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ABSTRACT
There are no practical and effective mechanisms to share high-
dimensional data including sensitive information in various fields like
health financial intelligence or socioeconomics without compromis-
ingeither theutility of thedataor exposingprivatepersonal or secure
organizational information. Excessive scrambling or encoding of the
information makes it less useful for modelling or analytical process-
ing. Insufficient preprocessing may compromise sensitive informa-
tion and introduce a substantial risk for re-identification of individ-
uals by various stratification techniques. To address this problem,
we developed a novel statistical obfuscation method (DataSifter)
for on-the-fly de-identification of structured and unstructured sen-
sitive high-dimensional data such as clinical data from electronic
health records (EHR). DataSifter provides complete administrative
control over the balance between risk of data re-identification and
preservation of the data information. Simulation results suggest that
DataSifter canprovideprivacyprotectionwhilemaintainingdatautil-
ity for different types of outcomes of interest. The application of
DataSifter on a large autism dataset provides a realistic demonstra-
tion of its promise practical applications.
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Introduction

Recently, David Donoho predicted that by 2060 we will enter an Open Science era,
where data and code sharing will become a trend in scientific publications [1]. How-
ever, without privacy protections, sharing sensitive data may result in excessive informa-
tion disclosure. Currently, there are no generic, practical, and effective mechanisms to
share high-dimensional data in aggregate without compromising participant confidential-
ity, exposing personal information, or undermining individual rights. Examples of such
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delicate information include clinical data, electronic health records (EHR), banking and
investment, student learning analytics, and government data including income tax and
socioeconomic data. Cohort stratification approaches for large multi-source data archives
may be used by various actors to re-identify specific cases.

For example, a malicious adversary might be interested in linking de-identified hos-
pital EHR with voter registration database using shared demographic variables. Without
deliberate obfuscation, re-identification can be easily achieved. As early as 1997, Latanya
Sweeney showed that one might identify 90% of the US population when information
for date of birth, postal code, and gender is known [2–5]. In 2007, Netflix published its
de-identified user data for its famous contest to improve the recommendation system. De-
anonymization can be easily realized when linking the Netflix data with the International
Movie DataBase (IMDB) dataset that contains user information [6]. However, to advance
our understanding of a number of natural phenomena, including benign and pathological
human conditions, and provide massive volumes of information for scientific discoveries,
it is useful to share, release, and aggregate data.

Some existing techniques are able to provide privacy-preserving solutions for specific
types of data sharing. Differential Privacy (DP) is a mathematical definition of this privacy
loss, providing statistical properties about the behaviour of a mechanism for answering
privacy-preserving queries [7–10]. DP ensures that similar datasets can behave approx-
imately when similar information is requested by differentially private algorithms. To
promote data sharing, Mohammed et al. [11] proposed the DiffGen algorithm to pub-
lish differentially private anonymized data. They partitioned the raw data into subgroups
and introduced Laplacian noise to the group counts. Model-free Probably Approximately
Correct (PAC) learning provides another solution for low-dimensional synthetic data shar-
ing [12]. Several model-based sampling inference techniques have also been proposed
for medium-sized data sharing, including Zhang et al. [13] and Chan et al. [14] Bayesian
frameworks and clustering techniques may also be employed to derive noisy conditional
distributions or marginal tables and approximate the overall data joint distribution. Such
methods provide good asymptotic properties on the errors introduced to the original data.
However, most rely on low-dimensional evaluation datasets (e.g. less than 24 features),
and when the data dimensionality increases such methods may become computationally
intractable. Additionally, the conditional distributions and marginal tables were derived
using specific models; thus the ultimate utility of the synthetically generated datasets was
highly dependent on the adequateness of the a priori selected models.

Data encryption provides another strategy for data sharing [15–17]. Fully homomorphic
encryption transfers plain text (raw data) into cipher text that is not humanly parseable
unless decrypted with a specific decryption key [18–21]. Homomorphic encryption allows
users to operate, process, or analyse the encrypted data without having access to the decod-
ing key. However, the operations on encrypted data are limited as they are designed ahead
of time, Thus, general model fitting on encrypted EHR data is difficult to conduct in
practice.

The proposed statistical obfuscation technique (DataSifter) combines introducing arti-
ficial random missingness with partial alterations using data swapping within subjects’
neighbourhoods. These furtive operations have minimal impact on the joint distribution
of the obfuscated (sifted) output data as the controlled rate of missingness is introduced
completely at random and nearest neighbourhoods tend to have consistent distributions.



JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION 251

In terms of the overall distribution of the data features, the DataSifter algorithm attempts
to preserve the total energy, i.e. information content, of the original data. At the same time,
the method sufficiently obfuscates the individual cases to provide privacy protection and
mitigate the risks of re-identification. There are several user-controlled parameters that
allow the data governor the flexibility to control the level of obfuscation, trading privacy
protection and preservation of signal energy.

Methods

The core of the DataSifter is an iterative statistical computing approach that provides
the data-governors controlled manipulation of the trade-off between sensitive informa-
tion obfuscation and preservation of the joint distribution. The DataSifter is designed
to satisfy data requests from pilot study investigators focused on specific target popula-
tions. These pilot studies may not necessarily be driven by specific research questions or
a priori hypotheses. Thus, this technique is generally query-free. Iteratively, the DataSifter
stochastically identifies candidate entries, cases aswell as features, and subsequently selects,
nullifies, and imputes the chosen elements. This statistical-obfuscation process relies heav-
ily on non-parametric multivariate imputation to preserve the information content of the
complex data.

The DataSifter is designed to process various types of data elements. The method can
handle multiple numerical or categorical features, as well as one unstructured feature, e.g.
rich text. However, the method cannot be applied to features with a single constant value
or categorical features with probabilities of some categories close to 0.

At each step, the algorithm generates instances of complete datasets that in aggre-
gate closely resemble the intrinsic characteristics of the original cohort; however, at an
individual level, the rows of data are substantially obfuscated. This procedure drastically
reduces the risk for subject re-identification by stratification, as meta-data for all sub-
jects is randomly and repeatedly encoded. Probabilistic (re)sampling, distance metrics and
imputation methods play essential roles in the proposed DataSifter obfuscation approach.

In regard to the designed data requests, the main assumptions of the DataSifter tech-
nique include: (A1) Incomplete observations are driven by missing at random (MAR) or
missing completely at random (MCAR) mechanisms [22]; (A2) The utility of each fea-
ture is equally important; (A3) Large random samples of the original data preserves the
overall joint distribution. These assumptions are standard and allow us to manage the data
or quantify data utility. (A1) allows accurate imputations (A2) is essential in calculating
subject-pair distances, and (A3) promotes subject-wise parallelization.

We use the following framework to form the DataSifter algorithm. Three sources of
obfuscation have been applied to the data during the DataSifter technique: (1) initial data
imputation (in the preprocessing step), (2) artificially create and imputemissingness (in the
imputation step), and (3) swapping data values in the neighbourhood (in the obfuscation
step). Here we define all the mappings that have been employed for obfuscation.

Notation

Define X as the counterfactual complete sensitive dataset for Sifting consistingm features
and n cases. Let us use 1 ≤ j ≤ m to denote features and 1 ≤ i ≤ n to denote cases:
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X = (X1, . . . ,Xj, . . . ,Xm) ∈ Rn×m, Xj = (X1,j, . . . ,Xn,j)
T, 1 ≤ j ≤ m.

In the above expression, Xi,j denotes the i-th subject’s j-th feature value.
We define the utility information embedded in a dataset as the knowledge about the

joint distribution of the holistic data including all variables. By DataSifting preservation of
utility, we mean the relative conservation of the signal energy that suggests small deviation
of the sifted-data joint distribution from the original (raw) data joint distribution. Clearly,
this does not hold true for large obfuscation levels (e.g. as η → 1).

Define Fj as the distribution of the j-th variable (feature) in the dataset:

Xi,j ∼ Fj, i = 1, . . . , n.

Missing data are pervasive in almost all real-world datasets. We define the hypothetical
complete j-th feature as

Xj = (Xj,obs,Xj,mis),

whereXj,mis denotes a vector containing the actual values of themissing data portion.What
we observe is denoted as Xj = (

Xj,obs,Nj
)
, hereNj represents the missing cells. The length

of Xj,obs is nj and the length of Nj ism − nj.

Initial data imputation

This obfuscation happens in the data preprocessing step, we aim to impute themissing cells
in the origin data using missForest [23]. We define the imputation method as a mapping
from the observed incomplete dataset to a complete dataset with imputed values following
estimated conditional distributions:

MF (·) :
(
X̃1, . . . , X̃n

)
→ G,

G = {f̂j(·), i = 1, . . . ,m, j = 1, . . . , n}.

Here f̂j : (Xi,1, . . . ,Xi,j−1,Xi,j+1, . . . ,Xi,n) → Xi,j, i = 1, . . . ,m, j = 1, . . . , n are the condi-
tional distributions ofXi,j given all other features in the dataset.missForest uses an iterative
approach with random forest models to approximate the true fj.

Then, we impute the missing data with G to obtain X ∗ = (X∗
1, . . . ,X

∗
n), where X

∗
j =(

Xj,obs, X̂j,mis

)
, where X̂j,mis follows the same distribution as Xi,j.

Artificially create and imputemissing

During the imputation step, we introduce artificially missing observations and subse-
quently employ data imputation to re-generate complete instances (chains) of the dataset.
Similar to initial imputation we applyMF(·) to approach the true conditional distributions
of the features.
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We first randomly introduce missingness to the dataset after preprocessing step:

X (I) =
(
X(I)
1 , ...,X(I)

n

)
, X(I)

j =
(
X̃(I)
j,obs,N

(I)
j

)
.

The new data would possess an MCAR missing mechanism. The corresponding complete
data chains following the imputation is denoted by

X ∗(I) =
(
X∗(I)
1 , ...,X∗(I)

n

)
, X∗(I)

j =
(
X̃(I)
j,obs, X̂

(I)
j,mis

)
,

where X̂
(I)
j,mis are obtained byMF(·). Assuming we have obtained the true conditional mod-

els for all the imputations, the above two sources of obfuscation would not alter the joint
distribution of all features.

Neighbourhood data-element swapping

To further guarantee the obfuscate has been applied to each record, we swap the data values
in the neighbourhood without substantially altering the joint feature distribution.We need
to determine the neighbours for each record in the dataset. First, we calculate the distance
matrix for all cases:

D =

⎛
⎜⎜⎜⎝
0 D1,2 . . . D1,m
D2,1 0 . . . D2,m
...

... . . .
...

Dn,1 Dn,2 . . . 0

⎞
⎟⎟⎟⎠ .

Here Di,j = Dj,i ∀i, j. Di,j is the distance between the i-th case and the j-th case. Then,
define aij = I(Di,j < min(D′) + sd(D′)) hereD′ = {Di,j|i ≤ j}. We use the hard thresh-
old min(D′) + sd(D′) to restrict the neighbourhood. Hence, the neighbourhood matrix is
defined as

A = (A1, . . . ,Am)T = (aij)m×m.

Next, we define an index set that contains all the possible neighbours for j-th case,
�j = {(i, j)|aij = 1}, j = 1, . . . ,m. The swapping procedure can be represented by a set that
contains all the mapping functions to be performed on X ∗(I)

:

∀M ∈ M,M ◦ X ∗(I) =

⎛
⎜⎝

x11 ← xk111 · · · x1n ← xkn1n
...

. . .
...

xm1 ← xk1m1 · · · xmn ← xknmn

⎞
⎟⎠ ◦ X ∗(I),

where the notation x11 ← xk111 suggests using the element xk111 to replace x11, noting that
here k11 depends on both the column and the row indices.
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Finally, we define one random function that picking a specific neighbourhood from the
neighbour set generated above as �j:

g(·) : � → M,

g

⎛
⎜⎝

�1
...

�m

⎞
⎟⎠ = M =

⎛
⎜⎝

x11 ← xi11 · · · x1n ← xi1n
...

. . .
...

xm1 ← xim1 · · · xmn ← ximn

⎞
⎟⎠ ,

where each pair of (ij, j) ∈ �j, j = 1, . . .m.
We define another function that picks k4% of the replacement to execute, it’s also a

function that mapping to the map function set, shown as below:

h(·) : M → M,

h

⎛
⎜⎝

⎛
⎜⎝

x11 ← xi11 · · · x1n ← xi1n
...

. . .
...

xm1 ← xim1 · · · xmn ← ximn

⎞
⎟⎠

⎞
⎟⎠ =

⎛
⎜⎝

x11 ← xi111 · · · x1n ← xin1n
...

. . .
...

xm1 ← xi1m1 · · · xmn ← xinmn

⎞
⎟⎠ ,

where ikj =
{
ij, means execute the replacement
j, means keep the value as original , subject to the following identity:

∑
k

I(ikj �= j) = k4% × n,∀j.

A specific R-implementation of the DataSifter method is available in the DataSifter pack-
age, method dataSifter(). Detailed description and code are available in our GitHub
repository (https://github.com/SOCR/DataSifter).

User-controlled parameters

Sifting different data archives requires customized parameter management. Five specific
parameters mediate the balance between protection of sensitive information and signal
energy preservation:

• k0: A binary parameter indicating whether or not to obfuscate the unstructured feature,
if any.

• k1: The per cent of artificial missing data values that should be synthetically introduced
prior to each imputation iteration. Missingness is stochastically introduced to all data
elements. The range of this parameter can be between 0%and 40%of the total number of
cells. We set an upper bound of 40%missingness in order to keep the remaining dataset
is still informative. However, this range can be expanded.

• k2: The number of times to repeat the introduction-of-missing-and-imputation step.
Five options are available from 0 to 4.

• k3: The fraction of structured features to be obfuscated in all the cases. Available options
can vary between 0% and 100%.
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Table 1. DataSifter k parameter vector mapping determin-
ing the level of obfuscation.

Obfuscation level k0 k1 k2 k3 k4

None 0 0 0 0 0
Small 0 0.05 1 0.1 0.01
Medium 1 0.25 2 0.6 0.05
Large 1 0.4 5 0.8 0.2
Indep Output synthetic data with independent features

• k4: The fraction of closest subjects to be considered as neighbours of a given subject.
This implies that the top k4% of the closest-distance subjects of a given subject can be
considered as candidates for its neighbours. Then, the final neighbouring status of any
subject is determined by an additional hard cut off.

As a reference, Table 1 illustrates some example combinations of ki parameters to show the
trade-offs between privacy protection and obfuscation. The level of obfuscation spans the
range from raw data (no obfuscation) to synthetically simulated data (complete obfusca-
tion). Our highest level of obfuscation, i.e. ‘indep’, refers to the synthetic dataset sample
from the joint empirical distributions of all the features.

Preprocessing

The preprocessing steps of the original datamight vary for different datasets. Figure 1 illus-
trates the procedures included in the default DataSifter preprocessing step. These may be

Figure 1. Flow chart for preprocessing step.
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tailored to the specific characteristics of the study. The overall goal is to delete uninfor-
mative features and impute originally missing values. Uninformative features are features
that either represent constant values or have excessive levels ofmissingness. DataSifter pro-
duces a complete dataset after the preprocessing step. For ease of notation in the rest of the
manuscript we denote the number of subjects in the dataset as n, the number of informa-
tive features filtered by the preprocessing step as p, and the number of subjects per batch
during the parallel process asM. Alternative preprocessing methods are possible as long as
the aims are met.

Imputation step

Following the data preprocessing, the DataSifter continues with an iterative imputation
and obfuscation. During the imputation step, the DataSifter algorithm first introduces
random artificial missing values to the complete dataset, which synthetically provides pri-
vacy protection. The artificial missingness obeys missing completely at random (MCAR)
requirements as the missingness is introduced stochastically for the case and features
indices [22]. Assume we have n entries of data and denote the full data as Y = (Yobs,Ymis),
where Yobs represents the observed part and Ymis the missing part. Let R denote the miss-
ing indicator with Ri = I(Yi ∈ Ymis) for i = 1, 2, .., n. Because the MCAR assumption is
satisfied, we have the following relationship:

P(R|Y) = P(R).

This relationship between observed and missing values guarantees that the fully
observed data represents a random sample of the complete data. Accurate imputations
of the missing values based on the observed values can be obtained with non-parametric
imputation methods [23]. Thus, as described above, our specific introduction of missing
data has limited effect in altering the joint distribution of the data during the imputation
process. To impute the missing values, we use the non-parametric imputation method
missForest [23], albeit many alternative strategies are also possible. As an iterative non-
parametric imputation method of mixed data types,missForest fits a random forest model
using the observed data as training data and provide predictions for the missing cells.
Hence, the random forest model for imputing a specific column uses all other variables
in the dataset as predictors. In each iteration, the imputation of the entire dataset starts in
the column with the least missing values and ends in the column with most missing val-
ues. When the newly imputed data matrix tends to diverge with the previous matrix then
the algorithm stops. We choosemissForest algorithm, rather than other model-based mul-
tiple imputation methods, for the following reasons [23]: (1) missForest employs random
forest imputation that can cope with complex EHR data, which typically involves mixed-
type data, complex interactions, and non-linear relations; (2) it relies on limited modelling
assumptions; and (3) it is relatively efficient for large-scale and high-dimensional data.

Following the imputation step, the outputted ‘sifted’ dataset, Xwork, has the following
properties: (1) individual cases are manipulated, yet complete, protecting individual pri-
vacy, since hackers cannot distinguish ‘true’ values from imputed values that are in the
same format; (2) subjects with introduced missingness can still play an important role in
the analysis after the imputation.
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Obfuscation step

During the obfuscation step, the DataSifter repeatedly selects and swaps structured data
feature values based on the closest neighbours to ensure a balance between data privacy
and preservation of the feature distributions. The algorithm relies on distance metrics to
determine neighbourhoods for all cases [24,25], and swaps feature values between closely
adjacent neighbouring pairs. We compute pair-wise distances between all cases using a
weighted distance measure: (1) Euclidean distances for normalized numerical features,
and (2) Gower’s distance for categorical features [24]. To obtain the distance matrix, we
divide the current dataset outputted by the imputation step into three subsets and re-index
the elements as a numerical subset Xnum = (�x1, �x2, . . . , �xl) = (x̂1, x̂2, . . . , x̂n)T, categorical
datasetXcat = (�y1, �y2, . . . , �yp−1−l) = (ŷ1, ŷ2, . . . , ŷn)T, and the unstructured featureXunstr ,
where we have l numerical features, p-1-l categorical features and one unstructured fea-
ture. For Xnum, we apply a map algorithm f , which calculates the Euclidean distance for
every pair of cases and maps the input data metric to the target distance metric, and
f : Rn×l → Rn×n is defined as below. For X = (x1, x2, . . . , xn)T, f (X) = DE = (eij), where
∀i, j:

eij =
⎧⎨
⎩

‖ xi − xj‖2 − mini,j{‖ xi − xj‖2}
maxi,j{‖ xi − xj‖2} − mini,j{‖ xi − xj‖2} , i < j

0, otherwise

And we can utilize f to obtain f (Xnum) = DE = (eij)n×n.
For the categorical subset, we define amapping algorithm g which calculates the distance

for categorical features via Gower’s rule. For X = (x1, x2, . . . , xn)T, X ∈ Rn×p, g(X) =
DG = {gij}. For ∀i, j:

gij = 1
p

p∑
s=1

gijs,

where gijs is an indicator function related to the s-th feature, which is defined as

gijs =
{
0, xis = xjs,
1, xis �= xjs.

Under Gower’s rule, we calculate the distance by the weighted dissimilarities of cate-
gorical features. Similarly, for Xcat = (ŷ1, ŷ2, . . . , ŷn)T, we attain DG = (gij)n×n = g(Xcat).
Under assumption (A2), we define the complete paired-distances metric as a weighted
version,

D = (dij)n×n,∀i, j, dij = eij × l
p

+ gij × p − 1 − l
p

,

where l/p and (p − 1 − l)/p represents the weights for the Euclidean and Gower distances,
respectively.

Two criteria are used to determine the neighbouring status for subject pairs: (1) clos-
est k4 × n neighbours regarding the pair distances; and (2) a hard cut off. In the distance
matrix D, for each i, we rank the paired distances dij as {di1 , di2 , . . . ,din}. Then, we find
the maximum distance of the top k4% (percent) di,floor(k4×n), where floor(k4 × n) rounds
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Figure 2. Flow chart for imputation and obfuscation steps.

to the lower integer the percentage of cases to select within the closest neighbours. We use
the cutoff to identify the potential neighbours of the i-th individual:

neighbor(i) = {(i, j) : dij < di,floor(k4×n)}, ∀i = 1, . . . , n.

In addition, we set up a criterion to narrow the neighbourhood. Let

c = inf {dij} + sd{dij},
where inf {dij} refers to the minimum pair-wise distance between cases and sd{dij} refers
to the standard deviation of all the dij’s in D. We only preserve the neighbours that satisfy
dij ≤ c. The final set of neighbours, i.e. neighborfinal, is defined as follows:

neighborfinal(i) = {(i, j)|(i, j) ∈ neighbor(i), dij ≤ c}, ∀i = 1, . . . , n.

For extreme subjects that have no neighbours selected by the above process, we do not
apply the obfuscation step. One subject could have multiple neighbours. For every subject,
a neighbouring subject is randomly selected as its swapping partner. We randomly swap
a subset of randomly chosen features among each swapping pair. A detailed flow chart
illustrating the imputation and obfuscation steps can be found in Figure 2.

Pseudo code

In this section, we defineXstr as the structured feature subset of current data, which consists
of Xnum and Xcat . Also, Rand(X,r) is a function that randomly picks r elements in X.

Input:

(1) The dataset after preprocessingXwork = (�x1, �x2, . . . , �xp) ∈ Rn×pwithn cases and p fea-
tures. There are one unstructured and p − 1 structured features in the dataset. After
the preprocessing step, p is less or equal to the number of features in the original
dataset. Each �xi is a column vector, �xi = (x1i, x2i, . . . , xni)T, i = 1, . . . , p.
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(2) The categorical level of obfuscation L={‘none’, ‘small’, ‘medium’, ‘large’, ‘indep’}, or
alternatively a specific parameter vector (k0, k1, k2, k3, k4).

Special cases:
If L = ’none’, the output is Xwork and if L = ’indep’, the output is denoted by Xnew. Each

feature in Xnew is a synthetic sample from the empirical distribution of the corresponding
feature in Xwork.

Core Algorithm:
For i in 1: k2 do

Introduce k1% × n × (p − 1) missing values to Xstr.
Impute missingness (e.g. viamissForest) and update Xwork.
End for
If k0 = 1 do
For i = 1 : n

(i, j)=Rand(neighbor∗(i) , 1)
Swap the unstructured value for the pair (i, j) in Xwork.

End for
End If
For i = 1 : n

j=Rand(neighbor∗(i) , 1);
Zi = Rand({1, . . . , p − 1}, k3% × (p − 1)) = {zi,1, . . . , zi,k3%×(p−1)};
For t ∈ Zi do
Swap Xstr[i, t] with Xstr[j, t]

End for
End for

Simulation experiment design

We present three different simulation studies to demonstrate the performance of the
DataSifter algorithm and assess its capability to (1) obfuscate and guard against stratifica-
tion attempts for re-identification and (2) manage the overall data structure and preserve
useful information in the resulting ‘sifted’ data. In all experiments, we use a sample size of
n = 1000 subjects.

In the first simulation, a binary outcome (y) and five covariates (xi, i = 1, . . . , 5) were
simulated; X1 to X4 were independently generated by normal distributions with the
following distribution specifications:

X1, X2 ∼ N(0, 1), X3 ∼ N(−1, 1), andX4 ∼ N(0, 2).

The binary variable X5 was directly dependent on X1 and X2:

logit(X5i) = 0.5 − 4X1i − xX2i.

The binary outcome variable was generated as follows:

logit[P(yi = 1)] = 10 + 10 × X1i + 10 × X2i − 5 × X3i − 20 × X4i − 15 × X5i + εi,
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where the residuals were independent and identically distributed (iid) and εi ∼ N(0, 1) and
i = 1, .., n.Missingness forX1 andX2 was then introduced based onX5 tomeet themissing-
at-random (MAR) criteria, which mimicked the real data situation. Denote Xi,1mis =
I(Xi1 = NA) and Xi,2mis = I(Xi2 = NA), where i is the subject indicator. Missingness was
introduced using the following probabilities:

P(Xi,1mis = 1) = P(Xi,2mis = 1) =
⎧⎨
⎩
0.193, ifX5 = y = 0,
0.060, ifX5 + y = 1,
0.003, ifX5 + y = 2.

Asmentioned in the Imputation section,we can impute the originalmissing values in the
dataset prior to applying the subsequent DataSifter algorithmic steps. However, to handle
the original missingness, we have to consider MAR missingness.

The second simulation demonstrates an example of count outcomes. A Poisson model
was used to generate the data:

P(Yi = n) = λni
n!

× e−λi ,

where

log(λi) = 0.2 + 0.5 ∗ x1 + 1 ∗ x2 − 0.5 ∗ x3 − 1 ∗ x4 − 1.5 ∗ x5 + εi,

with iid residuals (i.e. εi ∼ N(0, 1)). The covariates xi, i = 1, . . . , 4 were generated using
uniform distributions. We constructed x5 based on x1 and x2 and used a similar strategy
as in the first binary simulation to introduce missingness.

The third simulation involves continuous outcomes, where the response y is generated
by a similar linearmodel as in the first experiment; however, it uses an identity link yielding
a continuous outcome:

y = 10 + 10 × x1 + 10 × x2 − 5 × x3 − 20 × x4 − 15 × x5 + εi.

Again, the residuals were iid and, εi ∼ N(0, 1). All covariates were generated from uniform
distributions and the missing patterns were stochastically determined as in the first binary
experiment.

For all simulation studies, we focused on verifying whether the ‘sifted’ output datasets
preserve a certain level of the energy that was present in the original true signals, relative
to null signals. In addition, we examined the trade-offs between the level of obfuscation
and the residual value (utility) of the resulting ‘sifted’ data as a measure of the algorithm’s
performance. Tomake all three simulations more realistic, we augmented the original out-
come and the (real) five covariates, with 20 additional null features that acted as decoy or
‘noisy’ control features. All 20 null features were uniformly distributed with various ranges
and were independent of the outcome.

Datasifter validation

For each simulation, we derived 30 ‘sifted’ datasets under a range of privacy levels, from
‘none’ to ‘indep’ levels of obfuscation. To assess the privacy protection ability, we mea-
sured the Percent of Identical Feature Values (PIFV) between the ‘sifted’ outcome and
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the original data for all the cases under each obfuscation level, i.e. we compared each
subject’s original and ‘sifted’ records and measured the ratio between the number of iden-
tical values over the total number of features. For determine utility preservation, we used
regularized linear models, with an elastic net regularization term, to identify the salient
variables. Internal 10-fold statistical cross-validation was used to validate the results of the
elastic net feature selection.X denotes the covariate matrix (subjects× features = 1,000×
25), y is the outcome, and β as the elastic net parameter estimates obtained by optimizing
the following objective function:

β̂enet = argminβ(y − X)T(y − X) + λ{α||β||2 + (1 − α)||β||2},

where α is the parameter to determining the blend of the LASSO and Ridge contributions
to the penalty, and λ is the regularization penalty parameter [26]. In our experiments, we
used α = 0.8 giving a slight dominance to the LASSO penalty.

A regularization parameter tuning procedure was also performed, using misclassifica-
tion error rate for binary simulation, deviance for count simulation, and mean squared
error for continuous simulation. The largest λ value, which is within one standard error
of the minimum cross-validated error, was selected as the optimal parameter [26]. When
the estimated coefficient was different from zero, we considered this evidence that the
corresponding feature represented a ‘true’ predictor. On the other hand, zero coefficient
estimates corresponded to ‘false’ predictors. Recall that in all simulations, there were five
true predictors and 20 null variables. The true positives (number of true features identified)
and the false positives (number of null features identifies as true predictors) were recorded
for all experiments and each privacy level.

Results

Protection of sensitive information (privacy)

Theprivacy protection power relies heavily on the user-definedprivacy level and the intrin-
sic information structure. Overall DataSifter performed very well. Our results showed that
for high privacy levels, the Percent of Identical Feature Values (PIFVs) was close to 0% for
all numerical features. For datasets including categorical features, the algorithm provided
PIFVs similar to the lowest PIFV between any pair of different subjects in the original
dataset. The overall privacy protection performance of the DataSifter was excellent.

Based on the overall simulation performance, a default recommended privacy level
may be set at ‘medium’. However, this is also subject to the sensitivity of the data, the
specific characteristics of the data, and the trustworthiness of the requestor. Figure 3 illus-
trates the relationship betweenPIFVs for synthetic datasets and user-defined privacy levels.
The outcome labels ‘binary’, ‘count’, and ‘continuous’ refer to the first experiment, second
experiment, and third experiments, respectively. As expected, the graph shows that the
preservation of sensitive information is better protected when the privacy level is higher.
For all three simulations, the DataSifter had similar performance in terms of PIFV. The
outliers in the ‘none’ level resulted from the imputation of originally missing values. When
the obfuscation was set at ‘medium’ level, the variance of the PIFV was the largest as the
levels of obfuscation might differ among individuals when using random sampling. ‘Small’
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Figure 3. Boxplots of percent of identical feature values (PIFV) under different privacy levels. Binary out-
come refers to the first experiment; count refers to the second experiment; continuous refers to the third
experiment. Each box represents 30 different ‘sifted’ data or 30,000 ‘sifted’ cases.

level of obfuscation manipulated less of the data, with a limited range around the neigh-
bourhood of each case. Hence, it generated smaller PIFV variances among individuals. On
the other hand, ‘large’ obfuscation level had a small variance for PIVF as it changed most
of the features for all cases. Under the ‘large’ obfuscation setting, PIFV was around 25%
for all three experiments, which provided reliable protection for patient privacy. Under the
‘medium’ level, around 75% of the cases hadmore than 50% of their data elements different
from their original (true) counterparts. The synthetic data under ‘indep’ changed almost
all the feature values for every subject. Remember that these five original obfuscation levels
represent simple examples of specifying the 5D Data-Sifter-control parameter vector k.

Preserving utility information of the original dataset

Next, we assessed the DataSifter algorithm’s integrity, in terms of its ability to maintain
utility information, i.e. preserve the energy or all features’ joint distribution of the original
data. A detailed explanation can be found in the Methods section. Our results suggest that
up to moderate obfuscation levels, the algorithm maintains a fair amount of information
(data energy). However, as expected, this ability fades away for larger obfuscation levels.
Also, different k parameter vectors have varying effects on the overall utility preservation.

The results illustrating theDataSifter ability to conserve the data energy are presented in
Figure 4. We report the true positive (TP) and false positive (FP) number of feature selec-
tions for the three simulation experiments. These results showed that the DataSifter is able
to preserve the signal energy in the original data. As expected, and in contrast to the pri-
vacy preservation ability, the performance of the technique tomaintain data utility is better
under low obfuscation levels. Different outcome types also affect the utility preservation.
The simulations show that information energy preservation in the continuous outcome
case is slightly better, compared to binary and count outcomes.
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Figure 4. Logistic model with elastic net signal capturing ability. TP is the number of true signals (total
true predictors = 5) captured by the model. FP is the number of null signals that the model has falsely
selected (total null signals = 20).

In the continuous outcome simulation, for obfuscation levels below ‘large’, regulariza-
tion and variable selection via elastic net successfully identified all five important predictors
in almost all ‘sifted’ datasets, and the number of false positives was mostly 0. In addition,
the variations of TPs and FPs among different privacy levels was the smallest among the
three simulation experiments. The count outcome simulation performed similarly well;
under ‘medium’ obfuscation, elastic net was able to select 3 out of 5 features over 75% of
the times. Count outcome simulation was not always stable. For instance, some datasets
undergoing extreme ‘sifting’ had 0 true features selected; however, the algorithm also kept
low the false negative rate.

The binary outcome simulation demonstrated the least utility preservation as it had the
highest false positive rates and the largest variability among all settings. Based on Figure 4,
there is almost no true signal, or false signal, captured in the synthetic ‘indep’ setting, which
results from the elimination of the correlations among features. The extreme ‘indep’ case
aims to achieve maximum protection for patient privacy. As a consequence, the resulting
‘sifted’ data provides little utility.

Clinical data application: using DataSifter to obfuscate the ABIDE data

We demonstrate the functionality of the DataSifter on the Autism Brain Imaging Data
Exchange (ABIDE) dataset. The ABIDE dataset represents a multi-institutional effort for
aggregating and sharing the imaging, clinical and phenotypic data of 1,112 volunteers
(see [27] and http://fcon_1000.projects.nitrc.org/indi/abide for details). The data includes
resting-state functional magnetic resonance imaging (rs-fMRI) structural MRI, and phe-
notypic information of 539 patients (autism spectrum disorder) and 573 age-matched
asymptomatic controls. In our study, we selected a subsample of 1,098 patients including
528 autism spectrum disorder (ASD) and 570 controls. The dataset has 500 structural MRI
biomarkers and phenotypical information such as age, sex and IQ. It is a very challenging
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case-study due to the heterogeneity of the data, format of the data elements, and the com-
plexity of mental health phenotypes. We use the ABIDE data to showcase the performance
of the DataSifter technique on a convoluted multiplex study.

TheABIDEdataset comprises 1,098 patients and 506 features.We included one unstruc-
tured feature, ‘image data file name’ (‘Data’), in the dataset to demonstrate the DataSifter
ability to obfuscate unstructured text elements. Resembling the simulation experiments, we
built a dataSifter() function that has five different levels of obfuscation to demonstrate the
obfuscation utility trade-off. Obfuscation was assessed using PIFV as the simulation stud-
ies. We applied random forest [28] to predict the target binary outcome autism spectrum
disorder (ASD) status (ASD vs. control) as a proxy of the algorithm’s utility to maintain
the energy of the original dataset into the ‘sifted’ output. Predictions of the ASD status was
conducted with the randomForest package.

When specifying the parameters in the dataSifter() function, level of obfuscation can be
set by level. Here we used five different obfuscation levels. The level of obfuscation can be
alternatively specified using a set of k combinations as function arguments, which creates
a flexible way to manage obfuscation levels. In general, low values of the user-controlled
parameters k0–k4 result in ‘small’ obfuscation levels. However, even if the relationship
between the user-controlled parameters and the obfuscation level is generally monotonic
(i.e. an increase in the parameters is associated to higher obfuscation), the relationship
is not necessarily linear. For example, our obfuscation level ‘small’ is obtained by setting
the user-controlled parameters in the dataSifter() function as follows: k0 = 0, k1 = 0.05,
k2 = 1, k3 = 0.1, k4 = 0.01.

In this example, the name of the unstructured feature was ‘Data’. In general, when there
are no text variables, the set ofunstructured.names can be left to default (i.e.NULL). Explicit
sensitive information like the subject ID, i.e. subjID column, needs to be removed from
the original dataset in advance. The batch size for the algorithm is defined by the param-
eter batchsubj. As mentioned in the Methods section, the DataSifter algorithm operated
on batches to provide scalability and alleviate the computational complexity. We recom-
mend using a relatively small batchsubj and a large number of cores for datasets with a
huge number of cases (e.g. hundreds of thousands). Themaximumnumber of iterations for
the missForest imputation algorithm is set to 1 to minimize the computational cost deter-
mined by imputing a large number of features. An example call to the dataSifter function
is illustrated below:

dataSifter(level = ’medium’, data = abide,unstructured.names = ’Data’, subjID =
’subjectIdentifier’, batchsubj = 500, maxiter = 1)

We obtained five ‘sifted’ output datasets corresponding to different obfuscation levels:
no (‘none’ obfuscation), s (‘small’ obfucation), m (‘medium’ obfuscation), l (‘large’ obfus-
cation), and i (‘indep’ synthetic data from empirical distributions of each feature). We then
inspected the obfuscations made to the original dataset. As an example, Table 2 shows the
impact of the 5 different obfuscation levels on 10 selected features from a randomly selected
case, the 22-nd subject, in the ABIDE data. Note that subject order was not changed in the
DataSifter process. The last feature ‘curv_ind_ctx_lh_S_interm_prim.Jensen’ is missing
for the 22-nd subject.

Compared to the original dataset, the results of the following obfuscation levels indi-
cate: none – only imputed the missing value; s – incorporated 2 ‘sifted’ features,m – had 4
features that differed from their original value; l had 7 out of 10 ‘sifted’ features including
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Table 2. Compare original and ‘sifted’ data for the 22-nd subject.

Data Output Sex Age
Acquisition

Plane IQ
thick_std_ctx
.lh.cuneus

curv_ind_ctx_lh_G_
front_inf.Triangul

gaus_curv_ctx.lh.
medialorbitofrontal

curv_ind_ctx_lh_S_interm
_prim.Jensen

original 0887.nii Autism M 31.72 Sagittal 131 0.475 2.1 0.315 NA
none 0887.nii Autism M 31.72 Sagittal 131 0.475 2.1 0.315 0.51
small 0717.nii Autism M 31.72 Sagittal 131 0.475 2.1 0.315 0.4589
medium 0887.nii Autism M 31.72 Sagittal 111 0.548 2.85 0.315 0.463
large 0887.nii Control M 18.21 Sagittal 104 0.5347 3.198 0.1625 0.4524
indep 1004.nii Control M 15.4 Coronal 104.4 0.4842 3.383 0.1079 1.002
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Figure 5. Boxplots of PIFVs for ABIDE under different levels of DataSifter obfuscations. Each box repre-
sents 1098 subjects among the ABIDE sub-cohort.

the outcome ‘researchGroup’; and i had all features differ from the original except subjct-
Sex. Moreover, for ‘none’ to ‘medium’ obfuscation, the values were relatively close to the
original value in the example. Overall, Table 2 shows a ladder in obfuscation ability for
different levels.

Boxplots for PIFV were then plotted in Figure 5(A) to illustrate the overall obfuscation
effect. As expected, PIFV decreases with the level of obfuscation. Comparing the applica-
tion with the simulation experiments, the algorithm works better with a larger number of
features. Under ‘medium’ obfuscation level, the algorithm achieved 50% and 25% PIVF for
the binary simulation data and ABIDE data, respectively.

To assess the utility information, we used the ‘sifted’ datasets as training sets to fit ran-
dom forest. These trained models provided predicted values for 632 complete cases in the
original ABIDE data. The random forest built using no dataset predicted all outcomes cor-
rectly. s,m, l and i datasets were able to provide predictions with 98%, 70%, 52% and 54%
accuracy, respectively. The prediction accuracy of all the datasets are illustrated in Figure
5(B). Again, this result demonstrated the trade-off between utility and the user-controlled
privacy levels.

Parallel computing and CPU time

We used R to implement the proposed DataSifter algorithm. Parallel processing was
employed to deal with datasets with a large number of subjects. To optimize the perfor-
mance, we randomly divided the complete dataset by cases into batches. By default, we
binned cases into batches of 1000, with the remaining patients added to the last batch.
After splitting the data into manageable bundles, we did parallel computing introducing
missing values and imputing them back iteratively using missForest. For extremely large
datasets and efficient timely calculations, we recommend applying theDataSifter algorithm
on Cloud servers where each code, or node, may be assigned a batch of cases. The cur-
rent DataSifter implementation (V.0.1.4), takes about 2 h to complete the entire DataSifter
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Table 3. CPU time for each step in DataSifter.

Function Function definition
CPU time
average (s)

CPU time
minimum (s)

CPU time
maximum (s)

Number of
evaluations
performed

Dimension of
data

(row× column)

thinning Delete features in
the original data
when missing is
significant

9.10 8.90 9.70 50 1098× 2143

sep Separate the original
data by row
and construct
batches.

0.07 0.06 0.21 50 4392× 503

firstImp Impute the data
batches in parallel

770.00 748.70 779.40 10 4392× 503

subjdist Calculate the subject
pair distances.

27.50 27.20 27.90 50 4392× 503

dataSifter (swap
unstructured)

Swap unstructured
variables with
neighbours

718.90 718.60 719.20 10 4395× 503

DataSifter
(imputation
step)

Introduce artifical
missing and
impute

4621.10 4598.70 4640.80 10 4394× 503

dataSifter(swap
structured)

Swap structured
variables with
neighbours

752.50 752.20 753.30 10 4393× 503

Total DataSifter procedure 1.91 h

protocol using 4392×503 EHR data archive. The relative CPU times for each step in the
DataSifter are listed in Table 3.

Discussion and conclusion

Researchers interested in examining specific healthcare, biomedical, or translational char-
acteristics of multivariate clinical phenomena frequently need to fit models, estimate
parameters, trainmachine learning algorithms, or generate forecastingmodels. Large real-
istic datasets are required for all these tasks. There is an urgent need to develop effective,
reliable, efficient, and robustmechanisms to support FAIR data sharing and open-scientific
discovery [29]. The amount of data collected far exceeds our ability to interpret it. The
main barriers for data sharing remain to be data-ownership and the need to protect
sensitive information. The DataSifter method aims to balance data obfuscation, scram-
bling, or encoding and preserving the information content to facilitate useful downstream
modelling, analytics and interpretation. The DataSifter represents a statistical obfuscation
technique that reduces the risk of data re-identification at the same time it preserves the
core data information. Our experiments with real and simulated data using multiple user-
defined privacy levels, confirm the algorithm’s ability to protect privacy while maintaining
data utility.

According to the simulation experiments results, under a careful set-up for user-defined
privacy levels, DataSifter can successfully provide privacy protection while maintaining
data utility. The clear negative relationship between the level of obfuscation and the pro-
portion of PIFVs indicates that a high user-specified privacy level does provide increased
privacy protection for sensitive information. Using DataSifter under ‘large’ or ‘indep’ set-
tings, patient privacy was highly protected. Data re-identification was almost impossible
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by stratification filtering of the targeted patients via known feature values. This is due to
the method’s inability to distinguish between real, imputed, or obfuscated values within
each real feature, and the relatively small proportion of untouched data elements. Of
course, caution needs to be exercised, as multiple queries resulting in repeated ‘sifted’ data
instances may expose the overlapping ‘true’ values especially for low levels of obfuscation.
However, the large proportion of ‘sifted’ elements protects sensitive information and may
allow data users to request a small number of data queries. The application of DataSifter
on ABIDE provided a realistic demonstration of how to employ the proposed algorithm
on EHR. Also, the application confirmed DataSifter’s ability to handle high-dimensional
data. The excellent prediction performances on the ‘medium’ obfuscation level suggested
similar data utility between original and ‘sifted’ data.

In practice, to guarantee a great performance, data users should calibrate the obfus-
cation parameter values and choose an egalitarian strategy for counterbalancing risk vs.
value. This decision may be based on specific criteria about access level, research needs,
information sensitivity, etc. To stimulate innovative pilot studies, one may dial up the level
of data protection. For more established investigators, data governors may balance the
preservation of information content and sensitive-information protection by sharing a less
obfuscated dataset.

Although with promising performance, several improvements and extensions could be
made in future studies for the algorithm and R package. The major computational limi-
tation is scalability, when the dataset is extremely large with many features (e.g. cases ∼
10–100K and features ∼1–10K). In this scenario, the imputation with missForest can be
inefficient. Parallelizing themissForest algorithmby features or usingmore efficient compu-
tational language like C++might alleviate this problem. Another challenge is represented
by the obfuscation of longitudinal data, which must be performed without breaking the
correlations among time-varying features, which the current version ofDataSifter is unable
to do.

In addition, some of the records might not be changed after the DataSifter algorithm,
however at sufficient levels of obfuscation, all cases, or records, in the sifted output will be
distinct from their raw data counterparts. Any one of the following three steps will almost
certainly alter a data cell element: (1) imputation for originally missing cells; (2) introduc-
ing artificially missing and imputed cells; and (3) obfuscating using swapping with a close
neighbour. Thus, if a record is unchanged during the DataSifter process, none of these
three processes took place. Assume we have a dataset with n records (rows) and m fea-
tures (columns); #1 would not occur if the raw record is complete, the probability of #2

not occurring in a given record is

(
(n − 1) × m
k1 × n × m

)
(

n × m
k1 × n × m

) , and the probability of #3 not occur-

ring would be high only for outliers, as they would have few or no neighbours. Overall, a

record without originally missing cells would have

(
(n − 1) × m
k1 × n × m

)
(

n × m
k1 × n × m

) chance of remaining

unchanged following the sifting process. However, if we force the swapping for complete
cases and outliers, the overall joint distribution of the sifted result may be quite different
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from the original data. We are still investigating options to identify these rare complete
cases and implement special obfuscation steps before the DataSifter algorithm processes
the entire datasets. The goal is to introduce a special obfuscation strategy for rare cases
preserving their uniqueness within the sifted result.

The DataSifter method is query independent; that is, it was designed to solve general
data-access requests without an apriori specific research question. In general, it can be dif-
ficult to select an appropriate obfuscation level for discovery studies where the outcome of
the dataset is unknown. Also, attaining asymptotic performances for the introduced noise
can be challenging. The DataSifter relies on non-parametric techniques to introduce noise
to a large proportion of data values. It provides model-free robustness, but the noise is
hard to quantify without somemodelling-based assumptions. For example, the imputation
errors from missForest, i.e. the prediction errors from random forest imputation, do not
have asymptotic properties. Future directions for DataSifter improvements would include
specific handling of diverse outcomes and data types. When the data user has clear apri-
ori study goals and a targeted outcome, model-based imputation and obfuscationmethods
can be applied for the algorithm.

The DataSifter approach represents an effective strategy for publishing a synthetic ver-
sion of high-dimensional data (≥ 30 features) like the information contained in Electronic
Health and Medical Records (EHR/EMR), insurance claims warehouses, government
organizations, etc. This process facilitates data sharing, which in turn promotes innova-
tion and evidence-based decision-making without compromising the risk of individual
re-identification.
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