binary with a projected separation of ~0”7 in
VLT/NACO observations by McCaughrean et al. (2004) and
independently by Volk et al. (2003) on Gemini South. Kasper et al.
(2009) and King et al. (2010) independently assigned spectral
types T1.5 and T6 for the B and C components. Both studies note
slightly subsolar metallicity. We adopt [Fe/H] = —0.13 + 0.02
based on a weighted mean of literature values for the A component
listed in the PASTEL Catalogue (Soubiran et al. 2016).

Our understanding of substellar structure and evolution is still
incomplete in several aspects. There are still large discrepancies
among the predictions of evolutionary models and the properties
of both individual objects and observed populations (e.g.,
Dieterich et al. 2014). The atmospheres of these cool objects
are difficult to model due to molecule and cloud formation,
leading to a poor understanding of overall opacities, which in turn
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affects the rate of cooling. Different assumptions regarding
atmospheric opacities have led to different evolutionary models
arriving at significantly different evolutionary rates, as well as
different fundamental properties for objects at the stellar—substellar
boundary (Section 5). It has also been suggested that small
changes in metallicity and cloud parameters, which in stellar
theory are considered secondary properties, may play dispropor-
tionately large roles in the structure and evolution of substellar
objects (Burrows et al. 2011), thus further complicating attempts
at a general characterization. Our theoretical understanding must
now be constrained by observations of brown dwarfs amenable to
extensive characterizations that yield precise dynamical masses, as
well as spectrophotometric properties such as metallicities and
spectral energy distributions. Significant progress has been made
recently with the publication of a large collection of substellar
dynamical masses (e.g., Konopacky et al. 2010; Dupuy & Liu
2012; Dupuy & Kraus 2013; Dupuy & Liu 2017; Bowler et al.
2018). However, most binary substellar systems amenable to
dynamical mass determinations in reasonable timescales have
very small projected separations that make a thorough spectro-
photometric characterization of the individual components
difficult. Even when individual spectra can be obtained, our poor
understanding of how spectral features vary with metallicity in
these cool atmospheres hinders the comparison of different
systems.

The ¢ Indi system’s proximity to Earth (3.62pc), its
hierarchical nature with a well-known primary component,
and the relatively short period of the BC component make this
system an ideal benchmark for the study of substellar structure
and evolution. In this paper, we determine dynamical masses
for € Indi B and C by solving the system’s complete astrometric
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Table 1

Previously Known Properties of the € Indi System
Property A B C References®
Spectral type K5V T1.5 T6 A:1;B,C:2,3
Parallax (mas) 276.06 + 0.28 4
Distance (pc) 3.622 + 0.004 4
Jio (mas yr ') 3960.93 £ 0.24 4
s (mas yr— ') —2539.23 + 0.17 4
Separation (c. 2004) 402”3 077 077 5
[Fe/H] —0.13 £ 0.02 6
Vv 4.68 24.12 + 0.03 >26.6 A:1;B,C: 3
R 20.65 + 0.01 22.35 £ 0.02 3
1 17.15 + 0.02 18.91 £ 0.02 3
b4 15.07 £ 0.02 16.53 £+ 0.02 3
J 2.89 + 0.29 12.20 + 0.03 12.96 + 0.03 A:7;B,C:3
H 235+ 0.21 11.60 £ 0.02 13.40 £ 0.03 A:7;B,C:3
K 2.24 +0.24 11.42 + 0.02 13.64 £ 0.02 A:7;B,C:3
Note.

4 (1) Evans et al. (1957); (2) Kasper et al. (2009); (3) King et al. (2010); (4) van Leeuwen (2007); (5) Scholz et al. (2003); (6) Soubiran et al. (2016 and references

therein); (7) Cutri et al. (2003).

motion. We do so by measuring the motion of the unresolved
B-C system’s photocenter using data from two separate
observing programs and then using high-resolution adaptive
optics images to scale the photocenter’s orbit to the individual
barycentric orbits of the B and C components. We discuss our
observations in Section 2, our astrometric model in Section 3,
and results in Section 4. We conclude with a discussion of how
the dynamical masses we report constrain substellar models,
with particular emphasis on the stellar—substellar boundary in
Sections 5 and 6. Appendix A describes the Markov chain
Monte Carlo (MCMC) algorithm and its implementation in
detail and provides instructions for downloading and using it.
Appendix B provides a detailed example of deriving individual
dynamical masses from the photocenter’s orbit.

2. Observations

The complete characterization of the motion of an
unresolved astrometric binary system requires observations in
which the motion of the system’s photocenter is measured with
respect to the background of distant stars, as well as at least one
epoch of resolved imaging (van de Kamp 1968; McCarthy
et al. 1991). The photocenter is defined as the centroid of the
point-spread function of the combined light from both
components, and its location lies along the separation vector
between the two components. The precise location of the
photocenter along the separation vector is determined by the
observed flux ratio of the primary to the secondary component,
which is in turn a function of the components’ intrinsic spectral
energy distribution and the photometric filter used to perform
the observations. The observed astrometric motions are the
motions of the photocenter about the system’s barycenter.
These motions are not necessarily equivalent to the motion of
the physical components. For a given binary star system, the
mass ratio and flux ratio will generally not be the same, thus
causing the photocenter and barycenter to lie along different
points in the system’s separation vector. The photocenter thus
traces an orbit about the barycenter that has the same
orientation but is smaller than the orbits traced by either
component about each other or the barycenter. We discuss the
scaling of these orbits and how they relate to dynamical masses
in Section 4.1 and Appendix B.

Once the trigonometric parallax motion, proper motion, and
orbital motion of the photocenter are deconvolved (Section 3),
the flux ratio and separation obtained from a resolved image
allow the scaling of the photocenter’s orbit to the physical
orbits of the primary and secondary components around the
system’s barycenter, and thus the determination of individual
dynamical masses via Kepler’s third law. We combined
astrometric observations from the Carnegie Astrometric Planet
Search (CAPS; Boss et al. 2009; Anglada-Escudé et al. 2012;
Weinberger et al. 2016) and the Cerro Tololo Inter-American
Observatory Parallax Investigation (CTIOPI; Jao et al. 2005;
Henry et al. 2006) to map the photocenter’s orbit, parallax, and
proper motion. We then used archival high-resolution images
taken with the Naos-Conica (NACO) imager on the Very Large
Telescope UT4 (VLT/NACO) adaptive optics system to
determine the scale factor between the photocentric orbit and
the physical orbit. We now discuss these data sets individually.

2.1. CTIOPI Observations

The CTIOPI is a large astrometric program that began in
1999 on the CTIO/SMARTS'® Consortium 0.9 m telescope.
The details of the observing procedures and data reduction are
discussed in Jao et al. (2005). Between 2004 and 2016, ¢ Indi
BC was observed on 33 nights. Typically, five exposures of
300 s each were taken during each epoch, always in the Kron
—Cousins / band. Exposures were usually taken within half an
hour of meridian transit to minimize differential color
refraction. A single image taken with good seeing, and a low
hour angle was selected as the “trail frame” and compared to
the 2MASS catalog (Skrutskie et al. 2006) to determine plate
rotation and scale. The pixel coordinates of 10 reference stars
were then used to create coordinate transformations linking
each individual exposure to the reference frame established in
the trail frame. Table 2 lists the displacement of ¢ Indi BC’s
photocenter with respect to the first epoch of observation. The
uncertainties correspond to the standard deviation of the several
individual exposures taken during an epoch.

19 Small and Moderate Aperture Research Telescopes; www.astro.gsu.edu/
~thenry /SMARTS.
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Table 2
Astrometric Observations
Night Program Jul. Date «a Displacement™” Oo 6 Displacement” o Do’ s
(mas) (mas) (mas) (mas)

2004 Jul 30 CTIOPI 2453216.77 —1.55¢ 3.40 —4.36¢ 3.81 0.348 —-0.578
2004 Aug 07 CTIOPIL 2453224.74 49.13 6.08 —65.45 1.93 0.227 —0.638
2004 Sep 26 CTIOPI 2453274.61 389.74 8.48 —434.68 7.60 —0.531 —0.726
2005 Jul 26 CTIOPI 2453577.77 3944.09 3.98 —2451.49 5.92 0.408 —0.541
2006 May 18 CTIOPIL 245387391 7330.16 3.95 —4247.16 3.55 0.943 0.267
2006 Jul 05 CTIOPI 2453921.81 7785.40 3.10 —4751.86 5.02 0.679 —0.322
2007 Jul 26 CTIOPI 2454307.82 11909.36 6.00° —7472.15 6.00° 0.413 —0.534
2007 Aug 08 CTIOPI 2454320.78 12002.87 6.00° —7595.21 6.00° 0.219 —0.637
2007 Oct 26 CTIOPI 2454399.52 12605.38 6.00° —8123.54 6.00° —0.836 —0.535
2009 Jul 30 CTIOPI 2455042.68 20045.24 1.12 —12700.78 1.88 0.353 —-0.569
2010 Jul 31 CTIOPI 2455408.81 24017.54 0.72 —15296.33 10.54 0.342 —0.576
2010 Sep 29 CTIOPI 2455468.58 24432.31 4.04 —15751.05 2.68 —0.561 —-0.711
2011 Jul 01 CTIOPI 2455743.83 27741.27 0.78 —17493.49 2.76 0.731 —0.268
2011 Sep 23 CTIOPI 2455827.62 28303.49 6.13 —18174.35 12.46 —0.477 —0.733
2011 Oct 07 CTIOPI 2455841.60 28403.17 0.96 —18261.94 2.82 —0.653 —-0.674
2012 Jul 05 CTIOPIL 2456113.82 31702.14 5.46 —19990.99 6.34 0.681 —0.324
2012 Sep 12 CTIOPI 2456182.65 32155.83 1.77 —20569.75 6.44 —0.330 —0.751
2012 Oct 25 CTIOPI 2456225.53 32489.34 11.83 —20792.76 7.19 —0.827 —0.536
2013 Jul 12 CTIOPI 2456485.82 35684.01 9.78 —22522.56 4.46 0.601 —0.401
2013 Aug 30 CTIOPI 2456534.67 36009.34 6.00° —22928.99 6.00° —0.127 —0.741
2013 Oct 15 CTIOPI 2456580.55 36319.18 7.41 —23202.31 3.59 —0.742 —0.622
2013 Oct 18 CTIOPI 2456583.54 36362.57 2.17 —23215.94 6.49 —-0.770 —0.600
2014 Sep 03 CTIOPI 2456903.66 39979.74 3.33 —25407.18 1.87 —0.188 —-0.749
2014 Oct 18 CTIOPI 2456948.55 40304.05 5.08 —25680.00 5.82 —0.769 —0.603
2014 Oct 27 CTIOPI 2456957.52 40390.31 9.04 —25723.07 1.06 —0.840 —0.526
2015 Jun 02 CTIOPI 2457175.93 43230.20 7.99 —27026.47 8.55 0.926 0.087
2015 Jul 15 CTIOPIL 2457218.80 43607.49 3.14 —27456.49 3.04 0.566 —0.429
2015 Jul 24 CTIOPI 2457227.79 43662.77 6.78 —27537.33 2.76 0.445 —0.518
2015 Oct 26 CTIOPI 2457321.53 44341.67 7.56 —28191.90 4.16 —0.834 —0.538
2015 Oct 30 CTIOPI 2457325.51 44372.36 1.41 —28201.98 10.33 —0.860 —0.500
2016 Aug 13 CTIOPI 2457613.74 47773.37 1.62 —30204.06 5.60 0.131 —0.674
2016 Sep 24 CTIOPI 2457655.59 48060.36 2.15 —30508.83 0.85 —-0.507 —0.733
2016 Oct 02 CTIOPI 2457663.59 48106.84 2.44 —30545.51 2.25 —0.609 —0.701
2007 Jul 05 CAPS 2454286.84 3.32¢ 2.58 —3.46¢ 3.74 0.685 —-0.319
2007 Sep 01 CAPS 2454344.70 407.45 232 —512.72 2.78 —0.155 —0.744
2008 Jul 16 CAPS 2454663.80 4115.67 2.53 —2642.71 4.34 0.543 —0.446
2008 Sep 15 CAPS 2454724.69 4530.64 2.25 —3156.49 5.15 —0.380 —0.749
2009 Jun 03 CAPS 2454985.89 7780.21 3.64 —4770.24 2.34 0.922 0.068
2009 Sep 03 CAPS 2455077.66 8486.47 6.73 —5643.70 8.48 —0.194 —0.748
2009 Nov 05 CAPS 2455140.59 8981.89 5.32 —6000.55 5.33 —0.893 —-0.429
2010 Jun 25 CAPS 2455372.82 11985.39 2.09 —7558.94 3.45 0.782 —-0.203
2010 Jul 27 CAPS 2455404.74 12225.44 2.56 —7872.91 341 0.399 —0.546
2010 Nov 13 CAPS 2455513.52 13024.62 3.79 —8548.99 7.68 —-0.917 —0.343
2011 Aug 06 CAPS 2455779.73 16201.05 2.22 —10374.04 6.22 0.253 —0.623
2011 Oct 03 CAPS 2455837.57 16583.30 2.71 —10776.09 5.28 —0.610 —0.697
2012 Jul 29 CAPS 2456137.75 20063.05 4.15 —12702.65 6.20 0.362 —-0.567
2012 Sep 25 CAPS 2456195.61 20443.35 2.83 —13123.84 2.81 —-0.519 —0.726
2013 Jul 14 CAPS 2456487.81 23873.57 2.49 —14952.33 3.80 0.571 —0.423
2013 Aug 15 CAPS 2456519.70 24094.03 2.16 —15232.39 2.50 0.105 —0.683
2014 Jul 13 CAPS 2456851.84 27795.79 1.56 —17333.41 2.96 0.587 —0.411
2014 Aug 18 CAPS 2456887.72 28039.64 6.00 —17649.62 4.74 0.061 —0.697
2015 Jun 06 CAPS 2457179.84 31434.19 4.38 —19366.94 7.87 0912 0.037
2015 Jun 10 CAPS 2457183.88 31465.34 3.80 —19408.54 4.97 0.892 —-0.014
2015 Jul 27 CAPS 2457230.76 31837.50 3.19 —19854.96 5.19 0.401 —0.544
2016 Jun 21 CAPS 2457560.86 35533.00 4.18 —21930.66 4.34 0.812 —0.161
2016 Aug 12 CAPS 2457612.68 35917.19 3.16 —22418.54 3.54 0.148 —0.667
2016 Oct 07 CAPS 2457668.55 36301.61 2.28 —22796.51 2.73 —0.665 —-0.671
Notes.

& Displacement measured relative to the first epoch of observation for the observing program. North and east are positive.

Angular displacement in normal coordinates, not in units of R.A. See ESA (1997).
¢ Here Do and p; are the parallax factors at the given epoch.

The nonzero displacement for the first epoch of observation in each program is due to the small difference between the mean displacement for the first epoch using all frames from that night
and the individual frame chosen as the original reference for measuring displacement. That frame is an arbitrary first-epoch frame in the CAPS program and the “trail frame” for CTIOPIL
¢ An uncertainty of 6.00 mas was adopted in epochs for which only one CTIOPI exposure was available.
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2.2. CAPS Observations

Since 2007, CAPS has observed nearby low-mass stars using
a custom-built astrometric camera (CAPSCam) mounted on the
Carnegie du Pont 2.5 m telescope at Las Campanas Observa-
tory. Technical aspects of CAPSCam are discussed in detail in
Boss et al. (2009). Anglada-Escudé et al. (2012) and
Weinberger et al. (2016) discussed details of the astrometric
data reduction. Observation of ¢ Indi BC took place for 24
epochs distributed between 2007 and 2014. Typically, 40
exposures of 60 s each were taken per epoch while the target
was within 1 hr of meridian transit. The pixel coordinates of all
bright stars in each frame were computed using centroiding
algorithms, and the positions were used to create coordinate
transformations for each image. This procedure was iterated
until the most stable set of 28 reference stars was established.
As discussed in Section 4.1, CAPSCam does not use a physical
filter in the traditional sense. However, the convolution of the
Dewar window transmission and the detector response function
approximates the z band.

2.3. VLT/NACO Observations

We downloaded publicly available high-resolution adaptive
optics data taken with the NACO'' instrument mounted on the
European Southern Observatory’s VLT UT4. The data span
several observing programs from 2003 to 2013. While the
peaks of the point spread functions (PSFs) of both components
are clearly visible in most images, the low Strehl ratio produces
a wide halo effect around each component. The overlapping
halos from both components can shift the PSF centroids and
make the separation between the components appear smaller
than it is in reality, even at separations a few times greater than
the PSF’s FWHM. To avoid this effect, we used data only from
the 2004 and 2005 observing seasons, when separations were
close to maximum and the minimum flux measured in a vector
connecting both components was comparable to the mean sky
flux. The final adopted separations are the weighted averages of
observations taken in the J, H, and K bands. Strehl ratios were
highly variable depending on the band and how well the
adaptive optics correction worked during an individual
exposure, and they were generally less than 0.1. As a check,
we also measured separations using a six-parameter synthetic
PSF fit and obtained only negligible differences from the
centroiding results. We discuss the individual observations in
Section 4.1.

3. The Astrometric Model

The full motion of each component of a binary system with
respect to the sidereal frame of reference is the superposition of
the system’s proper motion, the parallax reflex motion, and the
orbital motion about the system’s barycenter. The mathematical
formulation is derived in detail in many classical works on the
astrometry of binary stars (e.g., van de Kamp 1967; Heintz
1978; Hilditch 2001). The same formalism applies in the case
of the photocenter’s motion about the barycenter, which is what
was observed in this study. We therefore apply the following
model to the orbit of the photocenter about the barycenter and
discuss how to obtain the physical orbits of the components and
dynamical masses in Section 4.1 and Appendix B. We replicate
the relevant equations here for reference. For an unresolved

" http:/ /eso.org/sci/facilities / paranal /instruments /naco.html
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astrometric binary, the displacement of the system’s photo-
center is expressed as

Aa = p, (1 — to) + IIp, + (BX + GY), (1)

Ab = ps(t — t0) + llps + (AX + FY), @)

where p is the proper motion for each direction of motion, f is
the epoch of first observation, II is the trigonometric parallax,
and p is the parallax factor for each direction of motion. The
last two terms in parentheses denote the orbital motion. The
Thiele-Innes constants A, B, F, and G are defined in terms of
orbital parameters as

A = a(coscosw — sinQsinw cosi), 3)
B = a(sin€)cosw + cos €2sinw cos i), (@Y)
F =a(—cosQsinw — sin{2cosw cosi), (®)]
G = a(—sinQsinw + cos 2 cosw cosi), (6)

where a is the semimajor axis, {2 is the longitude of the
ascending node, w is the longitude of periastron, and i is the
orbit’s inclination. Here X and Y are the elliptical rectangular
coordinates defined as

X =cosE — e, @)
Y=(01 — e»)/2sinE, (8)

where e is the eccentricity and E is the eccentric anomaly,
which is related to the epoch of observation through Kepler’s
equation,

E — esinE = 2%0 - 1), ©))

where P is the orbital period and T is the epoch of periastron
passage. The solution in the case of a single set of observations
done with uniform methodology is then a 10 parameter
problem: two components of proper motion, the trigonometric
parallax, and the orbital elements a, P, e, T, €2, w, and i. As
described below, three additional parameters are needed to
combine two data sets. We generated posterior samples for
each parameter using an MCMC algorithm and inferred the
value and uncertainty of each parameter from these samples
(Section 4). We describe the MCMC algorithm in detail in
Appendix A while discussing the physical aspects of the
model here.

The displacements in Table 2 are measured with respect to
the first epoch of observation for either the CAPS or CTIOPI
data set, with the onset of observations happening earlier for
CTIOPI on 2004 July 30. We take that time as the time origin
for proper motion displacement and assume that the displace-
ment of the system’s barycenter is linear and due solely to
proper motion. At any given time, the position of the system’s
photocenter relative to the barycenter is the sum of the
displacements due to trigonometric parallax and orbital motion.
We therefore subtract the parallax and orbital displacement of
the first epoch of observation from Equations (1) and (2) so as
to shift the model to the data set’s reference frame. For any
epoch of observation, the displacements in Table 2 can then be
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modeled as

Aa = p,(t — to) + lp, + (BX + GY)
— [p, + (BX + GY)litepoch (10)

A8 = ps(t — to) + Ips + (AX + FY)
- [Hpé‘ + (AX + FY)][*‘epoch~ (1 1)

The location of the system’s photocenter relative to the
physical location of the two components in a binary system is
dependent on the components’ flux ratio in a given photometric
band. Because the CTIOPI data were observed in the Ix band
and the CAPSCam band approximates the z band (Section 4.1),
each data set yields a different value for the semimajor axis. We
therefore treat the semimajor axes as separate free parameters in
the astrometric model, thus adding an extra parameter to the
astrometric model by varying a in Equations (3)—(6), depend-
ing on the source of the observation for a given epoch.

3.1. Establishing the Sidereal Reference Frame and Zero-point
Astrometric Corrections

The background stars used to establish the frame of
reference are at finite distances, and therefore they also have
small measures of parallax and proper motion. In the case of
trigonometric parallax, all reference stars have reflex motion
in the same direction as the science star, and that causes the
relative parallax to be slightly offset from the trigonometric
parallax corresponding to the star’s true distance. The so-
called relative-to-absolute parallax correction is done using
photometric distance estimates to the reference stars and is
discussed in detail in Jao et al. (2005) and Weinberger et al.
(2016). Because CTIOPI and CAPSCam use different
reference stars, their offsets should be different. However,
when fit independently, both systems give consistent (to
within 10) estimates of the parallax. Furthermore, the offsets,
0.79 mas for CTIPI and 0.1 mas for CAPSCam, are smaller
than the uncertainty on the final joint parallax, 0.81 mas. The
joint parallax determined from the MCMC is the result of the
best fit to all the data taken together, with no special
accounting for a possible parallax offset of one system with
respect to the other. Therefore, the joint parallax posterior is
already broadened by any actual offset. The best-fit joint
parallax also agrees, without a correction, with that
determined by Hipparcos (276.06 £ 0.28 mas; Table 1) to
within our uncertainty. Therefore, we proceed with our
calculations using the best-fit joint parallax as our estimate of
the true parallax.

The correction for proper motion is more difficult to realize
because, unlike in the case of parallax, we cannot assume a
general form for the proper motion of the reference stars. Any
proper-motion measurement is relative to the combined proper
motion of the stars in the field, and because the CTIOPI and
CAPS reductions use different sets of reference stars, they have
different zero-point proper-motion corrections. This correction
has no effect on the resulting trigonometric parallax or orbit
solution because it is entirely absorbed by the much larger
proper motion of the science star with reference to the
background field of reference. We therefore treat the proper
motions for the two data sets as free parameters and allow them
to fluctuate individually while the other parameters are solved
jointly. At final count, the astrometric model expressed in
Equations (10) and (11) then becomes a 13 parameter problem.

Dieterich et al.

Figure 1. Histogram of posterior samples for trigonometric parallax derived
using the combined CTIOPI and CAPS data. Quoted values are the median and
standard deviation. The probability density function is based on 5.2 million
samples from 52 independent Markov chains.

Table 3

Astrometric Results®
Parameter Value 1o Uncertainty Units
II 276.88 0.81 mas
d 3.61 Hoque pc
Relative CTIOPI g, 3973.80 0.11 mas yr~ '
Relative CTIOPT p5 —2508.34 0.31 mas yr~ !
Relative CAPS 1, 3966.99 0.36 mas yr~ !
Relative CAPS 15 —2452.87 0.40 mas yr~ !
AcTIOPI 167.76 1.83 mas
Acaps 201.61 1.97 mas
P 4165.09 43.7 day
e 0.47 0.02
T 2450967.7 £+ nP 40.4 D
T 1998.45 + nP 0.11 epoch
Q 148.58 0.28 deg”
w 316.99 1.46 deg”
i 75.90 0.38 deg

Notes.
& All quantities refer to the system’s photocenter.
® Measured from north to east.

4. Results

Table 3 lists the astrometric parameters obtained from the
MCMC samples. The adopted values and their uncertainties are
the medians and standard deviations of the probability density
functions, respectively. This approach is possible because all
probability density functions are nearly Gaussian. Using the
mean instead of the median values would produce differences
that are negligible when compared to the uncertainties. The
probability density functions for all parameters are shown in
Figures 1-3. We describe some basic properties and numerical
choices of our MCMC implementation here and provide a
general description of the algorithm in Appendix A. Section 4.2
presents statistical tests and discusses the convergence of the
Markov chains.

All probability density functions are based on the last
100,000 steps of 52 independent 2 million step chains, thus
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Figure 2. Histograms of posterior samples estimating the probability density functions for parameters derived separately for the CTIOPI and CAPS data sets. Quoted
values are the median and standard deviation for each parameter. The discrepancies in proper motion are addressed in Section 3.1. The photocentric semimajor axes
are different due to the different filters used for CAPS and CTIOPI, as discussed in Section 3.

comprising a total of 5.2 million MCMC samples per
parameter. No chain thinning was applied. Uniform priors
covering parameter intervals much wider than what is
physically possible given the observations were used for all
parameters (Appendix A.1). The step scale was determined in
an adaptive manner according to Equation (15). The process
creates a distribution of step sizes centered about a chosen step

value for a chosen scaling parameter. We chose the scaling
parameter to be trigonometric parallax and the central step
value to be 1 mas because that is the typical uncertainty in our
astrometric measurement. We then randomly divided or
multiplied this central value (1 mas) by a uniformly generated
random number between O and 10 to create a broad
distribution. The other parameters were scaled according to
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Figure 3. Same as Figure 2 for period, time of periastron passage, eccentricity, and orbit orientation angles derived using the combined CTIOPI and CAPS data.

Equation (16) so as to vary in a nearly random fashion on small
scales (<100 steps) while causing the variations of all
parameters to have effects of nearly the same magnitude in
the large scale of the overall probability density function. This
mechanism prevents parameters that heavily influence the

overall astrometric motion, such as the very high proper
motion, from also dominating the MCMC convergence at the
expense of other parameters.

Our joint solution yields a trigonometric parallax of
276.88 £ 0.81 mas, which is in excellent agreement with the
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Figure 4. Sky projection of the barycentric orbit of ¢ Indi BC’s photocenter.
The filled black circles denote time intervals of approximately 40 days. The
shaded contours indicate the 1o (green) and 3¢ (purple) uncertainties on the
projected orbit. The observed data (Table 2) are overplotted with the proper
motion and parallax subtracted. Blue squares indicate CTIOPI data, and red
triangles indicate CAPS data. The CTIOPI data were scaled up to match the
semimajor axis of the CAPS data for clarity. The dash-dotted line is the
projection of the orbit’s major axis.

Hipparcos parallax for the A component: 276.06 £ 0.28 mas.
We therefore detect no depth separation between the A and BC
components.

Figure 4 illustrates the orbit solution and observed displace-
ments with the proper motion and parallax solutions subtracted.
The shaded contours indicate the 1o and 30 uncertainties of the
orbit solution based on a Monte Carlo simulation of 10,000
possible orbits given the values and uncertainties in Table 3.
The semimajor axis obtained for the CTIOPI Ig--band data
(167.76 £ 1.83 mas) was scaled up to match the semimajor
axis for the CAPS data (201.61 £ 1.97 mas) for clarity. The
smaller semimajor axis in the /g band reflects the trend toward
bluer colors for later T dwarfs in the infrared (Table 1), which
decreases the flux difference between the B and C components.
The formal solution shows excellent agreement with the data,
with 40 out of 52, or 77%, of the observations overlapping the
1o uncertainty contour, indicating that the formal uncertainties
may be slightly overestimated.

The integrated light photometric variability of the BC
component in the CTIOPI data is 15.9 mmag in the / band.
This result is the standard deviation of the BC component’s
flux, measured by aperture photometry, over all epochs when
compared to the sum of the flux of all reference stars, excluding
any found to be variable to more than 5 mmag. This value is
significantly smaller than the 136 mmag inferred by Koen

Dieterich et al.

(2013). Koen noted that his variability data appear to be
correlated with seeing and that such a correlation is a clear
indication of systemic error. He concluded that the true
variability is likely smaller than his formal value. The
semimajor axis of the photocenter’s orbit is a function of both
displacement and flux ratio, and therefore the uncertainty in the
semimajor axis can serve as a check on variability. For both
data sets, our uncertainties in the semimajor axis are
approximately 1% (Table 3), therefore suggesting that the
variability must be of that order or smaller. We note, however,
that the astrometric observations provide only sporadic time
coverage and do not rule out isolated variations in flux as high
as the ones noted in Koen (2013). The lower variability is
consistent with other studies indicating that, for field-aged
T dwarfs, variability is generally on the order of a few percent
(e.g., Radigan 2014). Variability data are not available from the
CAPSCam data set.

4.1. Dynamical Masses

To obtain dynamical masses from the photocenter’s orbit, we
followed the method described in van de Kamp (1968) and
McCarthy et al. (1991). We summarize the formalism here
while providing a detailed example of dynamical mass
determination in Appendix B. At any given epoch, define
p as the magnitude of the photocenter’s displacement about the
barycenter and p as the projected separation between
components B and C. The constant scaling factor from the
photocenter’s orbit around the barycenter to the relative orbit of
component C around B is then p/p and can be measured at any
epoch for which a resolved image exists. Along with Kepler’s
third law, this relation yields the system’s total mass without
regard to the flux ratio of both components in the unresolved
observations. To obtain individual masses, define M as the
fractional mass of the C component:

Mc

- e (12)
Mg + Mc

Likewise, define F as the fractional flux of the C component in
the band used to map the photocenter’s displacement.'” The
mass ratio is then found by setting

1
M-—F

. (13)
p

It is therefore necessary to know the flux ratio of the B and
C components in one of the bands used to map the
photocenter’s orbit. The SDSS z band very nearly approximates
the CAPSCam overall bandpass (Boss et al. 2009). For this
purpose, we used the z-band flux ratio from King et al. (2010;
Fc/Fg = 0259 + 0.002). We validated the photometric
equivalency assumption by comparing z — J colors obtained
with the SDSS z band to colors obtained with CAPSCam for
the field of LHS 495, which is very crowded and observed by
both surveys. Figure 5 shows the comparison. While there are
only a few very red objects, the one-to-one relation is clear in
the range including the z — J colors of the B and C

12 The quantities that we denote as M and F have traditionally been called
B and 3, respectively. We use a different notation to avoid confusion with the
system’s B component.
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Figure 5. Comparison of the CAPSCam system response function to the SDSS
z band for stars in the field of LHS 495. The red dots indicate field objects for
which photometry was done on both systems. The solid blue line indicates a
one-to-one relation. The dotted lines are the 1o uncertainties of 0.1 mag about
the fit. The z — J colors of the B and C components are 2.87 and 3.57,
respectively.

components: 2.87 and 3.57, respectively. We therefore adopt
ACAPS =~ Az and add an additional uncertainty of 0.1 mag to
the Fc/Fp flux ratio. We note that any uncertainty depending
on the flux ratio will be propagated to the mass ratio of the
components but will have no effect on the total mass of the BC
system.

Table 4 lists the dynamical masses we obtained from the
weighted mean of six epochs of high-resolution imaging, as well
as the semimajor axes for the orbits of the B and C components
about the BC barycenter. The semimajor axis of the relative orbit
of the C component around the B component, the quantity that is
used in solving Kepler’s third law, is 2.61 £ 0.03 au. The total
system mass is 0.138 4= 0.0010 M, or 144.49 £ 1.06 M), As
previously discussed, this relative semimajor axis and the total
system mass are independent of any photometric flux assumption.
The adopted best values for the individual dynamical masses are
75.0 & 0.82 My, for the B component and 70.1 & 0.68 My, for
the C component. Figure 6 shows the barycentric orbits of the
individual components along with the photocenter’s orbit and the
separations measured in the high-resolution images.

4.2. Statistical Tests, Convergence, and Systematic Errors

Figure 7 shows the evolution and convergence of Markov
chains for the three astrometric parameters used in dynamical
mass determination: trigonometric parallax, semimajor axis,
and orbital period. Based on the long burn-in phase of several
chains, we conservatively choose to use only the last 100,000
samples. We formally verified the convergence of the 52
Markov chains by applying the Gelman—Rubin statistical test
for convergence (Gelman & Rubin 1992)."? Figure 8 shows the

13 Implemented in IDL by Simon Vaughan, University of Leicester, https://
www.star.le.ac.uk/~sav2 /idl/rhat.pro.
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Figure 6. Projected barycentric orbits of € Indi B (red) and C (blue) plotted
along with the photocenter’s orbit (black). The solid lines connecting the orbits
through the barycenter show the separations at the six epochs of high-
resolution imaging. The dashed magenta line is the projection of the semimajor
axis. The plotting points represent displacements of approximately 21 days. We
refer the reader to Figure 4 for a more detailed description of the photocenter’s
orbit. The uncertainty contours shown in Figure 4 can be scaled linearly to the
orbits of the two components. Figure 13 shows the same orbits without
projection effects.

results as a function of the length of the chain’s burn-in phase.
The test measures the extent to which all 52 chains have
converged to a stable result, indicated by a value approximating
1.00. The test confirms what is seen graphically in Figure 7—
that convergence is obtained after about 1.4 million steps and
the chains have completely stabilized in the last 100,000 steps,
from which we draw the astrometric parameters.

Figure 9 shows the correlation plots for all 13 astrometric
parameters. Most parameter combinations show low or no
correlation with well-defined central values. Combinations of
the temporal parameters of proper motions, time of periastron
passage, and orbital period show very high correlation, as is to be
expected of parameters that determine the photocenter’s displace-
ment as a function of the same critical domain. Furthermore, most
parameters show mild correlation with the proper-motion
parameters, most likely due to the fact that proper motion is by
far the dominant source of the system’s displacement.

We save a discuss of the MCMC’s acceptance fraction for
Appendix A.

4.2.1. Error Analysis of the Mass Derivation

The dynamical masses listed in Table 4 include Gaussian
uncertainties propagated via Monte Carlo, which is appropriate
for independent random uncertainties. We now examine the
possibility of systematic errors in the dynamical masses.

From Appendix B, the quantities necessary for the dynamical
mass calculation are the physical semimajor axis of the relative
orbit (a), orbital period (P), orbital separation at a given epoch (p),
and displacement of the photocenter calculated at the same
epoch (p). The quantities a and p are functions of the photocentric
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Table 4
VLT/NACO Observations, Semimajor Axes, and Dynamical Masses

Night JD Sep. Osep. P.A? OpA. ag® o(ag) ac® olac) Mg o(Mg) My o(Mg) Mc o(Mc) Mc o(Mc)

(mas) (mas) (deg) (deg) (au) (au) (aw) (au) M) M) (Myup) (Myup) M) M) (Myup) (Myup)
2004 Nov 11 2453323.5 894.2 2.7 140.7 0.16 1.269 0.044 1.360 0.054 0.0722 0.0025 75.7 2.6 0.0673 0.0018 70.5 1.9
2005 Jun 04 2453525.5 927.7 2.3 142.5 0.10 1.266 0.043 1.350 0.048 0.0710 0.0019 74.4 2.0 0.0666 0.0016 69.7 1.7
2005 Jul 06 2453557.5 932.3 1.1 142.6 0.10 1.267 0.043 1.352 0.047 0.0713 0.0019 74.8 2.0 0.0667 0.0016 69.9 1.7
2005 Aug 06 2453588.5 934.8 2.3 142.9 0.07 1.266 0.043 1.352 0.047 0.0713 0.0018 74.7 1.9 0.0667 0.0015 69.9 1.6
2005 Dec 17 2453721.5 9404 0.6 144.1 0.10 1.268 0.043 1.357 0.046 0.0720 0.0018 75.5 1.9 0.0672 0.0015 70.4 1.6
2005 Dec 31 2453735.5 940.0 2.2 144.1 0.18 1.268 0.043 1.358 0.046 0.0720 0.0018 75.5 1.9 0.0672 0.0016 70.4 1.7
Weighted means 1.267 0.018 1.355 0.0195 0.0716 0.0008 75.0 0.82 0.0669 0.00064 70.1 0.68

Notes.

 Position angle of C relative to B measured E of N. Differs by 180° from photocenter’s orbit.

® Derived semimajor axis of component’s orbit about the BC system’s barycenter using the ratio of the photocentric offset to the observed separation at that epoch.
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Figure 7. Full 2 million step Markov chains for the three parameters used in mass determination: trigonometric parallax, the semimajor axis of the photocenter’s orbit
in the CAPS data, and the orbital period. Only 13 out of 52 chains are plotted for clarity. The vertical axes show the full range in which each parameter was allowed to
fluctuate, essentially comprising a uniform prior. The chains for trigonometric parallax appear to be wider due to the narrower allowed parameter space, because the
trigonometric parallax is heavily constrained by that of ¢ Indi A. The same chains are plotted using the same colors for all three parameters. Convergence is not evident
before 1.4 million steps. We conservatively use only the last 100,000 steps in inferring results.

semimajor axis (), the trigonometric parallax (IT), and the pixel
scale used in the VLT/NACO observations. Given the excellent
agreement between the parallax we obtain (276.88 4 0.81 mas)
and the Hipparcos parallax for the A component (276.06 &
0.28 mas), we can rule out systematic errors in our trigonometric
parallax. The pixel scale of the NACO detector was examined in
detail by Ginski et al. (2014), who found a mean value of
13233 + 0.012mas pixel ' based on five globular cluster
calibrations between 2008 June 14 and 2012 March 03. This
value is within 0.28% of the pixel scale reported by the
observatory and used in our calculations, 13.270 mas pixel™.
Propagating this offset leads to a 0.841% increase in the dynamical
masses: 0.63 My, for ¢ Indi B and 0.59 My, for the C component.
These offsets are within the uncertainties of our reported masses,
75.0 &£ 0.82 and 70.1 & 0.68 My, for the B and C components,
respectively. The uncertainty in pixel scale caused by any
systematics or temporal drift is therefore not a significant source
of error and is most likely contributing to the uncertainties we
already adopt.

11

The displacement of the photocenter at the epoch of AO
observation p and the semimajor axes of the relative physical orbit
a are also functions of the photocentric orbit’s semimajor axis, .
This last quantity is inferred by the MCMC, which raises the
question of whether or not all parameters inferred by the MCMC
are correct and not contributing systematic error to the other
parameters. The result of the Gelman—Rubin test (Figure 8)
strongly suggests that all parameters have converged to their true
values. As a further test, we examine parameter correlations and
whether or not they could be offsetting each other. For the
purposes of mass calculation, the relevant MCMC inferred
parameters are «, P, and II. In principle, these values could
contain systematic errors if the sources of motion, trigonometric
parallax, proper motion, and orbital motion, are not well
separated. Figure 9 shows the correlation plots for all parameters.
The parameters o and P show a slight correlation to each other,
and « is also correlated to the declination component of proper
motion. Correlation is not necessarily a sign of systematic error,
but it raises the possibility that those parameters could be
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Figure 8. Results of the Gelman—Rubin test for chain convergence. The plot
indicates the degree of convergence after the number of steps indicated in the
horizontal axis have been removed as the “burn-in” phase. Each dot indicates
an increment of 50,000 steps. Results close to 1.00 indicate convergence,
which is reached after approximately 1.4 million steps. The results of the test
agree well with the chain plots in Figure 8.

contributing to each other in an erroneous manner. To test this, we
introduced 40 systematic errors to the declination component of
proper motion, «, and P and held each one of those parameters
fixed while testing the MCMC for convergence. In all three cases,
the MCMC results did not converge, resulting in multimodal
distributions as opposed to the well-defined Gaussian probability
density functions shown in Figures 1-3. We therefore conclude
that the probability of erroneous interference among the sources of
motion in our solution is very low.

5. Discussion

Being the only T dwarfs with known dynamical masses that
approach the theoretical hydrogen-burning minimal-mass limit, €
Indi B and C are unique. Konopacky et al. (2010) obtained a total
system dynamical mass of 62 My,, for the T5.5+T5.5 binary
2MASS J10210969—-304197, from which we infer individual
masses of approximately 31 Mj,,. Dupuy & Liu (2017) reported
individual component dynamical masses for six T dwarfs ranging
from 31 to 55 Mjy,,. Most recently, Bowler et al. (2018) obtained a
dynamical mass of 427} My,, for the late T dwarf GJ 758 B.
These masses are all firmly in the substellar mass range. While the
determination of these dynamical masses is a valuable contrib-
ution, it is difficult to constrain evolutionary models with masses
that are firmly in the substellar domain because of the large
degeneracy between mass and age in the brown dwarf cooling
track. As an example, Burrows et al. (2001) predicted that a mid-T
dwarf could range in mass from about 20 to about 60 My, if its
age was 500 Myr or 10 Gyr, respectively. Both ages are possible
within the general galactic disk population. It is therefore not
surprising that the components of 2MASS J10210969—304197
and ¢ Indi C have approximately the same spectral type and vastly
different masses, because they probably have very different ages.
Because there are no reliable age indicators for isolated older
substellar objects, there is little we can learn from them regarding
substellar cooling rates. In contrast, objects with masses close to
the stellar—substellar limit allow us to test a boundary value of the
theory of substellar structure and evolution.

12
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There is broad consensus that T dwarfs are substellar objects
(e.g., Burrows et al. 2001; Kirkpatrick 2005). Table 5 lists the
most widely used evolutionary models for substellar objects
and the temperatures at which they predict the stellar—substellar
boundary. King et al. (2010) inferred effective temperatures in
the range of 1300-1340 and 880-940K for ¢ Indi B and C,
respectively. These temperatures are in good agreement to
those inferred by Filippazzo et al. (2015) for field-aged objects
of spectral types T1 and T6: 1200 and 900 K. We see,
therefore, that virtually the entirety of our theoretical under-
standing of T dwarfs would be significantly erroneous if ¢ Indi
B and C were stellar objects. As we are about to discuss,
problems with the theory do exist. However, a scenario that
makes ¢ Indi B and C, or even only the B component, a star is
extremely unlikely; all models listed in Table 5 would have to
be overpredicting the temperature of the stellar—substellar
boundary by several hundred K. And yet the masses we
obtained are remarkably high, given our current understanding
of substellar structure and evolution. There is strong evidence
from photometry, spectroscopy, and adaptive optics imaging
that the B and C components have different luminosities and
therefore must have different masses given their common age
(Sections 1 and 4.1). However, even if we disregard flux ratio,
dividing the total system mass by 2 means that the most
massive component cannot have a mass under 72.5 My,,. We
note also that, while the ¢ Indi system has slightly subsolar
metallicity (Table 1), stars with [Fe/H] ~ —0.1 are common in
the solar neighborhood and should be included when
considering the (sub)stellar population as a whole (e.g., Hinkel
et al. 2014).

Figure 10 shows two color-magnitude diagrams based on
the data from the Database of Ultracool Parallaxes maintained
by Trent Dupuy'* (Dupuy & Liu 2012; Dupuy & Kraus 2013).
While the C component appears to be slightly blue, neither
component stands out from the general field population. Any
correct theoretical framework must allow such massive objects
to be substellar and also provide an appropriately fast cooling
rate so that they reach the T spectral type in a time that must be
smaller than the upper bound on the system’s age, the age of
the Galaxy.

Table 5 lists several studies regarding the properties of the
stellar—substellar boundary from both theoretical and observa-
tional perspectives. All theoretical treatments agree that as a
general trend, higher opacity moves the end of the stellar main
sequence downward in mass, luminosity, and -effective
temperature. The overall opacity driving the trend is a complex
function of metallicity and atmospheric parameters, such as the
presence of silicate grains and their sedimentation rate. The
result is a wide range of predictions for the fundamental
parameters of the smallest and least-massive possible stellar
objects. At present, the models that address the effects of
different metallicities and atmospheric conditions tend to
consider extreme values, so it is difficult to ascertain what
the models would predict in the case of ¢ Indi’s slightly
subsolar metallicity. We can gain some insight from the fact
that the models listed in Table 5 have adopted different values
for the zero-point solar abundances, and the offsets among
those different values provide a limited range of metallicities
for comparison.

!4 Currently hosted at http://www.as.utexas.edu/ ~tdupuy /plx /Database_of_
Ultracool_Parallaxes.html.
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Figure 9. Correlation plots for the 13 astrometric parameters. See the text for discussion.

Given the uncertainties on the dynamical mass of ¢ Indi B (Dupuy & Liu 2017, Table 11 and Figure 3) are amenable to
(75.0 & 0.82 My,;,), none of the models listed in Table 5 can be broad interpretation and that the mean of the uncertainty of
strictly ruled out as far as predicting its substellar nature. their dynamical masses that fall within the 70 Mj,, range is
However, Chabrier et al. (2000); the cloudy version of Saumon 5.6 My,p,. Finally, Dieterich et al. (2014) examined luminosity,
& Marley (2008); and Baraffe et al. (2015), the only temperature, and radius trends in the early L dwarf range and
evolutionary model in that family to use updated metallicities did not address the question of the minimum stellar mass
(Caffau et al. 2011) and an adaptive cloud model (Allard directly. The claims in Dieterich et al. (2014) therefore cannot
et al. 2013), do so only marginally and predict masses ~2c be directly tested by the dynamical masses we report here.
away from our best values. Assuming that a given model predicts that such massive

Our results are not compatible with the possibility of the objects would be substellar, another relevant question is
stellar—substellar mass boundary being at 70 My,;,, as claimed whether or not the model can provide a fast enough cooling

by Dupuy & Liu (2017). We note, however, that their own data rate to make € Indi B and C reach T dwarf temperatures.
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Figure 10. Color-magnitude plots showing ¢ Indi B plotted as a red triangle and C as a blue inverted triangle. While the C component appears to lie slightly blueward
of the center of the sequence, neither component can be distinguished from the general population. While some objects are clearly deviant from the sequence, in the
interest of completeness, we did not exclude any data from T. Dupuy’s database.

Table 5
Summary of Predictions for the Stellar—substellar Boundary®

Study Type H-burning H-burning ~ H-burning  Metallicity” Min. Stellar Atmospheric

of Study Mass (M) T (K) log(L/L) Z/Z) Radius (R/Ry,,)  Properties
Burrows et al. (1993, 1997) Model 80.4 1747 —4.21 1.28 0.84 Gray with grains
Burrows et al. (1993) Model 98.5 3630 —2.90 0.00 0.89 Metal-free®
Baraffe et al. (1998) Model 75.4 1700 —4.26 1.28 0.84 Nongray without grains
Chabrier et al. (2000) Model 73.3 1550 —4.42 1.28 0.86 “DUSTY” grains do not settle
Burrows et al. (2001) Model 73.3-96.4 Various Discussion of various models
Baraffe et al. (2003) Model 75.4 1560 —4.47 1.28 0.81 “COND” clear and metal—depletedd
Saumon & Marley (2008) Model 78.6 1910 —4.00 0.87 0.89 Cloudless
Saumon & Marley (2008) Model 73.3 1550 —4.36 0.87 091 Cloudy, fieq = 2
Baraffe et al. (2015) Model 73.3 1626 —4.30 1.00 0.89 “BT-Sett]” cloud model
Dieterich et al. (2014) HR survey 2075 —3.90 Field 0.86
Dupuy & Liu (2017) Mass survey 70 Field
e Indi B Mass 75.0 £ 0.82 1320° —4.70¢ 0.74 0.83
e Indi C Mass 70.1 + 0.68 910° —5.23¢ 0.74 0.85
Notes.

# Adapted and updated from Table 8 of Dieterich et al. (2014).

> we adopt the solar metallicities of Caffau et al. (2011) as the “true” solar value. With the exception of the zero-metallicity case of Burrows et al. (1993), all models
were meant as solar metallicity when they were published. Here we scaled their metallicities to reflect the new values of Caffau et al. (2011). See Allard et al. (2013)

for a discussion of recent revisions to solar abundances.

¢ An artificial case meant to illustrate the significance of metallicity in determining the parameters of the stellar—substellar boundary.
d . . :
In this case, metals are sequestered in grains that settle below the photosphere.

¢ King et al. (2010).

Filippazzo et al. (2015) established luminosities (log(L/L)) of
—4.6 and —5.0 for T1.5 and T6 dwarfs, respectively, and
effective temperatures of 1200 and 900K for field-aged
objects. Most models we consider in Table 5 cannot make
such massive objects reach those temperatures in times shorter
than the age of the Galaxy. Even at an age of 10 Gyr, the
Burrows solar-metallicity models (Burrows et al. 1997, 2001)
predict the effective temperature of a 75 Mjy,, object to be
200400 K hotter than 1200 K, thus placing € Indi B in the
mid-to-late L spectral type range. The discrepancy for the C
component is slightly smaller, on the order of 150 K. The same
models can accommodate the luminosities and temperatures of
both components at 10 Gyr if the opacity is decreased by
setting [Fe/H] = —1.0; however, that is a factor of 7.4 less
than the observed metallicity of ¢ Indi A ([Fe/H] = —0.13; see
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Table 1). See Figures 1, 4, 5, and 8 of Burrows et al. (2001) for
graphical representations of these models.

The cloudy version of Saumon & Marley (2008) and the
“DUSTY” models of Chabrier et al. (2000) are similar to each
other at ages greater than 4 Gyr. They predict temperatures
about 400 K above the temperatures from the Filippazzo et al.
(2015) field sequence. See Figure 3 of Saumon & Marley
(2008) for graphical representations of these models.

The “COND” models of Baraffe et al. (2003) and the
cloudless version of Saumon & Marley (2008) deliberately
simulate less opaque atmospheres to investigate the possibility
that atmospheric silicate grains either do not form or settle
quickly below the photosphere. These models predict con-
siderably faster cooling rates and can reach the temperatures of
¢ Indi B and C at ages <10 Gyr if their masses are slightly
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beyond the lower bounds in the 1o uncertainties we obtained.
The ¢ Indi system would then have to be very old to fit these
isochrones. See Figure 2 of Saumon & Marley (2008) for
graphical representations of these models. The K5V A
component has been associated with the small moving group
of the same name (Eggen 1958), and age estimates for that
moving group range from 5 to 6.2 Gyr (Cannon & Lloyd 1970;
Soubiran & Girard 2005; King et al. 2010). However, the
proposed moving group is small, with only 15 stars identified
by Eggen (1958), and Kovacs & Foy (1978) cast doubt on its
membership and existence. Lachaume et al. (1999) noted that
while the chromospheric activity of € Indi A indicates an age of
1-2.7 Gyr, the system’s Galactic kinematics are consistent with
a much older age of 7.4 Gyr. It is therefore plausible that the
system is old, but, as is evident from this discussion, the ages of
low-mass main-sequence stars are notoriously difficult to
determine. A greater problem may be that while cool brown
dwarfs that have passed the L-T transition are thought to have
clear atmospheres, the spectra of L dwarfs are well replicated
by models that include some amount of silicate grains (e.g.,
Allard et al. 2013). The conditions assumed in these clear
models may therefore not be a realistic representation of a
T dwarf’s cooling history. Nevertheless, we note that the
“COND” models of Baraffe et al. (2003) and the cloudless
models of Saumon & Marley (2008) come considerably closer
to matching the parameters of ¢ Indi B and C than the more
opaque models also listed in Table 5. From an intuitive
perspective, it may seem surprising that a mass difference of
only 5 Mjy,, causes such a large difference in spectral type and
effective temperature. In the preceding analysis, we discussed
the plausibility of several evolutionary scenarios regarding e
Indi BC as a coeval system and not as individual components.
We have therefore implicitly tested whether the models can
explain their differentiation. As a general trend, it seems more
difficult to explain the hotter temperatures of both components
rather than their difference. We note that the evolution of
substellar objects lying very close to the hydrogen-burning
limit is poorly understood, in large part because model grids
lack a finer resolution in that critical point. It is possible that
objects very close to the hydrogen-burning limit may have
markedly slower evolution. If € Indi B falls into this scenario,
then our attempts to interpolate its evolution from the available
coarser evolutionary grids may be misguided.

6. Conclusions

We inferred the dynamical masses of € Indi B and C using
unresolved photocentric astrometric data, resolved adaptive optics
images, and MCMC techniques. The dynamical masses we
obtained, 75.0 & 0.82and 70.1 & 0.68 My,, for the B and C
components, respectively, are surprisingly high and challenge our
understanding of the stellar—substellar mass boundary.

Our analysis highlights the strengths and weaknesses of
different approaches to understanding the structure and
evolution of two old and massive brown dwarfs. It is clear
that the current models underpredict the upper mass limit and/
or the necessary cooling rates for € Indi B and C, with less
opaque models coming closer to replicating the observed
parameters. The system’s slight negative departure from solar
metallicity is of the same order as the differences among the
solar abundances chosen by different models listed in Table 5.
The lack of a clear trend linking metallicities to fundamental
parameters in Table 5, as well as the lack of a clear
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displacement from the field sequence in color—magnitude
diagrams (Figure 10), suggest that small changes in metallicity
are likely not a dominant factor in determining the structure and
evolution of brown dwarfs. This result supports the theoretical
argument to the same effect first proposed by Burrows
et al. (2001).

Dieterich et al. (2014) examined the fundamental parameters
of the nearby field L dwarf population and found that the
models likely underpredict the luminosity and effective
temperature of objects at the stellar—substellar boundary. While
that study did not directly address mass, the most fundamental
of all (sub)stellar parameters, it noted that if the higher-than-
expected temperatures and luminosities were due to models
overestimating opacities, then a higher limit for substellar
masses should also be expected. The high dynamical masses of
¢ Indi B and C support that explanation.

Finally, we note that we now have two well-characterized
brown dwarfs with precise dynamical masses very close to the
stellar—substellar boundary, spatially resolved spectra and
photometry, and well-constrained metallicities from their
main-sequence primary component. The thorough modeling
of the ¢ Indi system using precise empirical input values would
provide considerable insight into outstanding theoretical issues
regarding the stellar—substellar boundary.
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Appendix A
The MCMC Algorithm and Its Implementation

The goal of the MCMC is to generate samplings from
posterior probability density functions that can then be
interpreted through Bayesian inference as the probability
density functions for parameters of interest. We found that
solving the astrometric problem described in Section 3 poses
two specific challenges. First, step sizes must be generated in
an adaptive manner that prevents a single parameter from
dominating the overall evolution of the probability density
function. This is particularly problematic because the orbit’s
orientation angles may take on values that minimize or
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maximize the effect of a given direction of motion while
probing the parameter space. Second, a mechanism must exist
to cause any chains stuck in local probability maxima to
continue to evolve. We developed a modification of the
Metropolis—Hastings MCMC procedure that specifically
addresses these issues in the context of the astrometric
problem. Here we describe the general case assuming a single
astrometric data set. The extension to two or more data sets is
not difficult and is discussed in Section 3. The IDL suite of
codes and detailed documentation are available for download
at github.com/SergeDieterich/MCMC_SD and archived in
Zenodo (Dieterich 2018).

This standard implementation also allows the user to set any
parameter to a fixed number so as to solve a specific subset of
the astrometric problem, such as a resolved visual binary or the
trigonometric parallax for a single star. Readers are encouraged
to contact SBD to discuss nonstandard uses.

Assuming Gaussian uncertainties in the observed positions
of the photocenter (Table 2), the probability that a given set of
astrometric parameters matches the data is expressed as

1
InpP = —5(xi +x: + K), (14)

where Xi, s Tefer to Equations (10) and (11). Equation (14) is
valid for independent parameters. This is the case for
displacements and uncertainties in declination and right
ascension because both telescopes used here are polar-
mounted, meaning their jitter has separate sources for the two
orthogonal axes. The uncertainties due to atmospheric seeing
are also known to be isotropic. The logarithm facilitates
numerical computations for very small probabilities while still
preserving an easy way to compare probability ratios. The term
K in Equation (14) expresses the probability introduced by the
choice of prior. However, because we use constant uniform
priors (Appendix A.1), K is a constant and cancels out when we
take the ratio of probabilities between two MCMC steps to
evaluate whether the chain will advance.

The rule for deciding if a given step advances the Markov
chain is a standard Metropolis—Hastings procedure. After a step
changes the values of all astrometric parameters simulta-
neously, the Markov chain will remain in the new location if
the ratio of the new to the previous solution probability is
greater than a uniformly distributed random number in the
range of zero to one and will return to the previous location
otherwise.

The step generator for each parameter is of the form

Step = AB€ O(scaling parameter)D,
O(parameter)

5)

where A and C are randomly discrete £1; B is a random number
between zero and the user-specified “step multiplier” parameter,
which governs the scale of the step distribution; and D is a fixed
step size for a chosen “scaling parameter.” The partial derivative
ensures that in the long run of hundreds or more steps, all
parameters will contribute more or less equally to the evolution of
the Markov chain toward a solution. The partial derivative is an
order-of-magnitude calculation and approximated by measuring
the slope of the overall displacement in the astrometric solution,
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taking the last two steps into account:

A Y A, )

all epochs
O(parameter)

d(InP)
O(parameter) -

(16)

In the work discussed here, we chose trigonometric parallax as
the scaling parameter and set D = 1 and the step multiplier
equal to 10 so that for each parameter in each step, 0.1 <
B¢ < 10. That setup caused all parameters to change the value
of the overall solution in a scale similar to changing the
trigonometric parallax by 1 mas for each step in the long run,
but with AB causing considerable variation in the small scale
of <100 steps. We set C = —1 at every five steps for all
parameters so as to provide small adjustments in parameter
space that would otherwise be difficult to achieve due to the
simultaneous and independent nature of the parameter steps.

A.l. Avoiding Local Maxima and Enabling Broad Uniform
Priors—The “Spider” Mechanism

Little is known a priori about the specific configuration of an
unresolved binary system other than very broad constraints that
can be inferred from the design of the observations and the
nature of the data. As examples, a binary system’s unresolved
nature means that its projected semimajor axis must be below
the telescope’s resolution, and the fact that we see nonlinear
displacements at periods greater than 1 yr means that the
temporal baseline of the observations is comparable to the
orbital period. We use only these broad assumptions in defining
the ranges of parameter space to be explored, thus effectively
establishing broad uniform priors. Given the wide diversity in
binary systems and the convoluted nature of the parameter
space we are exploring, we believe there is little justification to
assume any other form of prior. It is therefore important that
our MCMC algorithm explore the entirety of this broad
parameter space and lose the dependence on the discrete initial
values of each chain.

One of the difficulties we encountered in using MCMC
algorithms was the prevalence of local maxima in probability
space that did not correspond to the true solution. This problem
persisted even after employing the adaptive step scaling. To
solve this problem, we devised an additional step-scale rule that
causes a chain to take very large jumps in parameter space,
probe the new region, and then compare the relative
probabilities of the old and new regions to decide in which
region the chain should continue to evolve. This method is
similar to the “Snooker” updater of ter Braak & Vrugt (2008).
This mechanism gives the chains the ability to jump between
local probability maxima until they land in the region of the
absolute probability maximum. We call this condition the
“spider” mechanism, in analogy to a spider that extends one of
its legs to a distant region, probes that locality, and then decides
whether or not to move its entire body there or to retract its leg.

At every 200 steps, one astrometric parameter is randomly
selected and jumps to a new random location within its allowed
range. The Markov chain then evolves normally for 100 steps.
If the mean solution probability of the 100 steps after the jump
is less than the mean probability of the 100 steps before the
jump, the chain will return to its pre-jump location or continue
in the new vicinity. This mechanism is most effective in
causing large jumps early on during the MCMC evolution,
when all probabilities are likely to be very low. Once the chains
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Figure 11. Comparison of the probability density function histograms for
trigonometric parallax produced while employing the spider mechanism (black)
and without the spider mechanism (red). While the locations of the Gaussian
peaks are very nearly the same, the probability density function produced
without the spider mechanism shows a spurious local maximum around
190 mas. This case is typical of all parameters.

resemble the final probability density functions, most spider
jumps are rejected or cause shifts that are comparable to the
normal step process. This ensures that the ergodicity of our
MCMC algorithm is not broken by this additional mechanism
(Andrieu & Moulines 2006). Figure 11 shows the probability
density functions for trigonometric parallax produced with and
without the spider mechanism. Whereas the location of the
histogram’s peak changes very little as a result of the spider
mechanism, several chains that were stuck in a local maximum
around 290 mas move to the main peak as a result of employing
the spider mechanism.

Perhaps most importantly, the spider mechanism eliminated
the need for educated guesses as to a starting value for each
chain, thus minimizing the effect of unintentional priors. With
the exception of trigonometric parallax, which was strongly
constrained by that of the ¢ Indi A component, the starting
values for all other parameters covered a broader range than
those reasonably deduced from the setup of the observations.

At large step numbers, as long as the algorithm converges,
the step size described in Equation (15) stabilizes and becomes
independent of the current state of the chains, ensuring that our
MCMC algorithm remains ergodic (Andrieu & Moulines 2006).
We demonstrated in Section 4.2 that our algorithm converges,
ensuring that the step becomes independent of the chain state
after the burn-in phase.

A.2. Computational Performance

The probability density functions shown in Figures 1-3
show the last 100,000 steps of 52 chains of 2 million steps
each. Because each chain is completely independent from the
other chains, the IDL code can be run in parallel by running it
in multiple IDL sessions with identical starting parameters. A
procedure included in the code distribution can be used to
easily consolidate the results from multiple sessions. Running
four simultaneous sessions with 13 chains each and 2 million
steps per chain took about 10 hr in a MacBook Pro with an Intel
i7 dual core processor.
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Figure 12. Acceptance fraction for 13 chains, shown as the fraction at every
50,000 interval. The overall low rate may be due to the nature of the parameter
space and its high dimensionality or the choice of step scaling.

The acceptance fraction as a function of chain evolution is
shown in Figure 12. The overall acceptance fraction upon
convergence is low, at only about 3.5%. This low fraction may
be due to the choice of step scaling or simply a result of the
complex nature of the multiparameter space being probed. The
trends in Figure 12 follow the same pattern as those in Figure 8.

Appendix B
Solving for Individual Masses—An Example

We now discuss the problem of solving for dynamical
masses given the photocenter’s orbit in detail and carry through
a pedagogical example. Figure 13 illustrates the several orbits
involved in the problem as seen from above the orbital plane,
with no projection effects, and with the orbital major axes
aligned with the vertical axis. These orbits are as follows.

1. The orbit of the photocenter about the barycenter, traced
by black dots. This orbit is the one mapped by the
astrometric observations and is the starting point for the
derivation of masses. Here we have a choice of using the
photocentric orbit traced by the CTIOPI observations or
the slightly larger orbit traced by the CAPS observations.
We choose the orbit traced by the CAPS observations for
reasons that will become clear shortly.

2. The orbit of € Indi B, the more massive component, about
the barycenter, traced by large blue squares.

3. The orbit of ¢ Indi C, the less massive component, about
the barycenter, traced by small red squares.

4. The relative orbit of the C component around the B
component is not explicitly shown. However, this orbit
can be traced by assuming the position of component B to
be static and drawing separation vectors toward comp-
onent C through the barycenter. This relative orbit is the
orbit used in solving Kepler’s third law to obtain the sum
of the components’ masses.

The solution to the problem lies in the fact that all four orbits
have the same eccentricity and their orientation in space may
change only by 180°, depending on which point is placed at a
focus. It is our task, then, to scale the size of these orbits based
on the available photocentric orbit solution, the resolved
epochs of astrometry, and the system’s flux ratio so as to obtain
the mass sum and mass ratio for the BC system.
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Figure 13. Several orbits involved in the dynamical mass problem, shown
without projection effects. The large blue squares represent the orbit of the
more massive components (B) about the barycenter. The small red squares
show the orbit of the C component about the barycenter. The black dots trace
the observed orbit of the photocenter about the barycenter. The dashed line
indicates the separation between the B and C components measured on 2005
August 6 (Table 4).

The dashed line connecting the orbit of the B component
(blue) to the orbit of the C component (red) represents the
separation between the components measured with adaptive
optics on 2005 August 6 (Table 4). We define this separation as
p and define p as the photocenter’s displacement in its orbit
about the barycenter at the same epoch. The quantity p can be
calculated from Equations (1) and (2), setting the proper
motion  and parallax IT to zero. The fraction p/p is then the
constant scaling factor between the observed orbit of the
photocenter and the relative orbit of component C about
component B. One clearly resolved measurement of the
separation p is all that is necessary to establish this relation.
Out of the six separation measurements in Table 4, we pick the
one from this epoch as an example because it yields the results
that are closest to the final weighted averages. From Table 4
and calculating the photocentric displacement from the model
yields p/p = 934.8 mas/260.1 mas = 3.594. From this scaling
relation, we can establish the semimajor axis of the relative
orbit based on the observed orbit of the photocenter and its
semimajor axis « (Table 3),

a = Ea =3.594 x 201.61 mas = 724.586 mas,
p

A7)

which, divided by the trigonometric parallax, yields a =
0772458/0"27688 = 2.617 au. We then use Kepler’s third law
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of planetary motion expressed in solar system units,

3

a
(M + Mo) = .

(18)
to find the system’s total mass: (Mg + Mc) = 0.1378 M.

Two points are worth noting here from an observational
perspective. First, we note that starting from an orbit done
entirely on small telescopes and with seeing-limited conditions,
we were able to obtain the mass sum with a single high-
resolution observation. The ability to do so greatly facilitates
the overall observational plan, because time in high-resolution
facilities is usually more scarce than time in seeing-limited
small telescopes. Second, we note that we obtained the mass
sum with no explicit knowledge of the flux ratio between the
components. That dependence is canceled out in the «/p factor
in Equation (17). We could just as easily have used the smaller
CTIOPI semimajor axis and obtained the same result. This
point is significant because obtaining the correct flux ratio in a
close binary is often challenging, and it is sometimes easier to
infer individual masses in indirect ways based on the mass sum,
such as when the primary mass may be known from a mass—
luminosity relation.

Now that the total system mass has been established, we turn
our attention to obtaining the mass ratio between the B and C
components, and therefore individual masses. Recalling
Equation (12), we define the fractional mass of the secondary
(C) component as

Mc

M= M
Mg + Mc

(19)
and the fractional flux of the secondary component in an
equivalent manner as
F=_tfc (20)
Fs + Fc

Because the flux ratio between the two components affects the
overall photocentric displacements that trace the photocenter’s
orbit, it is crucial that the fluxes in Equation (19) be measured
in the same band that was used for the astrometric observations
or that a reliable color transformation be used. In most cases,
the high-resolution and astrometric observations are done in
different filters, and color transformations become relevant.
Here we use the semimajor axis from the CAPS orbit because,
in Section 4.1 and Figure 5, we demonstrated that the effective
band of CAPSCam is equivalent to the z band, for which the
VLT/NACO flux ratio is known (Table 1).

We then come to the equation first introduced as
Equation (13),

p__1 1)

p M-F
This equation states that the fractional mass and fractional flux
of the secondary component play opposite roles in displacing
the photocenter from the position of the barycenter. To
motivate Equation (21), we refer back to Figure 13. Consider
first the hypothetical case where the secondary component
contributes no light. That is usually the assumption when
searching for astrometric perturbations due to exoplanets. In
that case, all light comes from the primary component, and the
photocentric orbit (black) and the orbit of the primary
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component (blue) become the same. The semimajor axis of the
photocenter’s orbit « is then equal to ag, F is equal to zero,
and we recover the usual relation for the location of the
components of a binary system about the barycenter:
M,a, = M»a,. At the other extreme, consider the case of an
equal-mass and equal-luminosity binary where M = F =
1/2. The symmetry of the configuration then dictates that the
photocenter is placed exactly at the barycenter, Equation (21)
diverges, and no photocentric displacement exists. Another
interesting case happens when the asymmetry in mass and
luminosity between the two components is small. A small
photocentric displacement may then be detected, and the
photocenter’s orbit then mimics the other extreme: a very faint
brown dwarf or exoplanet orbiting a much more massive and
luminous star. Detecting the location of the secondary
component in the high-resolution observation or establishing
an upper limit for its flux is critical for breaking this degeneracy
and distinguishing between two very different astrophysical
configurations.

From Table 1, and transforming magnitudes into fluxes, F =
0.206. Using the mass sum determined from Kepler’s third law
(Equation (18)) and the ratio p/p, it is then trivial to solve
Equation (21) for individual masses, yielding Mg = 0.0710 and
Mc = 0.0668 M... These values are very close to the final values in
Table 4, obtained using more data and Monte Carlo error analysis:
Mg = 0.0716 £ 0.0008 and Mc = 0.0669 £ 0.00064 M....
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