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Abstract
Exploring neuroanatomical sex differences using a multivariate statistical learning approach can 
yield insights that cannot be derived with univariate analysis. While gross differences in total brain 
volume are well-established, uncovering the more subtle, regional sex-related differences in 
neuroanatomy requires a multivariate approach that can accurately model spatial complexity as 
well as the interactions between neuroanatomical features. Here, we developed a multivariate 
statistical learning model using a support vector machine (SVM) classifier to predict sex from 
MRI-derived regional neuroanatomical features from a single-site study of 967 healthy youth from 
the Philadelphia Neurodevelopmental Cohort (PNC). Then, we validated the multivariate model on 
an independent dataset of 682 healthy youth from the multi-site Pediatric Imaging, Neurocognition 
and Genetics (PING) cohort study. The trained model exhibited an 83% cross-validated prediction 
accuracy, and correctly predicted the sex of 77% of the subjects from the independent multi-site 
dataset. Results showed that cortical thickness of the middle occipital lobes and the angular gyri 
are major predictors of sex. Results also demonstrated the inferential benefits of going beyond 
classical regression approaches to capture the interactions among brain features in order to better 
characterize sex differences in male and female youths. We also identified specific cortical 
morphological measures and parcellation techniques, such as cortical thickness as derived from the 
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Destrieux atlas, that are better able to discriminate between males and females in comparison to 
other brain atlases (Desikan-Killiany, Brodmann and subcortical atlases).
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Introduction
The study of sex differences is of considerable scientific interest. Previous work has 
discovered links between sex differences and many phenotypic traits, such as behavior and 
susceptibility to disease (Gobinath et al., 2017; Rutter et al., 2003). In fact, several 
neuropsychiatric and developmental disorders manifest differently in males and females. For 
example, autism spectrum disorders (ASD), attention deficit and hyperactivity disorder 
(ADHD) and oppositional defiant disorder are more common in males (Baron-Cohen et al., 
2011; Munkvold et al., 2011; Nøvik et al., 2006); while depression and anxiety are more 
prevalent in females (Schuch et al., 2014; Altemus et al., 2014). Moreover, because cognitive 
processes are rooted in neuronal architecture, the evaluation of sex differences in brain 
structure may provide a neuroanatomical basis for the sex differences in behavior and 
susceptibility to certain psychiatric disorders (Baron-Cohen et al., 2005; Gur et al., 1999; 
Gur and Gur, 2016). Specifically, identification of neurological structures underlying 
sexually dimorphic relationships may provide important insight into disease etiology and 
potential targets for treatment.

Previous studies of brain structure in vivo using magnetic resonance imaging (MRI) have 
revealed consistent differences in whole brain tissue volume between the sexes, with total 
brain volume significantly larger in males compared to females across all ages (Giedd et al., 
1997; Goldstein, 2001; Gur and Gur, 2016; Ingalhalikar et al., 2014; Nopoulos et al., 2000; 
Ritchie et al., 2017). While these gross neuroanatomical differences are well-documented, 
more subtle regional differences in brain architecture are unclear. Previous studies using 
univariate parametric approaches, such as voxel-based morphometry (VBM), have yielded 
mixed results in cortical and subcortical structures, such as the amygdala (Andreano and 
Cahill, 2009; Hines, 2010; Marwha et al., 2017; Ruigrok et al., 2014), hippocampus (Cahill, 
2006; Neufang et al., 2009; Ruigrok et al., 2014; Tan et al., 2016), and thalamus (Koolschijn 
and Crone, 2013; Ruigrok et al., 2014; Sowell et al., 2002). Discrepancies between studies 
could be due to differences in methodology, such as using different age ranges or different 
sample sizes. However, perhaps more fundamentally, the differences between studies could 
be due to the limitations inherent in using a univariate approach to studying sex differences. 
Because univariate methods neglect interactions between neuroanatomical features, they fail 
to account for differences with high spatially complexity (Davatzikos, 2004). This limitation 
could be overcome by employing a multivariate model; however, incorporating too many 
covariates into a generalized linear model (GLM) is not recommended, because high-
dimensional modeling requires prohibitively large number of observations (Bellman, 1957; 
Hastie et al., 2009).
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Compared to GLM approaches, multivariate statistical learning may have several advantages 
in establishing neuroanatomical differences between various groups, including the sexes. 
Specifically, multivariate statistical learning is theoretically a better approach since the 
problem of dimensionality can be overcome by considering the high-dimensional 
morphological profile as a single entity and optimizing parameters in order to reduce 
dimensionality (Davatzikos, 2004; Rosenblatt, 2016). Specifically, linear support vector 
machine (SVM) classifiers have been used to identify group differences in neuroimaging 
features for several neurological disorders (Bendfeldt et al., 2012; Ecker et al., 2010; 
Wendler, 2013). Also, studies using SVM classifiers have shown a correlation between age-
related and sex-related differences in brain connectivity and cognition (Satterthwaite et al., 
2015; Tunc et al., 2016). Thus, a multivariate approach using SVM may be especially useful 
for identifying neuroimaging features that reflect distinct neuroantomic differences between 
the sexes (Chekroud et al., 2016; Del et al., 2016; Rosenblatt, 2016), not previously detected 
using explanatory analysis (Joel et al., 2015).

To date, only a few studies have used multivariate classification approach to look at 
neuroanatomical differences between males and females. Wang et al. established 
discriminative neuroanatomical maps between sexes from anatomical and functional 
neuroimaging datasets of 140 healthy subjects (70 females, age range: 18–26) utilizing an 
SVM voxel-wise approach (i.e. each voxel was treated as a feature) (Wang et al., 2012). 
Similarly, Feis et al. created sex discriminative maps from anatomical and diffusion imaging 
datasets of 121 healthy subjects (67 females, age range: 20–30) using a voxel-based SVM 
approach (Feis et al., 2013). Both studies evaluated accuracy of the model in predicting an 
individual's sex using cross-validation (CV) on the same cohort (CV accuracies of 96% and 
89%, respectively). However, limitations common to both of these studies were relatively 
small sample size and failure to test the model on an independent dataset. Furthermore, 
while both studies examined features on a voxel-wise level, it may also be valuable to 
identify regional neuroanatomical differences that can be used to discriminate between 
sexes.

The current study aims to expand upon previous findings in order to identify differences in 
regional neuroanatomical features between the sexes derived from structural MRI datasets of 
967 youth (age range: 8–22) using a multivariate model tested on an independent multi-site 
cohort of 682 children and youth (age range: 3–21). Specifically, we built a linear SVM 
classifier comprised of cortical features, including curvature, thickness, volume and surface 
area, extracted from standard atlases. The SVM model for sex classification was first 
developed using the large single-site Philadelphia Neurodevelopmental Cohort (PNC) study 
(Satterthwaite et al., 2016, 2014), and then validated by applying it to the independent, 
multi-site Pediatric Imaging, Neurocognition and Genetics (PING) dataset (http://
ping.chd.ucsd.edu/). The statistical parameters derived from applying our model to this 
dataset were compared against those derived from GLM. In summary, the methodology 
outlined in this study aims to do the following: quantify neuroanatomical differences 
between sexes using a multivariate SVM classifier model based on cortical morphology, 
determine to what extent these sex-related differences derived from this multivariate 
approach coincide and/or differ with those obtained from a GLM-based approach.
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Materials and methods
We utilized the Big Data for Discovery Science (BDDS: http://bd2k.ini.usc.edu) (Toga et al., 
2015) toolset to pre-process datasets from two independent cross-sectional youth cohorts 
(one single-site and one multi-site). Support vector machine (SVM) classification with a 
linear kernel was applied to the single-site cohort dataset to build a model for sex 
classification based solely on neuroimaging features. The generalizability of this model was 
tested on the independent, multi-site dataset (n = 682). We then compared the parameters 
derived from this SVM model to the statistical measures obtained from conventional 
generalized linear models (GLM). The source code for all the statistical analyses, including 
multivariate statistical learning and independent validation on the PING dataset, as well as 
GLM analysis is available on GitHub (https://github.com/sepehrband/Mining_NeuroAnat).

Datasets

Inferential and exploratory (i.e. training) analyses were performed on the Philadelphia 
Neurodevelopmental Cohort (PNC) dataset. The Pediatric Imaging, Neurocognition and 
Genetic (PING) dataset was used only as an independent dataset for testing the 
generalizability of the multivariate statistical learning model.

PNC dataset

Cross-sectional neuroimaging data from 997 healthy subjects from the PNC, ages 8–21 
years (mean age ± SD = 14.64 ± 3.44 y), including 512 females, were acquired through the 
database of Genotypes and Phenotypes (dbGaP) (Satterthwaite et al., 2016, 2014). Detailed 
acquisition parameters are described elsewhere (Satterthwaite et al., 2014). For this study, 
we used the three-dimensional (3D) T1-weighted structural MRI scans, acquired using a T1-
weighted magnetization prepared, rapid-acquisition gradient-echo (MPRAGE) sequence 
with the following parameters: TR = 1810 ms, TE = 3.5 ms, FOV = 180 × 240 mm2, matrix 
= 256 × 192, 160 slices, TI = 1100 ms, flip angle = 9°, effective voxel resolution = 0.9 × 0.9 
× 1 mm3. For the PNC subjects, all data were collected using the same protocol on the same 
scanner (3T Siemens Tim Trio whole-body MRI, Erlangen, Germany; with 32-channel head 
coil). Of the 997 subjects, 30 subjects (14 females) were excluded because of missing 
demographic data, poor raw image quality, or failure in pre-processing, leaving 967 subjects 
for the present analysis. Demographics of the subjects included is presented in Table 1.

PING dataset

Cross-sectional structural T1-weighted MRI images were acquired from the PING study 
(http://pingstudy.ucsd.edu/). Data from 777 healthy subjects, ages 3–21 years (mean age ± 
SD = 12.29 ± 5.03 y), including 368 females were acquired at twelve sites using a 
standardized high-resolution 3D T1-weighted protocol (http://pingstudy.ucsd.edu/resources/
neuroimaging-cores.html). MRI machines from multiple different vendors were used, 
however, the acquisition protocols were nearly identical. After applying the same pre-
processing steps as the PNC dataset, the final N was 682 subjects (Table 1).
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Data preparation using BBDS tools

The BDDS based approach utilized is summarized in Fig. 1. Brain morphological features 
were extracted using the FreeSurfer (v5.3.0) software package (http://
surfer.nmr.mgh.harvard.edu/) (Fischl, 2012). Data processing was performed using the 
Laboratory of Neuro Imaging (LONI) pipeline system (http://pipeline.loni.usc.edu) (Dinov 
et al., 2010, 2009; Moon et al., 2015; Torri et al., 2012). For each subject, the segmented 
cortex was visually inspected, and any inaccuracies were manually corrected. Data 
management was carried out using the Deriva Scientific Data Asset management system 
(http://bd2k.ini.usc.edu/tools/deriva/), and neuroimaging data and demographic information 
was then retrieved using the BDbag tool (http://bd2k.ini.usc.edu/tools/bdbag/).

Features

For each region created by the included FreeSurfer atlases (Destrieux, Desikan-Killiany, 
Brodmann and subcortical atlases), the following steps were taken: 1) if the region was a 
cortical region, the following morphometries were computed: volume (mm3), surface area 
(mm2), average cortical thickness (mm), cortical thickness standard deviation (mm), 
integrated rectified mean curvature (1/mm), integrated rectified Gaussian curvature (1/mm2), 
folding index (unitless) and intrinsic curvature index (unitless), 2) if the region was a non-
cortical region, e.g. gray matter nucleus or a ventricle, only the volume of the structure was 
computed. Neuroanatomical features, obtained from the Destrieux, Desikan-Killiany, 
Brodmann and subcortical atlases (Brodmann, 1909; Desikan et al., 2006; Destrieux et al., 
2010; Fischl et al., 2002) were combined into single matrix for each dataset. The matrix for 
the PNC dataset had 967 × 2087 dimensions (967 subjects and 2087 features) and the matrix 
for the PING dataset had 682 × 2087 dimensions (682 subjects and 2087 features). Sex of 
the subject was assigned based on the prediction “outcome” (female = 1 and male = −1).

Multivariate statistical learning

A support vector machine (SVM) classifier was used as the basis of our multivariate model 
of neuroanatomical differences between the sexes. We used SVM with a linear kernel and a 
regularized solver because (Hearst et al., 1998; Schölkopf et al., 2001; Schölkopf and Smola, 
2002): 1) using SVM with a linear kernel preserves the correspondence between 
neuroimaging data and underlying neuroanatomy, which allows for the choice of sex 
classification metrics directly derived from neuroanatomical differences (i.e. interpreting 
results directly based on their discriminative power), 2) using SVM with a regularized solver 
routine is able to handle wide datasets (features > instances). A linear SVM kernel was 
selected because it preserves, to a large degree, the one-to-one correspondence between the 
differences seen in neuroimaging datasets and the underlying neuroanatomical differences 
they represent. An SVM classifies groups (i.e. ‘male’ and ‘female’) by finding a hyperplane 
with an optimum (largest) margin between the two classes (Cristianini and Shawe-Taylor, 
2000). The data for modeling sex-difference is a set of neuroanatomical measures of features 
(xi) along with sex as the label (yi = ±1, where ‘female’ = 1). To model sex-differences that 
are not mediated by development, age was included in the model as one of the features. Self-
identified race was also included in the model, because differences were seen in the mean 
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eTIV between races in the PNC study (524 African American, 443 European American). 
However, no sex-related differences were seen in race. The constraint optimization model.

f (x) = x′β + b = 0

aims to find the optimum β (beta coefficients) and b (intercept) that minimize β, such that:

yi f (xi) ≥ 1 .

In the current study, all derived neuroanatomical features (see above) were used for 
modeling sex differences. Age and estimated total intracranial volume (eTIV) were also 
concatenated to the feature space. All features were standardized to have zero mean and unit 
standard deviation. To maintain correspondence between neuroimaging features and 
underlying neuroanatomy, and to obtain a map of the beta coefficients for the whole brain, 
no feature-engineering algorithm (dimensionality reduction or feature transformation) was 
applied. Soft margins (overlapping margins) were chosen for finding the optimum 
hyperplane in order to account for the high degree of overlap between male and female 
neuroanatomical measurements (Supplementary Fig. 1, highlights the overlap in eTIV 
measures between males and females). A soft margin optimization routine finds a 
hyperplane that separates many, but not all, data points (Cristianini and Shawe-Taylor, 
2000), which can be formulated as follows (where λ is the slack variable and C is the box 
constraint):

min
β, b, λ

1
2 β′β + C∑

i
λi ,

such that

yi f (xi) ≥ 1 − λi

λi ≥ 0 .

Sequential minimal optimization (Platt, 1998) with 1000 iterations was utilized to minimize 
the cost function, approximating a solution to the above equation. Equal weights were 
assigned to all features (C = 1). Internal (5-fold) cross-validation (CV) was used to evaluate 
classification performance and to avoid overfitting. The CV routine was permuted 200 times. 
Performance of the classifier was evaluated based on the prediction accuracy, sensitivity 
(true positive rate), specificity (1- false positive rate), and the area under the receiver 
operation characteristic curve (AUC). Calculations involving the SVM model and the 
assessment of its performance were performed using MATLAB (Release, 2016a; The 
MathWorks, Inc.,) statistics and machine learning toolbox.
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Feature extraction, through brute-force searching

The parcellation atlas and the neuroanatomical measures (e.g. cortical thickness) were 
chosen after evaluating their performance on modeling differences in sexes of PNC dataset. 
Multiple SVM classifiers were trained on the FreeSurfer outputs from different cortical 
atlases. Then, classification performances were evaluated and compared across 
neuroanatomical measures and atlases. The same parameters as above were used to train and 
evaluate these classifiers. In addition, different combinations of neuroanatomical features 
(e.g. cortical thickness and cortical surface area) were used to create sub-datasets from the 
entire feature space. Classification performances of these sub-datasets were compared 
against the full dataset. One-way analysis of variance (ANOVA) with Tukey–Kramer post 
hoc correction (Toothaker, 1993; Williams and Abdi, 2010) was used to compare the 
performances of the classifiers.

Testing the classifier on an independent dataset

The classifier with the highest score was selected as the multivariate model used to 
determine neuroanatomical sex differences. In order to examine the validity and 
generalizability of the chosen predictive, it was tested on the independent PING dataset. The 
modeling and testing steps were repeated 100 times. For each repetition, prediction 
accuracy, true and false positive rates and true and false negative rates were calculated. Two-
sided t-tests were then used to validate the prediction accuracy of the independent test data 
against 1) the CV accuracy of a baseline model built, which was built on the eTIV of the 
PING subjects, and 2) the CV accuracy of the gold standard model that was trained on the 
neuroanatomical features of the PING subjects (same neuroanatomical features that were 
used to build the model on the PNC dataset). The baseline model represents a univariate 
model of the sex difference (using eTIV). The gold standard model represents a multivariate 
model, which uses the same neuroanatomical features as our model of the sex differences. 
Both the baseline and gold standard models used PING dataset, but our sex difference model 
was built on the PNC dataset. Therefore, a comparison of the model performance on the 
PING dataset against the baseline and gold standard models could determine the 
generalizability of the model.

Generalized linear model (GLM)

We used a GLM with robust linear regression as the conventional technique for identifying 
sex differences in the PNC dataset. We used robust linear regression to minimize the 
influence of outliers by implementing the statsmodels. RLM module in Python 3.5.3 
(StatsModels version 0.8.0–other Python packages that were used are Pandas version 0.20.3 
and SciPy version 1.13.1). Robust linear regressions with an error term (ε) was formulated 
as follows:

yi = xi
Tβ + εi
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βM = arg min
β

∑
i = 1

n
ρ(εi(β)) .

Model parameters (β) were derived by minimizing the Huber loss function (ρ(.)) (Huber, 
1964), using a least trimmed squared maximum likelihood estimator (M) (Huber, 2011; 
Venables and Ripley, 2013). Multiple robust regressions were fitted to all 2087 FreeSurfer 
outputs, one neuroanatomical feature (yi) at a time. For every instance, sex, eTIV, age and 
self-identified race were included as predictors (xi). Regression statistics with respect to sex 
were extracted from each model, including beta coefficients, t-statistics and p-values. Based 
on the Bonferroni criterion, regression coefficients were considered significant for p-values 
smaller than 5 × 10−6.

Correlation with brain size

For each neuroanatomical feature, correlation between the feature and the brain size was 
also calculated across the PNC cohort, in order to find neuroanatomical features that exhibit 
sex differences that are independent of brain size. To obtain the correlation with brain size, 
we calculated the Spearman rank-order correlation coefficient of each feature with eTIV. 
The Spearman correlation is a nonparametric measure of monotonicity of the relationship 
between two features, and, unlike the Pearson correlation, it does not make parametric 
assumptions about normally distributed data. The correlation coefficient varies between −1 
and +1, where correlation coefficients of 0, −1 and +1 imply no, exact negative, and exact 
positive correlations, respectively.

GLM and SVM

Comparing GLM and SVM—Summary statistics of neuroanatomical sex differences 
derived from GLM and SVM were visualized using 2D plots and on 3D surfaces in order to 
depict the distribution and relationship of neuroanatomical features with significant sex-
related differences. Specifically, the maps represent significant neuroanatomical differences 
between sexes, as derived from both univariate and multivariate modeling techniques. Given 
that the sign of both the t-statistics of the GLM and the beta coefficients of the SVM model 
indicate the particular sex that correlates with the observed neuroanatomical feature 
(negative for male and positive for female), we mapped these onto the corresponding region 
on the population averaged cortical surface obtained from FreeSurfer.

Combining GLM and SVM—GLM and SVM model reveal associative and discriminative 
sex differences, respectively. Yet both models identify neuroanatomical features that have a 
dependence on sex. Given the metrics derived from these two models complement each 
other, it might be beneficial to combine the statistical measures derived from these 
techniques, to enhance the model specificity. To this end, we plotted the following three 
statistical properties of the neuroanatomical sex-differences together: 1) discriminative 
power of the feature in the multivariate model (i.e., SVM beta coefficient), 2) significance of 
the feature in the univariate association model (i.e., GLM p-value), 3) correlation of the 
feature with brain size. Visualization was performed using Python visualization libraries 
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(matplotlib 2.0.0 and Potly 2.0.7). An online version of the plot is also provided at the Plotly 
website (https://plot.ly/~sepehrband/50/neuroanatomy-of-sex-difference/), enabling 
interactive data mining of neuroimaging measures using the mixed-method approach.

Results
SVM model of neuroanatomical sex differences

Building the SVM base model of neuroanatomical sex differences—Of the 
twenty-four combinations (three atlases and eight neuroanatomical features) that are plotted 
in Fig. 2, seven features had cross-validation (CV) accuracy higher than the SVM baseline 
model (i.e. eTIV-only model): cortical thickness, volume, mean curvature and surface area 
from the Destrieux atlas, cortical surface area and volume from the Desikan-Killiany atlas, 
and cortical surface area from the Brodmann atlas. When a brute force comparison of 
different possible combinations of neuroanatomical features was conducted, the best 
performing model contained cortical thickness, volume, mean curvature and surface area 
from the Destrieux atlas. This combination resulted in a CV accuracy of 83.2 ± 0.6% (AUC: 
0.89 ± 0.004, false positive rate: 0.17 ± 0.03, true positive rate: 0.82 ± 0.02), which was 
significantly higher (p < 0.0001) than any other combination. Our final SVM model of 
neuroanatomical sex-differences was therefore built using the above combination from the 
Destrieux atlas and was used throughout this work. The Receiver operating characteristic 
(ROC) curve of this classifier is shown in Fig. 3 a. The CV accuracy from subcortical (74.8 
± 0.6%) or white matter (75.7 ± 0.6%) regions were significantly lower than that compared 
to the Destrieux atlas (p's < 0.0001). Other metrics used to evaluate the model (i.e. AUC, 
sensitivity and specificity) showed the same trend (which are presented in Supplementary 
Table 1).

Testing the SVM model of neuroanatomical sex differences on an independent 
dataset—The classification of the sex of subjects in the PING dataset was predicted with 
77.2 ± 0.2% accuracy using the neuroanatomical sex-difference model (Fig. 3 b and 3. c). 
The model's prediction accuracy was notably higher than chance. In addition, the model had 
significantly higher prediction power than the baseline model that was trained on the eTIV 
of PING subjects (70.3 ± 0.4%), at t(99) = 167.81, p < 0.0001, with Cohen'd of 23.73. 
Interestingly, the prediction accuracy of the model was close to the CV accuracy of the gold 
standard model (77.9 ± 0.8%), but significantly lower, at t(99) = −8.9, p < 0.0001, with 
Cohen'd of −1.26. Note that, the gold standard was defined as the model that was trained on 
the neuroanatomical features of the PING data.

GLM analyses of sex differences

GLM analysis (multiple univariate robust linear regressions) across all neuroanatomical 
features, identified 162 covariates that were statistically significant at the Bonferroni 
adjusted p < 0.0001 (the negative log of p-value > 7.3). A plot of the negative log of the p-
values (Fig. 4) shows that the majority of these covariates were related to cortical surface 
area (violet dots) and volume (dark green dots), followed by cortical curvature index (blue 
dots) and thickness (navy dots). The entire list of covariates with summary statistics are 
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included in Supplementary file 1 (a separate list of statistical summaries from regions of 
only the Destrieux atlas is included in Supplementary file 2).

Within the cortical thickness results, the following three regions stood out, with their 
structure being strongly influenced by the subject's sex (dashed red line in Fig. 4): the left 
occipital middle gyrus, the left and right angular gyri (with the negative log of p-value was 
27.7, 20 and 17.1, respectively). When these three regions were combined into a single 
model to determine unique explained variance, the left angular gyrus did not exhibit any 
independent variance (p = 0.15). However, the right angular gyrus and left occipital middle 
gyrus showed a significant sex-related difference with p = 0.045 and p < 0.0001, 
respectively. Similar second level tests were performed on the top four regions from surface 
area estimates: The planum temporale of the left superior temporal gyrus, the posterior 
ramus of the lateral sulcus, and the total left and right hemisphere white matter (dashed blue 
line in Fig. 4). The GLM fit resulted in p-values of 0.1, 0.04, 0.14 and 0.002, respectively. 
This highlights that the univariate GLM could result in type I error, if significant p-values 
from independent tests are interpreted as discoveries.

GLM and SVM

Comparing GLM and SVM estimates—Comparing the t-statistics of the GLM analysis 
with the beta coefficients of the SVM demonstrates that they each carry distinct statistical 
information about neuroanatomical features and each have their contributions in detecting 
sex differences (Fig. 5). T-statistic values from the GLM, which reflect mean group 
differences in neuroanatomical feature between sex, were shifted toward the sex that has the 
higher mean value. For example, as expected, the t-statistics of cortical surface areas and 
volumes were shifted towards the male class (negative t-statistics), whereas cortical 
thickness values were shifted toward the female class (positive t-statistics). Beta coefficients 
from the SVM, which reflect the discriminative power of the model variable, were scattered 
across groups.

A significant positive correlation between beta coefficients of the SVM and the t-statistics of 
the GLM were observed: cortical surface area: Pearson r = 0.65, p < 0.0001, cortical mean 
curvature: Pearson r = 0.64, p < 0.0001, cortical thickness: Pearson r = 0.74, p < 0.0001, 
cortical volume: Pearson r = 0.62, p < 0.0001) (see Supplementary Fig. 3, joint plots across 
all four morphological features of Fig. 5). For instance, a significant positive correlation 
between the GLM and the SVM on cortical surface area results, in which t-statistics are 
smaller than zero, means that regions with high positive SVM beta value (highly 
discriminative) have t-statistics near zero (non-significant association). This highlights that 
the GLM could lead to type II error, if covariates with non-significant p-values are 
interpreted as non-predictive discoveries.

Maps of the above GLM t-statistics and SVM beta coefficients (Fig. 6) illustrate the same 
distribution pattern as seen in Fig. 5. For cortical surface area and cortical volume measures, 
the GLM results were shifted toward the male group (blue), but the SVM results were 
distributed between both groups. Maps show that the overall pattern of the SVM beta 
coefficients and the t-statistics of the GLM analysis are similar. However, there are regions 
that were identified as having high discriminatory power when using the SVM model, but 
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were identified as non-significant using GLM (i.e. regions with near-zero GLM t-statistics, 
but with high absolute SVM beta value). For example, the left superior temporal sulcus (red 
arrow in Fig. 6) had a SVM beta value of 1.34 (top 2% of all prediction features) and t-
statistic of −0.7 (with p > 0.05). These are regions that are highly discriminative of sex, but 
would not be statistically significant between sexes using GLM. Regions with high absolute 
SVM beta coefficient values (top 10%) with t-statistics in the range of [−1,1] are presented 
in Table 2 (further statistical details can be found in Supplementary Files 2 and 3).

Combining predictive and explanatory analysis—Visualization of the statistical 
summaries, using the mixed-method approach (Fig. 7), shows a distinction between 
measures of cortical volume and cortical surface area (high correlation with eTIV) and 
measures of cortical thickness and cortical curvature (low/no correlation with eTIV). 
Measures of cortical volume and cortical surface area were all significantly and positively 
correlated with the estimated brain size, eTIV (cortical volume measures: r ranging in 0.19–
0.68 and Bonferroni adjusted p < 0.0001, cortical surface area measures: r ranging in 0.23–
0.82 and Bonferroni adjusted p < 0.0001). Among these neuroanatomical measures, those 
with positive values of SVM beta coefficients (i.e. features that are predictors of the ‘female’ 
sex) had low univariate association with sex (depicted by smaller bubble size in Fig. 7). 
However, those with negative values of the SVM beta coefficients (i.e. predictors of the 
'male' group) almost all had high univariate association with sex (depicted by large bubble 
size in Fig. 7). Two brain features with the highest correlation with eTIV were the left and 
the right hemisphere white matter surface areas (note that they have relatively low SVM-
derived discriminative indices). Cortical thickness and mean curvature measures showed 
diverse correlation with eTIV. The majority of the regions were uncorrelated, and the 
remainder showed both negative and positive correlations. Interestingly, cortical mean 
curvature measures on average were not positively correlated with eTIV (r = −0.13 ± 0.09). 
Interactive exploration of the neuroanatomical features is available in the online version of 
the graph. Below are few instances of neuroanatomical features highly associated with sex:

Cortical thickness of the left middle occipital gyrus (mOG): this region had the highest 
discriminative power of sex from multivariate modeling, was the most significant covariate 
from multiple univariate modeling, and had no correlation with eTIV (r = 0.02, p = 0.51). 
The right middle occipital gyrus was also an important predictor and a significant covariate 
of GLM, but to a lesser degree (SVM beta = 0.47, GLM p < 0.0001, Spearman's r = 0.02, p 
= 0.45).

Thickness of middle-anterior part of the cingulate cortex (aMCC): this region was not 
correlated with eTIV (r = 0.07, p = 0.02) and was not a significant covariate in univariate 
modeling (GLM p = 0.014). Yet, the SVM beta coefficient for this region was within top 1% 
values for predicting sex (SVM beta = 1.52).

Cortical mean curvature of the left paracentral lobule and sulcus (PLS): this region was 
negatively correlated with eTIV (r = −0.28, p < 0.0001) and within the top 1% of the SVM 
beta coefficients (SVM beta = 1.65), and was a non-significant covariate of the GLM 
analysis.
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Discussion
Using both the SVM and the GLM, the current study provides a new understanding of sex 
differences in the brains of youth. The model was built on a cohort of 967 subjects with 83% 
cross-validation accuracy and correctly predicted the sex of 77% of subjects of an 
independent multisite cohort (n = 682). The testing accuracy of our SVM based multivariate 
model was close to the validation accuracy of the gold standard model and was significantly 
more accurate than the model that was built on brain volume (Fig. 3 c), highlighting the 
importance of multivariate inclusion of the neuroanatomical features.

Neuroanatomy of sex differences using multivariate modeling

Similar to previous studies (Gur et al., 1999; Gur and Gur, 2016; Koolschijn and Crone, 
2013; Ruigrok et al., 2014), we observed that volume and surface areas of cortical regions 
were, in general, larger in males as compared to female youths (Figs. 4–7). However, these 
regions were strongly correlated with intracranial size (p < 0.0001). Therefore, sex 
differences in these regions may not be useful in helping to understand neuroanatomical 
differences between males and females beyond the well-established intracranial size 
difference. However, by using multivariate analysis, we were able to identify novel features 
with high discriminative power, regardless of the group-level mean differences. In other 
words, features that may show no significant difference between the sexes using GLM, could 
be identified as a discriminative sex feature with multivariate modeling. The left superior 
parietal lobule is a prime example of such a feature (p-value of GLM = 0.57, but SVM beta 
of 1.02). In addition to those identified by SVM alone, there were also regions that appeared 
informative, regardless of the employed statistical technique.

The cortical thickness of the middle occipital lobes and the angular gyri were identified as 
important predictors of sex (the left medial occipital lobe was the most discriminative 
feature). Sowell et al. (Sowell et al., 2006), similarly reported cortical thickness differences 
in the medial occipital lobes and the posterior temporal inferior parietal regions. Sex 
differences in the cortical thickness of the occipital lobes have been also reported in mice 
based on sex-linked genes (Markham et al., 2003). Animal studies also suggest sex 
differences in dendritic branching, dendritic spine density, and myelination (Kozorovitskiy et 
al., 2005), although these findings cannot be assessed using MRI.

In the current study, we also found that cortical thickness of the left middle-anterior part of 
the cingulate cortex (aMCC) and mean curvature of right aMCC were among major 
predictors of sex. These findings are inline with previously reported sex difference in the 
activation of the anterior cingulate cortex, which was correlated with personality rating in a 
sex-specific manner (Liu et al., 2012). However, the sex differences in the anterior cingulate 
cortex described in this study was only identified by multivariate analysis, showing that in 
general, multivariate modeling may allow for a more comprehensive description of the 
neuroanatomical sex differences compared to conventional univariate analysis. Moving 
forward, multivariate modeling may be considered in trying to understand how the identified 
sex differences in neuroanatomy relate to behavior and mental health by incorporating the 
interaction between brain regions, and perhaps providing a more accurate model of the true 
nature of an altered mental trait.
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Methodological considerations when examining sex differences in neuroanatomy

Our findings highlight the importance of statistical approaches and neuroanatomical atlases 
in identifying sex differences in youth. The differences and similarities of the results from 
the SVM model and the GLM highlighted above and in Fig. 7, suggest that these techniques 
yield both distinct and overlapping information. However, the current study also highlights 
that the SVM-based approach has some additional technical and practical advantages over 
the traditional GLM technique for modeling sex differences. That is, multivariate statistical 
learning approaches, such as those using a SVM classifier, are able to model the complexity 
of the brain more accurately than classical GLM analysis because the multivariate approach 
can model all the neuroanatomical features at once. For a given preprocessing stream, (e.g. 
FreeSurfer, to derive the cortical surface), there are multiple choices of brain atlases to 
parcellate the surface and related, yet unique, neuroanatomical features can be extracted to 
quantify a given region, e.g. surface area, volume, and thickness. An advantage of statistical 
learning is the capability to explore many of these unique features simultaneously, without 
the need for manual pre-selection of covariates. In addition, incorporating multiple 
neuroanatomical features provides additional discriminative power compared to classifiers 
that were built on only one neuroanatomical feature. The SVM model incorporated the 
interaction between neuroanatomical features and optimizes the model based on their 
discriminative power. In contrast, the GLM ignores the interaction between neuroanatomical 
features (unless directly modeled as an interaction term). For this reason, GLM may be 
susceptible to inferential fallacies that could arise from detecting a “significant” p-value, 
because it incorrectly treats the neuroanatomical features as independent measures. Thus, by 
ignoring this interdependence, GLM testing can lead to type I errors (false discovery) or 
type II errors (missed discovery), where a metric can be erroneously interpreted as 
significant or not simply because of an unincorporated covariate or collinearity with another 
neuroanatomical feature. The GLM also relies heavily on the predefined model and selected 
covariates, while the statistical learning approach derives the model from the data, without a 
priori assumptions. As such, a multivariate model (e.g. an SVM model) that can accurate 
identify complex structural differences and considers their interaction was found to identify 
a number of sex-related differences in neuroanatomy in the brains of youths that would have 
otherwise been missed by GLM.

Of note, the predictive ability of neuroanatomical features differed by atlas. Features from 
the Destrieux atlas were found to be more predictive of sex differences than other atlases 
used, as shown by the highest cross-validation (CV) score using regional values of cortical 
thickness, volume, mean curvature and surface area from the Destrieux atlas as compared to 
the other atlases. Arslan et al. (Arslan et al., 2017). recently showed that the Destrieux atlas 
has more homogeneity and reliability compared to the Desikan-Killiany atlas and has higher 
agreement with myeloarchitecture. This may explain the higher prediction power that was 
achieved using the Destrieux atlas. Moreover, conclusions regarding differences in the 
discriminative power of morphologic features (e.g. cortical surface area has higher 
prediction accuracy compared to folding index) may also reflect a difference in the 
reliability of these morphological estimates via the processing pipeline rather than true sex 
differences. Thus, future studies may also choose to examine alternative processing 
pipelines, such as the one included in Advanced Normalization Tools software package 
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(ANTs; http://stnava.github.io/ANTs/) (Avants et al., 2009), in order to determine how this 
may influence the performance of the classifier and SVM performance (Das et al., 2009; 
Mikhael et al., 2017; Tustison et al., 2014). Also, future studies that compare even finer 
parcellation of cerebral cortex (Glasser et al., 2016) could provide additional insight about 
the effect of morpho-functional segmentation of the brain on the discriminative power of sex 
neuroanatomy in youth.

It should be noted that we only utilized SVM for multivariate statistical learning. However, 
there are several alternative techniques that can potentially handle neuroimaging datasets, 
which are usually underpowered and contain large numbers of overlapping features (Button 
et al., 2013; Krahe et al., 2016; Nichols et al., 2017).

Lastly, to aid others in exploring these ideas and in hopes of improving reproducibility, the 
source code was made available on (https://github.com/sepehrband/Mining_NeuroAnat), 
alongside with descriptive demo code and interactive plots. Thus, the statistical learning 
routine can be applied to other MRI-derived quantitative features with only minor 
modification.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Flowchart of the BDDS based approach implemented.
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Fig. 2. 
Violin plots of cross validation (CV) accuracy of sex-difference models over 200 
permutations (y-axis), for different neuroanatomical features derived from Destrieux, 
Desikan-Killiany and Brodmann atlases (x-axis). White dots represent the median, gray bar 
and line represent interquartile range and 95% confident interval, respectively. Wider 
sections of the violin plot represent a higher density. The highest prediction accuracy was 
achieved when cortical volumes from the Destrieux atlas were used. Corresponding area 
under the receiver operating characteristic curve values of this figure is presented in 
Supplementary Fig. 2.
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Fig. 3. 
Evaluation of the SVM model of neuroanatomical sex differences on an independent dataset 
(PING). (a) Receiver operating characteristic (ROC) curves from cross-validation accuracy 
test of the model building stage on the PNC dataset. Blue line is the ROC curve of the model 
of neuroanatomical sex differences and red line presents chance. (b) Confusion matrix based 
on the performance of the model in predicting the sex of subjects of the PING dataset. TP: 
true positive, FP: false positive, FN: false negative, TN: true negative. (c) prediction 
accuracies (y-axis) of the following (x-axis): the model of sex differences (blue bar), the 
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gold standard and the baseline models (gray bars). For all 3 bars, the mean and standard 
deviation of 100 repetitions are plotted.
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Fig. 4. 
Important neuroanatomical features identified by GLM when modeling sex differences in 
the PNC dataset. Plot shows the negative log of p-values (y-axis) of neuroanatomical 
features (x-axis) from the GLM analysis. The orange and red lines are the Bonferroni 
corrected statistically significant line for p = 0.01 and p = 0.0001. Note: the red and blue 
dashed ovals show the neuroanatomical features that were used in an additional logistic 
regression (see text). A: surface area, C: curvature index, F: folding, CG: Gaussian 
curvature, CM: mean curvature, T: thickness, TS: thickness standard deviation, V: volume. 
SC: subcortical, WM: white matter.
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Fig. 5. 
Statistical inferences as derived from the generalized linear model (GLM) and support 
vector machine (SVM) model. T-statistics of GLM (top row) and beta coefficients of SVM 
(bottom row) are derived from the cortical surface area, mean curvature, cortical thickness 
and cortical volume using the Destrieux atlas. Supplementary Files 2 and 3 contain full lists 
of the GLM and the SVM statistics, respectively.

Sepehrband et al. Page 24

Neuroimage. Author manuscript; available in PMC 2019 May 15.

Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript



Fig. 6. 
Maps of brain regions showing sex-related differences in measures of cortical surface area, 
mean curvature, thickness and volume on the Destrieux atlas obtained (generated from 
FreeSurfer (Fischl, 2012)). For each morphological feature, the GLM t-statistic and SVM 
beta coefficient are mapped in the red-blue color scale shown on the right. The red arrow 
points to left superior temporal sulcus with high SVM discriminatory index, but near-zero t-
statistic (p > 0.05). Destrieux label keys are provide in Table 1 of (Destrieux et al., 2010).
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Fig. 7. 
Visualization of neuroanatomical differences of sex by combining the following three 
statistical values: Correlation of the neuroanatomical features with brain size as assessed by 
estimating Spearman's correlation with estimated total intracranial volume (x-axis), sex-
related discriminatory indices derived from the SVM model (y-axis), and the univariate sex-
related differences obtained from the GLM analysis (radius of spheres = negative log of the 
p-value). Pls: Paracentral lobule and sulcus, aMCC: Middle-anterior part of the cingulate 
cortex, mOG: Medial occipital gyrus, AG: angular gyrus, PP: Planum polare of the superior 
temporal gyrus, sPL: Superior parietal lobe, WM: white matter hemisphere. Superscripts 
refers to left (L), right (R) hemispheres. Interactive version of the plot is presented online on 
the Plotly website (https://plot.ly/~sepehrband/50/neuroanatomy-of-sex-difference/).

Sepehrband et al. Page 26

Neuroimage. Author manuscript; available in PMC 2019 May 15.

Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript

https://plot.ly/~sepehrband/50/neuroanatomy-of-sex-difference/


Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript

Sepehrband et al. Page 27

Table 1

Demographics of the subjects included from the Philadelphia Neurodevelopmental Cohort (PNC) and the 
Pediatric Imaging, Neurocognition and Genetic (PING) datasets.

Dataset Number Mean age (SD) Age range

PNC 967 14.7 (3.4) 8.3–22.6

  Female 498 15.0 (3.4) 8.6–22.6

  Male 469 14.4 (3.5) 8.3–21.7

PING 682 12.0 (5.0) 3.2–21.0

  Female 322 12.1 (5.1) 3.2–21.0

  Male 360 12.0 (4.9) 3.2–21.0
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Table 2

Neuroanatomical features with high predictive power to determine sex that exhibited nonsignificant 
associations in the GLM analysis.

Neuroanatomical regions Beta
(SVM)

t-stat
(GLM)

cortical mean curvature of the inferior part of the left precentral sulcus 0.94 −0.91

  cortical mean curvature of the left superior temporal sulcus 1.34 −0.71

  cortical mean curvature of the right fronto-marginal gyrus (of Wernicke) and sulcus 1.03 0.82

  cortical thickness of the left Precuneus (medial par of P1) −0.94 −0.82

  cortical thickness of the left inferior temporal gyrus −0.96 0.37

cortical thickness of the vertical ramus of the anterior segment of left lateral sulcus −1.07 −0.58

  cortical volume of left superior parietal lobule (lateral part of P1) 1.02 −0.46

cortical volume of left anterior transverse temporal gyrus 1.16 −0.21

cortical volume of the right transverse frontopolar gyri and sulci 1.18 −0.01

cortical volume of the right angular gyrus −1.00 −0.70

cortical volume of the lateral aspect of the right superior temporal gyrus 0.97 0.30
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