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Abstract

Regional morphological analysis represents a crucial step in most neuroimaging studies. Results from brain segmentation
techniques are intrinsically prone to certain degrees of variability, mainly as results of suboptimal segmentation. To reduce this
inherent variability, the errors are often identified through visual inspection and then corrected (semi)manually. Identification and
correction of incorrect segmentation could be very expensive for large-scale studies. While identification of the incorrect results
can be done relatively fast even with manual inspection, the correction step is extremely time-consuming, as it requires training
staff to perform laborious manual corrections. Here we frame the correction phase of this problem as a missing data problem.
Instead of manually adjusting the segmentation outputs, our computational approach aims to derive accurate morphological
measures by machine learning imputation. Data imputation techniques may be used to replace missing or incorrect region
average values with carefully chosen imputed values, all of which are computed based on other available multivariate informa-
tion. We examined our approach of correcting segmentation outputs on a cohort of 970 subjects, which were undergone an
extensive, time-consuming, manual post-segmentation correction. A random forest imputation technique recovered the gold
standard results with a significant accuracy (»=0.93, p < 0.0001; when 30% of the segmentations were considered incorrect in a
non-random fashion). The random forest technique proved to be most effective for big data studies (N> 250).
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MRI-based neuroanatomical studies are commonly performed
using morphological analysis and feature extraction of brain
structural images. Such analysis opens a more specific win-
dow into morphological cortical characteristics in develop-
ment, aging and gender differences in health and disease
(Eckert 2004; Long et al. 2012; Luders et al. 2006; Perez
et al. 2018; Sepehrband et al. 2018; Vijayakumar et al.
2016). FreeSurfer is one such example as an open-source soft-
ware used to automatically extract and quantify cortical fea-
tures from neuroimaging and has been widely used to study
morphological characteristics of neuroanatomical structures,
such as the cortical thickness and volume of the brain
(Fischl 2012). Several studies have assessed the reliability
and accuracy of the brain segmentation techniques and con-
cluded that they are intrinsically prone to certain degree of
variability, mainly arising from suboptimal segmentation or
miss-classification (Eggert et al. 2012; Gronenschild et al.
2012; Makowski et al. 2017; Perlaki et al. 2017; Tustison

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s12021-019-09426-x&domain=pdf
http://orcid.org/0000-0002-4483-5961
mailto:farshid.sepehrband@loni.usc.edu

Neuroinform

et al. 2014). Suboptimal segmentation are mainly related to
incorrect inclusion of non-brain tissue. Many factors could
result to such incorrect segmentation, including low T1
contrast-to-noise ratio, image artifacts (e.g. due to subject mo-
tion), field inhomogeneity, error in pre-processing steps (e.g.
skull stripping errors) and segmentation imperfection
(Gedamu et al. 2008; Klapwijk et al. 2019; Mortamet et al.
2009; Waters et al. 2018). These findings emphasize the need
for quality control of the neuroanatomical measures obtained
with automated segmentation pipelines such as FreeSurfer.

Post-processing of the automated brain segmentation re-
sults consists of identification and correction of the subopti-
mal segmentations. Identification of suboptimal segmenta-
tions can be accomplished through manual inspection or out-
lier detection analysis in a relatively time efficient fashion.
The step that makes the brain segmentation techniques ex-
tremely costly is the correction step where conventional ap-
proaches adopt manual correction of the parcel boundaries.
However, such quality control requires training staff to per-
form manual corrections, the process of which can be ex-
tremely time-consuming, costly, and inefficient for big data
studies. Another possible remedy is to simply discard incor-
rect segmentation outputs. One can perform a complete-case
analysis, which assumes the complete cases are a random
sample of the original. Alternatively subjects with incorrect
segmentation can be excluded. However, these manipulations
can reduce the sample size to a small portion of the original
sample, decreasing overall statistical power and limiting sta-
tistical learning implementation (Dinov 2018; Hastie et al.
2009). Furthermore, deleting cases with missing data, is costly
and ineffective in neuroimaging studies, given the cost and
effort that is invested to acquire the MR images in first place.

Here we frame the correction step of the brain segmenta-
tion as a missing data problem and employ statistical and
analytical data imputation techniques to make this step auto-
mated and efficient. Missing data can be defined as: data
missing completely at random (MCAR), when the probability
of a missing value does not depend on the data themselves; or
data missing not at random (MNAR), when the probability of
a missing value depends on the observed, known data in the
dataset (Dinov 2018; Rubin 2004). One way to deal with the
missing data is to simply fill the missing data values with the
mean of the population. This solution is not optimum, as it
could introduce systematic bias to the dataset (Lee et al. 2015)
and does not take advantage of the multivariate information
found in the dataset (Dinov 2018). Using multivariate data
imputation techniques, neuroanatomical similarities of large
sample cohorts can be exploited to extract the missing
information.

The current study aims to answer the following questions:
(1) Can missing morphometric values be recovered through
data imputation techniques? (2) What statistical or analytical
technique provides an optimal solution to this problem? and
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(3) What is the effect of sample size on the reliability of the
data imputation techniques? In the present study, we compare
four methodologically diverse imputation methods, namely
averaging, k-nearest neighbors, random forest, and low-rank
matrix approximation on the Philadelphia Neurodevelopment
Cohort (PNC) study (Satterthwaite et al. 2016, 2014), with a
large sample size of N=970.

Methods
Dataset

The Big Data for Discovery Science (BBDS: http://bd2k.ini.
usc.edu) (Toga et al. 2015) toolset was utilized to pre-process
datasets of cross-sectional structural T1-weight MRI images
from the single-site Philadelphia Neurodevelopment Cohort
(PNC) study (Satterthwaite et al. 2016, 2014).
Neuroimaging data from 997 participants, ages 822 years
(mean age+ SD =14.6 £3.4), comprised of 512 females,
were acquired through the database of Genotypes and
Phenotypes (dbGaP). MRI scans consisted of three-
dimensional (3D) T1-weighted structural MRI scans and were
acquired using T1-weighted MPRAGE sequence with the fol-
lowing parameters: TR =1810 ms, TE=3.5 ms, FOV =
180 x 240 mmz, matrix =256 x 192, 160 slices, TI=
1100 ms, flip angle=9, effective voxel resolution=0.9 x 0.
9x1 mm’. A 3 T Siemens Tim Trio whole-body MRI with
32-channel head coil was utilized to collect the data. 27 par-
ticipants were excluded from the present analysis due to poor
image quality, or failure in pre-processing, leaving 970 partic-
ipants with complete data.

Data Preparation

Data preparation comprised of feature extraction using the
FreeSurfer (v5.3.0) software package, which is documented
and freely available for download online (http://surfer.nmr.
mgh.harvard.edu/) (Fischl 2012) and data processing using
the Laboratory of Neuro Imaging (LONI) pipeline system
(http://pipeline.loni.usc.edu) (Dinov et al. 2010, 2009; Moon
etal. 2015; Torri et al. 2012). Cortical volume (mm?), surface
area (mm?), and average cortical thickness (mm) were derived
for cortical regions drawn from the Desikan-Killiany atlas
(Desikan et al. 2006). The morphological measurements were
performed using recon-all module of the FreeSurfer, which
uses an atlas-based parcellation approach. Prior to registration,
recon-all applies following pre-processing steps: motion cor-
rection, non-uniform intensity normalization, Talairach trans-
form computation, intensity normalization and skull stripping
(Dale et al. 1999; Desikan et al. 2006; Fischl et al. 2004a, b,
2002, 1999; Fischl and Dale 2000; Reuter et al. 2012, 2010;
Reuter and Fischl 2011; Segonne et al. 2007, 2004; Sled et al.
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1998; Waters et al. 2018). The final dataset matrix had 970 x
70 dimensions for each cortical morphometry (i.e., 970 sub-
jects and 70 cortical thicknesses). All 70 cortical thickness
measures were used as the input for the multi-variate imputa-
tion techniques. In comparing data imputation techniques, the
present study focuses mainly on the cortical thickness vari-
ables, as cortical thickness is more prone to error compare to
cortical volume and area measures, and, therefore, more chal-
lenging to recover.

A team of specialist at LONI USC manually quality
corrected the dataset and inspected the segmented cortex for
each subject. Suboptimal segmentations were manually
corrected following FreeSurfer guidelines. The Deriva
Scientific Data Asset management system was utilized for
data management (http://bd2k.ini.usc.edu/tools/deriva/), with
the BDbag tool used for the retrieval of neuroimaging data and
demographic information (http://bd2k.ini.usc.edu/tools/
bdbag/). The data preparation process resulted in a complete,
quality-controlled dataset.

Generating Missingness

The complete, quality-controlled dataset featuring the cortical
thickness of participants (N=970) were obtained from the
GitHub repository of (Sepehrband et al. 2018), which served
as the gold standard for the present study (https://github.com/
sepehrband/Mining NeuroAnat). This study simulated
different types of missing data in the neuroimaging datasets
using the missing completely at random (MCAR) approach
and the missing not at random (MNAR) approach (Dinov
2018). This process is summarized in Fig. 1. The MCAR
approach removed percentages of data (from 10% to 60%)
completely at random to create artificial datasets with missing
values. The MNAR approach removed similar percentages
(10% to 60%) from only a given, randomly-selected, part of
the brain. The latter scenario aligns more with real-world cases
of brain segmentation compared to the former. MNAR occurs
when the segmentation error occurs more frequently in certain
regions of the brain for all subjects. For example, if

Complete data

subject #

morphological esimates
e.g. cortical thickness of
the left occipital lobe

subject 1 subject 2 subject 3 subject N

random missing example

Fig. 1 Schematic representation of the data preparation and types of
missingness. The x-axis represents morphological features from
FreeSurfer segmentation (e.g., cortical thickness, volume or surface area),

20% random missing

60% random missing 20% non-random missing
p‘ | - _‘

E gk

F o

60%
random
missing

subject 1 subject 2 subject 3 subject N

non-random missing example

the y-axis represents study subjects. Examples of random and non-
random missingness are presented at the bottom row
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segmentation errors are mostly observed in the medial tempo-
ral lobe, then the output of the data form in to a MNAR. To
ensure that the regional selection does not affect the imputa-
tion performance, the MNAR region-of-interest was reordered
five times, which corroborated the initial observation.

Data Imputation Techniques

Four data imputation techniques were selected to represent
different statistical approaches, namely the “mean” method,
k-nearest neighbors (KNN), the low-rank matrix approxima-
tion and random forest (RF).

“Mean” Technique

The mean technique recovers missing value with the mean
value of all available subjects. Mean imputation is among
the simplest of imputation techniques and can defined as
the replacement of a missing observation with the mean of
the non-missing observations for that variable. Though
the method has advantages (maintained sample size, ease
of use) the variability in the data is reduced. With system-
atic bias introduced to the data, the standard deviations
and variance estimates tend to be underestimated
(Gomez-Carracedo et al. 2014).

K-Nearest Neighbor (KNN)

A type of supervised machine learning algorithm, K-nearest
neighbors is a non-parametric method used for classification
and regression predictive problems. As a non-parametric
method, KNN does not make any assumptions about the data,
and instead, models based on the observed dataset (Hastie
et al. 2016). The method is used with databases in which data
points are separated into several classes, which are then uti-
lized in predicting the classification of a new data point. The
process first begins with the calculation of the distance of a
new data point to all other available data points and selects the
K-nearest data points. The algorithm them assigns the new
data point to the class to which the majority of K-data points
belong, ultimately replacing the missing data with data created
from K-nearest neighboring data. More specifically, for re-
gression problems, KNN generates a new data point for the
object based on the average of the values of its nearest K-
neighbors. This method is used for its ease of interpretation,
versatility, and quick results, while still achieving relatively
competitive prediction results.

Here KNN uses nearest neighbor averaging principle for
imputing the missing values through unsupervised regression.
We found the K nearest neighbors using a Euclidean metric,
confined to the columns for which that neuroanatomical fea-
ture is not missing. These nearest neighbors were then aver-
aged to impute the missing data. The R package impute was
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used for KNN implementation. After testing a range of K
values between 2 to 50, we observed that at K =20 the impu-
tation performance reaches the peak plateau and therefore K of
20 was used for KNN implementation.

Low-Rank Matrix Approximation

Low-rank approximation is a popular technique in image pro-
cessing, machine learning, and data mining that compresses
more compact representations of the data with limiting loss of
information (Markovsky and Usevich 2012). This is achieved
by creating a matrix with a lesser rank compared to the orig-
inal matrix. The rank of a matrix is the number of linearly
independent columns, or vectors, with a low rank being the
lowest number of linearly independent vectors. Low-rank ma-
trix approximation is useful for dimension reduction, com-
pression, classification, and regression tasks. Several algo-
rithms achieve the low-rank approximation of matrices, in-
clude singular value decomposition, which provides the true
rank and gives the best low-rank approximation of a matrix.
Disadvantages of the technique involve computational de-
mands involving large datasets.

The low-rank matrix approximation method was imple-
mented using the softlmpute R package (Mazumder et al.
2010). This technique fits a low-rank matrix approximation
to a matrix with missing values via nuclear-norm regulariza-
tion. The algorithm works similar to the traditional
Expectation-Maximization technique, filling in the missing
values with the current guess, and then solving the optimiza-
tion problem on the complete matrix using a soft-thresholded
singular value decomposition. Default parameter was used to
implement this technique.

Non-parametric Missing Value Imputation Using
Random Forest

The RF-based imputation was implemented using missForest
R package (Stekhoven and Biihlmann 2011), which captures
the complex interactions and nonlinear relations between var-
iables and observations using a nonparametric, machine
learning-based approach. RF is a non-parametric method used
in performing both regression and classification tasks. This
algorithm addresses missing values and outlier values by
using dimensional reduction methods. missForest builds a
RF model for each variable in the dataset and utilizes these
individual models to build a powerful model consisting of
multiple trees. This model is then used to predict missing
values in the variable based on the observed values.
Applicable to various data types, the algorithm can be used
to impute continuous and/or categorical data (i.e., averages in
the case of regression tasks) and yield an out-of-bag imputa-
tion error estimate without need of a test set. Advantages of
this method is its ability to handle large datasets with high
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dimensionality and relatively high accuracy with large propor-
tions of missing data. Disadvantages comprise of its regres-
sion range. Specifically, RF does not predict beyond the range
in the training data and may be prone to over-fitting noisier
datasets. For missForest implementation, parameters were set
to the recommended values (Stekhoven and Biithlmann 2011):
number of trees = 100, number of iterations = 10, number of
variables randomly sampled at each split=8, which is the
square root of the number of features (70 cortical
measurements).

Evaluation Criteria

Imputation methods were compared based on their imputation
accuracy, with comparisons made between the original values
of the gold standard and the imputed values of the artificial
datasets. Specifically, the evaluation criteria of the data impu-
tation techniques for both MCAR and MNAR assumptions
comprised of the following: (1) Prediction error, which was
measured by mean error, normalized root mean square error
and the mean absolute error, and (2) Correlations with the gold
standard. Correlation statistics was based on Pearson’s

BN RF

Fig. 2 Performances of different
imputation techniques, for a
varying percentage of missing
values based upon the missing
completely at random (MCAR)
assumption. Imputed values were
compared against the gold
standard (GS) values. Techniques
include random forest (RF), k-
nearest neighbors (KNN), low-
rank matrix approximation (MA),
and mean. The gray zone around

0.90-

0.88 -

Bl KNN

product moment correlation coefficient and follows a #-distri-
bution with N-2 degrees of freedom if the samples follow
independent normal distributions. Additionally, the relation-
ship between sample size and accuracy of imputation for dif-
ferent percentages of missing data was examined. All the anal-
ysis was performed using R version 3.3.1.

Results

Figures 2 and 3 shows the comparisons of prediction error
measures and correlational analyses when applying the data
imputation techniques to the PNC dataset. As expected, im-
putation performance was weaker when a larger percentage of
the data was missing. Normalized root mean square error
(NRMSE) and mean absolute error (MAE) of all data impu-
tation methods increased with higher percentages of missing
values. In datasets generated under MCAR and MNAR as-
sumptions, random forest (RF) outperformed all other
methods under RMSE, MAE and correlation criteria. The ef-
fectiveness of RF compared to other techniques can be better
appreciate when a high percentage of the data is missing. The

B MA I mean

each line displays 0.95 confident
interval around at each percentage

Correlation with GS

0.86 -

20 40 60

E x102
E
=§ € 10-
o £
G) | -
5 2
8 (b)
o [
© 3
S >
(0]
= 05-

20 40 60 20 40 60

Percentage missing (%)

Percentage missing (%)

@ Springer



Neuroinform
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amount of error found imputing with RF on datasets with 60%
missing data was almost as low as the amount of error found
imputing with low-rank Matrix Approximation (MA) on
datasets with 20% missing data. Furthermore, RF demon-
strates zero mean error measured in millimeters, which indi-
cates that no systematic bias is observed in applying the
technique.

The mean technique was found to be the least accurate
method when applied to the MCAR and MNAR-generated
PNC datasets, with the highest rates of error and weakest
correlational strength. The exception to this was observed in
the MA results of MNAR dataset when more than 15% of the
data is missing (see blues line in Fig. 3). Similarly, k-Nearest
Neighbors (KNN) demonstrates similar, low performance to
mean with increasing percentage of missing values in datasets
generated under the MCAR assumption. However, KNN’s
performance in MNAR datasets improved substantially, with
RMSE, MAE, and ME rates similar to RF. It should be noted
KNN did not converge when more than 80% of the data of a
column is missing.
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Figures 4 and 5 plots the correlation between the gold
standard and the predicted values by the data imputation
methods under the MCAR assumption and the MNAR as-
sumptions, respectively. There were significant correlations
between gold standard and predicted values for all techniques
at 20% and 60% missingness under the MCAR assumption
(p<0.0001; detailed statistics are included in Table 1). As
expected, stronger correlations were found at 20% missing
data across all techniques. Under both MCAR and MNAR,
RF demonstrated the strongest correlations and was the least
affected by sample size, further reinforcing its effectiveness
above other data imputation techniques. Notably, quantization
artifacts were introduced to the mean technique, given the
univariate nature of this technique. A similar artifact was not-
ed in KNN techniques at 60% missing under the MCAR as-
sumption, as the search domain for the nearest neighbors be-
comes narrower with increased missingness in the data.
Furthermore, RF and KNN data imputation techniques per-
formed almost equally well on datasets under the MNAR
function. In contrast, there were weak correlations between
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Gold standard
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Fig. 4 Correlations of predicted values with the gold standard under the missing completely at random (MCAR) assumption, at 20% and 60% missing

data

the gold standard and predicted values for MA and mean
techniques. In particular, MA error variance dramatically in-
creased when a high percentage of the data was missing or
under MNAR assumption.

Tables 1 and 2 shows comparisons of the correlational
analyses between the gold standard and the predicted values
imputed by the methods under MCAR and MNAR assump-
tions. In corroboration with previous results, RF outperforms
other methods and proves to be a substantial data imputation
technique under both MCAR (7(12220)=.93, p <.0001) and
MNAR (7(40738) =.92, p <.0001) assumptions. Notably, the
strength of the correlation for RF is almost equally good in
20% missing data and 60% missing data.

Figure 6 plots the relationship between sample size and
accuracy of the RF imputation technique measured by
RMSE. Sample size positively and exponentially affects the
performance of RF, with error decreasing exponentially as
sample size increases. RF performance approaches the plateau
around the sample sizes of 500 and becomes less reliable with
small sample sizes (e.g., less than 250).

Figure 7 demonstrates correlational analyses conducted
with cortical area (left) and cortical volume (right) datasets.
In alignment with the conclusions derived from the cortical
thickness data, imputed values by the RF technique

demonstrates the strongest correlations with the gold
standard, outperforming other data imputation techniques.

Discussion

The current study provides insight into the effectiveness
and reliability of data imputation technique as an alternative
to the painstaking manual correction of the brain segmen-
tation results of large neuroimaging datasets. Our proposed
approach aims to substitute the correction step, assuming
that the suboptimal segmentation results are identified and
therefore, can be treated as missing values. Findings reveal
data imputation to be effective in recovering missing values
of morphological measures, specifically cortical thickness
measures, via parameter estimation. Of the multivariate and
univariate techniques, RF outperforms all other techniques
with low prediction error measures (e.g., MAE of 0.11 mm)
and strong significant correlations between the gold
standard and imputed values (r=0.93, p<0.0001).
Notably, RF worked best with higher percentages of miss-
ing data under both MNAR and MCAR assumptions, and
its reliability is shown to be least affected by percentage of
missing. This is in alignment with previous studies
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Fig. 5 Correlations of predicted
values with the gold standard
under the missing not at random
(MNAR) assumption at 20%
missing in total (i.e., 60% of
missing data was simulated under
the MNAR assumption in 30% of
the original data, making for 20%
missing in total)
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KNN
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demonstrating RF as a substantial data imputation method
(Hudak et al. 2008; Shah et al. 2014; Waljee et al. 2013).
The use of data imputation techniques can prove to be a
useful cost-effective analysis in the biomedical field. Manual
corrections of brain segmentation outputs can be time-
consuming and costly. Consider a study cohort of 1000

subjects (e.g., the PNC dataset); if each manual correction
took 30 min to an hour, trained staff could potentially take
up to 60,000 min, to complete the correction once for all
subjects. To decrease and quantify the inter-rater variability,
the manual correction process is typically repeated, which can
bring the total processing time up to 12,000 min (2000 h) of

Table 1  Pearson’s correlation of different techniques at 20% missing data with the gold standard under MCAR and MNAR assumptions. Degrees of

freedom = 12,220

Missingness Correlation (r) t-statistics Confident interval p value
Soft Impute Random 0.92 2542 0.914-0.919 <0.0001
Not random 0.66 98.4 0.650-0.670 < 0.0001
Mean Random 0.87 199.1 0.870-0.878 <0.0001
Not random 0.88 205.3 0.876-0.884 < 0.0001
K-NN Random 0.92 255.1 0.914-0.920 < 0.0001
Not random 0.92 256.4 0.915-0.920 < 0.0001
RF Random 0.93 275.1 0.925-0.930 <0.0001
Not random 0.93 2754 0.925-0.930 < 0.0001
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Table 2  Pearson’s correlation of different techniques at 60% missing
data with the gold standard under MCAR assumptions. Degrees of
freedom = 40,738

Correlation (r)  t-statistics  confident interval ~ p value
MA 0.73 2133 0.720-0.730 <0.0001
Mean  0.88 373.8 0.877-0.882 <0.0001
K-NN  0.88 366.7 0.873-0.878 <0.0001
RF 0.92 470.5 0.917-0.920 <0.0001

trained staff time. Using the proposed technique, the correc-
tion step can be done under 4 min on a commercial personal
computer. The current study focuses on cortical thickness da-
ta, as it is more prone to error compare to cortical volume and
area measures, and, therefore, assumed to be more challenging
to recover. Yet, results from similar analysis of other cortical
measures were in complete corroboration with cortical thick-
ness results (Fig. 7).

Limitations of the study include its primary focus on a
healthy cohort. The utility of multivariate techniques draws
from the assumption that humans are neuroanatomically sim-
ilar, which lends itself well to analyzing healthy, relatively
similar cohorts. However, these analytical and statistical com-
putational techniques may perform differently on populations
with neurological disorders and abnormalities. The efficacy of
the proposed approach in the presence of a neurological dis-
order is yet to be determined. In addition, this study employed

Random Forest
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Fig.6 Sample size and imputation performance; plots show the influence

of sample size on random forest performance for different percentages of

missingness in the data

the FreeSurfer program for brain segmentation. While results
from other software could be slightly different (Eggert et al.
2012; Makowski et al. 2017; Morey et al. 2009; Perlaki et al.
2017; Tustison et al. 2014), it is independent of the overall
goal of the study, which is to understand whether a data im-
putation technique can cover missing data in the brain seg-
mentation results.

Indeed, we were not able compare all the existing imputa-
tion techniques. We selected four different techniques with
distinct computation approach to imputation. The motivation
for choosing these specific techniques were to cover a range of
distinct statistical approaches including univariate (mean), an-
alytical (low-rank matrix completion), inferential/
computational (k-nearest neighbor), and statistical learning
(RF). A number of other imputation techniques are available
which are not included in this study (Gondara and Wang 2017;
Graham 2009; Schafer 1999). For example, multiple imputa-
tion by chained equations (MICE) (Azur et al. 2011; van
Buuren and Groothuis-Oudshoorn 2010) is a highly cited li-
brary that was not included given the similarity to the tested
univariate approach.

It is challenging to identify the extent to which the quality
of the individual data influences the imputation performance.
Here low-quality data (27 MRIs) were excluded and a homog-
enous input data was assumed for the included subjects, mean-
ing that the missingness is uniformly distributed across sub-
jects. Therefore MRI-derived cortical measures were weight-
ed equally when imputation techniques were applied. Inter-
subject quality variance, derived from automated quality con-
trol techniques (Gedamu et al. 2008; Mortamet et al. 2009),
could be additionally used as inclusion criteria or as weighting
parameters for between group analysis. Image quality assur-
ance and improvement are active research focuses (Waters
et al. 2018), which may affect the imputation performance.
For example, it has been shown that the filtering techniques,
such as non-local mean filtering (Coupe et al. 2008; Manjon
etal. 2010; Wiest-Daesslé et al. 2008), improves the reliability
of brain tissue segmentation (Eskildsen et al. 2011). Such pre-
processing could result into a smaller percentage of incorrect
segmentation, subsequently lower percentage of missingness,
resulting to a superior imputation performance.

Future work in data imputation may consider introducing
other information and more modalities into the datasets, in-
cluding demographic information, diffusion MRI, and func-
tional MRI. Future studies may identify the most important
units of information via regression analyses to result in the
most effective data imputation. Recently, automated tech-
niques for detecting FreeSurfer failures are proposed, namely
FreeSurfer QA tool (https://surfer.nmr.mgh.harvard.edu/
fswiki/QATools) and Qoala-T (Klapwijk et al. 2019). If com-
bined with the proposed approach the entire quality assurance
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Fig. 7 Correlations of predicted cortical area (left) and volume (right)
values with the gold standard under the missing not at random
(MNAR) assumption at 20% missing in total (i.e., 60% of missing data

and correction may be automated. Finally, it is not known
whether the proposed approach can be applied to the studies
of neurological disorders. In the presence of a pathology non-
uniform morphological alterations are expected, which could
negatively affect multi-variate imputation reliability. We also
anticipate imputation reliability may be different across neu-
rological disorders given that they selectively affect brain re-
gions. Therefore, unless validated, we do not recommend uti-
lization of the proposed approach in neurological disorder
studies.

Information Sharing Statement

The raw data used in this article were obtained from the
Philadelphia Neurodevelopmental Cohort (PNC) dataset,
which can be downloaded at the website: https://www.nitrc.
org/projects/pnc/. The processed, quality controlled data,
which was used to evaluate imputation approach is
described in this GitHub repository: https://github.com/
sepehrband/Mining NeuroAnat, and is available upon
individual inquiry to the corresponding author, Farshid
Sepehrband (farshid.sepehrband @loni.usc.edu). LONI
pipeline can be accessed and downloaded at the website:
http://pipeline.loni.usc.edu. The imputation techniques were
implemented using available R libraries (including: impute:
https://bioconductor.org/packages/release/bioc/html/impute.
html, softImpute: https://cran.r-project.org/web/packages/
softlmpute/index.html, missForest: https://cran.r-project.org/
web/packages/missForest/index.html).
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was simulated under the MNAR assumption in 30% of the original data,
making for 20% missing in total). Note that low-rank matrix approxima-
tion technique failed to converge in number of instances
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