
ReAl-LiFE: Accelerating the Discovery of Individualized
Brain Connectomes on GPUs

Sawan Kumar*†
Computational and Data Sciences

Indian Institute of Science
Bangalore, India

Varsha Sreenivasan*†

Centre for Neuroscience
Indian Institute of Science

Bangalore, India

Partha Talukdar
Computational and Data Sciences, and
Computer Science and Automation

Indian Institute of Science
Bangalore, India

Franco Pestilli
Psychological and Brain Sciences,

Indiana University
Bloomington, USA

Devarajan Sridharan†

Centre for Neuroscience, and
Computer Science and Automation

Indian Institute of Science
Bangalore, India

Abstract
Diffusion imaging and tractography enable mapping struc-
tural connections in the human brain, in-vivo. Linear Fasci-
cle Evaluation (LiFE) is a state-of-the-art approach for prun-
ing spurious connections in the estimated structural connec-
tome, by optimizing its fit to the measured diffusion data.
Yet, LiFE imposes heavy demands on computing time, pre-
cluding its use in analyses of large connectome databases.
Here, we introduce a GPU-based implementation of LiFE that
achieves 50-100x speedups over conventional CPU-based im-
plementations for connectome sizes of up to several mil-
lion fibers. Briefly, the algorithm accelerates generalized ma-
trix multiplications on a compressed tensor through efficient
GPU kernels, while ensuring favorable memory access pat-
terns. Leveraging these speedups, we advance LiFE’s algo-
rithm by imposing a regularization constraint on estimated
fiber weights during connectome pruning. Our regularized,
accelerated, LiFE algorithm (“ReAl-LiFE”) estimates sparser
connectomes that also provide more accurate fits to the un-
derlying diffusion signal. We demonstrate the utility of our
approach by classifying pathological signatures of structural
connectivity in patients with Alzheimer’s Disease (AD). We
estimated million fiber whole-brain connectomes, followed
by pruning with ReAl-LiFE, for 90 individuals (45 AD pa-
tients and 45 healthy controls). Linear classifiers, based on
support vector machines, achieved over 80% accuracy in clas-
sifying AD patients from healthy controls based on their
ReAl-LiFE pruned structural connectomes alone. Moreover,
classification based on the ReAl-LiFE pruned connectome
outperformed both the unpruned connectome, as well as the
LiFE pruned connectome, in terms of accuracy. We pro-
pose our GPU-accelerated approach as a widely relevant tool
for non-negative least squares optimization, across many do-
mains.

1 Introduction
Mapping anatomical connections between brain regions is
essential for understanding how the brain produces behavior.

*contributed equally to this paper.
†Correspondence to: {sawankumar,varshas,sridhar}@iisc.ac.in

Copyright © 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

At present, diffusion-weighted magnetic resonance imag-
ing (dMRI) and tractography are among the only techniques
for estimating structural connectivity in the human brain in
vivo. While dMRI measures the diffusion of water molecules
through the brain’s white matter, tractography is a compu-
tational tool that involves tracing contiguous white matter
streamlines, utilizing local information about fiber orienta-
tion, to reconstruct white matter connections in three dimen-
sions. The non-invasive nature and ability to acquire dMRI
scans at high spatial resolutions, with relatively short scan
times, has led to the rising popularity of this approach for
measuring individual-specific brain connectomes in large
databanks, comprising healthy subjects (Van Essen et al.
2012; Sudlow et al. 2015) and patient populations (Mueller
et al. 2005).
A key challenge with connectome generation algorithms

is the lack of access to ground truth: structural connectome
estimates can differ significantly depending on the exper-
imenter’s choice of algorithmic parameters (e.g. minimum
radius of curvature or maximum fiber length). Post-hoc eval-
uation (or pruning) of whole-brain connectomes has, there-
fore, become an essential post-processing step in measuring
structural connectivity in the human brain. Typically, con-
nectome evaluation is achieved by estimating a large num-
ber of structural connections, including potentially redun-
dant connections, and pruning these down to a subset of con-
nections that best fit the measured diffusion data (Pestilli et
al. 2014; Smith et al. 2013; 2015).
One popular algorithm for evaluating connectomes is Lin-

ear Fascicle Evaluation (LiFE) (Caiafa et al. 2017; Pestilli
et al. 2014). LiFE models the diffusion signal in each
voxel as arising from a weighted contribution of all fibers
traversing that voxel. Estimating the streamline weights is
achieved by minimizing the error between the actual and
the connectome-predicted diffusion signal, subject to a non-
negativity constraint on the weights. Streamlines with non-
zero weights constitute the pruned connectome.
In its original formulation, the LiFE algorithm suffered

from constraints on memory as well as execution time,
which limited its use with large-scale connectome data

LiFE Limitations Slow pruning,
redundant fibers

Regularized, GPU
implementationReAl-LiFE

Advantages

Faster pruning,
sparser connectome

GPU implementation Regularised pruning

CUDA
code

R
ed

un
da

nt
fib

er
s 50 - 100x

speedup

Unregularized, CPU
implementation

Figure 1: Schematic illustrating ReAl-LiFE. (Left) dMRI and tractography enable estimation of white-matter connections in the
brain. The LiFE algorithm (top row) prunes this connectome to fit the underlying diffusion data and assigns a weight to each
fiber. LiFE suffers from limitations of long CPU execution times and retains redundant fibers. Our GPU-based implementation,
ReAl-LiFE (bottom row), generates sparser, more accurate connectomes with 50-100x speedups.

(Pestilli et al. 2014). These memory constraints have been
recently addressed by encoding brain connectomes in mul-
tidimensional arrays (Caiafa and Pestilli 2017; Caiafa et
al. 2017). Despite its more efficient memory management,
LiFE converges very slowly on desktop CPUs. Convergence,
even for a single subject’s connectome (1 million stream-
lines), typically requires ~500 iterations of the algorithm,
and takes up to ~17 hours. This slow speed precludes LiFE’s
extensive use for individualized connectome discovery in
large databases with thousands of subjects (Van Essen et al.
2012; Sudlow et al. 2015).
Here, we develop a regularized, accelerated version of

LiFE’s connectome pruning algorithm (ReAl-LiFE), imple-
mented on GPUs. We demonstrate that ReAl-LiFE pro-
vides significant speedups (~100x) compared to the origi-
nal CPU version, with increased model accuracy for fitting
the underlying diffusion signal (Fig. 1). Next, we demon-
strate a key real-world application of ReAl-LiFE, by predict-
ing pathological connectivity in a large database of patients
with Alzheimer’s Disease (AD). We also provide an open
source implementation of ReAl-LiFE1, along with software
and hardware details needed for reproducing the results in
this paper, to readily enable its application to other datasets.

2 Limitations of the LiFE Algorithm
To understand critical bottlenecks associated with connec-
tome pruning we introduce, briefly, the LiFE algorithm.
LiFE’s connectome pruning algorithm models a predicted
diffusion signal from the estimated connectome, and elimi-
nates fibers, to minimize the discrepancy between the mod-
eled and measured diffusion signal. The diffusion signal,
typically measured along multiple (around 20-100) different
gradient directions (N✓), is encoded in a vector b 2 RN✓Nv ,
Nv being the number of voxels. Standard probabilistic trac-
tography algorithms permit generating a whole-brain con-
nectome based on this diffusion signal by tracking individ-
ual streamline fibers (Tournier et al. 2012). Each streamline
fiber in the connectome traverses multiple voxels and each

1https://github.com/SawanKumar28/real-life

voxel is traversed by many fibers. The contribution to the
modeled diffusion signal of each fiber f, traversing a voxel
v, along a measured gradient direction ✓ is encoded in a ma-
trix M 2 RN✓Nv⇥Nf , where Nf is the number of fibers in
the generated connectome. Specifically, the diffusion signal
in each voxel is modeled as a weighted sum of the contri-
bution from each fiber passing through it: b = Mw, where
w 2 RNf encodes the contribution (or weight, wf) of each
fiber f to the diffusion signal b. LiFEminimizes the error be-
tween the modeled and measured diffusion signal by assign-
ing a non-negative weight to each fiber. This can be posed as
a non-negative least squares optimization problem:

min
w

(O(w)), O(w) = 1
2 k(b�Mw)k2, w > 0 (1)

Solving this problem, as is, imposes significant memory
demands (Pestilli et al. 2014). A recent study (Caiafa and
Pestilli 2017) overcame this limitation by adopting a more
efficient, tensorial representation of M). The demeaned dif-
fusion signal Mv 2 RN✓⇥Nf in each voxel v was rep-
resented, using Sparse Tucker Decomposition, as Mv =
S0(v)D�v, where S0(v) is the diffusion signal measured
in the absence of a diffusion gradient,D 2 RN✓⇥Na is a dic-
tionary matrix comprising canonical diffusion “atoms” (Na:
number of “atoms”) used to estimate the individual contribu-
tions of each fiber and�v 2 RNa⇥Nf is a sparse, binary ma-
trix whose columns indicate the contribution of each atom to
each fiber, in that voxel. Collating �v for all voxels v into
a sparse 3-D tensor �, the modeled (or predicted) diffusion
signal may be written asY:

Y = �⇥1 D⇥2 S0 ⇥3 wT (2)

where w is the vector of all the individual streamline
weights. M in equation (1), is now given by M = � ⇥1

D⇥2 S0

With this representation, the optimization problem is
solved using an efficient Subspace Barzilei-Borwein Non-
Negative Least Squares (SBB-NNLS) algorithm. Briefly,
given w0 as an initial weight vector, the weight updates oc-
cur as follows (Kim, Sra, and Dhillon 2013):

w(i+1) = [w(i) � ↵
(i) 5 g(w(i))]+

where the gradient,

5g(w) = MT(Mw � b) (3)

and ↵
i, the step value at each iteration, is given by

↵
i = <5g̃(i�1),5g̃(i�1)>

<M5g̃(i�1),M5g̃(i�1)>

for the odd iterations and
↵
i = <M5g̃(i�1),M5g̃(i�1)>

<MTM5g̃(i�1),MTM5g̃(i�1)>

for the even iterations. The tilde denotes the projection of
the gradient into the positive space at each iteration.
This optimization is a critical bottleneck in the LiFE algo-

rithm: computing time scales with connectome size, number
of voxels and diffusion directions. For dMRI data acquired at
millimeter spatial resolutions, with a hundred gradient direc-
tions, and several million fiber connectomes, these repeated
computations entail significant processing time: single con-
nectomes can take 10-20 hours for LiFE post-processing on
standard desktop machines.
In addition to the slow execution time, the LiFE algorithm

suffers from a few other, key limitations. First, it retains a
significant number of fibers with small weights (Pestilli et al.
2014). While these may represent weak, short fibers in the
connectome, these could also indicate fits to noise in the dif-
fusion signal in a local neighborhood of each voxel. Second,
the LiFE algorithm does not completely prune away redun-
dant (e.g. physically similar) fibers, but rather, distributes
weights evenly across them. To avoid overfitting and redun-
dancy, the LiFE evalution is cross-validated by performing
tractography with one dMRI dataset and using a second, in-
dependently acquired dataset from the same subject to prune
the connectome. Nevertheless, acquiring two datasets dou-
bles the dMRI scan time and renders this validation ap-
proach unsuitable, particularly for use with patients.
We sought to build upon the LiFE algorithm to address

these limitations. First, we developed a GPU-based ap-
proach that significantly speeded up LiFE’s optimization
procedure. Then, we leveraged this speedup to develop a
regularized pruning approach that improved cross-validation
accuracy.

3 Regularized, Accelerated LiFE
(ReAl-LiFE)

3.1 Accelerating connectome pruning with GPUs
To address the first issue of slow execution time of the
LiFE algorithm, we developed a GPU-accelerated version of
LiFE’s SBB-NNLS optimization algorithm, with a CUDA
implementation (Nvidia 2018). This optimization is the ma-
jor time consuming step in the LiFE algorithm, implemented
as a series of array multiplications in two key functions (al-
gorithms in Tables 1 & 2) involving the sparse tensor �.
Here, we propose a solution (using a single GPU) that scales
specifically well with large connectome sizes. We addressed
an important bottleneck to ensure favourable memory access
patterns into the GPU kernels.
Briefly, the SBB-NNLS optimization algorithm requires

several multiplications of the form Mx or MTy, where x

and y are generic notations of matrices that are used in vari-
ous steps of the optimization (Section 2). A key ingredient of
our GPU acceleration approach is splitting the computation
among voxels, with each CUDA block handling data associ-
ated with one voxel. For storage efficiency, the matrix M is
stored in a sparse tensor (Coordinate list, COO format) with
indices into the dictionary matrix D, and it is not feasible
to use standard sparse matrix multiplication packages. Fol-
lowing Sparse Tucker Decomposition (STD) ofM (equation
(2)), computing Mx requires computing linear combina-
tions of columns from D while MTy computation requires
computation of inner products with columns of D (Caiafa
and Pestilli 2017). The former has high memory write band-
width requirement while the latter has high memory read
bandwidth requirement as well as a reduction operation. To
address this issue, we sorted the� tensor, stored in the COO
format, along the voxel dimension; enabling faster per-voxel
execution of bothMx andMTy, by reducing memory write
and read requests, respectively.
We fixed the block size to the warp-size of the GPU,

which corresponds to the number of threads processing each
voxel. Each thread handled one or more diffusion directions,
depending on the total number of diffusion directions. Data
along the diffusion direction dimension were padded such
that its size was a multiple of the warp-size, to avoid branch-
ing in the kernel code that is to be run on the GPUs. This also
permitted maximizing the usage of warp shuffle instructions
and reducing shared memory usage. We used shared mem-
ory only for storing the final results.
The operations and pseudocode within each block for the

two matrix operations are detailed in Tables 1 & 2. Briefly, in
each block, we read up to warp-size entries from the sparse
tensor in parallel, to leverage memory coalescing advan-
tages, and stored them in thread local memory. The threads
in a block then computed on different diffusion directions
for the read entries sequentially. We used warp broadcast in-
structions to share data from thread local memories to all
threads in a block. In case of MTy computation, we used
warp shuffle instructions for computing inner products. This
freed up resources, potentially allowing more blocks to be
scheduled at any given time.

3.2 Regularized pruning and evaluation of
fascicle evidence

To address the second issue of redundant fibers, we devel-
oped a regularized pruning algorithm, extending LiFE. We
modified LiFE’s least-squares error minimization objective
function (equation (1)) to incorporate a regularization cost
based on the summed weights of all fibers in the connec-
tome. We added an L1 penalty (L1 norm of the weight
vector) to the objective function: O(w) + � kwk1, w > 0.
The gradient calculation in equation (3) now changes to
5g(w) = MT(Mw � b) + �1, where �1 is a vector of all
1s scaled by �. We tested several values of the penalty �,
and chose a value based on the sum of weights in the unreg-
ularized connectome or based on cross-validation error (see
Section 4, next).

Table 1:
GPU implementation of y = M times x(�,D,x)

• Block size: 32
• Grid size: Number of voxels
• Each block handles one voxel. � tensor is
stored in COO format - entries [a, v, f, c] where
a(n), v(n), f(n), c(n) are the atom index, voxel index,
fiber index and the corresponding value at those indices
respectively. In the following, [aifi, ci] denote the
corresponding entries for voxel i.

• N! , the number of diffusion directions handled by each
thread is pre-calculated. It is equal to the (number of
diffusion directions)/32.

• Nv(i) refers to the number of � entries for voxel i.
1. Set index = 1.
2. In block i, read up toNb <= 32 entries of voxel i from
the � tensor. In thread j, read ai(j), x(fi(j)), ci(j) into
thread local memory.
3. Broadcast ai(j), x(fi(j)), ci(j) from thread j =
index mod 32 to all threads into local variables a, x, c.
4. In thread j, initialize local memory yl(q) = 0 where
q = 1 to N! .
5. In thread j

for q = 1 to N! do
yl(q) = yl(q) +D(a, j + q ⇤ 32) ⇤ x ⇤ c

end for
6. index = index + 1, if (index mod 32) < Nb, go to
Step (3). Else continue.
7. index = index + 32; if index < Nv(i), go to Step
(2). Else continue.
8. Write the results back to global memory. In block i,
thread j

for q = 1 to N! do
y(i, j + q ⇤ 32) = yl(q)

end for

4 Experiments and Validation
4.1 GPU-implementation accelerates connectome

pruning by 50-100x
We tested speedups obtainable with the GPU-
implementation of the LiFE algorithm (without regulariza-
tion). For this we generated connectomes of various sizes
ranging from 0.5 million to 2 million fibers with MRtrix
v3.0 (Tournier et al. 2012). Whole brain probabilistic trac-
tography was performed using the grey-matter-white-matter
interface as a seed region. For each subject, anatomical
(grey and white-matter) segmentations were obtained
using Freesurfer v6 (Fischl et al. 2004). We then used the
memory-optimised LiFE method (Caiafa and Pestilli 2017;
Caiafa et al. 2017) to encode the tractogram and dMRI data.
First, we optimized one dMRI dataset, I, with 64 diffu-

sion directions, 2 mm spatial resolution, containing 116,468
white matter voxels. Dataset I was preprocessed with a stan-
dard pipeline ((Pestilli et al. 2014; Caiafa and Pestilli 2017);
implemented in mrDiffusion, Vistasoft package). Key steps

Table 2:
GPU implementation of x = M transp y(�,D,y)

• Block size: 32
• Grid size: Number of voxels (other notations as in the
algorithm in Table 1).

1. In block i, read voxel data from global memory into
local memory yl. In thread j

for q = 1 to N! do
yl(q) = y(i, j + q ⇤ 32)

end for
2. Set index = 1.
3. In block i, read up to Nb <= 32 entries of voxel i
from the� tensor. In thread j, read ai(j), fi(j), ci(j) into
thread local memory.
4. Broadcast ai(j), ci(j) from thread j = index mod 32
to all threads into local variables a, c.
5. In thread j, initialize local memory res = 0.
6. In thread j

for q = 1 to N! do
res = res+D(a, j + q ⇤ 32) ⇤ yl(q) ⇤ c

end for
7. Compute the sum of res local variables using warp
shuffle down reduction, the final sum being stored in res

of thread 0.
8. In thread 0, store the computed sum in shared variable,
sx(index mod 32) = res.
9. index = index + 1, if (index mod 32) < Nb, go to
Step (4). Else continue.
10. Write the results back to global memory. In thread
j < Nb,
atomic add(x(fi(j)), sx(j))
where atomic add(a, b) adds b atomically to a.
11. index = index + 32, if index < Nv(i), go to Step
(3). Else return.

included manual alignment of the T1 image based on AC-PC
landmarks, eddy-current correction and motion correction
with a rigid-body alignment algorithm. We tested five dif-
ferent connectome sizes for 500 iterations of the optimiza-
tion algorithm (Fig. 2A). We ran the original CPU-based
version of LiFE, first, followed by our GPU-accelerated im-
plementation. We observed a clear trend of increase in the
speedup with connectome size: the speedup factor reached
a maximum of ~80x for a connectome with 3 million fibers,
the largest connectome size we tested (Fig. 2B). We also
confirmed that the reduction in objective function value at
each iteration, and the weights assigned to each streamline,
by LiFE (CPU version) and our GPU implementation were
identical to within numerical precision.
We further confirmed these speedups on two other in-

dependent datasets acquired at other scanners. First, we
optimized a dMRI dataset, H2. Dataset H data was al-
ready minimally preprocessed, and no additional proccess-
ing was done. We tested four connectome sizes ranging from

2https://www.humanconnectome.org/study/hcp-young-
adult/document/1200-subjects-data-release

0

10 Size (G
B)

0 1 2

S

0.2 0.6 1

H

ReAl-LiFE
LiFE

Size
Overhead

Number of fibers (in millions)

Sp
ee

du
p

110

90

70

50

30
0

I

S

H

1 2 3

105

0

Ti
m

e
(s

)

1

IA

B

1 2 3

Number of fibers (in millions)

Figure 2: Speed-up with ReAl-LiFE tested on three dMRI
datasets (I, H and S) with several million fibers each. A Ex-
ecution time as a function of number of fibers in the con-
nectome for dataset I (left), H (middle) and S (right). Pur-
ple: LiFE; red: ReAl-LiFE; orange: one-time overhead for
ReAl-LiFE. Blue dot-dashed line: Size of each connectome
(right axis). B Speedup factor with ReAl-LiFE as a function
of connectome size for the three datasets: I (blue), H (red)
and S (orange). Filled markers: measured speedups. Curves:
sigmoidal fits.

100,000 to 1 million fibers (Fig. 2A, middle). Again, we
observed a 63x speedup over the CPU version, for a con-
nectome of 1 million fibers. Finally, we optimized a sec-
ond dMRI dataset, S3 with dMRI scans already prepro-
cessed based on a standard pipeline (Pestilli et al. 2014;
Caiafa and Pestilli 2017). Here, again, we observed a 93x
speedup over the CPU version, for a connectome with 1 mil-
lion fibers and a maximum speedup of 98x for a connectome
with 2 million fibers (Fig. 2A-B). In each case, we obtained
better speedups as the connectome size increased.

Our speedups also exceeded state-of-the-art numbers
based on a recently reported MPI-acceleration scheme for
LiFE (Gugnani et al. 2017). Our baseline numbers are de-
rived from the same configuration as Gugnani et al’s ”Clus-
ter A” (single core Intel Xeon E5), enabling us to directly
compare our speedup factors with theirs. In that study, the re-
ported maximum multi-node speedups (8.1x) did not exceed
the single node speedup value (8.7x), suggesting that MPI
may not be an effective parallelization strategy for LiFE. On
the other hand, our speedups are an order of magnitude faster
(98x), indicating GPU acceleration is an effective strategy.

3https://purl.stanford.edu/cs392kv3054

4.2 Regularized pruning provides higher
cross-validation accuracy

Next, we compared improvements in cross-validation accu-
racy by fitting the connectome to the underlying diffusion
signal, first, with the original LiFE algorithm and, next, with
our novel regularized pruning algorithm (ReAl-LiFE). We
adopted the following approach: we performed tractogra-
phy with data from one dataset and pruned the connectome
by optimizing it, either with LiFE or ReAl-LiFE, on the
same dataset. In each case, we generated a predicted dif-
fusion signal from the fitted diffusion model, as described
above (equation (2)). Next, we compared the root-mean-
squared error (RMSE) between the predicted diffusion sig-
nal, in each case, and a second, independent, diffusion imag-
ing dataset acquired from the same subject(s).
We performed this cross-validation with data from two

datasets: I and S (see Section 4.1). In each case we com-
pared the root-mean-squared cross-validation error (RMSE)
by generating a connectome with 1 million fibers, followed
by pruning with LiFE (unregularized), against the accuracy
of a connectome generated with 2 million fibers, followed
by pruning with ReAl-LiFE. The choice of using a larger
connectome for pruning with ReAl-LiFE was motivated by
a need to maintain a comparable sum of streamline weights
across the two approaches, as the regularization is expected
to prune out more fascicles than the unregularized LiFE al-
gorithm. For ReAl-LiFE, we tested several values of the reg-
ularization penalty parameter �, on the fiber weights. This
extensive grid search on � could be completed in a reason-
able time frame due to the substantial speedups provided by
our accelerated, memory-efficient implementation.
ReAl-LiFE provided significantly higher cross-validation

accuracy as compared to LiFE, as quantified by the RMSE
across voxels, across a range of regularization parameter val-
ues (Fig. 3). Interestingly, we observed that for both datasets
the sum of fiber weights estimated with ReAl-LiFE (Fig. 3A,
blue curve) closely matched the sum of fiber weights as es-
timated by the unregularized LiFE algorithm (Fig. 3A, red,
dashed horizontal line) in the vicinity of � = 0.01. To per-
form a fair comparison, we compared the RMSE-s of LiFE
and ReAl-LiFE optimized connectomes at this value of �, al-
though, even with larger values of � (up to 0.2), correspond-
ing to many fewer (up to 80% fewer) connections, the ReAl-
LiFE algorithm continued to exhibit better RMSE (Fig. 3B).
Cross-validated RMSE distributions were significantly

different across the LiFE and ReAl-LiFE optimized con-
nectomes (p < 0.001; Kolmogorov-Smirnov test), with
RMSE medians being signficantly lower for the ReAl-LiFE,
as compared to the LiFE optimized connectome (dataset I:
LiFE=0.936± 0.0007, ReAl-LiFE=0.922± 0.0007; dataset
S: LiFE=0.854±0.0003, ReAl-LiFE=0.843±0.0003; mean
± std error, p < 0.001, Wilcoxon signed rank test). Next,
we identified matched voxels across the two optimized con-
nectomes and computed the distribution of differences in the
RMSE-s following each type of optimization. We observed
that the difference in RMSE was greater in a significantly
higher proportion of voxels following LiFE optimization, as
compared to ReAl-LiFE optimization (Fig. 3C, p < 0.001,

0

0

1

1
RM

S
Er

ro
r

9.4

9.6

9.8

42

43

x103

Su
m

m
ed

 w
ei

gh
ts

10-4 10-2 100
0.5

1

1.5

x103

2

3

1

LiFE
ReAl-LiFE

0.1

0.1

0.2

0.2
Rrmse

Pr
op

or
tio

ns
 (n

or
m

)

45.2
47.4
50.1

A B C

I

S

LiFE > ReAl-LiFE
ReAl-LiFE > LiFE

10-4 10-2 100

10-4 10-2 100

10-4 10-2 100

x103

44.8

49.6
47

RM
S

Er
ro

r
Su

m
m

ed
 w

ei
gh

ts

41

42

43

10-4 10-2 100

1

2

3

4

LiFE
ReAl-LiFE

LiFE Rrmse

Re
Al

-L
iF

E
R rm

se

voxels

0.5

1.5

1

2

0.5 1 1.5 2

D

E

F

G

weights0.02 0.12

1

-3

Pr
op

or
tio

ns

101 102
-0.01

 0.01

length

10-4 10-2 100

Su
m

m
ed

 w
ei

gh
ts

Pr
op

or
tio

ns
 (n

or
m

)

RM
S

Er
ro

r

100

101

102

103

Figure 3: Improvement in cross-validated root-mean-squared-error (RMSE) with ReAl-LiFE. A Sum of fiber weights for a 1
million fiber connectome pruned with LiFE (red dashed line) and a 2 million fiber connectome pruned with ReAl-LiFE (blue
solid line) for various values of the regularization parameter � for datasets I (top) and S (bottom). B Cross-validated RMSE as
a function of �. Other conventions are as in panel A. C Histogram showing the proportion of voxels in which the difference of
RMSE was greater with LiFE as compared to ReAl-LiFE (red) or vice-versa (blue). D-E Summed weights and RMSE as in A
for an ensemble tractogram (see text). F Distribution of the RMSE across voxels of the ensemble tractogram following LiFE
and ReAl-LiFE. Hotter colors: Higher proportion of voxels. Solid white diagonal line: Line of equality. G Relative proportion
of fiber lengths (top) or weights (bottom) in the connectome with LiFE or ReAl-LiFE pruning. Positive (red) and negative (blue)
values indicate higher relative proportions of fiber lengths or weights with ReAl-LiFE or LiFE pruning, respectively.

Kolmogorov-Smirnov test).
Finally, we also tested the model’s performance with en-

semble tractography on dataset S (Takemura et al. 2016).
Ensemble tractography is a technique that overcomes biases
imposed by parameter choices by estimating several connec-
tomes, one for each choice of parameter and consolidating
them into a single “ensemble”. We created two ensemble
connectomes (0.8 and 1.6 million fibers) using smaller con-
nectomes (0.16 and 0.32 million fibers respectively) gener-
ated by varying the maximum radius of curvature of fibers to
be tracked between one of five values (0.25, 0.5, 1, 2, and 4
mm). This was followed by pruning with LiFE (0.8 million
connectome) or ReAl-LiFE (1.6 million connectome).
As before, ReAl-LiFE provided significantly lower

RMSE, across a range of regularization parameter values
(Fig. 3D-E). Again, for � = 0.01, RMSE was significantly
lower for the ReAl-LiFE optimized connectome as com-
pared to the LiFE connectome (Fig. 3F; p<0.001; Wilcoxon
signed rank test). We also observed that although the num-
ber of fibers with non-zero weights was higher (by ~12%)
in the ReAl-LiFE optimized connectome (0.232 million) as
compared to the LiFE optimized connectome (0.207 mil-
lion), ReAl-LiFE retained a relatively higher proportion of
fibers with larger weights and greater lengths and pruned
out more fibers with small weights and shorter lengths as
compared to the LiFE connectome (Fig. 3G). While weak,
short fibers cannot be distinguished from noisy data based on
weights alone, cross validation demonstrates that L1 regu-
larization significantly reduces RMS error (Fig. 3F), thereby

removing noisy (unreliable) fibers in the connectome. Fur-
ther, the regularization enabled pruning the connectome to
a significantly smaller size (22% fewer connections than the
LiFE connectome) without a significant increase in cross-
validation RMSE (Fig. 3E).

5 ReAl-LiFE effectively classifies brain
pathology in Alzheimer’s Disease

As a real-world application, we tested whether regularized
connectivity, as estimated with ReAl-LiFE, would effec-
tively distinguish normal from pathological brains. Data
from 90 individuals were drawn from the ADNI database
(Mueller et al. 2005) comprising dMRI scans of patients
with Alzheimer’s Disease (AD; n=45, age: mean = 74.9; std
= 8.5) and healthy, age-matched controls (NC; n=45, age:
mean = 72.6; std = 5.6). Briefly, we first quantified con-
nectivity strength between the hippocampus and cortical re-
gions using either the number of fibers, LiFE or ReAl-LiFE
weights. We then employed these connectivity measures as
features in a support vector machine (SVM) classifier to test
whether AD patients could be accurately distinguished from
normal controls. In addition, we also estimated connectiv-
ity strengths with SIFT2 (Smith et al. 2015), another popu-
lar approach for connectome evaluation. SIFT2 filters trac-
tograms with a constrained spherical deconvolution (CSD)
algorithm, and estimates individual streamline weights, rep-
resentative of the cross-sectional area of each streamline.
Because declarative memory is known to be impaired in

AD, we examined structural connections between the cor-

A B

8

11

14

1728

31

28 17

14 31

34

37

Tractography
Whole brain

+
Targeted

(Hippocampus)

SVM
classification

Pre-LiFE # Fibers

LiFE Weights

ReAl-LiFE
Weights

SoE

ReAl-LiFE

Pre-LiFE

LiFE

Predicted

Predicted

Predicted

O
bs

er
ve

d
O

bs
er

ve
d

O
bs

er
ve

d

NC AD

NC

AD

NC AD

NC

AD

NC AD

NC

AD
0.4

0.5

0.6

0.7

0.8

0.9

1

Pre-LiFE LiFE SIFT2 ReAl-LiFE

Ac
cu

ra
cy

LPORB
0

1
β

 w
eights

LENT LFUS
LIT
LISTC

LLING

LPARHLPARC

LPCUN

LSF
LST

LTT
RBSTS RCACRCMF

RENT RFUS
RIT

RLINGRMOFRMT
RPARC RPOPE

RPTRI
RPSTCRPC

RRMF

RSM
RTP

Pre-LiFE LiFE ReAl-LiFE

Hipp - Precuneus

Hipp - Inferior temporal

H
ea

lth
y

Al
zh

ei
m

er
’s

C

Figure 4: Classifying Alzheimer’s Disease (AD) patients from normal controls (NC) using ReAl-LiFE connectivity. A (Top)
Schematic summarizing the classification analysis. (Bottom) Classification accuracies based on number of fibers for the un-
pruned connectome (Pre-LiFE; magenta bar), connection weights with LiFE pruning (brown bar), with SIFT2 pruning (orange
bar) and connection weights or strength of evidence with ReAl-LiFE pruning (blue bars with solid or dashed outlines, respec-
tively). Error-bars indicate 95% binomial confidence intervals. Dashed horizontal line: Chance (50%). B Confusion matrices
for the classification based on Pre-LiFE (Top), LiFE (Center) and ReAl-LiFE (Bottom) features. Size of circles reflect propor-
tions of subjects for each contingency; number of subjects (rounded) indicated within each circle. C (Left) White-matter fibers
connecting the hippocampus to the precuneus (pale green) and inferior temporal (pale blue) cortex for an exemplar AD patient
(top) and control subject (bottom). (Right) Connections corresponding to highest SVM � weights for classifying AD from NC
based on number of fibers (left), LiFE weights (middle) or ReAl-LiFE weights (right). Deeper shades: higher weights. L/R:
Left/Right hemisphere, BSTS: Bank of the superior temporal sulcus, CAC: Caudal anterior cingulate cortex, CMF: Caudal
middle frontal cortex, ENT: Entorhinal cortex , FUS: Fusiform gyrus, ISTC: Isthmus of the cingulate cortex, IT: Inferior tem-
poral cortex, LING: Lingual gyrus, MOF: Medial orbitofrontal cortex, MT: Middle temporal cortex, PARC: Paracentral lobule,
PARH: Parahippocampal cortex, PC: Posterior cingulate cortex; PCUN: Precuneus, POPE: Pars opercularis, PORB: Pars or-
bitalis, PSTC: Postcentral gyrus, PTRI: Pars triangularis, RMF: Rostral middle frontal cortex, SF: Superior frontal cortex, ST:
Superior temporal cortex, TP: Temporal pole, TT: Transverse temporal cortex.

tex and hippocampus, a sub-cortical brain region important
for declarative memory (Tulving and Markowitsch 1998;
Eichenbaum 2001; 2004). We first obtained an automated
segmentation of the hippocampus and 68 different cortical
regions (34 per hemisphere) using FreeSurfer (Fischl et al.
2004; Desikan et al. 2006) for every subject. Next, we gener-
ated whole-brain cortical connectomes with 1 million fibers
for each subject. This was followed by targeted tracking of
1 million fibers between the hippocampus and each of the
34 different cortical regions, in each hemisphere, using the
hippocampus as a seed. We combined this ”targeted” con-
nectome of hippocampal fibers with the whole-brain con-
nectome to generate a 2 million fiber connectome for each
subject. This combined connectome was then pruned with
LiFE, SIFT2, and ReAl-LiFE each. We then constructed
a structural connectivity vector corresponding to 68 intra-
hemispheric hippocampus-cortex connections, using num-
ber of connections (Pre-LiFE), connection weights (LiFE,
SIFT2, and ReAl-LiFE), or strength of evidence (ReAl-
LiFE; see below), for each subject.

These feature vectors were used to train SVM classi-

fiers. For SVM classification, we used Matlab’s ”fitclinear”
function, with soft margin, employing a linear kernel with
C=1 (default values in Matlab). We applied recursive fea-
ture elimination (RFE), to find a minimal set of features that
provided the highest cross-validation accuracy (De Martino
et al. 2008). RFE is an iterative technique that eliminates
a subset of features with the lowest SVM weights, follow-
ing which the SVM is retrained and classified with the re-
tained features. The process is repeated until all features are
exhausted, following which the minimal set of features that
provide the maximum generalization accuracy are identified.
This procedure was repeated 150 times for random classifi-
cations of training and testing data, and classification accu-
racy was averaged across these runs. All numbers reported
in the paper indicate mean ± 95% binomial confidence in-
tervals, as calculated by the Clopper-Pearson method.

Two-way classification accuracy (AD versus NC), based
on the number of fibers in the unpruned connectome (Pre-
LiFE), was 66.1% (95% binomial confidence interval: [54.8,
75.3]; Fig. 4A, bottom, magenta bar). Classification accu-
racy, based on the connection weights following LiFE prun-

ing was 65.5% ([54.8, 75.3], Fig. 4A, bottom, brown bar)
and the same based on the connection weights following
SIFT2 pruning was 65.9% ([62, 69], Fig 4A, bottom, orange
bar). On the other hand, classification accuracy based on
the connection weights following ReAl-LiFE pruning was
78.8% ([69, 86.8], Fig 4A, bottom, solid blue bar), substan-
tially higher than that of any of the other approaches. Next,
we computed the strength of evidence (SoE) for every fas-
cicle (set of fibers) connecting the hippocampus to each of
the 68 cortical regions. Briefly, the SoE for a fascicle repre-
sents the increase in prediction error of the diffusion signal
after removing that fascicle from the connectome (Pestilli et
al. 2014). Classification accuracy with ReAl-LiFE SoE was
even higher, at 80.6% ([70.2, 87.7], Fig. 4A, bottom, dashed
blue bar).
Similar improvements were observed in precision and re-

call. Precision, defined as the proportion of correctly classi-
fied AD patients among the total number of subjects classi-
fied as AD, was 64.6% (31/48) whereas recall, defined as
the proportion of AD patients correctly classified as AD,
was 68.9% (31/45), for classification based on the number
of fibers in the unpruned connectome (Fig. 4B, top). Af-
ter pruning with LiFE, precision and recall were at 64.6%
(31/48), and 68.9% (31/45), respectively (Fig. 4B, middle).
However, after pruning with ReAl-LiFE, precision increased
to 77.1% (37/48) and recall increased substantially to 82.2%
(37/45) (Fig, 4B, bottom).
Classification based on ReAl-LiFE weights relied on a

largely non-overlapping set of connections, as compared to
the classification based on the number of fibers or LiFE
weights. For example, connections of the hippocampus with
the left inferior-temporal cortex (LIT; Fig. 4C, right) or with
the left superior temporal cortex (LST) were important for
classification based on ReAl-LiFE weights, but not based on
the other approaches.
Taken together, these results indicate that pruning with

ReAl-LiFE could provide key benefits for sensitive diagnos-
tic classification of neuropathologies, such as Alzheimer’s
Disease. The higher classification accuracies with ReAl-
LiFE occurred, perhaps, due to more accurate estimates
of connection strengths following ReAl-LiFE connectome
pruning.

6 Discussion and Conclusions
We present a GPU implementation of a linear connectome
pruning algorithm that provides significant speedups (up
to 100x) compared to the original CPU implementation.
Our GPU-accelerated, L1-regularized implementation en-
ables fast and more reliable connectome discovery in large-
scale datasets and represents a timely, and widely-relevant
tool for big data neuroscience applications. Our approach
specifically optimizes memory access for voxels containing
multiple fibers, thereby improving speedups for larger con-
nectome sizes.
These speedups have important real-world implications.

First, our approach permitted robustly classifying AD pa-
tients from healthy controls based on their structural connec-
tivity (Section 5). These discoveries were possible because

GPU-based acceleration permitted rapid pruning of individ-
ual connectomes in this large dataset (n=90 subjects, with 1
million fiber connectomes each), within a few hours, when
the original algorithm would have taken several days. Sec-
ond, the algorithm facilitated developing a regularized ob-
jective function for connectome pruning. This function pro-
vided a more reliable fit to the data as compared to unreg-
ularized pruning, as evidenced by lower cross-validation er-
ror. Third, the GPU-based acceleration permitted rapid iden-
tification of an appropriate regularization parameter. This
parameter search allowed us to show that, much sparser con-
nectomes could be generated with ReAl-LiFE, that matched
(or even exceeded) the cross-validation accuracy of LiFE
pruned connectomes. Further improvements in speedup may
be possible with the use of multiple GPUs or by combining
recently proposed MPI-based schemes (Gugnani et al. 2017)
with our GPU-parallelization approach.
In addition to the speedups, the increased cross-validation

accuracy with ReAl-LiFE has important implications for
estimating and evaluating connectomes in patient popula-
tions. Estimating the whole-brain connectome on one dMRI
dataset and optimizing ReAl-LiFE on the same dataset pro-
duced significantly reduced cross-validation error, when val-
idated with an independently acquired, second dataset. In
cases where acquiring two independent dMRI datasets may
not be feasible due to the extended scan duration, such as
in patients with neurological disorders (e.g. AD patients),
our results show that ReAl-LiFE can efficiently optimize the
connectome with a single dataset, as evidenced by its greater
cross-validation accuracy across multiple scans.
Our GPU acceleration is applicable to a general class of

non-negative least-squares (NNLS) optimization problems:
regression (b = Mw) based on sparse Tucker Decomposi-
tion of M. The need for such optimization is frequently en-
countered in neuroscience, healthcare (Ho, Ghosh, and Sun
2014), behavior modeling (Jiang et al. 2014), NLP(Kang
et al. 2012) and other domains. Moreover, our CUDA im-
plementation can be readily applied to various “big data”
applications in neuroimaging; for example, sparse tenso-
rial decompositions of large scale fMRI datasets (Beck-
mann and Smith 2005). Recently, there is increasing inter-
est with identifying brain-behavior relationships from neu-
roimaging data, in large databanks of tens of thousands of
participants, with a secondary goal of identifying sensitive
“imaging markers” that permit early detection of the onset of
neurodegenerative disorders (Smith and Nichols 2018). Our
ReAl-LiFE algorithm enables utilizing the structural con-
nectome as a candidate imaging “biomarker” for diagnosis
and predicting disease onset in such big data applications.

Acknowledgments The authors would like to thank Mad-
hav Gumma for contributions to an early version of the algo-
rithm, and Cesar Caiafa for sharing LiFE (version 2.0) code.
This research was funded by MHRD, Govt. of India (to SK,
VS); NSF IIS-1636893, NSF BCS-1734853 (to FP); a Well-
come Trust-Department of Biotechnology India Alliance In-
termediate fellowship, a Science and Engineering Research
Board Early Career award, a Pratiksha Trust Young Investi-
gator award, a Department of Biotechnology-Indian Institute

of Science Partnership Program grant, a Sonata Software
foundation grant and a Tata Trusts grant (to DS). We would
also like to acknowledge the Alzheimers Disease Neu-
roimaging Initiative (ADNI) for access to dMRI data from
AD patients and healthy controls; details regarding ADNI
funding sources are available at https://adni.loni.usc.edu.

References
Beckmann, C. F., and Smith, S. M. 2005. Tensorial exten-
sions of independent component analysis for multisubject
fMRI analysis. Neuroimage 25(1):294–311.
Caiafa, C. F., and Pestilli, F. 2017. Multidimensional encod-
ing of brain connectomes. Scientific Reports 7(1):11491.
Caiafa, C. F.; Sporns, O.; Saykin, A.; and Pestilli, F.
2017. Unified representation of tractography and diffusion-
weighted MRI data using sparse multidimensional arrays. In
Advances in Neural Information Processing Systems, 4343–
4354.
De Martino, F.; Valente, G.; Staeren, N.; Ashburner, J.;
Goebel, R.; and Formisano, E. 2008. Combining multi-
variate voxel selection and support vector machines for map-
ping and classification of fMRI spatial patterns. Neuroimage
43(1):44–58.
Desikan, R. S.; Ségonne, F.; Fischl, B.; Quinn, B. T.; Dick-
erson, B. C.; Blacker, D.; Buckner, R. L.; Dale, A. M.;
Maguire, R. P.; Hyman, B. T.; et al. 2006. An automated
labeling system for subdividing the human cerebral cortex
on MRI scans into gyral based regions of interest. Neuroim-
age 31(3):968–980.
Eichenbaum, H. 2001. The hippocampus and declara-
tive memory: cognitive mechanisms and neural codes. Be-
havioural Brain Research 127(1-2):199–207.
Eichenbaum, H. 2004. Hippocampus: cognitive processes
and neural representations that underlie declarative memory.
Neuron 44(1):109–120.
Fischl, B.; Van Der Kouwe, A.; Destrieux, C.; Halgren, E.;
Ségonne, F.; Salat, D. H.; Busa, E.; Seidman, L. J.; Gold-
stein, J.; Kennedy, D.; et al. 2004. Automatically parcellat-
ing the human cerebral cortex. Cerebral Cortex 14(1):11–
22.
Gugnani, S.; Lu, X.; Pestilli, F.; Caiafa, C.; and Panda, D. K.
2017. MPI-LiFE: Designing high-performance linear fasci-
cle evaluation of brain connectome with MPI. In High Per-
formance Computing (HiPC), 2017 IEEE 24th International
Conference on, 213–222. IEEE.
Ho, J. C.; Ghosh, J.; and Sun, J. 2014. Marble: high-
throughput phenotyping from electronic health records via
sparse nonnegative tensor factorization. In Proceedings of
the 20th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, 115–124. ACM.
Jiang, M.; Cui, P.; Wang, F.; Xu, X.; Zhu, W.; and Yang, S.
2014. Fema: flexible evolutionary multi-faceted analysis for
dynamic behavioral pattern discovery. In Proceedings of the
20th ACM SIGKDD international conference on Knowledge
discovery and data mining, 1186–1195. ACM.

Kang, U.; Papalexakis, E.; Harpale, A.; and Faloutsos, C.
2012. Gigatensor: scaling tensor analysis up by 100 times-
algorithms and discoveries. In Proceedings of the 18th ACM
SIGKDD international conference on Knowledge discovery
and data mining, 316–324. ACM.
Kim, D.; Sra, S.; and Dhillon, I. S. 2013. A non-monotonic
method for large-scale non-negative least squares. Optimiza-
tion Methods and Software 28(5):1012–1039.
Mueller, S. G.; Weiner, M. W.; Thal, L. J.; Petersen, R. C.;
Jack, C. R.; Jagust, W.; Trojanowski, J. Q.; Toga, A. W.;
and Beckett, L. 2005. Ways toward an early diagnosis in
Alzheimer’s disease: the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI). Alzheimer’s & Dementia: The Jour-
nal of the Alzheimer’s Association 1(1):55–66.
Nvidia, C. 2018. Nvidia CUDA C programming guide.
Nvidia Corporation.
Pestilli, F.; Yeatman, J. D.; Rokem, A.; Kay, K. N.; andWan-
dell, B. A. 2014. Evaluation and statistical inference for
human connectomes. Nature Methods 11(10):1058.
Smith, S. M., and Nichols, T. E. 2018. Statistical challenges
in ”Big Data” Human Neuroimaging. Neuron 97(2):263–
268.
Smith, R. E.; Tournier, J.-D.; Calamante, F.; and Connelly,
A. 2013. SIFT: spherical-deconvolution informed filtering
of tractograms. Neuroimage 67:298–312.
Smith, R. E.; Tournier, J.-D.; Calamante, F.; and Connelly,
A. 2015. SIFT2: Enabling dense quantitative assessment of
brain white matter connectivity using streamlines tractogra-
phy. Neuroimage 119:338–351.
Sudlow, C.; Gallacher, J.; Allen, N.; Beral, V.; Burton, P.;
Danesh, J.; Downey, P.; Elliott, P.; Green, J.; Landray, M.;
et al. 2015. UK biobank: an open access resource for iden-
tifying the causes of a wide range of complex diseases of
middle and old age. PLoS Medicine 12(3):e1001779.
Takemura, H.; Caiafa, C. F.; Wandell, B. A.; and Pestilli, F.
2016. Ensemble tractography. PLoS Computational Biology
12(2):e1004692.
Tournier, J.; Calamante, F.; Connelly, A.; et al. 2012. MR-
trix: diffusion tractography in crossing fiber regions. In-
ternational Journal of Imaging Systems and Technology
22(1):53–66.
Tulving, E., and Markowitsch, H. J. 1998. Episodic and
declarative memory: role of the hippocampus. Hippocampus
8(3):198–204.
Van Essen, D. C.; Ugurbil, K.; Auerbach, E.; Barch, D.;
Behrens, T.; Bucholz, R.; Chang, A.; Chen, L.; Corbetta, M.;
Curtiss, S. W.; et al. 2012. The Human Connectome Project:
a data acquisition perspective. Neuroimage 62(4):2222–
2231.

Sawan Kumar*1, Varsha Sreenivasan*2, Partha Talukdar1,3,
Franco Pestilli4, Devarajan Sridharan2,3

1 Computational and Data Sciences, Indian Institute of Science, Bangalore
2 Centre for Neuroscience, Indian Institute of Science, Bangalore
3 Computer Sciences and Automation, Indian Institute of Science, Bangalore
4 Department of Psychological and Brain Sciences, Indiana University

* Both authors contributed equally

Problem
§ Connectome depends on the

generation algorithm and
parameters

§ Need a method to evaluate
connectomes efficiently

Why study structural connectivity in the brain?
§ Connections form the basis for neural information

processing
§ Key to understanding how brain produces behavior
§ Identifying disease biomarkers

in-vivo dMRI

Tractography
algorithms

…

Pestilli, Franco, et al. "Evaluation and statistical inference for human connectomes." Nature
methods 11.10 (2014): 1058

Pruned connectomeCandidate connectome

LiFE

CUDA
code

G
PU

 a
cc

el
er

at
io

n
Re

gu
la

ris
ed

 p
ru

ni
ng

50
 -

10
0x

 sp
ee

du
p

LiFE

Unregularised
CPU

implementation

Li
m

ita
tio

ns

Long
execution time,

ReAl-LiFE

 Regularised
GPU

implementation

Advantages

Reduced
execution time,
better pruning

CUDA
code

G
PU

 a
cc

el
er

at
io

n
Re

gu
la

ris
ed

 p
ru

ni
ng

50
 -

10
0x

 sp
ee

du
p

LiFE

Unregularised
CPU

implementation

Li
m

ita
tio

ns

Long
execution time,

ReAl-LiFE

 Regularised
GPU

implementation

Advantages
Reduced

execution time,
better pruning

§ Advantages:
§ Principled post-hoc evaluation of connectomes
§ Prunes fibers by evaluating fit to underlying diffusion data
§ Accurate cross-validation, memory efficient

§ Disadvantages
§ Speed: Pruning 1 million fiber connectome can take up to 17 hours (desktop CPU)
§ Occasionally retains redundant fibers

§ Faster and more robust pruning on GPUs

LiFE in 2017LiFE in 2014

v: voxel
f: fascicle
!: diffusion
 direction

Memory
inefficient,

Slow

Caiafa, Cesar F., and Franco Pestilli. "Multidimensional encoding of brain
connectomes." Scientific reports 7.1 (2017): 11491.

Most of the time is spent
in matrix multiplications,

e.g. "x	

§ Sparse tensorial representation

§ Memory efficient

a: atom

Still slow

GPU implementation of matrix
operations on the sparse tensor

B1 B2 B3

B4 B5 B6

… … …C
U

D
A

 B
lo

ck
s T1- Process

T2- Process
T3- Process

…
C

U
D

A
 T

hr
ea

d
s

…

Process voxel 6

§ Computation split among voxels

§ Sorting the sparse tensor % along
voxels

§ Efficient data reuse

Handling
sparsity

Speedup
higher for

larger
connectomes

Number of fibers (in millions)

Sp
ee

du
p

110

90

70

50

30
0 1 2 3

Dataset S

Dataset I

Dataset H

§ Accelerated LiFE allows rapid search
over regularization parameter

Improved
accuracyL1 regularization

for connection
weights

§ Lower cross-validated RMS error

§ Sparser pruned connectomes

§ Reduces redundancy in ensemble
tractograms1

Pruning with Ensemble tractography

LiFE Rrmse

Re
Al

-L
iF

E
R rm

se

voxels

0.5

1.5

1

2

0.5 1 1.5 2 100

101

102

103

1 Takemura, Hiromasa, et al. "Ensemble tractography." PLoS
computational biology 12.2 (2016): e1004692

§ Distinguishing normal from
pathological structural
connectivity in brain disorders
§ e.g., Alzheimer’s Disease (AD)

§ Applications: Diagnosis and
prediction of onset of
pathology

§ ReAl-LiFE classifies AD patients
from healthy controls with high
sensitivity and specificity

§ Connections with the
hippocampus (Hipp) -- critical
for memory formation -- are key
to accurate classification

Hipp - Precuneus

Hipp - Inferior temporal

H
ea

lth
y

Al
zh

ei
m

er
’s

C

§ ReAl-LiFE enables:
§ Individualized connectome discovery in large databases

§ Faster and more accurate connectivity estimates on GPUs

§ Improved accuracy for classifying Alzheimer's Disease neuropathology
§ Open source implementation: https://github.com/SawanKumar28/real-life

§ Future applications:
§ Testing ReAl-LiFE pruned connectome as a biomarker for disease onset
§ Predicting individual behavioral traits based on brain connectivity

§ MHRD, Govt. of India (to Sawan Kumar and Varsha Sreenivasan)

§ NSF IIS-1636893, NSF BCS-1734853 (to Franco Pestilli)

§ Wellcome Trust-Department of Biotechnology India Alliance Intermediate
fellowship, a Science and Engineering Research Board Early Career award, a
Pratiksha Trust Young Investigator award, a Department of Biotechnology-Indian
Institute of Science Partnership Program grant, a Sonata Software foundation grant
and a Tata Trusts grant (to Devarajan Sridharan)

§ {sawankumar, varshas, sridhar}@iisc.ac.in

