iFixFlakies: A Framework for Automatically Fixing
Order-Dependent Flaky Tests

August Shi
University of Illinois
Urbana, IL, USA
awshi2@illinois.edu

Tao Xie
University of Illinois
Urbana, IL, USA
taoxie@illinois.edu

ABSTRACT

Regression testing provides important pass or fail signals that devel-
opers use to make decisions after code changes. However, flaky tests,
which pass or fail even when the code has not changed, can mislead
developers. A common kind of flaky tests are order-dependent tests,
which pass or fail depending on the order in which the tests are run.
Fixing order-dependent tests is often tedious and time-consuming.

We propose iFixFlakies, a framework for automatically fixing
order-dependent tests. The key insight in iFixFlakies is that test
suites often already have tests, which we call helpers, whose logic
resets or sets the states for order-dependent tests to pass. iFixFlakies
searches a test suite for helpers that make the order-dependent tests
pass and then recommends patches for the order-dependent tests
using code from these helpers. Our evaluation on 110 truly order-
dependent tests from a public dataset shows that 58 of them have
helpers, and iFixFlakies can fix all 58. We opened pull requests for 56
order-dependent tests (2 of 58 were already fixed), and developers
have already accepted pull requests for 21 of them, with all the
remaining ones still pending.

CCS CONCEPTS
« Software and its engineering — Software testing and de-

bugging.
KEYWORDS

flaky test, order-dependent test, patch generation, automated fixing

ACM Reference Format:

August Shi, Wing Lam, Reed Oei, Tao Xie, and Darko Marinov. 2019. iFixFlakies:
A Framework for Automatically Fixing Order-Dependent Flaky Tests. In
Proceedings of the 27th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE °19),
August 26-30, 2019, Tallinn, Estonia. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3338906.3338925

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ESEC/FSE 19, August 26-30, 2019, Tallinn, Estonia

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-5572-8/19/08...$15.00
https://doi.org/10.1145/3338906.3338925

545

Wing Lam
University of Illinois
Urbana, IL, USA
winglam2@illinois.edu

Reed Oei
University of Illinois
Urbana, IL, USA
reedoei2@illinois.edu

Darko Marinov
University of Illinois
Urbana, IL, USA
marinov@illinois.edu

1 INTRODUCTION

Regression testing is an important part of software development,
but it suffers from the problem of flaky tests. Developers run re-
gression tests when they make changes to ensure that the changes
do not break existing functionality. Flaky tests can pass or fail even
when run on the same code, without any changes. These tests are
problematic for software testing in general, and they are particularly
problematic for regression testing, because they provide misleading
signals to developers regarding the effects of their changes [27, 38].
Typically, when a test fails, the failure indicates a fault introduced
by a change, and the developers should debug the change. However,
with flaky tests, a test failure may not indicate a fault introduced
by a change, and developers can waste time trying to debug a fault
unrelated to recent changes [17]. Labuschagne et al. [32] found that
13% of the failed builds studied by them in open-source projects
using Travis CI are due to flaky tests. The software industry also
widely reports major problems with flaky tests [24, 27, 28, 40, 57],
e.g., Luo et al. [38] reported that at one point 73K of 1.6M test
failures per day at Google were due to flaky tests.

An important kind of flaky tests are order-dependent tests, which
pass or fail based solely on the order of the sequence in which
the tests run [33, 56]. Each order-dependent test has at least one
test order (a sequence of of tests in the test suite) where the order-
dependent test passes, and at least one other different test order
where the order-dependent test fails; if the two test orders do not dif-
fer, the test is not flaky solely due to the ordering. Prior work [38, 45]
showed that order-dependent tests are among the top three most
common kinds of flaky tests. As an example, a widely reported case
happened when Java projects updated from Java 6 to Java 7. Java 7
changed the implementation of reflection, which JUnit uses to deter-
mine the test order to run tests in. Many tests failed due to the tests
being run in a different test order from before, requiring developers
to manually fix their test suites [1-3]. Prior work, including ours,
developed automated techniques for detecting order-dependent
tests in test suites [20, 33, 56]. Furthermore, we released a dataset
of flaky tests [33], where about half are order-dependent.

In this paper, we propose a framework, iFixFlakies, that can
automatically fix many order-dependent tests. Our key insight is
that test suites often (but not always) already have tests, which
we call helpers, whose logic (re)sets the state required for order-
dependent tests to pass. We first identify that an order-dependent



ESEC/FSE *19, August 26-30, 2019, Tallinn, Estonia

test can be classified into one of two types based on the result of
running the test in isolation from the other tests. One type is a
victim, an order-dependent test that passes when run in isolation
but fails when run with some other tests. The other type is a brittle!,
an order-dependent test that fails when run in isolation but passes
when run with some other test(s).

More specifically, our insight for iFixFlakies is that running
some helper(s) directly before victims and brittles makes these
order-dependent tests pass. Therefore, we can use the code from
these helpers to fix order-dependent tests so that they pass even
if helpers are not run (directly) before the order-dependent tests.
iFixFlakies searches for helpers and, when it can find them, uses
them to automatically recommend patches for order-dependent
tests. As inputs, iFixFlakies takes an order-dependent test, a test
order where the test passes, and a test order where the test fails. It
outputs a patch that can be applied to the order-dependent test to
make it pass even when run in the test order where it was failing
before. The code in the patch comes from a helper, and while simply
using all the code from the helper can create a patch, such a patch
would be complex and undesirable because helpers typically contain
many statements irrelevant to why the tests are order-dependent.
iFixFlakies produces effective patches by delta-debugging [55] the
helpers to produce the minimal patch for order-dependent tests.

We evaluate iFixFlakies on all 110 truly order-dependent tests
from a public dataset [33] that includes the order-dependent tests
and their corresponding passing and failing test orders. We find
that 100 tests are victims and 10 are brittles. We also find that 58 of
these 110 order-dependent tests have helpers, allowing iFixFlakies
to propose patches for all 58 of these tests (48 victims and 10 brittles).
These patches have, on average, only 24.6% of the statements of
the original helper, and 69.5% of these patches consist of only one
statement. The overall time that iFixFlakies takes to find the first
helper and to produce a patch using that helper is only 238 seconds
on average. When an order-dependent test has no helper, iFixFlakies
takes 341 seconds on average to determine that it cannot produce a
patch. These time results show that iFixFlakies is efficient.

We opened pull requests for 56 order-dependent tests with helpers
(2 of 58 were already fixed in the latest version of the code). While
all patches generated by iFixFlakies semantically fixed the flaky test,
not all patches were syntactically the most appropriate. For 28 tests,
we created the pull requests using exactly the patch recommended
by iFixFlakies, while the remaining ones involved some manual
changes, mostly refactorings to make the code more similar to the
style of the project. Developers have accepted our pull requests
fixing 21 order-dependent tests; the pull requests for the remaining
35 order-dependent tests are still under consideration but none
have been rejected.

This paper makes the following main contributions:

(1) Formalization. We formally define two different types of
order-dependent tests and three different roles of tests that
can help in the patching of order-dependent tests.

(2) Technique. We present a technique to fix order-dependent
tests using helpers. Our technique automatically generates a
patch for 58 out of 110 order-dependent tests.

!The word “brittle” is commonly used as an adjective but can also be used as a noun.

546

August Shi, Wing Lam, Reed Oei, Tao Xie, and Darko Marinov

(3) Framework. We implement our technique and make pub-
licly available a framework, iFixFlakies [7].

(4) Evaluation. We evaluate iFixFlakies on a dataset of 110
order-dependent tests. Using iFixFlakies, we break down the
order-dependent tests into 100 victims and 10 brittles, where
58 of these tests have helpers. Furthermore, iFixFlakies is
able to automatically fix all these 58 order-dependent tests.

2 FORMALIZATION OF TESTS

Order-dependent tests are flaky tests whose results can differ de-
pending on the order in which the tests run. An order-dependent
test consistently passes when run in one order but then consistently
fails when run in a different order [33, 56].

Let T be the set of all tests? in the test suite. A test order is a
sequence of a subset of tests from T. For a test order O that has a
test t € T, let run;(O) be the result of the test ¢t when run in the
test order O; the result can be either PASS or FAIL consistently; we
ignore other flaky tests that have results PASS and FAIL when rerun
in the same test order due to other sources of non-determinism. We
use run(O) to refer to the result of the last test in O. We use [¢] to
denote a test order consisting of just one test ¢, and use O + O’ to
denote the concatenation of two test orders O and O’.

DEFINITION 1. A testt € T has a passing test order or a failing
test order O if run; (O) = PASS or run; (O) = FAIL, respectively.

DEFINITION 2. An order-dependent testt € T has a passing test
order O and a failing test order O’ # O.

We classify an order-dependent test into one of two types: victim
or brittle. We also classify other tests related to order-dependent
tests into three different roles: polluter, cleaner, and state-setter.

2.1 Victim

A victim is an order-dependent test that consistently passes when
run by itself in isolation from other tests.

DEFINITION 3. An order-dependent test v € T is a victim if
run([v]) = PASS.

The reason why a victim fails in a failing test order is that there is
at least one test that runs before the victim, and these tests “pollute”
the state (e.g., global variable, file system, network [56]) on which
the victim depends. We call such state-polluting tests polluters. Note
that a polluter can consist of multiple tests, where the combination
of running those tests in a certain order leads to the victim failing.

DEFINITION 4. A test order (with one or more tests) P is a polluter
for a victim v if run(P + [v]) = FAIL.

Figure 1 shows an example (identified by iFixFlakies) of a victim
and a polluter from Elastic-Job [4]. The polluter is by itself the test
assertRemovelLocalInstancePath (or PT for short), because it starts
the instance (Line 8) but does not shut it down. The victim is the
test assertIsShutdownAlready (or VT for short) that fails on Line 4,
which checks whether an instance of a class variable has been shut
down. VT passes by itself or in test orders where a polluter like PT
is run after VT.

2When we say test, for Java we mean test method as defined in JUnit.



iFixFlakies: A Framework for Automatically Fixing Order-Dependent Flaky Tests

1 // Victim (in ShutdownListenerManagerTest class)

2 @Test public void assertIsShutdownAlready() {

3 shutdownListenerManager .new
InstanceShutdownStatusJoblListener () .dataChanged("/test_job
/instances/127.0.0.1@-@0", Type.NODE_REMOVED, "");

verify(schedulerFacade, times(@)).shutdownInstance();

}

// Polluter (also in ShutdownListenerManagerTest class)

@Test public void assertRemovelLocalInstancePath() {

JobRegistry.getInstance().registerJob("test_job",
jobScheduleController, regCenter);

9 shutdownListenerManager .new

InstanceShutdownStatusJobListener ().dataChanged("/test_job
/instances/127.0.0.1@-@0", Type.NODE_REMOVED, "");

N NRL IS

10 verify(schedulerFacade).shutdownInstance();

1 3}

12 // Cleaner (in FailoverServiceTest class)

13 @Test public void assertGetFailoverItems() {

14 JobRegistry.getInstance().registerJob("test_job",
jobScheduleController, regCenter);

15 . // 12 more lines

16 JobRegistry.getInstance().shutdown("test_job");

17 3

Figure 1: Example victim, polluter, and cleaner from Elastic-Job.

A victim may not fail even when a polluter is run before it, as
long as a cleaner is run between the two. Intuitively, a cleaner is
a test order that resets the state polluted by a polluter; when the
cleaner is run after a polluter and before its victim, the victim passes.

DEFINITION 5. A test order C is a cleaner for a polluter P and its
victim v if run(P + C + [v]) = PASS.

An example of a cleaner is also shown in Figure 1. The test
assertGetFailoverItems (or CT for short) is a cleaner for PT and VT,
because Line 16 of CT shuts down the instance that PT starts and VT
checks. Therefore, even if PT runs before VT, as long as CT’s Line 16
successfully executes before VT, VT passes. We can fix VT by inserting
the statement from this line of CT at the end of PT.

2.2 Brittle

In contrast to a victim, an order-dependent test is a brittle if the
test consistently fails when run by itself in isolation.

DEFINITION 6. An order-dependent test b € T is a brittle if
run([b]) = FAIL.

Intuitively, because a brittle fails in isolation and yet has a passing
test order, then its passing test order must contain one or more
tests that set up the state for the brittle to pass. We refer to a test
order that sets up the state for a brittle as a state-setter.

DEFINITION 7. A test order S is a state-setter for a brittle b if
run(S + [b]) = PASS.

Figure 2 shows an example identified by iFixFlakies of a brittle
and its corresponding state-setter test from WildFly [11]. The test
testPermissions (or BT for short) is a brittle, because it fails when
run by itself, due to an AccessControlException. The test testBind
(or ST for short) is by itself a state-setter for BT, because running ST
and then BT is enough to make BT pass.

iFixFlakies finds that the store.lookup call of ST on Line 18 is
the only method call that BT needs in order to pass. store is a
test class variable initialized by the setup method of the test class.
When store. lookup is invoked before Line 11, BT passes. When we
proposed this fix to the developers of WildFly, they quickly accepted

547

ESEC/FSE *19, August 26-30, 2019, Tallinn, Estonia

// Brittle (in WritableServiceBasedNamingStoreTestCase class)
@Test public void testPermissions() throws Exception {

1
2
3 .
4 final String name = "a/b";

5 final Object value = new Object();
6 try {

7

8

9

store.bind(new CompositeName(name), value);

3

assertEquals(value, testActionWithPermission(JndiPermission
ACTION_LOOKUP, permissions, namingContext, name));

12}
13 // State-setter (also in WritableServiceBasedNamingStoreTestCase class)
14 @Test public void testBind() throws Exception {

15 final Name name = new CompositeName('test");

16 final Object value = new Object();

17 . // 6 more lines

18 assertEquals(value, store.lookup(name));

19 3

Figure 2: Example brittle and state-setter from WildFly.

1 def iFixFlakies(odtest, passingorder, failingorder)

2 odtype, polluters, cleaners = minimize(odtest, passingorder
failingorder)

3 patches = []

4 if odtype == VICTIM:

5 for polluter in polluters:

6 for cleaner in cleaners[polluter]:

7 patches += [patch(polluter + [odtest], cleaner)]

8 else: # odtype == BRITTLE

9 for statesetter in polluters:

patches += [patch([odtest], statesetter)]
return patches

Figure 3: Pseudo-code for the overall process of iFixFlakies.

our fix and clarified that it works because the lookup call causes “the
WildFlySecurityManager.<clinit> to run” and running this class
constructor resolves the AccessControlException of BT [12].

Both cleaners (for victims) and state-setters (for brittles) help
make order-dependent tests pass when they run in certain test
orders. Hence, we refer to cleaners and state-setters as helpers. Our
insight is that these helpers already contain logic to set the state
for their corresponding order-dependent tests.

3 IFIXFLAKIES

We present iFixFlakies to automatically recommend patches for
order-dependent tests with helpers. Figure 3 shows the pseudo-
code for the overall process. iFixFlakies takes as input an order-
dependent test, a passing test order, and a failing test order. By
Definition 2, each order-dependent test has at least one passing
and one failing test order. Several automated approaches exist for
detecting order-dependent tests and their corresponding test or-
ders [20, 33, 56], which can provide all these inputs for iFixFlakies.
iFixFlakies has two main components: Minimizer and Patcher.
iFixFlakies first calls Minimizer (Line 2) to get the type of the
order-dependent test, the minimized polluters/state-setters, and
the minimized cleaners. Based on the type of the order-dependent
test, iFixFlakies then calls Patcher to create patches corresponding
to each helper for the order-dependent test (Lines 7 and 10).

Prior to developing iFixFlakies, we attempted to manually fix
some order-dependent tests using just their passing and failing test
orders. In this manual process, we found it difficult to understand
why each test fails, let alone fix. However, as part of this process,



ESEC/FSE *19, August 26-30, 2019, Tallinn, Estonia

1 def minimize(odtest, passingorder, failingorder):

2 isolation = run([odtest])

3 # Run in isolation multiple times to confirm it is order-dependent
4 for i in range(RERUN):

5 if not isolation == run([odtest]):

6 raise Exception('Incorrectly classified as order-dependent')

7

8

9

# Passing in isolation means victim, failing means brittle
if isolation == PASS:

10 odtype = VICTIM

11 startingorder = failingorder

12 expected = FAIL

13 else: # isolation == FAIL

14 odtype = BRITTLE

15 startingorder = passingorder

16 expected = PASS

17

18 polluters = set() # State-setters for brittles

19 cleaners = {} # Empty map from polluters to cleaners

20

21 # Get minimal test order that causes odtest to match expected result

22 prefix = startingorder[@:indexOf (odtest, startingorder)]

23 while run(prefix + [odtest]) == expected:

24 polluter = deltadebug(prefix, lambda o: run(o + [odtest]) == expected)

25 polluters.add(polluter)

26 if odtype == VICTIM:

27 cleaners[polluter] = findcleaners(odtest, polluter, passingorder,
failingorder)

28 # If not configured to find everything, stop

29 if not FIND_ALL:

30 break

31 prefix.remove(polluter)

32 return odtype, polluters, cleaners

Figure 4: Pseudo-code for finding minimal test orders.

we found ourselves manually searching for the polluter, cleaner,
and state-setter tests for order-dependent tests, which inspired
Minimizer. Once we realized the importance of the helpers and how
they can be used as the basis for patches, we developed Patcher.
Overall, we found that the manual steps that we undertook could
be automated by a tool, leading to iFixFlakies, and such automation
can save developers’ time for fixing order-dependent tests.

3.1 Minimizer

Minimizer aims to find the minimal subsequence® of tests, called
minimal test order, from a passing test order or a failing test order
to make the order-dependent test pass or fail, respectively. The
minimal test order is “1-minimal”, meaning removing any test from
the minimal test order will no longer satisfy the criterion [25, 55].

Figure 4 shows the pseudo-code for Minimizer. The input is an
order-dependent test and its two test orders. As shown in Lines 4-6,
Minimizer first checks whether the order-dependent test consis-
tently passes or fails by itself, rerunning the test RERUN number
of times (default is 10). If the test consistently passes or fails, it is
likely order-dependent. This check should not be needed when the
input test is correctly classified as order-dependent, but our evalu-
ation finds that we incorrectly classified one test in our previous
work [33]. If the test is truly order-dependent, the isolation result
determines whether it is a victim or a brittle (Lines 9-16).

Next, Minimizer proceeds to delta-debug [25, 55] the prefix to
find the minimal test order (Line 24). Delta debugging iteratively
splits a sequence of elements to find a smaller subsequence that
satisfies a criterion. Our general delta-debugging method takes two

3The term “subsequence” refers to a potentially non-consecutive subset of elements in
relation to the original ordering.

548

August Shi, Wing Lam, Reed Oei, Tao Xie, and Darko Marinov

1 def findcleaners(victim, polluter, passingorder, failingorder):
2 # Determine cleaner candidates from passing and failing orders
3 candidates = []

4 polluterpos = indexOf (polluter, passingorder)

5 victimpos = indexOf(victim, passingorder)

6 if polluterpos < victimpos:

7 candidates += [passingorder[polluterpos + 1:victimpos]]

8

9

polluterpos = indexOf (polluter, failingorder)
victimpos = indexOf(victim, failingorder)
candidates += [failingorder[@:polluterpos]]

candidates += [failingorder[victimpos + 1:len(failingorder)]]

13

14 # Add all tests as single candidates

15 candidates += [[c] for c in failingorder]

16

17 # Filter out candidates to find actual cleaners

18 cleaners = []

19 for c in candidates:

20 if run(polluter + c + [victim]) == PASS:

21 # If not configured to find everything, just return the first one

22 if not FIND_ALL:

23 return [deltadebug(c, lambda o: run(polluter + o + [victim]) ==
PASS)]

24 cleaners += [c]

25

26 # Minimize the cleaners, so <polluter, cleaner, victim> passes

27 return unique(map(lambda c: deltadebug(c, lambda o: run(polluter + o +

[victim]) == PASS), cleaners))

Figure 5: Pseudo-code for finding cleaners.

parameters: (1) the sequence to start delta debugging and (2) the cri-
terion (in the form of a function) to check the current subsequence
validity at each iteration. For Line 24, a subsequence is valid when
running it before the order-dependent test matches the expected
result for that test. The delta-debugging output is a minimal test
order representing a polluter for a victim or a state-setter for a
brittle; ideally the polluter or state-setter consists of only one test.
The search for finding a polluter or a state-setter is the same, so our
code assigns the final result to the variable named polluter, but it
is actually a state-setter if the order-dependent test is a brittle.

In practice, after Line 24, a developer would proceed to find a
cleaner for the polluter if the order-dependent test was a victim,
or proceed to Patcher if the order-dependent test was a brittle.
However, for the sake of our experimental evaluation, we introduce
the option to find all polluters or state-setters from these test orders.
If the FIND_ALL option is set (Line 29), Minimizer proceeds to find
more polluters or state-setters by first removing the found polluter
or state-setter and then continuing with the loop that calls delta
debugging again (Lines 23-31). The process stops when running
the prefix before the order-dependent test no longer matches the
expected result. Our evaluation (Section 5.2) shows that finding
more polluters or state-setters does not provide substantial benefits
in terms of patching order-dependent tests, so in practice one can
just use the first handful of found tests of each type.

3.1.1  Finding Cleaners. After finding a polluter for a victim, Mini-
mizer proceeds to find cleaners (Lines 26-27 of Figure 4). Figure 5
shows the findcleaners method. It takes as input a victim, a pol-
luter for the victim, a passing test order, and a failing test order. The
returned cleaners make the victim pass when they are run between
the polluter and the victim.

First, findcleaners determines cleaner candidates, which are test
orders that are potentially cleaners. findcleaners finds cleaner can-
didates using the passing and/or failing test order, depending on



iFixFlakies: A Framework for Automatically Fixing Order-Dependent Flaky Tests

1 def patch(order, helpertests):

2 statements = []

3 # Grab statements from helper methods, including setups and teardowns
4 for h in helpertests:

5 statements += get_setup(h) + get_body(h) + get_teardown(h)

6

7

8

9

# Create a method within the last helper's class with these statements
patchmethod = insert_new_method(test_class(helpertests[-1]))

# Insert call to patchmethod at start of flaky test (last test in order)
insert_call_at_start(patchmethod, order[-1])

# Delta debug statements such that the order (that was failing) can pass
minimalstatements = deltadebug(statements, lambda s: patchmethod
setbody(s).compile() and run(order) == PASS)

patchmethod. setbody(minimalstatements)
return patchmethod

Figure 6: Pseudo-code for finding a patch.

the index of the polluter and victim in these test orders. For the
passing test order, if the victim is run after the polluter, then a
cleaner must be among the tests that run between the polluter
and victim, so these tests in between become a cleaner candidate
(Lines 4-7). For the failing test order, a cleaner can be run before
the polluter or after the victim, so tests that run before the polluter
and after the victim both become cleaner candidates (Lines 9-12).
Finding a cleaner is crucial to enable automated search for a patch.
To maximize the chance to find at least one cleaner, findcleaners
also considers every individual test as a cleaner candidate, including
even both the polluter and the victim (Line 15).

By considering every test as a cleaner candidate, findcleaners
may even find a cleaner that JUnit would never run between the pol-
luter and the victim. More specifically, when a polluter and victim
are in the same class, findcleaners may find a cleaner consisting
of tests from a different class; JUnit will never run this cleaner be-
tween the polluter and victim. findcleaners still searches for such
cleaners, because their code can be used by Patcher.

For each cleaner candidate, findcleaners runs the polluter, the
cleaner candidate, and then the victim, checking whether the victim
passes in this test order. If the victim passes, then the cleaner can-
didate is an actual cleaner; findcleaners proceeds to delta-debug
the cleaner candidate to find the minimal test order (Line 23), with
the delta-debugging criterion being that running the polluter, the
subsequence from the cleaner, and the victim passes.

If the FIND_ALL option is not set, then the first cleaner found is
returned. Otherwise, findcleaners checks the remaining cleaner
candidates, for the set of all unique cleaners. We use this option to
find all cleaners as part of our evaluation (Section 5); our results
suggest that finding just a few cleaners suffices.

Minimizer takes the returned cleaners from findcleaners and
adds them to a map from found polluters to found cleaners (Line 27
in Figure 4). The final return value for Minimizer is a tuple of (1) the
type of the order-dependent test (victim or brittle), (2) the polluters
or state-setters for the order-dependent test, and (3) the map from
polluters to cleaners (empty if the order-dependent test is a brittle).

3.2 Patcher

Patcher automatically recommends patches for fixing an order-
dependent test using code from helpers. Patcher takes as input
(1) the minimal test order where the order-dependent test fails:

549

ESEC/FSE *19, August 26-30, 2019, Tallinn, Estonia

// Victim (in ShutdownListenerManagerTest class)
@Test public void assertIsShutdownAlready() {

+ // Call to patch method

+ new FailoverServiceTest().patch();

}
// Starting patch method (in FailoverServiceTest class)
public void patch() {

// statements from @BeforeClass or @Before

[ N I - KT NS TRy

// 13 statements from cleaner, assertGetFailoverItems

¥
+
+
¥
¥
+ RPN
+ JobRegistry.getInstance().shutdown("test_job");
+ // statements from @AfterClass or @After

¥

¥

3

Figure 7: Starting code of Patcher for example in Figure 1.

// Victim (in ShutdownListenerManagerTest class)
@Test public void assertIsShutdownAlready () {

+ // Call to patch method

+ new FailoverServiceTest().patch();

}

// Final patch method (in FailoverServiceTest class)

public void patch() {
JobRegistry.getInstance().shutdown("test_job");

}

o I NI Caye

+
+
+
+

15

Figure 8: Final code of Patcher for example in Figure 1.

for a victim, this order is the polluter followed by the victim, and
for a brittle, this order is just the brittle; and (2) a helper for the
order-dependent test (note that a helper can consist of multiple
tests). Figure 6 shows the pseudo-code for Patcher.

First, Patcher obtains all of the statements from the tests in the
helper (Line 5). These statements come from not just the body of the
tests themselves but also from all the setup and teardown methods
of these helper tests. We use JavaParser [8], a library for parsing
Java source code, to obtain these statements. Patcher keeps these
statements in the order that JUnit runs them in (i.e., statements in
@Before run first, then statements in the test, and lastly, statements
in @After). More specifically, get_setup obtains the statements from
the setup methods (annotated with @BeforeClass or @Before in the
test class or super-classes), get_body obtains all statements in the
helper test’s body, and get_teardown obtains statements from the
teardown methods (annotated with @AfterClass or @After in the
test class or super-classes). If the helper test has the annotation
expected [9], which indicates that the test expects a particular ex-
ception to be thrown for it to pass, then get_body also wraps the
statements from the test in an appropriate try-catch block.

Next, Patcher adds code to run the helper code before the order-
dependent test in two steps. First, Patcher creates an empty method,
referred to as the patch method, to store all of the statements from
the helper (Line 8). Second, Patcher inserts a call to the patch method
at the start of the order-dependent test (Line 11). The inserted code
creates an instance of the test class using the default constructor
and uses that instance to call patch. Note that the code shows
inserting this call at the start of the order-dependent test, but for a
victim, the call can also be inserted at the end of the polluter. Users
can configure Patcher to insert the patch at the beginning of the
order-dependent test, or at the end of the polluter for victims.



ESEC/FSE *19, August 26-30, 2019, Tallinn, Estonia

Table 1: Breakdown of the 184 likely order-dependent tests from a
public dataset [6].

# of tests | Category
22 | in a class with @FixMethodOrder
49 | reuseForks is set to false in pom.xml

1 | non-order-dependent test
2 | out-of-memory when run with iFixFlakies
110 | truly order-dependent tests

Figure 7 shows an example of the starting code to be mini-
mized by Patcher. This code is adapted from the example in Fig-
ure 1. Line 8 shows the declaration of the new patch method. The
body of the patch method contains all of the statements from
(1) the setup method of FailoverServiceTest, (2) the cleaner test
body (assertGetFailoverItems), and (3) the teardown method of
FailoverServiceTest. The inserted line (Line 4) calls patch using a
new instance of the helper’s test class.

Finally, Patcher delta-debugs the statements from the helper
to find the minimal list of statements that can make the order-
dependent test pass when run in the minimal test order (Line 14 of
Figure 6); the minimal list of statements is also “1-minimal”, and
the finest granularity is at the level of statements as defined by
JavaParser [8]. The delta-debugging method is the same general
one as in Minimizer, except this time it is minimizing the list of
statements from the helper tests instead of test orders. The delta-
debugging criterion for Patcher is that the patch method compiles,
and the inserted code makes the order-dependent test pass when
run in the minimal test order. Patcher returns the patch method
with the minimal list of statements for the order-dependent test
to pass. Figure 8 shows the final code after Patcher runs; the patch
method contains only one statement (Line 9).

While the order-dependent test can already be fixed by inserting
a call to the patch method at the start of the order-dependent test,
a developer using iFixFlakies can choose to inline the statements
from the patch method directly into the order-dependent test or
into the polluter. In some cases, it may be trivial to just inline
these statements into the order-dependent test body. However, in
general, a developer should decide whether it is best to inline the
statements of the helper into the order-dependent test or polluter,
or leave them in a separate method. Factors that may influence the
developer’s decision include the applicability of the patch method
to other tests and the data encapsulation of the patch method.

To further refine how statements invoked from helpers fix the
order-dependent test, Patcher could potentially minimize and in-
line the statements of methods (indirectly) invoked by the helper
tests. By minimizing those statements, the developer can be given
a patch that is much more specific to the cause of the flakiness.
However, it can be difficult to inline statements from code further
away from the helper tests. Also, the number of statements in the
final patch will likely increase. As such, Patcher currently does not
minimize the statements of these invoked methods, and we leave
such investigation for future work.

4 EVALUATION SETUP

We released a public dataset of flaky tests, including order-dependent
tests, as part of our prior work [33]. Our dataset is split into two
sets, comprehensive and extended. For our evaluation, we use the

550

August Shi, Wing Lam, Reed Oei, Tao Xie, and Darko Marinov

comprehensive set. This set consists of 184 likely order-dependent
tests from 19 Maven modules; a Maven module consists of code
and tests from the project that the developers organized to be built
and run together. Our dataset also has at least one passing and one
failing test order for each order-dependent test.

We implement iFixFlakies as a plugin for Maven [10]. For each
module in the Maven project, iFixFlakies takes as input order-
dependent tests in the module to fix along with a passing test order
and failing one for each one. iFixFlakies uses a custom JUnit test run-
ner to run the tests, so iFixFlakies currently recommends patches
for only JUnit order-dependent tests in Maven-based projects.

Unfortunately, not all tests in the dataset are well suited for our
goal of submitting patches to developers. First, 22 tests are in test
classes annotated with @FixMethodOrder. This annotation tells JUnit
to run the tests within that test class in a fixed order. Since the
developers are already aware of the order-dependent tests in their
test suite and have taken measures to address them, we omit these
tests from our evaluation. Second, 49 tests from the dataset are
in modules that use the Maven Surefire parameter reuseForks to
run each test class isolated in its own JVM. Such isolation removes
many of the dependencies between tests and is another way used
by developers to accommodate order-dependent tests.

We run iFixFlakies on all the remaining 113 purported order-
dependent tests using the passing and failing test orders from our
dataset. Some order-dependent tests have more than one passing
test order and/or failing test order in the dataset, and we need only
one of each for iFixFlakies, so we arbitrarily choose one of each test
order to run iFixFlakies. We configure iFixFlakies to find all pol-
luters, cleaners, and state-setters for every order-dependent test. For
each order-dependent test, we run iFixFlakies on Microsoft Azure
with the virtual machine size Standard_D11_v2, which consists of 2
CPUs, 14GB of RAM, and 100GB of hard disk space.

Overall, we find 110 truly order-dependent tests. 1 test is mis-
classified as order-dependent (found to be non-order-dependent
through our reruns) and, due to the large number of polluters and
cleaners, 2 tests encounter out-of-memory errors from iFixFlakies.
Table 1 shows the summary breakdown of the tests from the dataset.

5 EVALUATION

To evaluate the effectiveness and efficiency of iFixFlakies, we ad-
dress the following research questions:

RQ1: What are the numbers of victims, brittles, polluters, cleaners,
and state-setters found by iFixFlakies among test suites with order-
dependent tests? How many tests can iFixFlakies fix?

RQ2: What are the characteristics (e.g., size, uniqueness) of the
patches generated by iFixFlakies?

RQ3: How much time does iFixFlakies take to find polluters, clean-
ers, state-setters, and patches?

We address RQ1 primarily to inform researchers and tool devel-
opers on which types of order-dependent tests and roles of tests
are the most common so that they can be prioritized appropriately.
With the main insight of iFixFlakies being to use helpers to propose
patches for order-dependent tests, RQ1 also evaluates the frequency
of tests that have helpers and therefore the applicability of our in-
sight on order-dependent tests. We address RQ2 to evaluate the
effectiveness in terms of size and accepted pull requests concern-
ing the patches proposed by iFixFlakies, and RQ3 to evaluate the



iFixFlakies: A Framework for Automatically Fixing Order-Dependent Flaky Tests

ESEC/FSE *19, August 26-30, 2019, Tallinn, Estonia

Table 2: Characteristics of the order-dependent tests (OD) in the projects used in our study.

Number of Average number of

victims w/ polluters cleaners | state-setters
ID Project Name - Module tests | OD || victims | brittles cleaners || per victim | per victim per brittle
M1 | alibaba/fastjson 178 11 4 7 1 1.8 69.8 51.6
M2 | apache/incubator-dubbo - m1 110 4 4 0 4 2.5 6.8 n/a
M3 -m2 65 4 3 1 3 53 152.0 2.0
M4 -m3 21 1 1 0 1 1.0 2.0 n/a
M5 -m4 40 3 3 0 0 1.0 0.0 n/a
M6 apache/jackrabbit-oak 3,178 2 1 1 0 1.0 0.0 1.0
M7 | apache/struts 61 4 4 0 4 1.0 16.0 n/a
M8 | dropwizard/dropwizard 80 1 1 0 1 2.0 16.0 n/a
M9 | elasticjob/elastic-job-lite 511 6 6 0 5 1.0 29.8 n/a
M10 | jfree/jfreechart 2,176 1 1 0 0 1.0 0.0 n/a
M11 | kevinsawicki/http-request 163 | 28 28 0 28 1.0 1.0 n/a
M12 | undertow-io/undertow 79 1 1 0 1 4.0 12.0 n/a
M13 | wildfly/wildfly 82 44 43 1 0 1.0 0.0 36.0
Total/Average per test 6,744 | 110 100 10 48 1.3 10.6 40.0

efficiency of iFixFlakies and thus how it could be integrated into a
practical software development process.

5.1 RQ1: Characteristics of Tests

Table 2 shows some summary information about the projects and
modules that contain at least one order-dependent test. For each
module, the table lists the total number of tests, the number of
order-dependent tests, and the breakdown of the number of victims
and brittles among those order-dependent tests. Overall, we find
that out of 110 order-dependent tests, 100 tests are victims and 10
tests are brittles, so most order-dependent tests are victims.

Table 2 also shows the average number of polluters per victim,
cleaners per victim (that have cleaners), and state-setters per brittle
that iFixFlakies finds. Each victim has at least one polluter. In the
final row for averages, we show the averages computed per test
(not per module). On average, we find 1.3 polluters per victim, with
a total of 126 polluters for the 100 victims. Note that our search
does not exhaustively find all polluters for a victim; the polluters
that it finds depend on the position of the victim in the failing test
order. On average across all victims, the position of a victim in
its failing test order is 54.5% (i.e., a victim is just over the halfway
position in the failing test order). 91 of the victims have just one
polluter, while 9 victims have more than one polluter; the max
number of polluters per victim is 6, and the median is 4 polluters
per victim. While a polluter can consist of multiple tests that only
when run together before the victim lead to it failing (Section 2),
we find that only 3 polluters consist of more than one test. Because
most polluters consist of only one test, it is practical to assume only
one test pollutes the state for a victim, and future work on finding
polluters may benefit from focusing on individual tests.

We hypothesized the existence of cleaners among the order-
dependent tests in our prior work [33], and using iFixFlakies we
find and show the actual number of cleaners per victim and pol-
luter; different polluters for the same victim may have cleaners in
common, but we report each cleaner separately per polluter for the
same victim, because each one indicates a potential different patch
for that victim. We find that 48 victims of the total 100 victims have

551

at least one cleaner, so almost half of all victims can be fixed using
the code from their corresponding cleaners. Of these 48 victims, 29
have just one cleaner, while the remaining 19 have more than one
cleaner. The average number of cleaners per victim with at least
one cleaner is 10.6, and the median number of cleaners per victim is
16 cleaners. In total, we find 1,063 cleaners for all these 48 victims,
where each cleaner consists of only one test. As described in Sec-
tion 3.1.1, when iFixFlakies searches for cleaners, it considers every
test as a potential cleaner, even when JUnit would not run such a
test in between the polluter and victim. From the 48 victims with
cleaners, we find 6 with cleaners that JUnit would not run between
the polluter and the victim. Interestingly, two of the cleaners are
actually the polluters of a victim as well!

We also find that 8 victims have more than one polluter with
cleaners. Interestingly, all polluters of these victims have exactly
the same cleaners. Based on these results, a developer should use
iFixFlakies to search for cleaners in just one polluter to know
whether a victim contains a cleaner or not. Different cleaners can
produce different patches, but we find that the numbers of state-
ments produced by different cleaners are similar (Section 5.2).

Concerning state-setters, each brittle must have at least one
state-setter, and we find a brittle has on average 40.0 state-setters,
and the median number of state-setters is 47. The 10 brittles have a
total of 400 state-setters. Because all 10 brittles can be fixed using
code from one of their state-setters, and 48 victims have cleaners,
iFixFlakies can recommend patches for a total number of 58 tests,
over half of the 110 truly order-dependent tests. In total, iFixFlakies
finds 1,463 helpers to use to recommend patches for the 58 tests.

5.2 RQ2: Characteristics of Patches

Table 3 shows the characteristics of the patches that iFixFlakies
recommends, with one patch per helper; we do not show rows for
modules with no helpers, namely M5 and M10. For each module,
we show the average number of patches per order-dependent test.
We also show the average number of unique patches, based on
statements, for each order-dependent test per module. For example,
M7 (apache/struts) has 16.0 patches per order-dependent test, but



ESEC/FSE *19, August 26-30, 2019, Tallinn, Estonia

August Shi, Wing Lam, Reed Oei, Tao Xie, and Darko Marinov

Table 3: Characteristics of patches proposed by iFixFlakies; for each module, averages per order-dependent test are shown.

First Patch All Patches

# Unique # Unique Avg. % Stmts Avg. % Stmts
ID # Patches Patches | Patch Sizes || Avg. # Stmts | from Original || Avg. # Stmts | from Original
M1 80.0 8.9 1.9 1.1 21.4% 2.0 40.4%
M2 6.8 2.2 1.0 7.0 65.8% 5.4 38.6%
M3 114.5 3.5 1.0 1.5 12.6% 1.0 8.2%
M4 2.0 2.0 2.0 5.0 71.4% 4.5 69.0%
M6 1.0 1.0 1.0 2.0 28.6% 2.0 28.6%
M7 16.0 2.0 2.0 2.0 13.3% 4.1 8.0%
M8 16.0 8.0 4.0 2.0 25.0% 4.5 32.6%
M9 35.8 5.8 2.8 1.2 15.0% 1.5 15.3%
Mi11 1.0 1.0 1.0 1.0 16.7% 1.0 16.7%
Mi12 12.0 9.0 4.0 1.0 20.0% 2.7 32.5%
Mi13 36.0 8.0 4.0 13.0 86.7% 1.9 14.4%
Average 25.2 3.2 1.5 1.9 22.6% 1.8 24.6%

only 2.0 unique patches per order-dependent test. Overall, while
iFixFlakies recommends, on average, 25.2 patches for each order-
dependent test across all modules, only 3.2 are actually unique. The
overall average in the final row is the average per test across all
modules, not the (unweighted) average of averages per module.

Table 3 also shows the average number of unique patch sizes
among all patches for each order-dependent test per module; several
patches with different statements can have the same number of
statements. If the patch size is the most important for a good patch,
then it suffices to find just one patch of a certain size instead of
finding all the different patches of that size. With only 1.5 unique
patch sizes per order-dependent test on average, many patches
actually have the same size.

Table 3 also shows some statistics about the sizes of patches
for only the first patch (from iFixFlakies trying the first cleaner
of the first polluter or the first state-setter) and across all patches.
The table shows the average number of statements and the aver-
age percentage of the number of statements w.r.t. the number of
statements in the original helper (Section 3.2). Across all patches,
iFixFlakies recommends a patch with only 1.8 statements on aver-
age, and these statements comprise only 24.6% of the statements
in the original patch method. In fact, of the 1,463 total patches,
1,013 (69.5%) contain just one statement! When we look into the
spread of the patch sizes per order-dependent test, we find that, on
average, each order-dependent test has around 90% of their patches
with the same size, most often being the smallest size. For example,
the average number of statements in the first patch (1.9) is almost
equal to the average number of statements across all patches (1.8).
Overall, the results suggest that iFixFlakies should search for a few
helpers, but not all of them, because the majority of the helpers
lead to the same size of patches.

5.2.1 Submitted Patches. We submitted pull requests for 56 of the
58 order-dependent tests with helpers; 2 of the 58 had already been
fixed before we submitted pull requests. Table 4 shows the break-
down of the tests corresponding to our pull requests. Developers
already accepted pull requests for 21 tests.

While all our pull requests are based on the patches generated
by iFixFlakies, we sent patches for half of the tests (28) exactly as
iFixFlakies recommended, and the remaining half required small,

552

Table 4: Number of tests addressed by pull requests (PRs) based on
iFixFlakies patches.

# of Test Fixed by
ID Pending PRs | Accepted PRs || Patcher
M1 1 7 8
M2 0 2 2
M3 0 4 4
M4 0 1 1
M6 1 0 1
M7 0 4 4
M8 0 1 1
M9 5 0 5
Mi11 28 0 28
Mi2 0 1 1
M13 0 1 1
Total 35 21 56

manual changes. When we had to make changes to the patch for the
pull requests, the effort was roughly 1-3 minutes per patch, mostly
refactorings or simple changes to match the style of the existing
code. Existing techniques and tools [13, 14, 46, 49] could help with
such manual effort. We believe that developers using iFixFlakies
could use such tools for more automation but still examine the
patches and manually apply small changes if necessary. We make
available the patches that iFixFlakies generates, a more detailed
breakdown describing the changes that we made to the patches,
and links to the corresponding pull requests on our website [7].

Because iFixFlakies fixes an order-dependent test using state-
ments from a helper, the recommended patches may reduce the
order-dependent test’s fault-detection capability, i.e., make the test
miss a fault. However, if a patch does reduce an order-dependent
test’s fault-detection capability, then the passing test order in which
iFixFlakies (may have) found the helper could likely miss the fault
as well. iFixFlakies assumes that each passing test order is correct,
and the failing test order indicates a fault in the test code, not a fault
in the code under test. We do not believe that the scenario where
the failing test order indicates a fault in the code under test actually
occurred in our evaluation, particularly because developers did not
reject our pull requests to fix the order-dependent tests.



iFixFlakies: A Framework for Automatically Fixing Order-Dependent Flaky Tests

ESEC/FSE *19, August 26-30, 2019, Tallinn, Estonia

Table 5: Average time in seconds that iFixFlakies takes; ‘*’ denotes that the time includes finding some test(s) with no cleaner.

Test suite Avg. time to find first Avg. time to find all
ID time polluter | cleaner | state-setter | patch || polluters | cleaners | state-setters | patches
M1 203 92 *523 42 299 113 1,443 1,748 25,424
M2 8 22 52 n/a 294 48 465 n/a 2,473
M3 206 143 178 21 130 389 7,089 39 54,856
M4 1 2 4 n/a 395 2 25 n/a 572
M5 3 19 *104 n/a n/a 19 *104 n/a n/a
Meé 189 218 *5,710 50 416 218 *5,710 50 416
M7 4 13 11 n/a 411 13 159 n/a 14,478
Ms 7 36 16 n/a 714 57 589 n/a 4,960
M9 24 45 *293 n/a 258 45 *1,434 n/a 11,854
M10 22 16 *1,695 n/a n/a 16 *1,695 n/a n/a
M11 2 15 5 n/a 56 15 227 n/a 56
Mi12 17 32 79 n/a 232 109 1,025 n/a 2,617
M13 3 21 *114 19 463 21 *114 186 4,749
Average 35 29 176 37 186 39 592 1,154 9,737

It should be noted that for M13 (wildfly/wildfly), iFixFlakies
actually helps fix victims without cleaners as well! None of the 43
victims had a cleaner. However, they all share the same polluter,
and that polluter is itself the single brittle found. When we apply a
recommended patch for the brittle, not only is the brittle fixed, but
all of the victims are also fixed. This example showcases one of the
complexities of order-dependent tests and how iFixFlakies can even
help fix order-dependent tests that do not have helpers themselves.
We do not count these 43 tests as fixed in our evaluation, because
iFixFlakies fixes these tests indirectly.

5.3 RQ3: Performance

Table 5 shows the time that it takes for iFixFlakies to find polluters,
cleaners, and state-setters, along with the time to create patches.
The table shows for each module the average time (across all order-
dependent tests in the module) that iFixFlakies takes to find/create
(1) the first polluter, cleaner, state-setter, and patch; and (2) all
polluters, cleaners, state-setters, and patches. The time to create
patches assumes that a helper has been found and does not include
the time to find the helper. As a reference for the time taken by
iFixFlakies, the table shows the time to run each module’s test suite.

Effective use of iFixFlakies would only require finding the first
polluter and cleaner (for a victim) or state-setter (for a brittle) so that
iFixFlakies can recommend a patch (Section 5.2). If the victim has
more than one polluter, then the time for the first cleaner is for the
first cleaner of the first polluter. Similarly, the time to the first patch
for such a victim is then the patch created from the first cleaner
for the first polluter. If the victim has no cleaners, the table reports
the time taken by iFixFlakies to search for cleaners for that first
polluter, eventually not finding any; we mark such time with a **’ in
the table. The overall average time to find the first polluter, cleaner,
state-setter, and patch is 29, 176, 37, and 186 seconds, respectively.
Once again, the overall averages are over all order-dependent tests,
not over modules. Likewise, the overall average for running all
tests in a module is “weighted” by the number of tests as well, so
modules with more than one order-dependent test have their test
suite time counted multiple times, once per each order-dependent
test. Compared to this weighted average time to run all the tests,

the time to find the first polluter, cleaner, state-setter, and patch is
about 0.8x, 5.0, 1.0x, and 5.3x the time to run all tests, respectively.

On average, iFixFlakies takes 39, 592, 1,154, and 9,737 seconds
to find/create all polluters, cleaners, state-setters, and patches, re-
spectively; once again, “*’ denotes time that includes searching for
cleaners where there are none. Compared to the time to find/create
just the first corresponding test/patch, the time is 1.3x, 3.4x, 31.2x,
and 52.3x larger. The average time for finding all state-setters is
particularly larger than the time for finding the first state-setter
due to the large number of state-setters in M1 (alibaba/fastjson).
The average time for creating all patches is also particularly larger
due to the large number of helpers (one per patch).

Note that iFixFlakies performance can be improved, e.g., Patcher
could modify the bytecode of the patch code in-memory [23, 35] to
avoid compilation during delta debugging, or could instrument the
code to allow turning statements on or off during delta debugging
similar to metamutants [31, 50]. In general, considering the large
amount of time to create all patches and there being fewer unique
patches than all patches, we do not recommend developers to use
iFixFlakies to create all patches using all helpers for each order-
dependent test; obtaining just a few appears to suffice.

Overall, the average end-to-end time for iFixFlakies to try to
create a patch for an order-dependent test is 287 seconds; the end-
to-end includes the time to find the first helper (including the time
to find the first polluter for victims) and then to create the corre-
sponding patch. This end-to-end time also includes the cases where
an order-dependent test has no cleaner, and iFixFlakies spends time
looking for it. If we split the order-dependent tests between those
with and without helpers, the time to create a patch for an order-
dependent test with a helper is 238 seconds, while the time to fail
to create a patch for one without a helper is 341 seconds.

6 THREATS TO VALIDITY

The results of our study concerning the frequency of victims, brit-
tles, polluters, cleaners, and state-setters may not generalize to
other projects. We attempt to mitigate this threat by using a dataset
of popular and diverse projects from our prior work [33]. We gen-
erated this dataset of order-dependent tests using 13 projects from

553



ESEC/FSE *19, August 26-30, 2019, Tallinn, Estonia

earlier work on flaky tests [17, 45], and 150 Java projects deemed
the most popular on GitHub [5] based on the number of stars that
the projects have. Furthermore, iFixFlakies itself or tools that it
uses (e.g., JavaParser [8]) may have faults that could have affected
our results. We used extensive logging in iFixFlakies, and at least
two authors reviewed iFixFlakies’s code and logs.

The metrics that we use to evaluate the patches that iFixFlakies
creates, e.g., patch size and uniqueness, may not be the most im-
portant metrics for determining the quality of patches. Other im-
portant metrics include the time taken to run the patched-in code.
The patches that iFixFlakies recommends may also not lead the
order-dependent test to pass for test orders other than the failing
test orders that iFixFlakies checks. To mitigate these two threats,
we submitted pull requests for the patches that iFixFlakies recom-
mends. So far, developers have already accepted pull requests for 21
order-dependent tests, and the rest are pending with none rejected.

7 RELATED WORK

Luo et al. [38] reported the first extensive academic study of flaky
tests; they categorized flaky tests by studying historical commits of
fixes for flaky tests and found order-dependent tests to be among
the top three most common categories. Palomba and Zaidman [45]
also studied flaky tests and categorized the ones that they found,
with order-dependent tests claimed to similarly be in the top three
categories. Gao et al. [22] studied flaky GUI tests, and they found
tests that change the configurations for later-run tests, resulting
in GUI order-dependent tests. We recently released a dataset [6] of
flaky tests that we found by rerunning test suites while randomizing
their test orders [33]; almost half of the flaky tests found are order-
dependent tests, and we evaluate iFixFlakies using these tests.

Zhang et al. [56] proposed discovering order-dependent tests
through randomizing the test orders. Huo and Clause [30] studied
tests whose assertions depend on input data not controlled by the
tests themselves. They called these assertions “brittle”, inspiring
our naming of brittles as tests with similar kinds of assertions®.
The difference is that their brittle assertions may fail due to the
tests using wrong input data that they do not control, while our
brittles are tests that always fail when run in isolation (without
a state-setter running before them). Gyori et al. [26] proposed a
technique, PolDet, for detecting tests that change shared state so the
state at the end of their run differs from the state at the start of their
run. They call these tests “polluters”, and our polluters are similar
in nature. The difference is that their polluters may pollute the
state so other tests (potentially future ones) fail, while our polluters
always pollute the state for some existing victims. Bell et al. [16]
proposed a technique, ElectricTest, to detect data dependencies
between existing tests in a test suite, and Gambi et al. [20] followed
up on ElectricTest with PraDet, which detects when dependencies
between tests can actually lead to tests failing in different orders.
In this paper, instead of detecting order-dependent tests, our goal
is to automatically fix order-dependent tests.

Bell and Kaiser [15] proposed VMVM, a technique to tolerate
order-dependent tests by restoring the state of the heap between
test runs. VMVM adds instrumentation that re-initializes static

4The term “brittle” or “fragile” test was also used to describe GUI tests that fail due to
changes in the interface [29, 48, 53].

554

August Shi, Wing Lam, Reed Oei, Tao Xie, and Darko Marinov

fields shared between tests to isolate tests from one another with
regards to their heap state when run in the same JVM. Muslu et
al. [43] proposed an even more extreme technique for isolation in
that each test should not only run in a separate JVM but also in
a fresh environment, e.g., a fresh file system. Bell et al. [17] also
evaluated how various forms of isolation can help in test reruns to
detect which test failures are due to flaky tests. However, all forms
of isolation add extra overhead on top of executing tests. In this
paper, we use code from helpers that are already in the test suite to
(re)set the state for order-dependent tests to pass even when not
run in isolation but together with the other tests.

Automatic patch generation is a well-studied topic [34, 36, 37,
39, 42, 44, 51, 52]. The goal is to automatically patch faults in the
code, exposed by failing tests. These techniques generate patches
using a variety of mechanisms such as systematically mutating
code, learning from example patches, and symbolic execution. To
validate the success of the patches, most of the techniques rely on
the outcomes of tests. In this paper, we aim to patch tests as opposed
to the code under test. We create these patches by searching for
helpers among the existing tests, which have code that can be used
to make order-dependent tests pass in their respective failing test
orders. Daniel et al. [18, 19], Mirzaaghaei et al. [41], and Yang et
al. [54] also fixed test code, while Gao et al. [21] and Stocco et
al. [47] fixed test scripts for GUIL However, they all fixed tests that
become broken due to code evolution, not flaky tests.

8 CONCLUSION

Flaky tests provide misleading signals to developers during re-
gression testing. Prior work has found order-dependent tests to
be among the top three common kinds of flaky tests. We present
iFixFlakies, a framework for automated fixing of order-dependent
tests. Our main insight for iFixFlakies is that test suites already
have helper tests whose code can help fix order-dependent tests.
iFixFlakies searches for helpers and uses their code to propose rel-
atively small patches for order-dependent tests. Our evaluation
on 110 order-dependent tests from a public dataset shows that
iFixFlakies can automatically recommend patches for 58 of 110
tests. The recommended patches are effective, with 69.5% of them
having just one statement. Also, iFixFlakies is efficient, requiring
only 238 seconds on average to produce the first patch for an order-
dependent test with a helper. The effectiveness and efficiency of
iFixFlakies show promise that it may be integrated into a practical
software development process. We used patches recommended by
iFixFlakies to open pull requests for 56 order-dependent tests (2 of
the 58 had already been fixed); developers have already accepted
pull requests for 21 tests, and the remaining ones are pending.

ACKNOWLEDGMENTS

We thank Angello Astorga, Owolabi Legunsen, and Lingming Zhang
for discussions about flaky tests and their comments on this pa-
per. This work was partially supported by NSF grant nos. CCF-
1421503, CNS-1513939, CNS-1564274, CNS-1646305, CNS-1740916,
CCF-1763788, CCF-1816615, and OAC-1839010. We acknowledge
support for research on flaky tests and test quality from Facebook,
Futurewei, Google, and Microsoft.



iFixFlakies: A Framework for Automatically Fixing Order-Dependent Flaky Tests

REFERENCES

[15]

[16]

[17]

[18

[19]

[20

[21]

[22]

[23]

™
=t

[25]

[26]

[27]

[32]

2012. JUnit and Java 7. http://intellijava.blogspot.com/2012/05/junit-and-java-
7.html.

2013. JUnit test method ordering. http://www.java-allandsundry.com/2013/01/.
2013. Maintaining the order of JUnit3 tests with JDK 1.7. https://coderanch.com/
t/600985/engineering/Maintaining-order-JUnit-tests- JDK.

2019. Elastic-Job. https://github.com/elasticjob/elastic-job-lite.

2019. GitHub. https://github.com.

2019. iDFlakies: Flaky Test Dataset.
flakytestdataset.

2019. iFixFlakies Framework. https://sites.google.com/view/ifixflakies.

2019. JavaParser. http://javaparser.org/.

2019. JUnit expected annotation. https://junit.org/junit4/javadoc/4.12/org/junit/
Test.html.

2019. Maven. https://maven.apache.org.

2019. WildFly Application Server. https://github.com/wildfly/wildfly.

2019. WildFly Bug Report. https://issues.jboss.org/browse/WFLY-11323.
Miltiadis Allamanis, Earl T. Barr, Christian Bird, and Charles Sutton. 2014. Learn-
ing natural coding conventions. In FSE. Hong Kong, China, 281-293.

Earl T. Barr, Mark Harman, Yue Jia, Alexandru Marginean, and Justyna Petke.
2015. Automated software transplantation. In ISSTA. Baltimore, MD, USA, 257-
269.

Jonathan Bell and Gail Kaiser. 2014. Unit test virtualization with VMVM. In ICSE.
Hyderabad, India, 550-561.

Jonathan Bell, Gail Kaiser, Eric Melski, and Mohan Dattatreya. 2015. Efficient
dependency detection for safe Java test acceleration. In ESEC/FSE. Bergamo, Italy,
770-781.

Jonathan Bell, Owolabi Legunsen, Michael Hilton, Lamyaa Eloussi, Tifany Yung,
and Darko Marinov. 2018. DeFlaker: Automatically detecting flaky tests. In ICSE.
Gothenburg, Sweden, 433-444.

Brett Daniel, Tihomir Gvero, and Darko Marinov. 2010. On test repair using
symbolic execution. In ISSTA. Trento, Italy, 207-218.

Brett Daniel, Vilas Jagannath, Danny Dig, and Darko Marinov. 2009. ReAssert:
Suggesting repairs for broken unit tests. In ASE. Auckland, New Zealand, 433—
444,

Alessio Gambi, Jonathan Bell, and Andreas Zeller. 2018. Practical test dependency
detection. In ICST. Vasteras, Sweden, 1-11.

Zebao Gao, Zhenyu Chen, Yunxiao Zou, and Atif M. Memon. 2016. SITAR: GUI
test script repair. TSE 42, 2 (2016), 170-186.

Zebao Gao, Yalan Liang, Myra B. Cohen, Atif M. Memon, and Zhen Wang. 2015.
Making system user interactive tests repeatable: When and what should we
control?. In ICSE. Florence, Italy, 55-65.

Ali Ghanbari, Samuel Benton, and Lingming Zhang. 2019. Practical program
repair via bytecode mutation. In ISSTA. Beijing, China. to-appear.

Google. 2008. Avoiding Flakey Tests. http://googletesting.blogspot.com/2008/04/
tott-avoiding-flakey-tests.html.

Alex Groce, Amin Alipour, Chaoqiang Zhang, Yang Chen, and John Regehr. 2014.
Cause reduction for quick testing. In ICST. Cleveland, OH, USA, 243-252.

Alex Gyori, August Shi, Farah Hariri, and Darko Marinov. 2015. Reliable testing:
Detecting state-polluting tests to prevent test dependency. In ISSTA. Baltimore,
MD, USA, 223-233.

Mark Harman and Peter O’Hearn. 2018. From start-ups to scale-ups: Opportu-
nities and open problems for static and dynamic program analysis. In SCAM.
Madrid, Spain, 1-23.

Kim Herzig and Nachiappan Nagappan. 2015. Empirically detecting false test
alarms using association rules. In ICSE. Florence, Italy, 39-48.

Clint Hoagland. 2014. Fixing the brittleness problem with GUI tests. https:
//www.stickyminds.com/articles/fixing-brittleness-problem- gui- tests.

Chen Huo and James Clause. 2014. Improving oracle quality by detecting brittle
assertions and unused inputs in tests. In FSE. Hong Kong, 621-631.

René Just. 2014. The Major mutation framework: Efficient and scalable mutation
analysis for Java. In ISSTA. San Jose, CA, USA, 433-436.

Adriaan Labuschagne, Laura Inozemtseva, and Reid Holmes. 2017. Measuring the
cost of regression testing in practice: A study of Java projects using continuous

https://sites.google.com/view/

555

[33

'
=)

@
2

'S
o

[42

[43

[44]

=
i)

[46

[47

(48

[53

[54

[55

o
2

[57

ESEC/FSE *19, August 26-30, 2019, Tallinn, Estonia

integration. In ESEC/FSE. Paderborn, Germany, 821-830.

Wing Lam, Reed Oei, August Shi, Darko Marinov, and Tao Xie. 2019. iDFlakies:
A framework for detecting and partially classifying flaky tests. In ICST. Xi’an,
China, 312-322.

Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley Weimer.
2012. A systematic study of automated program repair: Fixing 55 out of 105 bugs
for $8 each. In ICSE. Ziirich, Switzerland, 3-13.

Xia Li and Lingming Zhang. 2017. Transforming programs and tests in tandem
for fault localization. In OOPSLA. Vancouver, 92:1-92:30.

Fan Long, Peter Amidon, and Martin Rinard. 2017. Automatic inference of code
transforms for patch generation. In ESEC/FSE. Paderborn, Germany, 727-739.
Fan Long and Martin Rinard. 2016. Automatic patch generation by learning

correct code. In POPL. St. Petersburg, Florida, 298-312.
Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko Marinov. 2014. An

empirical analysis of flaky tests. In FSE. Hong Kong, 643-653.

Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2016. Angelix: Scalable
multiline program patch synthesis via symbolic analysis. In ICSE. Austin, TX,
USA, 691-701.

Atif Memon, Zebao Gao, Bao Nguyen, Sanjeev Dhanda, Eric Nickell, Rob Siem-
borski, and John Micco. 2017. Taming Google-scale continuous testing. In ICSE.
Buenos Aires, Argentina, 233-242.

Mehdi Mirzaaghaei, Fabrizio Pastore, and Mauro Pezzé. 2012. Supporting test
suite evolution through test case adaptation. In ICST. Montreal, QC, Canada,
231-240.

Martin Monperrus. 2018. Automatic software repair: A bibliography. ACM
Comput. Surv. 51, 1 (Jan. 2018), 17:1-17:24.

Kivan¢ Muslu, Bilge Soran, and Jochen Wuttke. 2011. Finding bugs by isolating
unit tests. In ESEC/FSE. Szeged, Hungary, 496-499.

Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish Chan-
dra. 2013. SemFix: Program repair via semantic analysis. In ICSE. San Francisco,
CA, USA, 772-781.

Fabio Palomba and Andy Zaidman. 2017. Does refactoring of test smells induce
fixing flaky tests?. In ICSME. Shanghai, China, 1-12.

Danilo Silva, Ricardo Terra, and Marco Tulio Valente. 2014. Recommending
automated extract method refactorings. In ICPC. Hyderabad, India, 146-156.
Andrea Stocco, Rahulkrishna Yandrapally, and Ali Mesbah. 2018. Visual web test
repair. In ESEC/FSE. Lake Buena Vista, FL, USA, 503-514.

Suresh Thummalapenta, Pranavadatta Devaki, Saurabh Sinha, Satish Chandra,
Sivagami Gnanasundaram, Deepa D. Nagaraj, and Sampathkumar Sathishkumar.
2013. Efficient and change-resilient test automation: An industrial case study. In
ICSE. San Francisco, CA, USA, 1002-1011.

Nikolaos Tsantalis and Alexander Chatzigeorgiou. 2009. Identification of move
method refactoring opportunities. TSE 35, 3 (2009), 347-367.

Roland H. Untch, A. Jefferson Offutt, and Mary Jean Harrold. 1993. Mutation
analysis using mutant schemata. In ISSTA. Cambridge, MA, USA, 139-148.

Yi Wei, Yu Pei, Carlo A. Furia, Lucas S. Silva, Stefan Buchholz, Bertrand Meyer,
and Andreas Zeller. 2010. Automated fixing of programs with contracts. In ISSTA.
Trento, Italy, 61-72.

Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest. 2009.
Automatically finding patches using genetic programming. In ICSE. Vancouver,
BC, Canada, 364-374.

Rahulkrishna Yandrapally, Suresh Thummalapenta, Saurabh Sinha, and Satish
Chandra. 2014. Robust test automation using contextual clues. In ISSTA. San Jose,
CA, USA, 304-314.

Guowei Yang, Sarfraz Khurshid, and Miryung Kim. 2012. Specification-based
test repair using a lightweight formal method. In FM. Paris, France, 455-470.
Andreas Zeller and Ralf Hildebrandt. 2002. Simplifying and isolating failure-
inducing input. TSE 28, 2 (2002), 183-200.

Sai Zhang, Darioush Jalali, Jochen Wuttke, Kivan¢ Muslu, Wing Lam, Michael D.
Ernst, and David Notkin. 2014. Empirically revisiting the test independence
assumption. In ISSTA. San Jose, CA, USA, 385-396.

Celal Ziftci and Jim Reardon. 2017. Who broke the build?: Automatically identi-
fying changes that induce test failures in continuous integration at Google scale.
In ICSE. Buenos Aires, Argentina, 113-122.



	Abstract
	1 Introduction
	2 Formalization of Tests
	2.1 Victim
	2.2 Brittle

	3 iFixFlakies
	3.1 Minimizer
	3.2 Patcher

	4 Evaluation Setup
	5 Evaluation
	5.1 RQ1: Characteristics of Tests
	5.2 RQ2: Characteristics of Patches
	5.3 RQ3: Performance

	6 Threats to Validity
	7 Related Work
	8 Conclusion
	References

