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Abstract

The theoretical foundations of Big Data Science are not fully developed, yet. This study proposes a new
scalable framework for Big Data representation, high-throughput analytics (variable selection and noise
reduction), and model-free inference. Specifically, we explore the core principles of distribution-free and
model-agnostic methods for scientific inference based on Big Data sets. Compressive Big Data analytics
(CBDA) iteratively generates random (sub)samples from a big and complex dataset. This subsampling
with replacement is conducted on the feature and case levels and results in samples that are not
necessarily consistent or congruent across iterations. The approach relies on an ensemble predictor where
established model-based or model-free inference techniques are iteratively applied to preprocessed and
harmonized samples. Repeating the subsampling and prediction steps many times, yields derived
likelihoods, probabilities, or parameter estimates, which can be used to assess the algorithm reliability

1,2

1

1

1 1

1,3,4,*

1

2

3

4



and accuracy of findings via bootstrapping methods, or to extract important features via controlled
variable selection. CBDA provides a scalable algorithm for addressing some of the challenges associated
with handling complex, incongruent, incomplete and multi-source data and analytics challenges. Albeit
not fully developed yet, a CBDA mathematical framework will enable the study of the ergodic properties
and the asymptotics of the specific statistical inference approaches via CBDA. We implemented the high-
throughput CBDA method using pure R as well as via the graphical pipeline environment. To validate the
technique, we used several simulated datasets as well as a real neuroimaging-genetics of Alzheimer’s
disease case-study. The CBDA approach may be customized to provide generic representation of complex
multimodal datasets and to provide stable scientific inference for large, incomplete, and multisource
datasets.

Introduction

Data science is an emerging transdisciplinary field connecting the theoretical, computational,
experimental, biomedical, social, environmental and economic areas [1]. It deals with enormous amounts
of complex, incongruent, and dynamic data from multiple sources and aims to develop algorithms,
methods, tools, and services capable of ingesting such datasets and generating semi-automated decision
support systems. Predictive analytics is the process of utilizing advanced mathematical concepts,
powerful statistical computing algorithms, efficient software tools and services to represent, interrogate,
and interpret complex data [2]. As its name suggests, a core aim of predictive analytics is to forecast
trends, predict patterns in the data, or prognosticate the process behavior within the range or outside the
range of the observed data (e.g., in the future, or at locations where data may not be available) [3]. The
increase of the volume and complexity of data outpaces both the growth of computational power needed
to extract actionable information from the data as well as the methodological advances needed to interpret
the intrinsic characteristics of the observed information.

The proposed Compressive Big Data analytics (CBDA) provides a general foundation for effective
representation, efficient processing, and model-free inference for complex heterogeneous data archives.
Specifically, CBDA allows us to eliminate noise, forecast trends, compute probabilities, estimate
likelihoods, and classify large, incomplete, and heterogeneous data from multiple sources. We
demonstrate the utility of CBDA to identify critical data features associated with specific traits, track
multivariate relations and predict high-order trends in the data. Complex simulated and observed
biomedical data are used to validate CBDA performance.

In this study, big biomedical data is defined as data that exhibits most of the following six characteristics
(the six dimensions of Big Data): large size, format heterogeneity and complexity, representation
incongruence, incompleteness, multi-scale composition, and multi-source origins [4]. This constructive
definition is derived by examining the common characteristics of many dozens of biomedical and
healthcare case-studies, involving complex datasets that required special handling, advanced processing,
contemporary analytics, interactive visualization tools, and translational interpretation. The definition also
identifies methodological gaps, computational barriers and analytical challenges associated with
interrogating big biomedical data. Specifically, these challenges include i) infrastructure for transferring,
handling, aggregating, processing, and interpreting vast amounts of time-varying data, ii) mathematical
foundation for representing and modeling the observed incomplete information, iii) efficient, reliable and
precise computational algorithms for statistical analysis, and iv) novel techniques for semi-supervised
scientific inference.

There are major challenges and gaps in Big Healthcare Data analytics, including (a) choosing reliable
predictive model(s) to apply to the data (e.g., need to define a performance metric), (b) specification and
implementation of optimal algorithm(s), (c) feasibility, scalability and convergence of the protocol on
large datasets, and (d) access to appropriate computational resources. The compressive big data analytic
(CBDA) technique tackles most of these challenges.



In this manuscript, we attempt to address some of the above stated challenges by developing an end-to-
end computational protocol that includes data ingestion, harmonization, preprocessing, analysis, inference
and interpretation. Two open-source implementations of the CBDA protocol are available—platform-
agnostic stand-alone R package (https://cran.r-project.org/package=CBDA) as well as a reproducible
pipeline graphical workflow (wrapper of the R-package). Following FAIR (Findable, Accessible,
Interoperable, Reusable) principles for data sharing and in accordance with open-science community
standards [5], all of our work is freely available for independent validation, results reproducibility,
independent extension and validation (https://github.com/SOCR/CBDA).

To validate CBDA, we compare it to Knockoff filtering [6, 7], which is a novel controlled variable
selection statistical technique using FDR (False Discovery Rate). Knockoff filtering doubles the number
of original features by introducing null-features (x˜j) corresponding to all features (x ) in the original
design matrix X. The extra decoy (knockoff) variables serve as a "control group" that allows estimation of
the rate at which the regularized linear modeling generates false-positive variable-selection results. S2
Text provides additional knockoff practical and mathematical details. Briefly, knockoff filtering has
advantages such as computational efficiency—decoy feature construction does not require any new data,
and flexibility—the technique allows specification of a range of test statistics. However, it requires the
number of the features to be smaller than the number of the cases. A newer model-free knockoff version
was recently described [8], however, the R package implementation has not yet been released.

Similar to CBDA, Bagging and RandomForest techniques [9, 10] also use the core principle of
subsampling to improve the model prediction. However, there are CBDA differences in the goals and the
specific model averaging methods used following the stochastic sample generation. For instance, bagging
averaging typically involves f^bag(x)=1BΣb=1Bf^*b(x) prior to obtaining the final prediction model,
whereas CBDA subsampling targets feature selection. For low signal-to-noise ratio (noisy data),
RandomForest also may introduce overfitting, increasing the salience of selected wide-range features.

The main differences between CBDA and other subsampling techniques are twofold. First, CBDA relies
on a Divide-and-Conquer strategy to iteratively obtain and organize the representative data samples. This
facilitates stochastic sample-based data-driven inference, just like compressive sensing does for signal
reconstruction. Second, CBDA does not make assumptions about the data homologies, feature
consistency or completeness. It represents a model-free technique that iteratively harmonizes and
ensembles data to provide sample-driven inference or parameter estimation.

We first present the foundation of compressive big data analytics (CBDA). Then, we describe one
specific CBDA implementation, apply the technique to simulated and real data, and compare CBDA
against some alternative methods. The CBDA protocol is illustrated in Fig 1. Its feasibility and scalability
are ensured by the Divide-and-Conquer strategy (see Methods section for details), where a very large
training set is reduced to smaller chunks by iteratively sampling with replacement features and cases
following certain input specifications. These smaller training sets are then analyzed by an ensemble
predictor that combines many different pre-defined algorithms into a single predictive model (i.e., the
SuperLearner-SL, see [11, 12] for details). By using the SL algorithm, we greatly simplify the choice of
the predictive model(s) to apply to the data. We accomplish that by using the large selection provided by
the SuperLearner library (see Methods section and [11–21] for details on the many different algorithms
used in our CBDA protocol). The default algorithms specifications can be easily expanded from the
default values, bypassing the uncertainty associated to the selection of the most appropriate algorithm for
the data under analysis. The best algorithm(s) within the ensembles can always be retrieved as an output,
thus suggesting future direction for parameter identification/estimation of mechanistic models. To ensure
the method reliability, we employ False Discovery Rate (FDR) controlled variable selection, which may
be implemented using the knockoff (KO) filter algorithm, see [6] for details. By combining R tools (e.g.,
SuperLearner) [11] with the LONI pipeline environment for distributed computing [22] we develop a
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novel protocol for (a) effective and reproducible analysis of diverse datasets, (b) comparing selected key
features/biomarkers across different methods or experiments, and (c) enable convergence tracking, large-
scale testing and validation.

Fig 1
CBDA framework.

CBDA involves the following steps: Step1: Data Cleaning, Step 2: Data Harmonization, Step 3: Data
Aggregation and Selection of Prediction Dataset. The first three steps represent Data Wrangling. Step 4:
Random Sampling from the aggregated dataset, Step 5: Data Imputation, Scaling and Balancing (if needed),
Step 6: Controlled variable selection and SuperLearner algorithms, Step 7: Ranking of Mean Square Errors
(MSE) and Accuracy metrics, and finally, Step 8: Feature Mining and Inference.

Methods

This section illustrates the CBDA methodology for representing and analyzing large datasets with
binomial/multinomial outcomes. First, we describe the protocol steps and then outline the validation
procedure using synthetic and clinical datasets. In support of transparent, reproducible, and open-science
principles, the CBDA protocol has been developed in the R environment (https://www.r-project.org).
Since a large number of smaller training sets are needed for the convergence of the protocol, we created a
workflow that runs on the LONI pipeline environment (http://pipeline.loni.usc.edu), a free platform for
high performance computing that allows the simultaneous submission of hundreds of independent
instances/jobs of the CBDA protocol (see [22] for details). The methods, software and protocols
developed here are openly shared on our GitHub repository (https://github.com/SOCR/CBDA). All
software, workflows, and datasets are publicly accessible. The CBDA protocol steps are illustrated in 
Fig 1. Detailed descriptions of the protocol are given in the next sections and in S1 and S2 Text.

CBDA data wrangling



The CBDA protocol starts with three modules that are data dependent, namely Data Cleaning,
Harmonization, and Aggregation (see Fig 1). These first three modules represent standard procedures and
techniques in data wrangling (see [23] for details). Different datasets will require ad hoc data wrangling
procedures and cannot be all comprehensively generalized. Each dataset is labeled as DSorigin  (p = 1,2,
…, n). We will use the terms rows/cases and columns/features to indicate the dimensions of each dataset.
Step 1 Data cleaning ensures that: (i) all the data types are correctly interpreted, e.g., casted into the R
data frame; (ii) missing values are correctly identified and labeled; (iii) known dependencies are
addressed, e.g., eliminating the features that are perfectly correlated to each other and/or to the
outcome/response variable; and (iv) identifying and eliminating static features, e.g., constant values.

Step 2 Data Harmonization is performed by identifying features that are common across different
datasets, ensuring they are consistently casted across datasets (i.e., double, integer, categorical). Step 3
Data Aggregation and Selection of Prediction Dataset follows on harmonization, by merging multiple
datasets together correctly (for example, using common features as keys). At the end of Step 3, a
prediction set is randomly sampled from the dataset and held off for validation (i.e., [X , Y ], usually
20% of the original number of rows/cases). We set the random seed to a fixed value to enforce
reproducibility of the results, and at the same time, to comply with the requirement that no validation data
can be used for training.

CBDA sampling scheme

Following Steps 1–3, we have set aside the prediction dataset for validation and we are left with a subset
of the original Data labeled training set [X , Y ]. The next steps of the CBDA protocol are data
independent and pertain training/learning and feature mining. They can be applied to any type of dataset,
as long as the data wrangling steps have been performed successfully.

During the learner training process, Step 4 Random Sampling ensures that the large training set [X ,
Y ] is reduced to smaller chunks by defining ranges from which to select a certain fraction of cases
(Case Sampling Range—CSR) and features (Feature Sampling Range—FSR). Each sampling step is with
replacement and it returns M subsets of cases/rows n  and features/columns k  that are used to build the
smaller training sets [X , Y ] . If needed, Step 5 Data Imputation (see [24] for details), Scaling
(see [25] for details) and Balancing (see [26] for details) are performed on the chunk training set [X , Y ]
(see S2 Text) for details on the algorithms used). More details are given in the CBDA Testing Protocol
section.

CBDA predictive components

Step 6 Knockoff filter and SuperLearner algorithms. The training set pair [X , Y ] is then passed to the
SuperLearner (see [11] and S2 Text for details) and to the knockoff filter (see [6] and S2 Text for details)
algorithms, respectively. The SuperLearner is an ensemble predictor that combines many different
algorithms into a single predictive model (see S2 Text for details on the algorithms used). The
SuperLearner function takes the training set pair [X , Y ] and returns the predicted values based on the
validation data X . The knockoff filter algorithm takes the training set pair [X , Y ] and returns a subset
of features from X  selected as most important in explaining Y .

Step 7 Ranking of MSE and Accuracy metrics. While the results of the Knockoff filter already return a
set of features as likely most important (e.g., here we use the Knockoff filter as a benchmark to test the
CBDA accuracy), the SuperLearner function returns predictions that we rank based on two metrics:
accuracy of predictions (highest to lowest) and mean square errors (MSE) from the predictions (lowest to
highest). The accuracy metric is generated by calculating a confusion matrix on the Y  and the Yj^ (see
mathematical framework for details) and retrieving the accuracy of the prediction (see S2 Text for
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details on the confusionMatrix function). The MSE metric is generated by calculating the Euclidean
distance between the Y  binary values and the probability predictions returned by the SuperLearner. We
perform feature mining on the SuperLearner predictions by first extracting the features f  from the top-
ranked predictions (since each prediction is associated with a subset of features selected in Step 4 of the
CBDA). Then we choose how many top-ranked predictions to consider and calculate the frequencies each
feature occurs among these top-ranked predictions. In Step 8 Feature Mining, again, we rank the top
predictions based either on the highest accuracy or on the lowest MSE. Then, we calculate the densities of
the features among the top-ranked. If a feature or set of features is associated to the top-ranked
predictions, we will see spikes in the correspondent generated histograms.

Below, we show a concise description of CBDA framework:

Step1-Step5 are described in the mathematical framework (Supplementary Materials).

Step 6: Algorithm

Start with a generic dataset: [X, Y, X , Y ], let Cj=[Xj,Yj,Xvalj], j = 1,…, M.

Define machine learning algorithm as ML: ML(C ):R  × R  × R  → R ,
ML([Xj,Yj,Xvalj])=Yj^.

Step 7:

Define performance metric as: τ(ML(C ), Y ): R  × R  → R, τ(Yj^,Yval)=cj, j = 1,2, …, M.

Rank the samples: {c } = O  ({c }), j = 1,2, …, q.

Step 8:

Set the feature values: sj(i)=Dirichletj(fi)={0,fi∉samplej1,fi∈samplej.

Set a metric as: F ∈ R , ∀bji∈F,bji=sj(i).

Count the occurrence: Si=∑jqbji,i=1,2,...,K.

Feature mining: S  = O  (S ), i = 1,2, …, K, Ω* = {f , …, f , …, f }.

Inference: let C  = [ϕ  X, ϕ  Y, ϕ  X ] and [ML (C ):R  × R  × R  → R  → R ,
ML([ΦpX,ΦpY,ΦpXval])=Yvalp,p=5,10,…,p^, τ(Yvalp,Yval):Rm×Rm→R,
τ(ML((Φp*X,Φp*Y,Φp*Xval)
[Φp*X,Φp*Y,Φp*Xval]),Yval)=bestp(τ(ML(ΦpX,ΦpY,ΦpXval),Yval)).

Then Φ  is the final dictionary we need.

At the end, we assess the CBDA performance. Once we obtain Φ , we can use it along with the
SuperLearner algorithm and the testing set predictors X  to estimate predicted outcome: Y  =
ML([Φ  X, Φ  Y, Φ  X ]).

Datasets

We validate the CBDA technique on three independent datasets. The first two, namely the Null and
Binomial datasets, are synthetically generated as cases (i.e., n) and features (i.e., p) for the purpose of
testing the protocol and assessing the CBDA performance. For all the Binomial datasets, only 10 features
are used to generate the outcome variable (these are what we call truly predictive features, see details
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Null datasets

Binomial datasets

Alzheimer’s Disease Neuroimaging Initiative (ADNI) case-study

below in the Binomial Datasets section). The third case-study represents a real biomedical dataset on
Alzheimer’ss disease using clinical and neuroimaging measures. These data archives include appropriate
and relevant categorical (binomial/binary and multinomial/polytomous) outcome features.

The first set of data is a "white noise" dataset (i.e., Null dataset), where the outcome Y is a
realization of a Bernoulli vector of length n (i.e., Y = [Y , Y , …, Y ], with Y ~Bernoulli(0.5), i = 1,2, ….,
n) completely independent from the set of features X. Each column of X is an independent realization of a
Gaussian random variable with mean equal to 0 and standard deviation equal to 1 (i.e., X = [X , X , …,
X ], with X  ∼ N(0,1), j = 1,2, …, p. We will refer to n as number of cases and to p as number of features.
We use different ratios n/p for a more complete assessment of the robustness and convergence of the
CBDA protocol in the binomial case. Namely, we use n/p ratios of 1/3 (100/300), 3 (900/300) and 5
(1,500/300). We also superimpose an artificial fraction of missing data on these datasets to test the
imputation procedure itself. This superposition of missing data is accomplish using missing completely at
random (MCAR) sampling, via the R function 'prodNA'. This process artificially introduces missing
values by deleting the data elements at the specified indices, i.e., we introduce MCAR NAs in a given
data frame according to the desired missingness fraction.

The second set of data is similar to the Null dataset, but the Bernoulli vector Y is now
an explicit function of the set of features X. We establish the dependency of Y to X by selecting 10
features from X to build a linear additive model Y ∼ X, with non-zero coefficients for only these 10
features, namely Z=bk1Xk1+bk2Xk2+bk3Xk3+...+bk10Xk10+e,withe∼N(0,1)andb=bkj(j=1,2,...,10)).
The Bernoulli outcome Y is then generated by an inverse logit on the outcome of the linear additive
model (i.e., Pr=11+e-Z and Y ~Bernoulli(Pr), i = 1,2, …., n). When necessary, various strategies may be
used to binarize the predicted outcomes using the corresponding probability values. Similar to the Null
dataset, we superimpose MCAR missingness on this dataset to test the reliability of the imputation
procedure.

This dataset includes clinical and
neuroimaging data for a cohort of elderly volunteers. It consists of three cohorts of patients (2,500 cases)
with three diagnoses (i.e., multinomial): EO-AD (Early Onset Alzheimer Disease, N1 = 406), Normal
(N2 = 747) and EO-MCI (Early Onset Mild Cognitive Impairment, N3 = 1,347). We used both Global
(GSA) and Local (LSA) Shape Analysis neuroimaging biomarkers based on 56 region of interests (ROI)
described in the LONI Probabilistic Brain Atlas (LPBA, see [27] for details). The necessary data
wrangling (Step 1) was performed on the ADNI data. There were redundant and/or highly-correlated
features, among the predictors as well as between predictors and the outcome, i.e., diagnosis. Following
Steps 1 and 2 of the CBDA protocol (see Fig 1), the SuperLearner and Knockoff algorithms were
employed to predict the participant clinical diagnosis. Table 1 shows a summary of Alzheimer Disease
Neuroimaging Initiative (ADNI) archive, while S2 Table shows a list of all the features in the dataset.
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Table 1

Alzheimer Disease Neuroimaging Initiative dataset.

Source Types of Data Sample Size Clinical Relevance

ADNI
Archive 
www.adni-
info.org

Clinical data:
demographics,
clinical
assessments,
cognitive
assessments
Imaging data:
sMRI, fMRI,
DTI, PiB/FDG
PET
Genetics data:
Ilumina SNP
genotyping
Chemical
biomarker: lab
tests, proteomics

Each data modality comes with a
different number of cohorts. Generally,
500–2,500 subjects (for instance see
[27–29] for previously conducted
ADNI studies

ADNI provides interesting data
modalities, multiple cohorts (e.g., early-
onset, mild, and severe dementia,
controls) that allow effective model
training and validation

CBDA testing protocol

Table 2 summarizes all the specifications used to initialize each experiment, as well as all the options we
implemented for the post-optimization analysis, where we rank all the predictions and mine for key
features. For the Null and Binomial test datasets, an experiment is defined as an entire set of 9,000 jobs
and it is uniquely identified by a set of input specifications that are read from an argument file.

Table 2

Input specifications for all CBDA experiments used to validate the convergence of the CBDA
method.

M [number of
CBDA iterations]

Fraction of missing
values [misValperc]

Feature Sampling
Range [FSR]

Cases Sampling
Range [CSR]

Subsets
of M

Top-Ranked
Predictions

9,000 0%
20%

[1%,5%]
[5%,15%]

[15%,30%]

[30%,60%]
[60%,80%]

1,000
3,000
6,000
9,000

100
200
500

1,000



The array of input specifications comprises the following labels:

1. M: number of the instances/jobs for each experiment (set to 9,000 in this study)

2. misValperc: % of missing values to introduce in the Data (just for testing, to mimic real cases)

3. min_FSR: Lower bound for the % of features/columns sampling

4. max_FSR: Upper bound for the % of features/columns sampling

5. min_CSR: Lower bound for the % of cases/rows sampling

6. max_CSR: Upper bound for the % of cases/rows sampling

The argument file has as many rows as the number of experiments we want to perform on a single
dataset. For each dataset, we run 12 different experiments, combining the fraction of missing values
(misValperc), the FSR, and CSR (see Table 2). Thus, each row of the argument file will have the
following values [M, misValperc, min_FSR, max_FSR, min_CSR, max_CSR].

Sampling ranges for cases (CSR—Cases Sampling Range) and features (FSR—Feature Sampling Range)
are then defined as follow: FSR = [min_FSR, max_FSR] and CSR = [min_CSR, max_CSR] (see Table 2
for the options we investigated).

Depending on the number of features, the lower bound for FSR can be set to include at least 5–10
features. So, for example, if we have only 100 features in the dataset, a lower bound of 1% is not feasible,
since it would only select 1 feature for the CBDA protocol.

For the ADNI dataset, we did not introduce artificial missing values (i.e., misValperc = 0%), and we did
not implement the FSR ranges [1%-5%] and [5%-15%] because the data wrangling steps reduced the
viable features for learning down to 68. Thus, for the ADNI dataset we only performed 4 experiments,
only varying CSR = [min_CSR, max_CSR] and FSR = [15%, 30%]. To investigate the convergence of
the CBDA within the context of the Binomial datasets, we chose to select subsets of M for the ranking,
namely the first 1,000, 3,000, 6,000 and then all 9,000 samples. The specifications for ranking the top
predictions are given in the last column of Table 2. We selected 100, 200, 500 or 1,000 top-ranked
predictions. Fig 2 showcases all the possible combinations of the latter two specifications (for a total of
16 combinations, 4x4) for each experiment in each Binomial dataset. Table 2 summarizes the
experimental design specifications for the CBDA protocol, and should be used as a guideline to navigate
through all the Results section. Our goal was to investigate the optimal input specifications for the CBDA
protocol (i.e., decrease the computational time by reducing the number of samples, and increase the rate
of discovery of "true" features).

Open in a separate window
Fig 2
LONI pipeline workflow for the CBDA protocol.

In the graphical pipeline workflow implementation, the CBDA technique is divided into following steps.
Step 1–5 is data wrangling and sampling; Step 6 represents the SuperLearner loop; Step 7 is consolidation,
performance metrics generation, and ranking; and Step 8 includes consolidation of performance metrics and
inference on the top features.



High performance computing

The feasibility of the CBDA protocol is significantly enhanced by utilizing a high-throughput, scalable,
efficient and fast computational infrastructure to manage the tens of thousands of processing tasks that
collectively represent the entire CBDA method. We have chosen to implement CBDA as a graphical
workflow that can submit thousands of [X , Y ], analysis/jobs simultaneously via the LONI pipeline
environment (http://pipeline.loni.usc.edu and [22]). The R script that implements the CBDA protocol is
generalized so that the job identifier (i.e., label j) is passed to the script together with other inputs (see the
pseudocode in S1 Text for details) to build a single instance of the CBDA protocol. Once the
SuperLearner prediction and the knockoff filter are generated, a workspace is saved and the instance is
completed. A post-optimization workflow is executed once all the instances M are completed: it
consolidates and ranks all the metrics into a single R workspace. An offline R markdown script then
generates histograms and table with results.

Due to some restrictions on the LONI cranium server, our submission queue is limited to 3,000 instances
at a time. To investigate asymptotic convergence properties of the CBDA protocol, we decided to set the
total number of instances (i.e., jobs) for each CBDA analysis to 9,000. Fig 2 shows an example of the
workflow as implemented in the LONI pipeline GUI client.

Each job completes within 5–10 minutes upon submission, which makes the CBDA protocol very
scalable and efficient. Table 3 shows some computational complexity estimates of the CBDA protocol in
three different scenarios: desktop/laptop, small and large multicore servers.

Table 3

CBDA computational complexity.

CBDA Computational Complexity CPU time per job Total CPU time (M = 9000)

Desktop/Laptop ~3–10 mins [x M]
~450–1500 hrs

Small Multicore Server
(# cores n ~20–30)

~3–10 mins [(x M)/n]
~15–75 hrs

Large Cloud Server
(Cranium, # cores n ~3000 cores)

~3–10 mins [(x M)/n]
~15–20 mins

Results

Our experimental design aims to empirically investigate the convergence properties of the CBDA in
mining true predictive features, and more specifically, determine which metric is best suited to assess
CBDA performance. We applied our CBDA protocol to two simulated datasets, Null and Binomial, where
we control the model that generated the data as well as the number of true predictive features. The
simulated Binomial datasets represent a true positive validation example. Then, we will contrast these
results to the Null datasets results and estimate the empirical false discovery rate (or true negative rate)
for null-feature selection (i.e., the false selection of features in the featureless null dataset). The Null data
also allows us to examine the CBDA computational complexity and its robustness in a pure noise
scenario. The third dataset represents a real biomedical case-study using data from the Alzheimer’s
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Disease Neuroimaging Initiative (ADNI) [30]. The details about each dataset are provided in the Datasets
section of the Methods. Throughout this section, we will use the knockoff filter [6] as a benchmark for
false discovery rate based controlled feature selection.

CBDA results using binomial data

Due to the large number of experiments and the many different specifications, the complete set of results
for the three binomial datasets are illustrated in S3 Text. Fig 3 includes a summary of all these
experiments, namely the analysis of three binomial datasets, 12 experiments and 9,000 CBDA samples
for each experiment. At the top of each panel in Fig 3 we show the number of cases (i.e., n) and features
(i.e., p) in the dataset. This figure summarizes in light blue color CBDA experiments with high true
positive rates, indicating a high frequency of correct feature identification (i.e., with more than 7 true
features identified out of a total of 10) and in dark blue color CBDA experiments with low true positive
rates, depicting a low frequency of correct feature identification (i.e., with less than 7 true features
identified out of a total of 10). Details of all the experiment specifications are provided in the Methods
section.

Open in a separate window
Fig 3
Heatmaps of CDBA protocol for the binomial datasets.

The x axis represents the 16 combinations between the choice of the subsets of M (i.e., 1,000, 3,000, 6,000
and 9,000) and the choice for top-ranked predictions (i.e., 100, 200, 500 and 1,000, as described in the last 2
columns of Table 2 in the Methods section). Namely, the combinations are ordered as follows: Combination 1
= (1,000,100), Combination 2 = (1,000,200), Combination 3 = (1,000,500), Combination 4 = (1,000,1,000),
Combination 5 = (3,000,100), Combination 6 = (3,000,200), Combination 7 = (3,000,500), Combination 8 =
(3,000,1,000), Combination 9 = (6,000,100), Combination 10 = (6,000,200),Combination 11 = (6,000,500),
Combination 12 = (6,000,1,000), Combination 13 = (9,000,100), Combination 14 = (9,000,200),
Combination 15 = (9,000,500), Combination 16 = (9,000,1,000). The y axis represents the CBDA experiment
specs, where Experiments 1–6 have no missing values (i.e., missValperc = 0%), and Experiments 7–12 have
20% missing values (i.e., missValperc = 20%). Both sets of experiments have the FSR and CSR ranges
combined in ascending order, namely Exp1and Exp 7 = [FSR,CSR] = [1–5%,30–60%], Exp2 and Exp 8 =
[FSR,CSR] = [5–15%,30–60%], Exp3 and Exp 9 = [FSR,CSR] = [15–30%,30–60%], Exp4 and Exp 10 =
[FSR,CSR] = [1–5%,60–80%], Exp5 and Exp 11 = [FSR,CSR] = [5–15%,60–80%], Exp6 and Exp 12 =
[FSR,CSR] = [15–30%,60–80%]. See Table 2 for details. Panels A, C and E show the CBDA results using
the Accuracy performance metric. Panels B, D and F show the CBDA results using the Mean Square Error-
MSE performance metric (see Methods for details on the performance metrics). Panels A and B, C and D, E
and F show the results for the 3 Binomial datasets tested, respectively.

Briefly, a single CBDA experiment is performed following certain inputs, such as the total number of
samples performed (i.e., M), the fraction of artificial missingness introduced (missValperc), the sampling
rates for cases (Case Sampling Range–CSR) and features (Feature Sampling Range—FSR). The complete
set of results used to generate each experimental combination shown in Fig 3 is available on our GitHub
repository (https://github.com/SOCR/CBDA). To generate Fig 3, a total of 324,000 CBDA instances were
staged and completed on the USC Cranium distributed Pipeline server, Cranium [22]. For each heatmap
in Fig 3, the x axis represents all the 16 combinations between the choice of the subsets of M (i.e., 1,000,



3,000, 6,000 and 9,000) and the choice for top-ranked predictions (i.e., 100, 200, 500 and 1,000, as
described in detail in the last 2 columns of Table 2, see Methods section). The combination label lists the
pairs [subsets of M, Top-ranked predictions]. For example, Combination 1 has the lowest values for the
combined pair (i.e., [1,000,100]), while Combination 16 has the highest values (i.e., [9,000, 1,000]), see
legend of Fig 3 details. The maximum count for each cell in the heatmaps is 10 (light blue color),
corresponding to identifying all “true” 10 features used to generate the binomial outcome among the top
15 features selected by CBDA for each experiment and each combination. Our minimal target level of
true positives in each experiment is 7, thus anything below 7 is marked as 0 in the heatmap (shown as a
dark blue spot). An optimal recipe would return the most "true" features selected with the minimum
computational complexity (i.e., lowest subsets of M ~3,000). Since our study is focused more on
compressing the sampling over the features, rather than over the cases, an assessment on the efficiency of
the CBDA protocol is based on spots in the heatmaps with the lowest FSR ranges (i.e., Experiments 1, 4,
7 and 10, where FSR = [1%-5%]).

The first finding of this large experiment is that the mean square error (MSE) metric is more effective in
increasing the CBDA performance. This corresponds to observing more light blue spots in the MSE
heatmaps compared to the corresponding heatmaps based on the Accuracy measure. The second
observation is that with an increased number of features (from 100 to 900, up to 1,500), the CBDA has
less optimal combinations that reach our minimal target level of true positives. In this experiment, we did
not change the number of "true" features across datasets (there were always 10 true features present in the
data). The third finding is that across the 3 binomial datasets, certain experiments (i.e., FSR and CSR
pairs) are performing consistently better, e.g., Experiments 3, 6, 9 and 12 (where we used the highest
FSR~[15%-30%] and CSR~[60%-80%] combinations). However, for features between 100 and 900,
experiments with the lowest FSR (FSR~[1%-5%], e.g., Experiments 1, 4, 7 and 10), are often selected as
optimal. Fig 3 suggests that we should choose our CBDA protocol specifications based on the number of
features in our dataset and on an a priori assumption that a maximum of 10 features are to be selected for
our predictive model. Further analyses and tests will be performed in order to generalize our conclusions
based on a signal/noise ratio between true features and total features in the dataset.

Comparison of the null and binomial data results

Fig 4 summarizes the CBDA results on the Null and the Binomial datasets and compares those to the
regularized linear model with knockoff filtering. The goal in this case is to validate the CBDA protocol
when no signal is present in the data.

Open in a separate window
Fig 4
CBDA results on the null and binomial datasets.

Panels A, C and E show the correspondent histograms generated from the CBDA analysis on the three Null
datasets. Panels B, D and F show the correspondent histograms generated from the CBDA analysis on the
three Binomial datasets. Panels A and B, C and D, E and F show the combined results of all 12 experiments
using the MSE metric.

For the best accuracy in the comparison, we used all the 9,000 CBDA samples, ranking the top 1,000
predictions (this is equivalent to the combination 16 in Fig 3). Each histogram in Fig 4 combines the
results of all 12 experiments (using the MSE metric). A common outcome from the Null datasets analyses



is the inconsistent sets of top 15 features returned across different experiments. Thus, by combining the
experiments together, the histograms for the Null datasets show uniform distributions of the features
selected (flat distribution with no spikes). This is consistent with the fact that the Null datasets have no
signal (see the first column of Fig 4). This result is consistent throughout the three Null datasets, with the
correspondent constant densities possibly a function of the CBDA specifications (i.e., FSR) and dataset
sizes (i.e., number of features). Specifically, the MSE histograms of the combined experiments return flat
distributions at ~1%, 0.12% and 0.07%, respectively for the 3 Null datasets. A similar threshold can be
seen in the second column of Fig 4, where we show the correspondent histograms generated from the
CBDA analysis on the three Binomial datasets. Anything above these thresholds can be considered a
signal, or a "true positive". This suggests that a hard threshold for false discovery rates in the CBDA
protocol can be computed theoretically. The complete set of results for the histograms in Fig 4 are shown
in S3 Text (Supplementary Materials). A total of 234,000 jobs have been performed on the Pipeline
Cranium server, resulting from the analysis of three null datasets, from 8 to 10 experiments and 9,000
CBDA samples for each experiment.

Fig 5 shows combined parallel results using the Null and Binomial datasets, based on a regularized linear
model with knockoff filtering. While the knockoff (KO) filter performs quite well in the Binomial
datasets (as expected), many false positives are present in the Null datasets analyses. We use a 5% false
discovery rate (FDR) as an input for the Knockoff filter algorithm, so anything above 5% in the
histograms should be considered a false positive. Despite the fact that the Null dataset includes no real
signal, the KO filter algorithm returns few spikes (i.e., false positives) above the hypothetical threshold
imposed in the KO filter call for false discovery rate, i.e. 5%. The CBDA returned uniform distributions
for the Null datasets, suggesting a more robust overall filtering of false positive feature discoveries.
Because of the large scale of the simulations, the testing protocol is mostly invariant of the proportion of
samples that contain a subset of the relevant features, if any. Certainly the probability of salient features
being chosen as part of each iterative subsample depends on the size of the feature space.

Open in a separate window
Fig 5
Knockoff filtering of null vs binomial data.

Panels A, C and E show the correspondent histograms generated from the Knockoff Filter algorithm on the
three Null datasets. Panels B, D and F show the correspondent histograms generated from the Knockoff
Filter algorithm on the three Binomial datasets. Panels A and B, C and D, E and F show the combined results
of all 12 experiments using the MSE metric.

CBDA robustness

We investigated the robustness of the CBDA algorithm by running the protocol 10 times on the same
synthetic dataset (i.e., Binomial Dataset 3). The Binomial dataset 3 has 300 cases and 900 features, where
the "true" features are 1, 100, 200, 300, 400, 500, 600, 700, 800 and 900. For each replication, we listed
the top 10 features selected by the CBDA, using the two performance metrics available, namely Accuracy
and MSE. Each replication has 9,000 samples generated by the CBDA protocol on the large dataset
(similarly to our previous set of experiments shown in Fig 3). We use the specifications of experiment 6,
where we set the missing values to 0, the CSR to the [60%-80%] range and the FSR to the [15%-30%]
range. Overall, features 300, 800, 900, 400, 100, 600, 500, 1 and 700 have been consistently selected
within the top 10 features across the 10 replications using the MSE metric (see S1 Table for details and



https://github.com/SOCR/CBDA for the complete set of results across the 10 replications). We performed
the same experimental design (i.e., CSR, FSR and 10 replications) on the other Binomial dataset
obtaining similar results in terms of a consistent selection of top true features (see S1 Table for details).
These results confirm the robustness of the CBDA protocol on simulated data.

CBDA application to ADNI clinical data

We performed four different experiments, each one with 9,000 independent samples, using the ADNI
dataset, see Table 1 for details on the ADNI Archive and S2 Table for details on the list of features. The
Feature Sampling Ranges used are [5%,15%] and [15%,30%], since the range [1%-5%] was not viable,
given the number of features available for analysis (i.e., 64). The Case Sampling Ranges were
[30%-60%] and [60%-80%], respectively. We chose to hold off 20% of the cases (i.e., α = 20%) for the
balanced validation set. Throughout the analysis, imputation (see [24] for details), normalization (see [25]
for details) and balancing (see [26] for details) was performed.

As described in the Methods section, the ADNI dataset consists of 2,500 participants representing three
clinical phenotypes. These three cohorts represent EO-AD (Early Onset Alzheimer Disease, N  = 406),
Normal (N  = 747) and EO-MCI (Early Onset Mild Cognitive Impairment, N  = 1,347).

CBDA protocol ranked the top 1,000 predictions out of the 9,000 learning samples (i.e., Combination 16
in Fig 3) and consistently returned across the 4 experiments the following top 10 features (listed in order
of importance): CD Global, weight [kg], sex, age, Right cingulate gyrus, FAQ Total, Left gyrus rectus,
Right putamen, cerebellum and Left middle orbitofrontal gyrus. We used these 10 features as input
features for a final SuperLearner analysis on the validation set, obtaining a 95% confidence interval of
[87.67%, 93%] for accuracy. We didn’t enforce stopping criteria in this case, assuming that a predictive
model with only 10 features would be an adequate and parsimonious set of specifications. The confidence
intervals of the sensitivity (85% and 94%) and specificity (91% and 98%) to predict the participant
phenotype, across the 3 cohorts, are shown on Table 4. The Synthetic Minority Oversampling Technique
(SMOTE) rebalancing approach (see [26] and S2 Text for details) significantly improved the accuracy,
sensitivity and specificity of our predictions for each of the three cohorts. The complete set of results is
shown at the following link: https://github.com/SOCR/CBDA.
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Table 4

CBDA multinomial classification results on the ADNI dataset.

Confusion Matrix and Statistics.

Reference

Prediction AD MCI Normal

AD 69 17 1

MCI 12 243 8

Normal 0 9 140

Overall Statistics

Accuracy 0.9058 [95% CI = (0.8767,0.93)

No Information Rate 0.5391

p-value [Acc>NIR] <2e-16

Kappa 0.8426

McNemar’s Test p-value 0.589

Statistics by Diagnostic Class

AD MCI Normal

Sensitivity 0.8519 0.9033 0.9396

Specificity 0.9569 0.913 0.9743

Positive Pred Value 0.7931 0.924 0.9396

Negative Pred Value 0.9709 0.8898 0.9743

Prevalence 0.1623 0.5391 0.2986

Detection Rate 0.1383 0.487 0.2806

Detection Prevalence 0.1743 0.5271 0.2986

Balanced Accuracy 0.9044 0.9082 0.9569

For completeness, we also tested the CBDA protocol with a binary outcome (i.e., AD patients vs.
asymptomatic Normal controls) to compare these results against previous studies [31–33]. These results
are shown in S3 Table. We used the top 10 features selected by the CBDA protocol and the CBDA results
are similar to our previous study in terms of accuracy and other performance metrics. The CBDA
approach presented here improves the classification step by considering a multinomial outcome, e.g., AD
vs. Normal vs. MCI. The hardest classification task is in fact in separating the AD from the MCI patients.

Conclusions and discussion

Many challenges and opportunities are embedded in the Big Data revolution. Magnitude, complexity,
incongruency and heterogeneity are just some of the attributes of the massive dynamic and spatio-
temporal data that we are trying to collect, harmonize, interrogate and mine for actionable knowledge. A
divide-and-conquer approach is reasonable to tackle each and every challenge and transform it into an



opportunity for developing new tools and foster scientific discovery. The massive amount of information
embedded in Big Data is by no means complete and coherent, and one key challenge is to reconstruct a
mechanistic explanation out of sparse large datasets. A trade off exists between accuracy of our predictive
analytics and the speed at which this hidden actionable knowledge can be acquired. A reasonable
compromise will entail an efficient computational platform that can handle the interrogation of chunks of
the Big Data, ensuring that the reconstruction steps converge given certain properties of the data
processed and the algorithmic framework of the learning stage.

The compressive big data analytics method takes a divide-and-conquer approach utilizing ideas from
Compressive Sensing (CS) and Signal Processing (SP), e.g., randomized undersampling, to iteratively
sample, estimate and infer using an adaptive error correction/control [6, 7, 34–36]. The CBDA approach
has several parallels with CS strategies. Compressive Sensing aims at using an observation matrix to
capture a signal, and reconstruct the signal by sparsely captured information. In our CBDA approach, we
also define an observation matrix, or we can say a dictionary (feature selection) matric to observe Big
dataset, we keep few useful information just as CS reserves sparse information, but our goal here is to do
prediction, not reconstruction. We use an ensemble algortihm (i.e., SuperLearner) to combine as many
machine learning, classification, statistical modeling tools to ensure the best predictive model generation
given the available data.

We tested our first generation CBDA protocol on both synthetically generated and real datasets. Our
results on synthetically generated datasets are encouraging. Even with random undersampling rates
(~1%-5%), the CBDA protocol can identify most of the true features. This is relevant since a predictive
model might not need necessarily the whole set of true features to generate very accurate predictions.
Throughout our validation tests, knockoff filtering results were generally better than the CBDA protocol
where signal was present, suggesting that CBDA has a more robust framework when dealing with very
noisy datasets, or where the signal is non-existent.

The CBDA classification results on the Alzheimer Disease Neuro Imaging (ADNI) case-study provide
empirical evidence of effective prediction of clinical outcomes, especially if compared to previous studies
in the field [31–33]. Korolev et al. [31] developed a multivariate prognostic model for predicting MCI-to-
dementia progression at the individual patient level over a 3-year period. Their best performing model
incorporated a combination of cognitive/functional markers and morphometric MRI measures and
predicted progression with 80% accuracy (83% sensitivity, 76% specificity, AUC = 0.87). Another study
by Prestia et al. [32] analyzed the ADNI data and reported a combination of biomarkers (i.e., Aβ42
concentrations and hippocampal volumes) to identify prodromal AD (i.e., MCI patients progressing to
AD). Their sensitivity was ~79%, with accuracies up to 73%. Another approach was to predict clinical
scores from individual MRI scans. Stonnington et al. [33] used relevance vector regression (RVR) to
predict clinical scores from individual scans, obtaining very high correlations. The RVR results indicated
correlation between observed and predictive clinical outcomes (e.g., AVLT, MMSE, and ADAS-Cog) in
the range 0.4–0.65, which may be sufficient for clinical diagnoses or prediction of Alzheimer’s
progression over time.

The CBDA diagnostic prediction reached average accuracy of ~90% performing multinomial
classification on Normal, AD and MCI patients, in a cohort of 2,500 individuals. This substantive
prediction performance improvement may be due to (1) the larger number of subjects included in the
CBDA study, (2) the flexible and extensive ensemble of machine learning, classification algorithms and
model-free methods built into the SuperLearner, or (3) the compressive sensing strategy of repeated
stochastical (re)sampling of the data and the specific CBDA inference-aggregation protocol. These results
provide evidence of the effectiveness of CBDA to deal with complex and heterogeneous real data
application. Further studies will examine the theoretical CBDA properties (e.g., convergence, asymptotic



trends, upper error bounds, etc.) as well as the performance of the CBDA technique on larger biomedical
datasets where issues of sparsity, incongruence, heterogeneity and missingness may be amplified by
increasing the study population and/or the feature characteristics.

The CBDA protocol is designed and built based on open-source/open-science principles where the
scientific community can independently test, validate and expand on this first generation technology
(https://github.com/SOCR/CBDA). A CBDA Github repository is available to replicate our results as
well as to apply the CBDA protocol to other datasets. The current CBDA protocol validation will also be
expanded to comprise other synthetically generated datasets with known true features using more
complex models for specifying the underlying signal in the simulated data. Two open-source
implementations of the CBDA protocol are available—platform-agnostic stand-alone R package
(https://cran.r-project.org/package=CBDA) as well as a reproducible pipeline graphical workflow
(wrapper of the R-package).

There are several limitations for the protocol. Future expansion and enhancement is required to maximize
its functionality. For instance, the protocol may be scaled up, to efficiently handle datasets of millions of
cases and thousands of features, or tested on synthetic datasets simulated with more complex and
sophisticated models. We are now working on both challenges recasting the existing protocol to handle
larger datasets. An updated workflow will be designed to implement Steps 1–5 of the CBDA protocol
offline, where thousands of small matrices will be generated remotely according to the CSR and FSR
specs. Then, Steps 6–8 of the existing workflow will be tested by loading each small matrix
independently (instead of loading the entire Big Data). It will need to be investigated how the number of
iterations needed for the CBDA protocol to converge will be affected when low CSR and FSR
specifications are used in larger datasets. Similarly to more recent studies in CS [34–36], we are also
exploring the CBDA mathematical properties, e.g., condutions that may guarantee CBDA convergence.
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