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Abstract— SCAIGATE is an ambitious project to design
the first Al-centric science gateway based on field-
programmable gate arrays (FPGAs). The goal is to
democratize access to FPGAs and Al in scientific
computing and related applications. When completed,
the project will enable the large-scale deployment and
use of machine learning models on Al-centric FPGA
platforms, allowing increased performance-efficiency,
reduced development effort, and customization at
unprecedented scale, all while simplifying ease-of-use in
science domains which were previously Al-lagging.
SCAIGATE was an incubation project at the Science
Gateway Community Institute (SGCI) bootcamp held in
Austin, Texas in 2018.

I. INTRODUCTION

Science gateways provide community-based access to
shared, distributed, advanced technologies and resources
that support science and engineering research and education
[1]. These resources, in the form of data, software, high-
performance computing, instrumentation and collaboration
tools, enable the formation of scientific communities,
accelerating the discovery process, and engaging citizens in
the scientific process [2]. In particular, SCAIGATE -
scientific computing with artificial intelligence gateway — is
a science gateway which integrates field programmable

gate-arrays (FPGAs) and artificial intelligence (Al) to
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training and inferencing. SCAIGATE will help
computational scientists and researchers accelerate their
data analyses workflows at a fraction of the time and effort
compared to existing systems. FPGAs are attractive to Al
because of their real-time processing capability, energy
efficiency, and reconfigurability to the rapidly evolving Al
innovations.

In recent times, Al and deep learning have witnessed
explosive growth in almost every subject involving data.
Complex data analyses problems that took prolonged
periods, or required laborious, manual effort are now being
tackled through AI and deep learning techniques at
unprecedented accuracy [3]. Given the massive computing
demands of these techniques, accelerator platforms -
graphics processing units (GPUs) in particular — have been
widely adopted to achieve speedup [4], even when such
platforms (as compared to FPGA-based platforms) are
costly, energy-inefficient and not well suited to real-time
processing of streaming data in mission-critical applications
(e.g., nanoscience imagery in electron microscopy, satellite
image analysis in environmental monitoring, to name a
few). For these reasons, SCAIGATE will be based on an
FPGA pool, along with open-source software and science
gateway interface that together support Al-centric science as

Middleware
eeeE
0eeee
(
(

I@E)E)eE)
@ee6 \

<
]
i
3
8§
1
&

Fig 1: SCAIGATE ecosystem. Workflow and Middleware provide an “A/ Cloud”, exposing through the Gateway a unified science-as-
a-service pnlaform backed bv high-nerformance reconfigurable architectures (i.e.. FPGAs).

facilitate machine learning through data preprocessing,



a service (Fig. 1).

However, in contrast to mainstream processors,
including CPUs and GPUs, FPGAs are more difficult to
program, deploy and manage at large-scales, limiting their
usage in scientific computing. Therefore, the vision of
SCAIGATE is to provide a platform for deploying and
experimenting with FPGA-enabled Al at production scale,
advancing the capabilities of scientific computing, opening
opportunities for Al-driven data analyses in a variety of
science and engineering fields. The mission of SCAIGATE,
and by extension, SCAIGATE ecosystem, is to greatly
simplify the combination of FPGAs and Al techniques for
scientific computing.

The SCAIGATE comprises
fundamental components (see Fig. 1): (1) reconfigurable
hardware, enabling deep learning acceleration with FPGAs;

ecosystem three

(2) system software, consisting of an FPGA middleware and
a novel workflow management framework to support
integration with scientific workflows; and (3) gateway, to
simplify ease-of-use, expose Al services, and extend access
to community through portals and application programming
interfaces (APIs). The focus of this paper is on the workflow
Cloudorch,
workflows  while

management framework — aimed at

orchestrating  scientific seamlessly

leveraging FPGA-accelerated cloud-based services.

II. CLOUDORCH

A major shortcoming of many scientific workflows is
their limited interoperability, lack of component reusability,
and curbed portability to new, advanced hardware (e.g.,
FPGAs). By leveraging community support and open-
source software technology, Cloudorch will provide an
FPGA-accelerated scientific workflow through platform as a
service (PaaS), allowing scientists more focus on the
hypothesis-test cycle instead of programming and
maintaining  toolchains, reducing re-invention, and
accelerating discovery process. Cloudorch also aims to
support the sharing of data preprocessing techniques, a
crucial drawback in migrating non-Al based workflows to
accelerated Al platforms. By abstracting key data
processing workflows (data preprocessing, deep learning
training and deep learning inference) as illustrated in Fig 2,
Cloudorch will provide a scalable, end-to-end workflow,
allowing users to go quickly from experiments to results.
Because each Cloudorch component is a set of
microservices that are loosely-coupled, users can compose

customized workflows, train or import models, and deploy

acceleration.

Our previous work proposed a workload-intuitive
framework, SWIF [5], and FPGA as microservices (FaaM)
[6] to streamline the deployment of FPGAs in datacenters
and the cloud, achieving 3x speedup and 40% memory-
footprint savings in Apache Spark [7]. We have also
benchmarked a variety of FPGA-based platforms, including
the integrated Xeon-FPGA platform [8] and an Arria-10
accelerator platform [9]. As test-cases, we ported AlexNet
deep learning model on three representative computing
environments (university, cloud, and enterprise): University
of Florida’s NOVO-G#; Amazon AWS Fl compute
instances; and Intel Programmable Accelerator Card (PAC)
cluster at Dell, respectively, the results which will appear in
the extended version of this paper.

III. CONCLUSIONS

Given the unique benefits of FPGAs (low-latency,
energy-efficiency and reconfigurability), we have
researched on ways of combining FPGAs with Al for
scientific computing. While the initial results are promising,
future work will be much more impactful through
collaboration. To extend community access and foster
scientific and engineering collaborations, we proposed
SCAIGATE science gateway with the goal of advancing the
capabilities of scientific computing with respect to Al and
FPGA:s.
community-driven effort and framework to
scientific workflows with FPGA-based deep

inferencing, while enabling end-to-end composability across

In particular, we proposed Cloudorch, a
support

learning

entire deep learning stack. In the next coming months, we
anticipate more collaboration with academic and industry
partners, working closely on applications, tools and novel
architectures to establish and show-case scientific and
engineering use-cases of FPGA-accelerated Al at record
performance, productivity and efficiency.
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models effortlessly while leveraging FPGA  hardware- Fig 2: Cloudorch. Components are decoupled, allowing users to compose

accelerated scientific workflows. Users can import/deploy models, train new
models, or improve models on-the-fly by learning the models incrementally.
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