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Abstract

■ Central and autonomic nervous system activities are
coupled during sleep. Cortical slow oscillations (SOs; <1 Hz)
coincide with brief bursts in heart rate (HR), but the functional
consequence of this coupling in cognition remains elusive. We
measured SO–HR temporal coupling (i.e., the peak-to-peak
interval between downstate of SO event and HR burst) during
a daytime nap and asked whether this SO–HR timing measure
was associated with temporal processing speed and learning
on a texture discrimination task by testing participants before

and after a nap. The coherence of SO–HR events during sleep
strongly correlated with an individual’s temporal processing
speed in the morning and evening test sessions, but not with
their change in performance after the nap (i.e., consolidation).
We confirmed this result in two additional experimental visits
and also discovered that this association was visit-specific,
indicating a state (not trait) marker. Thus, we introduce a
novel physiological index that may be a useful marker of state-
dependent processing speed of an individual. ■

INTRODUCTION

As the brain shifts into deeper stages of non-rapid eye
movement sleep, neural firing becomes more synchro-
nized, eliciting slow, cortical oscillatory rhythms that
can be measured with scalp EEG. One of the predomi-
nant rhythms of non-rapid eye movement sleep is slow
oscillation (SO; <1 Hz), which reflects underlying fluctu-
ations between periods of neuronal activity (up-states)
and silence (down-states; Dang-Vu et al., 2008). Auto-
nomic nervous system (ANS) activity also changes as
sleep deepens, undergoing a shift toward more para-
sympathetic dominance (as indexed by the high-frequency
component of heart beat-to-beat intervals; 0.15–0.4 Hz),
leading to progressive heart rate (HR) deceleration.
Traditional frequency-based analyses that average across
several minutes of sleep have reported that slow wave
activity (SWA; 0.5–4 Hz) changes with and is pre-
ceded by parasympathetic activity ( Jurysta et al., 2003;
Brandenberger, Ehrhart, Piquard, & Simon, 2001). Ad-
ditionally, seconds after spontaneous and evoked
Stage 2 SOs (i.e., K-complexes), HR shows rapid accel-
eration followed by deceleration (de Zambotti et al.,
2016). However, the functional significance of synchrony

between SOs and cardiac autonomic activity during sleep
remains elusive.

Importantly, large-scale neural activity and cognitive
processing can be shaped by brain–body interactions.
Park, Correia, Ducorps, and Tallon-Baudry (2014) exam-
ined the impact of brain–body activity on visual percep-
tion by measuring the magnitude of the neural activity
locked to heartbeats using magnetoencephalography
during a visual detection task. Previous studies reported
that the amplitude of these heartbeat evoked poten-
tials (HEPs) correlated with interoceptive and empathy
abilities (Schandry & Montoya, 1996). Here, the au-
thors showed that basic visual processing could be pre-
dicted by enhanced HEP responses before stimulus
onset in ventral ACC and the right inferior parietal lobule.
In addition, the slowing of postdecisional HR correlated
with the amplitude of the prestimulus differential
response to heartbeats in ventral ACC–ventral medial
pFC. Although HEP is not well understood, these results
emphasize the significance of on-task heart–brain inter-
actions for visual detection. In other work, coupling
between an autonomic measure (spontaneous pupillary
fluctuations) and off-task resting-state activity (in regions
associated with sympathetic activity) was found to be cor-
related with trait-level attention (Breeden, Siegle, Norr,
Gordon, & Vaidya, 2017). More recently, increasing tem-
poral alignment of EEG–vigilance states and autonomic
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signals (HR and skin conductance) during resting state
corresponded to stronger cortical inhibition (Ulke
et al., 2017). These findings suggest that adaptive auto-
nomic shifts in response to salient environmental cues
may be supported by intrinsic coordination between
autonomic–central brain activity. Furthermore, both the
magnitude and timing between central and autonomic
events are reliable indicators of CNS–ANS interaction.
Building on past research, the current study focuses on
the impact of off-task heart–brain interactions on the
speed of visual processing.

The goals of the current study were threefold. First, we
used high-resolution analysis of the relative timing of HR
bursts and cortical SOs during sleep to obtain a marker of
autonomic–central timing. Second, we sought to mea-
sure the association between two independent measures
of processing speed: SO–HR timing and texture discrim-
ination (i.e., the speed at which individuals can reliably
discriminate the orientation of three target elements
against a background of distractor elements before a
mask onset), as well as the improvement in discrim-
ination that is known to occur after a period of sleep
(Mednick, Nakayama, & Stickgold, 2003). Although the
texture discrimination task (TDT) has traditionally been
considered a task that investigated perceptual orientation
learning, insightful work by Cong and colleagues demon-
strated that a large amount of improvement on the TDT
was accounted for by learning the temporal separation of
the very brief target and mask (Wang, Cong, & Yu, 2013),
and training increased the speed of temporal processing.
In the current study, we utilized this task to examine
baseline temporal processing speed at the first visit, as
well as change in temporal processing speed after a
nap. Third, we measured the reliability of the SO–HR
and perceptual performance association across three
experimental visits. Participants were tested on three
occasions, 2 weeks apart. On each experimental day, par-
ticipants completed a TDT at 9 a.m. and 5 p.m. and took
a 90-min polysomnographically recorded nap (approxi-
mately 1:30 p.m. to 3:30 p.m.) between task sessions.
The discrimination target was in a different visual field
location at each visit, but constant within the day. We
found that SO–HR timing during the nap is associated
with temporal processing speed during each test session,
but not necessarily with the change in performance
across sessions. Furthermore, we found that this associa-
tion was specific to the current state of the individual, as
measured by poor cross-visit correlations.

METHODS

Participants

Data reported here come from a larger, minilongitudinal
study that included up to seven visits per participant. Data
from this study have been reported elsewhere (McDevitt
et al., 2018; Sattari et al., 2017; Cellini, Whitehurst,

McDevitt, & Mednick, 2016; Whitehurst, Cellini, McDevitt,
Duggan, & Mednick, 2016). Fifty-five (30 women) healthy,
nonsmoking adults between the ages of 18 and 35 years
with no personal history of sleep disorders or neurological,
psychological, or other chronic illness gave informed
consent to participate in the study. The sample size was
selected based on prior studies from our lab using the
TDT that have typically included 20–30 participants in a
napping condition (Mednick et al., 2013; McDevitt,
Duggan, & Mednick, REM sleep rescues learning from
interference, 2015). This study was originally designed
to examine differences in nap-dependent learning in
two groups of people (regular nappers and infrequent
nappers), with 20 people in each group (total n = 40)
based on the aforementioned studies. All experimental
procedures were approved by the Human Research
Review Board at the University of California, Riverside,
and were in accordance with federal (National Institutes
of Health) guidelines and regulations. Participants in-
cluded in the study had a regular sleep–wake schedule
(reporting a habitual time in bed of about 7–9 hr per
night). Participants were thoroughly screened before
participation in the study. The Epworth Sleepiness Scale
(ESS) and the reduced Morningness–Eveningness Ques-
tionnaire (rMEQ) were used to exclude potential partici-
pants with excessive daytime sleepiness (ESS scores >10)
or extreme chronotypes (rMEQ < 8 or > 21). Participants
received monetary compensation for participating in
the study.

Data Acquisition and Analysis

Study Procedure

Participants completed three in-lab study days, one each
at the beginning (Visit 1), middle (Visit 2), and end
(Visit 3) of the experimental period, spaced 2 weeks
(14 ± 2 days) apart. Participants wore actigraphs to
monitor sleep–wake activity for 1 week before the
experiment to ensure participants were not sleep-
deprived and spent at least 6.5 hr in bed the night
before their visit. Participants arrived at the University of
California, Riverside, Sleep and Cognition lab at 9 a.m. and
completed the perceptual learning task (see below). At
1:30 p.m., participants took a polysomnographically
recorded nap. They were given up to 2 hr time-in-bed
to obtain up to 90 min total sleep time. Sleep was moni-
tored online by a trained sleep technician. Nap sessions
were ended if the participant spent more than 30 consec-
utive minutes awake. At 5 p.m., participants were retested
on the perceptual learning task. Forty participants
completed all three visits. After excluding outliers (partic-
ipants with no Stage 2 sleep, missing/loose electro-
cardiogram (ECG), or outlier behavioral performance,
M ± 3 SD), a total of 29, 28, and 25 participants from
Visit 1, Visit 2, and Visit 3, respectively, were used for
the analyses.
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Sleep Recording

Polysomnography recordings, which included EEG, ECG,
chin EMG, and EOG, were collected using Astro-Med Grass
Heritage Model 15 amplifiers with Grass GAMMA software.
Scalp EEG and EOG electrodes were referenced to unlinked
contralateral mastoids (F3/A2, F4/A1, C3/A2, C4/A1, P3/A2,
P4/A1, O1/A2, O2/A1, LOC/A2, ROC/A1), and two submental
EMGelectrodes were attached under the chin and referenced
to each other. ECG was recorded by using a modified Lead II
Einthoven configuration. All data were digitized at 256 Hz.

Sleep Scoring

Raw data were visually scored in 30-sec epochs according
to Rechtschaffen and Kales (1968). Five stages (i.e., wake,
Sleep Stage 1, Stage 2, SWS, and REM) were reclassified
in continuative and undisturbed 3-min bins, which were
used for further analysis.

Heart Beat Detection and Time Series Extraction

The ECG signals were filtered with a passband of 0.5–100 Hz
by Butterworth filter. R waves were identified in the ECG
using the Pan–Tompkins method (Pan & Tompkins, 1985)
and confirmed with visual inspection. To extract continuous
RR time series, the RR intervals were resampled (at 4 Hz)
and interpolated by piecewise cubic spline.

Slow Oscillation

The EEG signals were filtered (zero-phase bandpass,
0.15–4 Hz). Then, SO was detected from the F3 and F4
electrodes based on a set of criteria for peak-to-peak am-
plitude, up-state amplitude, and duration of down- and
up-states (Dang-Vu et al., 2008).

SO–HR Timing Calculation

Our focus on the temporal aspect of the SO–HR relation
was due to the peaky nature of both signals, which allowed
for a high degree of precision regarding the temporal dy-
namics of two signals. The SO peak is frequently used in
SO detection algorithms and therefore is a robust feature
to identify an EEG marker. We chose the peak of the HR
burst because we found that this was the optimal time
point for universal and accurate detection in the HR burst.
For each frontal electrode, an average RR time series in

reference to the down-state trough of SOs was calculated
in a 10-sec window. Then, the SO–HR timing was calcu-
lated by averaging the HR maximum times (i.e., RR min-
imum times) across the electrodes.

Texture Discrimination Task

Participants performed a TDT similar to that developed
by Karni and Sagi (1991). Visual stimuli for the TDT were

created using the Psychophysics Toolbox (Kleiner et al.,
2007; psychtoolbox.org). Each stimulus contained two
targets: a central letter (“T” or “L”), and a peripheral line
array (vertical or horizontal orientation) in one of four
quadrants (lower left, lower right, upper left, or upper
right) at 2.5°–5.9° eccentricity from the center of the
screen. The quadrant was counterbalanced across partic-
ipants and visits. The peripheral array consisted of three
diagonal bars that were either arranged in a horizontal or
vertical array against a background of horizontally ori-
ented background distracters, which created a texture
difference between the target and the background.

An experimental trial consisted of the following se-
quence of four screens: central fixation cross, target
screen for 33 msec, blank screen for a duration between
0 and 600 msec (the ISI), mask for 17 msec, followed by
the RT interval (2000 msec) and feedback (250 msec, red
fixation cross with auditory beep for incorrect trials and
green fixation cross for correct trials) before the next
trial. Participants discriminated two targets per trial by
reporting both the letter at central fixation (“T” or “L”)
and the orientation of the peripheral array of three diag-
onal lines (horizontal or vertical) by making two key
presses. The central task controlled for eye movements.

Each block consisted of 25 trials, each with the same
ISI. A threshold was determined from the performance
across 13 blocks, with a progressively shorter ISI, starting
with 600 msec and ending with 0 msec. The specific se-
quence of ISIs across an entire session was (600, 500,
400, 300, 250, 200, 167, 150, 133, 100, 67, 33, 0). A psy-
chometric function of percent correct for each block was
fit with a Weibull function to determine the ISI at which
performance yielded 80% accuracy. Within-day TDT per-
formance change was calculated as the difference in
threshold between Session 1 and Session 2, such that a
positive score indicates performance improvement (i.e.,
decreased threshold in Session 2), whereas a negative
score indicates deterioration.

Participants were given task instructions and practiced
the task during an orientation appointment before start-
ing the study. During this practice, the peripheral target
was located in a quadrant that was not used during the
study. This practice ensured that participants understood
the task and accomplished the general task learning that
typically occurs the first time a participant performs a
task. Additionally, on the study day, participants were
allowed to practice an easy version of the task (ISI of
1000–600 msec) before starting the test session to make
sure participants were able to discriminate the peripheral
target between 90% and 100% correct on an easy version
of the task.

RESULTS

For each visit, we used an automated algorithm to detect
SOs for left and right frontal electrodes (F3 and F4,
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respectively) in Stage 2 and slow wave sleep (SWS). We
then analyzed HR activity within the ±5 sec window (total
10-sec duration) following the SO downstate. During Stage
2 sleep, this activity window was characterized by an accel-
eration in HR, followed by a deceleration (Figure 1), in
agreement with previous studies (de Zambotti et al.,
2016). Detected SO events co-occurred with a peak in
HR, which was 12.09 ± 1.48% above the average Stage 2

HR. The average duration of the HR acceleration and decel-
eration was 5.52 ± 2.51 sec. By comparison, during SWS,
HR increased by only 3.35 ± 1.01% following SOs. As such,
we focused on the heart–brain relationship during Stage 2
sleep in subsequent analyses.
We next measured duration of the SO–HR intervals. For

each detected SO event in Stage 2 sleep, the SO–HR peak-
to-peak interval was quantified by measuring the time dif-
ference between the trough of the SO down-state and the
peak of the average HR acceleration (Figure 1). The aver-
age SO–HR timing across F3 and F4 electrodes was used
as each participant’s individual measure of SO–HR timing.
Across participants, the average Stage 2 SO–HR timing for
Visit 1, Visit 2, and Visit 3 naps was 2.15 sec (SD = 1.03),
2.10 sec (SD = 0.76), and 2.23 sec (SD = 0.72), respec-
tively. We next used each participant’s SO–HR timing
specific to each visit to investigate its possible relation
to temporal processing speed as measured by TDT
thresholds (pre- and postnap sessions independently)
and change in TDT performance after the sleep (change
from pre- to postnap sessions).
Prenap TDT performance was correlated with SO–HR

timing during the same-day nap in all three visits (Visit 1:
r = .47, p= .01; Visit 2: r = .58, p = .001; Visit 3: r = .58,
p = .002; Figure 2A). Since TDT performance was highly
correlated within same-day sessions (Visit 1: r = .89, p <
.0001; Visit 2: r = .86, p < .0001; Visit 3: r = .80, p <
.0001), we expected the SO–HR timing and TDT perfor-
mance relationship to be preserved during the postnap

Figure 1. Heart rate reaches a peak following SOs during Stage 2
sleep. The SO–HR timing (ΔT ) is defined as the time difference
between SO down-state trough and the HR peak.

Figure 2. The scatter plots show the relationship between SO–HR timing and (A) prenap TDT threshold, (B) postnap threshold, and (C) improvement
in TDT performance. The lower threshold implies better performance. (D–E) The cross-visit relationship between SO–HR timing and the TDT
thresholds (asterisks mean significant correlations: *p < .05, **p < .01).
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sessions, which it was (Visit 1: r = .56, p = .002; Visit 2:
r = .50, p = .007; Visit 3: r = .52, p = .008; Figure 2B).
However, there were no significant associations between
SO–HR timing and TDT performance change (Session 1–
Session 2) at any visit (Visit 1: r=−.07, p= .725; Visit 2:
r= .175, p= .371; Visit 3: r=−.12, p= .561; Figure 2C).
We investigated how SO–HR timing covaried with itself

across visits. We did not find a significant correlation
between Visit 1 and Visit 2 (r = .26, p = .16), whereas
the correlation between Visit 2 and Visit 3 (r = .40, p =
.02) as well as Visit 1 and Visit 3 (r = .51, p = .003) were
significant. We also examined how prenap thresholds
covaried across visits. The correlation between Visit 1 and
Visit 2 was significant (r = .41, p = .02), whereas the cor-
relation between Visit 2 and Visit 3 (r = .34, p = .06)
was marginal and that between Visit 1 and Visit 3 (r =
.21, p = .27) was the weakest. Thus, the heart–brain
measure and the perceptual task showed dissimilar cor-
relation trends across visits.
To confirm the visit specificity of these associations, we

investigated the correlations between the SO–HR timings
in each visit and TDT performance in other visits. We found
no significant cross-visit correlations (Figure 2D–E), sug-
gesting that the relation between these two measures
is specific to the current state of the individual, at least
at the level of weeks. Lastly, we checked whether the
SO–HR was simply a proxy for sleepiness by examining
the correlation between SO–HR and subjective ratings
of sleepiness. No significant correlation was found be-
tween the SO–HR timing and average sleepiness in pre-
nap (Visit 1: r = .001, p = .99; Visit 2: r = .01, p = .97;
Visit 3: r = −.06, p = .78) and postnap (Visit 1: r = .08,
p= .66; Visit 2: r= .06, p= .74; Visit 3: r= .31, p= .12)
sessions. Although we focused on SO–HR timing here,
we also conducted an exploratory analyses of the poten-
tial relationship between performance at Visit 1 and select
sleep rhythms of interest during Stage 2 and SWS sepa-
rately (at the dominant electrode site for each respective
rhythm), including frontal SWA (0.5–1 Hz) and central
sigma (12–15 Hz) activity. We found no significant asso-
ciations between sleep rhythms and performance, except
for the negative correlations between performance and
Stage 2 SWA. In addition, we explored the impact of
cardiac function alone on performance at Visit 1 by

measuring correlations between performance and HF
(0.04–0.15 Hz) and normalized HF (HFn HRV) in Stages
2 and 3 separately and found no significant correlations.
The Pearson correlation coefficients are tabulated in
Table 1.

In summary, our data suggest evidence for a general
marker of processing speed in individuals as measured
by the association between the speed of texture discrim-
ination in the TDT and SO–HR timing during nap. This
finding was confirmed across all three experimental visits,
which were spaced 2 weeks apart. We did not find asso-
ciations between our measure of autonomic–central cou-
pling and sleep-dependent learning, and the cross-modal
association in processing speed was highly specific to the
experimental visit, with poor cross-visit correlations.

DISCUSSION

Prior work has demonstrated associations between auto-
nomic measures including HEPs, HR, skin conductance,
and gut–brain interactions and cognitive processes (Park
et al., 2014; Tallon-Baudry, Campana, Park, and Babo-
Rebelo, 2018). Here, we found that the timing between
autonomic and central events during sleep is a state var-
iable that is associated with an independent measure of
temporal processing speed during a perceptual task. This
is interesting for several reasons. First, the measure of
perceptual performance and autonomic–central inter-
actions was measured at different times and in different
states of consciousness, which may suggest that this rela-
tionship reflects a more general marker of timing. Second,
we found stronger within-visit than cross-visit associations
between perception and heart–brain interaction, indicat-
ing a state-dependent measure of processing speed that
is not simply a proxy for sleepiness. Third, it suggests that
processing speed in other cognitive timing domains (i.e.,
motor, audition, tactile) may be predicted by ANS–CNS
timing. Although we hypothesized that CNS–ANS inter-
actions during sleep would be correlated with both base-
line performance thresholds and improvements, we only
found an association with baseline temporal processing
speed and not improvement in speed. One possible rea-
son why we could not find associations with improvement
in TDT is that the heart–brain measure we used is

Table 1. Pearson Correlations between Cortical Functioning during Sleep and Performance and Cardiac Functioning during sleep and Performance

SWA
Stage 2

Sigma Power
Stage 2

SWA
Stage 3

Sigma Power
Stage 3

HF
Stage 2

HFn
Stage 2

HF
Stage 3

HFn
Stage 3

Prenap threshold

Visit 1

−0.49 p = .016 −0.22 p = .30 −0.21 p = .32 −0.27 p = .21 −0.20 p = .28 −0.08 p = .69 −0.14 p = .51 −0.09 p = .67

Postnap threshold

Visit 1

−0.48 p = .019 −0.12 p = .59 −0.08 p = .71 −0.16 p = .47 −0.16 p = .42 −0.11 p = .56 −0.12 p = .59 −0.12 p = .58

Performance

improvement Visit 1

−0.21 p = .32 −0.32 p = .13 −0.06 p = .78 −0.35 p = .10 −0.17 p = .37 0.06 p = .75 −0.08 p = .70 0.05 p = .82
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specifically found in Stage 2 sleep and not reliably de-
tected in SWS or REM sleep, whereas the TDT improve-
ment is typically related to REM sleep (Mednick et al.,
2003; Karni, Tanne, Rubenstein, Askenasy, & Sagi, 1994).

In the current study, we examined both within-
session variation across participants as well as variation
in change scores across sessions. Consider the within-
session variation, particularly Session 1 when participants
were exposed to the stimulus for the first time: Some
participants performed better than average, and some
participants performed worse. What might explain why
some are better than others? One possibility, extending
from Wang’s work (Wang et al., 2013), is that it reflects
differences in “baseline” levels of temporal processing.
However, more work is required to further characterize
the nature of the temporal processes at work in this task.

Several candidate brainstem and cortical regions may
be involved in the interaction between sleep oscillations
and HR. One possibility is that the nucleus of the solitary
tract (NTS), which acts as one of the main bridges be-
tween CNS and cardiovascular systems (Guyenet, 2006),
mediates this interaction. NTS is one of the critical com-
ponents of the central autonomic network with afferent
and efferent connections to the cardiovascular system,
and it receives projections from many cortical regions
(van der Kooy, Koda, McGinty, Gerfen, & Bloom, 1994).
In addition, studies of brainstem auditory evoked poten-
tials in humans suggest that SOs are triggered by a tran-
sient activation of the ventral brainstem, and sustained
dorsal brainstem activity is evident throughout the SO
(Kohsaka, Sasaki, Kohsaka, Fukuda, & Ariga, 2012).
Taken together, both SOs and HR increases are mediated
by overlapping brain networks, and the HR burst may be a
consequence of increases in spindle and SOs through
widespread cortical projection to NTS (van der Kooy et al.,
1994). This suggests that the increase and timing of SO
before HR burst could mediate an increase of HR through
combination of sympathetic and parasympathetic pathways.
However, several other pathways are known to be involved
in the interaction between neocortex and heart and have
been examined tomake definite conclusions. Given findings
of age-related decreases in temporal processing speed
(Andersen, Ni, Bower, & Watanabe, 2010) and dampened
ANS activity (Stein, Barzilay, Chaves, Domitrovich, &
Gottdiener, 2009), further studies should explore these
associations in older adults, along with potential inter-
ventions to enhance cross-modal processing speed.
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