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ABSTRACT

Segmenting white matter bundles from human tractograms is
a task of interest for several applications. Current methods
for bundle segmentation consider either only prior knowl-
edge about the relative anatomical position of a bundle, or
only its geometrical properties. Our aim is to improve the
results of segmentation by proposing a method that takes
into account information about both the underlying anatomy
and the geometry of bundles at the same time. To achieve
this goal, we extend a state-of-the-art example-based method
based on the Linear Assignment Problem (LAP) by including
prior anatomical information within the optimization process.
The proposed method shows a significant improvement with
respect to the original method, in particular on small bundles.

Index Terms— diffusion MRI, bundle segmentation, Lin-
ear Assignment Problem

1. INTRODUCTION

Segmenting anatomical structures in the white matter of the
human brain is useful in many different applications, such as
surgical planning, population studies, and diagnosis or moni-
toring of brain diseases [1, 2].

The information about the orientation of the fibers com-
posing such anatomical structures can be estimated in-vivo by
diffusion Magnetic Resonance Imaging (dMRI) techniques.
By means of tractography, the paths of hundreds of thousands
of fibers composing the white matter can be mathematically
represented by 3D polylines called streamlines. White matter
bundle segmentation aims to virtually group together stream-
lines that have an analogous shape and pass through the same
anatomical brain regions into anatomically meaningful struc-
tures, known as bundles, e.g. the uncinate fasciculus (UF)
(see Figure 2).

To overcome the limitations of manual segmentation
[3, 4], which is very time consuming, in recent decades sev-
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eral automatic methods have been developed. They can be di-
vided into two categories [5]: (i) connectivity-based, and (ii)
streamline-based methods. Connectivity-based approaches
aim to extract white matter bundles by means of predefined
brain Region of Interest (ROIs) that the streamlines are sup-
posed to pass (or not-pass) through [2, 6]. Streamline-based
techniques are able to segment white matter bundles of in-
terest by grouping together streamlines according to their
geometrical similarity (clustering-based) [1, 7] or by exploit-
ing the geometric information from previously segmented
bundles, usually validated by experts, that are used as exam-
ples (example-based) [8, 5, 9]. Example-based methods have
shown to outperform connectivity-based methods because
these last ones strongly depend on the registration between
subject and atlas and on the quality of the parcellation [5, 9].
Another disadvantage of connectivity-based techniques is that
they do not take into account the shape of the streamlines, but
only anatomical regions. On the other hand, clustering-based
and example-based methods are based only on geometrical
properties of the streamlines without considering any prior
anatomical information about the bundle.

We aim to improve the results of bundle segmentation by
considering information about both the shape of the stream-
lines and about the relative anatomical position of the bundle
of interest. In order to achieve this goal, we propose to extend
the example-based method proposed in [9], whose implemen-
tation is publicly available, by including additional anatomi-
cal information within the optimization process of the Linear
Assignment Problem (LAP) [10]. Specifically, the extra in-
formation is given by taking into account the location of the
endpoints of the streamlines and the proximity of the stream-
lines to specific anatomical ROIs predefined in the literature.
We select [9] as a reference method since it is based on the
LAP and has shown to provide better results than those based
on the nearest-neighbor algorithm, such as [8] and [5].

Our contributions are the following: (i) to extend the work
in [9] by including anatomical information in addition to the
geometrical one, hence showing that it is possible to combine
the best of streamline-based and connectivity-based methods;
(ii) to show that small bundles are more difficult to be accu-
rately segmented than large bundles and that anatomical in-
formation helps in reducing such difference.
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We perform example-based bundle segmentation of 12
different bundles, each of them in 30 different subjects, for
a total of 360 segmented bundles. We compare the proposed
method with [9] by evaluating the results with the Dice Sim-
ilarity Coefficient (DSC) to measure the overlap between the
segmentation and the ground truth. We support scientific
reproducibility and openness by publishing our methods as
brainlife.io/apps.

In Section 2 we present the LAP method and the proposed
extension, Section 3 contains the experiment design and the
results, while Section 4 presents a short discussion.

2. METHODS

2.1. Basic notation

We denote a streamline with a sequence of n points as s =
(x1, . . . ,xn), where xi ∈ R3, ∀i. Usually, n is in the or-
der of 101 − 102 and differs across streamlines. The entire
set of streamlines of the white matter of a brain is known as
the tractogram, T = {s1, . . . , sM}, where in general M is
in the order of 105 − 106. A white matter bundle b ⊂ T ,
b = {s1, . . . , sk}, is a group of streamlines with a specific
anatomical meaning, where k � M , and k differs across
bundles.

Several distance functions are available in the literature
in order to quantify the geometrical distance between two
streamlines. One of the most common is the Mean of Clos-
est distances (MC) [7]: dMC(sa, sb) = dm(sa,sb)+dm(sb,sa)

2

where dm(sa, sb) =
1
|sa|

∑
xi∈sa minxj∈sb ‖xi−xj‖ and ‖·‖

is the Euclidean distance.

2.2. The Linear Assignment Problem for Segmentation

Given two sets of objects, A = {a1, ...aL} and B =
{b1, ...bL}, and the cost matrix C = {cij}ij ∈ RL×L,
where cij is the cost of assigning aAi to bBj , the Linear As-
signment Problem (LAP) [10] aims to find the one-to-one
correspondence between the objects in A and the objects in B
by minimizing the total cost:

P ∗ = argmin
P∈P

L∑
i,j=1

cijpij (1)

where P = {pij}ij ∈ P is a permutation matrix and P ∗ is
the optimal assignment1. If multiple cost matrices need to
be jointly optimized, they can be linearly combined. One of
the most efficient algorithm to solve the LAP is the Jonker-
Volgenant algorithm (LAPJV) [10].

In the case of example-based bundle segmentation, in [9]
they consider the two sets of objects as being (i) the example
bundle of A, bA = {sA1 , . . . , sAk }, and (ii) the tractogram of
a subject B, TB = {sB1 , . . . , sBM}, from which we aim to
segment the same anatomical bundle. The goal of bundle

1If the size of the two sets of objects is different, i.e. |A| 6= |B|, the
problem is called Rectangular Linear Assignment Problem (RLAP) and P
becomes a partial permutation matrix [10].

segmentation is to find the optimal correspondence of all the
streamlines in bA with those in TB . In [9], the cost matrix is
equal to the distance matrixD between the two sets of stream-
lines, in which each element is given by cij = dMC(s

A
i , s

B
j ).

Intuitively, the closer two streamlines are to each other, the
more likely they belong to the same anatomical structure.
The segmentation from multiple examples proposed in [9] is
obtained by merging together the solution of multiple LAP
solved individually. This is done through a refinement step
that classifies the streamlines based on a majority rule.

2.3. Anatomically-Informed cost matrices

In order to include anatomical information into the LAP, we
extend the cost matrixD by adding two weighted anatomically-
informed cost matrices: the endpoint-distance matrix E and
the ROI-based distance matrix R. Then, the new cost matrix
becomes C = λDD + λEE + λRR.

2.3.1. Endpoint-based distance matrix

White matter fibers serve as connections between areas of
the brain at their terminations. For this reason, from an
anatomical and functional point of view, two streamlines
with neighboring endpoints are assumed to play a simi-
lar role, regardless of their geometry. Based on this idea,
we propose to build a new cost matrix E by defining the
endpoint-based distance, dEND, between two streamlines
sa and sb as the mean Euclidean distance
of their corresponding endpoints: dEND(sa, sb) =
min(‖xa

1−x
b
1‖,‖x

a
1−x

b
nb
‖)+min(‖xa

na
−xb

1‖,‖x
a
na
−xb

nb
‖)

2 , where
{xa

1 ,xa
na
} are the endpoints of sa and {xb

1,xb
nb
} are those

of sb.

2.3.2. ROI-based distance matrix

Anatomically, bundles may be defined with respect to specific
ROIs that they can cross or touch [3, 4, 2, 6]. Unfortunately,
such regions cannot be easily and precisely defined in the sub-
ject space, but are often obtained by registration from an atlas,
a step that is intrinsically limited by the inherent differences
between the atlas and the specific subject. Nevertheless, such
anatomical information is of primary importance. To create
an additional cost matrix R with such anatomical informa-
tion, we first define the distance between a streamline and
a single ROI, as the minimum Euclidean distance between
them: dmin(s,ROI) = minxi∈s,vj∈ROI ‖xi − coord(vj)‖,
where coord(v) are the 3D coordinates of the center of the
voxel v belonging to the ROI. Given a set of N ROIs defin-
ing a bundle, the distance between a streamline and them can
be defined as the average of the distances to each ROI. With
such building block, we define the ROI-based distance be-
tween two streamlines sa and sb, for a given set of ROIs as
dROIs = | 1N

∑N
i=1 dmin(sa,ROIi) − 1

N

∑N
i=1 dmin(sb,ROIi)|,

meaning that two streamlines at similar distances from the
ROIs are more likely to belong to the same anatomical struc-
ture.
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3. EXPERIMENTS

3.1. Materials

We randomly selected 130 healthy subjects from the publicly
available Human Connectome Project (HCP) dMRI dataset
[11] (90 gradients; b=2000; voxel size=1.25 mm isotropic).
For each subject, tractograms of 750k streamlines were ob-
tained using constrained spherical deconvolution (CSD) [12]
and ensemble probabilistic tracking [13] (step size=0.625
mm, curvature parameters = 0.25, 0.5, 1, 2 and 4 mm).

Since example-based methods need accurate bundle seg-
mentations to use both as example and to evaluate the re-
sults, we built a visually inspected ground truth dataset using
a semi-automatic technique as follows. First, from each of
the 130 tractograms, we segmented the 20 major associative
bundles using the Automated Fiber Quantification (AFQ) al-
gorithm [2]. Then, in order to have consistent bundles across
subjects, given a bundle, we identified those that do not de-
viate more than the 20% from the median number of stream-
lines, obtaining on average 50 segmentations per bundle. Fi-
nally, we visually inspected each segmentation and filtered
out the outliers in order to have 30 segmentations per bundle.
We then selected 12 bundles (6 left and 6 right) per subject,
which we subdivided into two groups based on their num-
ber of streamlines2: the small bundles are Cingulum Cingu-
late (CGCl and CGCr), Cingulum Hippocampus (CGHl and
CGHr) and Uncinate Fasciculus (UFl and UFr), while the
large bundles are Thalamic Radiation (TRl and TRr), Corti-
cospinal tract (CSTl and CSTr) and Arcuate Fasciculus (AFl
and AFr).

To evaluate the results of the proposed method, we mea-
sured the degree of overlap between the estimated bundle b̂B

and the true bundle bB , using the Dice Similarity Coefficient
(DSC) at the voxel-level3: DSC = 2 |v(b̂

B)∩v(bB)|
|v(b̂B)|+|v(bB)|

where
v(b) is the set of voxels crossed by the streamlines of bundle
b and |v(b)| is the number of voxels of v(b).

3.2. Experimental design

We ran multiple experiments using the multiple LAP method
of [9] (multi-LAP) and the proposed method (multi-LAP-
anat) on a total of 360 segmented bundles. In both cases,
each pair of tractograms were aligned with an initial affine
registration. We used an example set composed of 5 bun-
dles, since it was proved that considering a larger example
set has no substantial impact on the final result of the seg-
mentation [9]. In the multi-LAP-anat method, we added the
two anatomically-informed distance matrices to the original
cost matrix as explained in section 2.3. The parameters of
λD, λE and λR were set in order to let all the values of the
matrices span in the same range (which would approximately
correspond to λD = 1, λE = 0.4 and λR = 1.6). To build

2This is not an absolute definition of small and large bundles, but only a
relative definition within the group of bundles considered in this work.

3The DSC takes values between 0 (no overlap) and 1 (perfect overlap).

the ROI-based distance matrix, for each bundle, we consid-
ered the two waypoint ROIs that delineate the trajectory of
the bundle before it diverges towards the cortex that are de-
fined in [4], and we transferred them in the individual subject
space through a non-linear registration. We then compared
the performances of the two methods through the DSC score.

All the experiments were developed in Python code and
ran using cloud computing resources provided by brain-
life.io. Code and dataset are freely available for repro-
ducibility at https://doi.org/10.25663/brainlife.app.122 and
https://doi.org/10.25663/brainlife.pub.3 respectively.

3.3. Results

In Table 1 we separately report the mean DSC results for the
two methods that we compared across all 30 subjects, for
both small and large bundles. For the small bundles, with
the multi-LAP method we observed a standard deviation of
the mean between 0.009 and 0.015, and with the proposed
multi-LAP-anat method between 0.007 and 0.011. For the
large bundles, both methods registered a standard deviation
of the mean ≤ 0.005.

CGCl CGCr CGHl CGHr UFl UFr
multi-LAP 0.81 0.82 0.77 0.76 0.74 0.76
multi-LAP-anat 0.83 0.86 0.83 0.80 0.80 0.81

TRl TRr CSTl CSTr AFl AFr
multi-LAP 0.85 0.85 0.84 0.85 0.83 0.80
multi-LAP-anat 0.87 0.87 0.86 0.87 0.86 0.84

Table 1. Mean DSC across 30 subjects for both the 6 small bundles
and the 6 large bundles for the two methods compared.

Figure 1 illustrates the individual DSC scores as a func-
tion of bundle size in terms of number of streamlines, for the
small and large bundles and for the two methods compared.

4. DISCUSSION

Table 1 illustrates that, on average, the proposed multi-LAP-
anat method outperforms the multi-LAP method of [9], for all
the bundles considered. In all the cases we obtained a mean
DSC between 0.80 and 0.87, which means that the overlap
with the ground truth is at least 80%. Streamlines composing
the same anatomical bundle not only have a similar shape, but
are also characterized by their propensity to interconnect or
pass through predefined ROIs of the brain. Including such in-
formation into the optimization process is useful in particular
in identifying those streamlines that may have a less similar
shape from the example, but that are close to ROIs that are
known from the literature pertaining to the bundle of interest.
Moreover, also taking into account the endpoint-based dis-
tance helps to select all the streamlines that end in the same
terminal region. Figure 2 shows a paradigmatic example in
which the multi-LAP-anat method correctly identifies most
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Fig. 1. DSC as a function of bundle size using the multi-LAP method [9] (left
panel) and using the proposed multi-LAP-anat method (right panel). In red the
small bundles and in yellow the large bundles, 30 examples for each bundle.

Fig. 2. Comparative paradigmatic example of a seg-
mented uncinate fasciculus (UF) obtained with A) the
multi-LAP method [9], B) the proposed multi-LAP-
anat method and C) the ground truth.

of the streamlines terminating in the cortical areas, which in-
stead are partially missing in the bundle segmented by the
multi-LAP method.

Table 1 (first row) and Figure 1 (left panel) provide evi-
dence that small bundles, which are usually more sensitive to
registration errors, are generally harder to segment than large
bundles. Using the proposed multi-LAP-anat method, we ob-
tain a mean improvement in the DSC score of +4.5% for the
small bundles, see Table 1. In these cases, we also notice a de-
creased variance when using the proposed method, which can
be seen from the comparison in Figure 1, where the vertical
dispersion of the red points is narrower in the right panel.

The proposed method also improves the results for large
bundles, for which we observe a mean improvement in the
DSC score of +2.5%, see Table 1. These results confirm the
assumption that, for all the bundles considered, including ad-
ditional information about the relative anatomical position of
bundles helps to improve the example-based bundle segmen-
tation.
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