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ON THE IDENTIFIABILITY OF DIAGNOSTIC CLASSIFICATION MODELS

GUANHUA FANG®), JINGCHEN LIU AND ZHILIANG YING
COLUMBIA UNIVERSITY

This paper establishes fundamental results for statistical analysis based on diagnostic classification
models (DCMs). The results are developed at a high level of generality and are applicable to essentially
all diagnostic classification models. In particular, we establish identifiability results for various model-
ing parameters, notably item response probabilities, attribute distribution, and Q-matrix-induced partial
information structure. These results are stated under a general setting of latent class models. Through a
nonparametric Bayes approach, we construct an estimator that can be shown to be consistent when the
identifiability conditions are satisfied. Simulation results show that these estimators perform well under
various model settings. We also apply the proposed method to a dataset from the National Epidemiological
Survey on Alcohol and Related Conditions (NESARC).
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1. Introduction

Diagnostic classification models (DCMs) are an important tool for cognitive diagnosis that
has become increasingly recognized in educational assessment, psychiatric evaluation, and many
other disciplines. A cognitive diagnostic test, consisting of a set of items, aims to examine each test
taker’s ability detailing his/her mastry of skills (often called attributes) based on item responses.
For instance, a teacher may wish to find out a student’s skill mastery based on his/her examination
results; in psychiatry, patients are diagnosed based on their answers to diagnostic questions.
There have been a number of DCMs developed: the rule space method (Tatsuoka 1985, 2009),
the reparameterized unified/fusion model (RUM) (DiBello et al. 1995; Hartz 2002; Templin
etal. 2003), the conjunctive (noncompensatory) models including deterministic-input, noisy-and-
gate (DINA) model and noisy-input, deterministic-and-gate (NIDA) model (Junker and Sijtsma
2001, De La Torre and Douglas 2004), the compensatory models including deterministic-input,
noisy-or-gate (DINO) and noisy-input, deterministic-or-gate (NIDO) model (Templin and Henson
20006), the attribute hierarchy method (Leighton et al. 2004). These core DCMs are followed by
a development of more complicated models: the general diagnostic model (GDM) (von Davier
2005), the log-linear cognitive diagnosis model (LCDM) (Rupp and Templin 2008b), and the
generalized DINA (G-DINA) model (De La Torre 2011). Many of the core DCMs are special
cases of GDM, LCDM, and G-DINA, which are more flexible models with fewer parameter
constraints. Generally speaking, a DCM is a restricted latent class model sharing the statistical
nature of relating the latent unobserved characteristics to observed responses. We refer readers
to Rupp et al. (2010) for a comprehensive review of DCMs, additional approaches to cognitive
diagnosis, and detailed discussions of diagnostic evaluation.

In the application of DCMs to real data analysis, the related inference problems are also
being investigated including model parameter estimation (Roussos et al. 2007; Stout 2007), Q-
matrix estimation (Chen et al. 2015a, 2015b; Liu et al. 2012, 2013), hypothesis testing, and model
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diagnosis (Gu et al. 2018). A key issue common to DCMs and more generally to latent variable
models is the model identifiability, which, generally speaking, is a property whether the unknown
model or its parameters can be consistently estimated under a suitably defined asymptotic regime.
It is worthwhile to point out that identifiability is always developed at certain level. For example,
in exploratory factor analysis, the factor loading matrix is identifiable only up to a rotation and a
reflection; in latent class models, the class labels are determined only up to a class permutation.
The specific definition of identifiability will be provided in Sect. 2.2.

The Q-matrix is a key quantity in the specification of DCMs, and it characterizes the item—
attribute relationship and specifies which items measure which attributes. A Q-matrix under
different DCMs may lead to different model structures and distinct functional forms of correct
answering probability, adding a great challenge to the development of unified theory. We consider
a slightly different estimand, that is, the partial information structure implied by the Q-matrix.
Specifically, a single item usually fails to provide information to differentiate all attribute profiles.
People with different profiles may have same ability to answer this item. Therefore, only part of
attribute profiles could be measured by an item. We develop identifiability results for this partial
information structure for each item. Under specific model parameterizations, the Q-matrix can
also be reconstructed based on the estimated partial information structure.

The primary focus of this paper is to ascertain sufficient conditions that ensure the identifica-
tion for DCMs. We aim at developing theories under a general latent class model framework, of
which diagnostic classification models are special cases with special parameterizations and con-
straints. Our results consist of two parts: 1. the identification of parameters for the item response
functions and the attribute population that live on a continuous space and are considered as “reg-
ular” parameters and 2. the identification of item partial information structure.

The results of this paper make use of the fundamental results of Kruskal (1977), which
provide sufficient conditions for the uniqueness decomposition of three-way arrays up to a column
permutations and scalar scaling. We formulate DCMs into the form of three-way arrays and
adapt Kruskal’s sufficient conditions to obtain the unique parameterization and, hence, develop
identifiability results. The main contribution of the present paper is to provide the sufficient
conditions for the identifiability of DCMs with multi-categorical responses and attributes. We
discuss a few pieces of works most relevant to ours. A recent work by Allman et al. (2009), which
is technically close to our work, discusses generic identifiability of general latent class models,
hidden Markov models, and several other models with discrete latent variables. The identifiability
results are generic in the sense that they hold when the parameters do not lie on some measure zero
set. As we will discuss in the sequel, the parameters of DCMs always live on a low-dimensional
manifold that is indeed a measure zero set. Therefore, the results in Allman et al. (2009) cannot
be applied directly for DCMs. In the psychometrics literature, Xu and Zhang (2016, 2018) and
Xu (2017) develop several identifiability results for Q-matrix and other model parameters under
DINA model and more generally restricted latent class models. These analyses focus on binary
response and binary attribute models. Our work takes a different point of view by starting with
general latent class models and considers Q-matrix estimation by using item partial information
structure. We extends the identifiability results for more general DCMs with polytomous responses
and without parameter restrictions. The results are presented under the settings of general latent
class models and DCMs, including many well-known cognitive diagnosis models as special cases.

It is customary to work with a pre-specified Q-matrix; for example, an examination maker
specifies the set of skills associated with each examination question and a psychologist designs a
questionnaire to measure different personalities. However, such a specification is usually very sub-
jective and may not always be precise. Therefore, we develop an exploratory estimation approach
starting from a general latent class model. We adopt a nonparametric Bayes approach by making
use of a Dirichlet allocation method (Dunson and Xing 2009). Specifically, it adopts a prior distri-
bution on the latent class probabilities via the stick-breaking representation that is originated from
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the derivation of the Dirichlet processes. The major advantage of this approach is that the number
of latent classes need not be specified and the infinitely many latent classes are allowed. In the
estimation, we adopt a full Bayesian setting. The posterior distribution is obtained by means of a
Gibbs sampling scheme. An estimator of the partial information structure is constructed based on
a clustering algorithm of the Bayesian estimator. It can be used for recovery of Q-matrix when
additional model information is provided.

The rest is organized as follows. In Sect. 2, we present basic concepts including latent class
models, diagnostic classification models, identifiability, and estimation consistency. In Sect. 3, the
main results are presented including the identifiability of item parameters, attribute distribution,
and the partial information structure. A latent class model with Dirichlet allocation along with
its inference is presented in Sect. 4. Simulation studies and real data analysis are presented in
Sects. 5 and 6, respectively. A concluding remark is given in Sect. 7.

2. Preliminaries

2.1. Latent Class Models and Diagnostic Classification Models

We start with formally introducing latent class models and DCMs as well as their con-
nections. We consider an /-dimensional multivariate categorical response random vector X =
(X Lo x! ). We use subscripts to index independent replications, thatis, X, and X j Here, r indi-
cates respondent and i indicates item. Let X’ be a discrete random variable taking k; possible val-
ues, X € {1, ..., k;}. Their dependence is incorporated into a discrete latent variable/class o tak-
ing values in a discrete set A. In other words, P(X’ = x',i = 1,..., Ila) = [[_, P(X! = x'|a)
which is known as the local independence. Let vy (¢ € A) be the probability mass function of
the latent class membership. We parameterize P(X! = x'|a) as ﬁ(xi |6;, &) where 6; is the
item-specific parameter. Thus, the joint marginal distribution of X can be expressed as

I
P(Xlle,...,XI,le)zz{vanﬁ(xiléi,a)}. 1)
acA i=1
Here, we adopt the following parameterization, A = {(«y,...,a4)|a, € {1,...,d,}}. Under
this representation, each «, is known as an attribute or trait indicating the presence/absence or
level of a-th latent characteristic.

Formulation (1) contains DCMs as special cases where the item response function f; also
admits some low-dimensional structures that distinguish themselves from the general latent class
models. We introduce the Q-matrix, a I x A matrix with 0/1 entries, indicating item—attribute
association. Each row of Q corresponds to an item, and each column corresponds to an attribute.
We write

q1
o=\ 11
qr
where g; = (gi1, ..., qia) and g;, = 1 or 0, indicating whether or not f; depends on «,. Thus,

fix10,a) = fi(x|0,a1,a2) if g; = (1,1), and fi(x]|0,a) = f;(x]0, 1) if g; = (1,0). The
Q-matrix qualitatively describes the relationship between items and attributes. The specific forms
of f; as functions of « are determined by the parametric model subject to the constraints implied
by the Q-matrix and additional item parameters. We provide two examples of parametric DCMs
for readers to easily understand these points.



22 PSYCHOMETRIKA

Example 1. (DINA model, Junker and Sijtsma 2001) The DINA model assumes a conjunctive
(noncompensatory) relationship among attributes with the ith item response function being:

fix]0,a) = (1 — Si)st'utgilféiu' @

where &4 = r[le (ag)lie = I (g > qiq for all a) is the ideal response, that is, whether o has all
the attributes required by item i. Item-specific parameters s; and g; are known as the slipping and
guessing parameters, respectively. Parameter s; represents the probability that the respondents
who have mastered all required attributes incorrectly answer the ith item and g; represents the
probability that the respondents who do not possess at least one of the required attributes correctly
answer the i-th item. If £, = 1 (the subject is capable of solving a problem), then the positive
response probability is 1 — s;; otherwise, the probability is g;. The DINA model is popular in the
educational testing (DeCarlo 2011; De La Torre 2009).

Example 2. (LCDM, Henson et al. 2009) The LCDM allows for complicated relationships
between categorical variables. Many classical DCMs can be parameterized as special cases of
LCDM including DINA, DINO, etc. The item response function takes the following form:

exp(A h(e, qi) + Aio)

fi(x0, @) = ,
l 1 +exp(A] h(e, qi) + Ai0)

where 1, ¢ is the intercept parameter and XiTh(a, qi) = 23:1 il @) (@aqia) + 22:1 D iea
Ai 2, (a,a)(@a%3qiagia) + - - - . More specifically, A; 1, () represents the main effect for Attribute a
and A; » (4.5 18 pairwise interaction effect for Attribute a and Attribute a. Because of its generality,
the LCDM may be used for identifying a suitable DCM by imposing parameter restriction. It can be
seen that the response probability is linked to linear combination of attributes by a logit function.
The linear additive form and hierarchical decomposition of A; allow for a systematic way to
interpret the parameters.

2.2. Identifiability of Model Parameters

We discuss the identifiability for two types of parameters separately: (1) item parameters
and the attribute distribution and (2) item partial information structure and the Q-matrix. Let 6
denote the vector of all item parameters and the attribute distribution. Its identifiability is defined
as follows.

Definition 1. The parameter @ is said to be identifiable if, for any 6’ # 6, the resulting marginal
distributions of the responses X in (1) are distinct.

If 0 is identifiable, then, thanks to the entropy inequality and under very mild conditions, the max-
imum likelihood estimator is consistent (Van der Vaart 1998). In the context of latent class models
and DCMs, the list of parameters includes the item response probabilities and attribute/latent class
distribution.

The Q-matrix is different from the regular item parameters and is usually assumed to be
known. However, the misspecification of the Q-matrix could possibly lead to biased estimations
of model parameters and inaccurate classification of the latent attribute profiles (Rupp and Templin
2008a). Therefore, an objective construction of the O-matrix estimated based on the data is useful
and important. In what follows, we provide some discussions on the estimation of the Q-matrix for
a generic DCM. The problem of Q-matrix estimation can be viewed from different perspectives.
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The most straightforward approach is to treat Q as part of the model parameters and to consider it
as a usual estimation of parametric models. This is often difficult from the computational aspect
in that Q is a discrete matrix living on a high-dimensional space. Even with a reasonably small
number of items and a few attributes, this space is often too large to explore thoroughly by
any existing numerical method as the dimension grows exponentially fast with both 7 and A.
Generally speaking, maximizing likelihood, which is usually a discrete and nonlinear function
over Q € {0, 1}Y*4, is computationally intensive and sometimes infeasible. Estimators developed
based on this idea, even though theoretically sound, often suffer from substantial computational
overhead. A different approach is to cast the Q-matrix estimation in the context of variable
selection. If both the response X! and the latent variable o were observed, then the estimation of
Q is a regular variable selection problem. In most situations, f; takes the form of a generalized
linear model, in which the responses to items are the dependent variables, the attributes play the
role of covariates, and the item parameters 6 are the regression coefficients. Thus, the Q-matrix
estimation is equivalent to a variable selection problem. However, in the context of latent class
models, the covariates a’s are all missing and therefore the task is, rigorously speaking, to select
latent variables. Chen et al. (2015a) took this viewpoint and developed estimation methods for
the Q-matrix via regularized likelihood.

The Q-matrix suggests that a single item usually does not provide information to differentiate
all dimensions of the attribute profile. In particular, g;;, = 0 means that item i is irrelevant
to attribute a. Under the setting of latent class models (not necessarily possessing a specific
parameterization), this corresponds to an item-specific partial information structure. If an item
does not differentiate all dimensions of &, then some distinct attribute profiles may admit the same
response distribution. In other words, there exist &; 7# a7 such that f;(x|0, a1) = fi(x]0, a2)
for all x. In this case, responses to this item of subjects in latent classes & and «, admit the
same probability law. Thus, each item usually provides partial information of the entire attribute
profile. This information structure will be formulated mathematically in the sequel. Each Q-matrix
along with a specific model parameterization (such as the DINA and DINO models) maps to a
item-specific partial information structure. We develop identifiability results and a computation
approach for the partial information structure.

3. On the Identifiability of Diagnostic Classification Models

3.1. Identifiability of Item Parameters and the Attribute Distribution

Our main identifiability results consist of two parts: 1. item parameters and attribute popu-
lation and 2. item partial information structure. These results are presented in the form of four
theorems which are applicable to different situations. We start with the simplest case that the
responses are binary and each item only has two possible response distributions. We provide all
the technical statements of the theorems in Sect. 3.1.1, and the discussions on the conditions and
their implications are given in Sect. 3.1.2.

3.1.1. Main Results  In the following, we use the simplified notation 7;y = P(X' = 1|a),
rrika = P(X' = kla) and w;y = (nila, e, nfoi) @ = 1,...,1) to represent item response
probability (vector) and always assume (vy,) are strictly positive for all &’s. Theorems 1 and 2 are
for general latent class models, and Theorems 3 and 4 are for DCMs with polytomous attributes

and responses.

Theorem 1. We consider a latent class model with C > 2 latent classes. The responses are binary
and take values in {0, 1}. Suppose that there exist three nonoverlap subsets of items denoted by
11, I, and I5 such that
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Al foreachl = 1,2 or 3, the conditional distributions of (Xi 11 € 1)) on classes a1 and
oy are distinct if 0y # a;

A2 foreachi € Iy U I, U I3, the response probabilities (7ijy : o0 = 1, ..., C) take only two
possible values. That is, the cardinality of set {mwiqlot = 1, ..., C} is two for each i.

Then, the item parameters 7o and the latent class population vy are identifiable up to a permu-
tation of the class label.

The identifiability up to a permutation of class label refers to the following fact. Suppose that there
exist a set of item parameters and attribute prior distribution, denoted by frl.ka and vy, yielding
the same marginal distribution as that in (1) with parameters nl.ka and v,. Then, there exists a
one-to-one map on the latent class space, A, such that frikk(a) = nl.ka and V), (q) = Va-

Corollary 1. Consider a DCM for I binary responses with A binary attributes. Suppose that we
can rearrange the columns and rows of Q such that it contains three distinct identity submatrices.
Then, the item response function and the attribute population are identifiable up to a relabeling
of the attributes.

In DCM, there is no relabeling issue once we parameterize each latent class into 0-1 attribute
profile such that each attribute has specific meaning.

Theorem 2. We consider a latent class model with C > 2 classes. The response to item i takes
ki possible values {1, . .., ki}. Suppose that there exist three nonoverlap subsets of items denoted
by I, I, and I3 such that

Bl for eachi € Iy U I U I3, the response vectors (Tjq : &« = 1,..., C) take only two
distinct values, that is to say, the cardinality of vector set {wiqla = 1, ..., C} is two.
_ 1 k 1 k _ ,
B2 foreachl =1,20r3, Tig, +"’+7Tia1 ;énl.az+~~—l—7ria2fors0mek =1,...,k—1
ifay # .

Then, the item parameters 1t ;o and the latent class population vy are identifiable up to a permu-
tation of the class labels.

In order to present results for general DCMs with polytomous attributes and responses, we
first introduce a 7-matrix following Liu et al. (2013). Consider a test with A attributes and /

items. The response to item i takes k; different values {1, ..., k;}, and attribute o, takes d,
possible values {1, ...,d,}. There are k = ]_[iI:1 k; response patterns and C = ]_[3:1 d, latent

classes. We defined the T-matrix as a k x C matrix. Each column of the matrix corresponds to
one attribute profile or one latent class, and each row corresponds to one response pattern. The
particular order of the columns and rows of the 7 -matrix does not affect the results. For technical

convenience, we use o and x = (x!,..., x!) to label its columns and rows, that is, fxy is the
element in row y and column « and txy, = P(X = X|at) = ]_[11= 1 nf‘; Very often, we construct a
T -matrix for a subset of items Iy C {1, ..., I}. We use T}, to denote the corresponding matrix of

the items in Iy and T to denote the matrix to all items.
For illustration, we construct the 7 -matrix for a LCDM with two attributes and two items:

ol 202

e
9 77:2 =
* 1+ ¢2

e
14+e

Ta =

that corresponds to an identity Q-matrix. In this case, the latent attribute o belongs to
{(0,0), (1,0), (0, 1), (1, 1)} and the response X belongs to {(1, 1), (1, 0), (0, 1), (0, 0)}. Accord-
ing to the above item response function, we obtain P(X'= 1|ozl =1)=0.731, P(X! = 1|oc1 =
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0) = 0.269, P(X%2 = 1|a® = 1) = 0.881 and P(X? = 1|a? = 0) = 0.119. Then, the T-matrix
is

©,00 O (1,0 @, D

0.03 0.24 0.09 0.64 (1, 1)
7| 0.24 0.03 0.64 0.09 (1,0)

0.09 0.64 0.03 0.24 0, 1)

0.64 0.09 0.24 0.03 0,0)

We refer to Liu et al. (2012, 2013) for more discussions on the 7 -matrix.

Theorem 3. Consider a DCM of I items and A attributes. Suppose that items can be partitioned
into three nonoverlap subsets 1, I, and I3, that is, L UL U Iz = {1, ..., I} so that Ty, T,, and
Ty, are all of full column rank. Then, the item parameters m ;o and the latent class population v,
are identifiable up to a permutation of the class labels.

Evaluation of column ranks could be computationally intensive. The following theorem pro-
vides easy-to-check conditions.

Theorem 4. Consider a DCM of I items and A multi-category attributes. For each attribute
a = 1,..., A, there exist three nonoverlap subsets of items I\ 4, 124, and I3, satisfying the
following conditions.

C1 The items in I; , are only associated with attribute a; that is, their corresponding row
vector in Q is e,.

C2 Let Ty, , be the corresponding T-matrix of this reduced simple attribute model. The
matrix Ty, , is of full column rank.

Then, the item parameter JTZ-IL and the latent class population parameter vy are identifiable up to
a permutation of the class labels.

3.1.2. Discussion of the Theorems  We provide further discussions on the above theorems.
Assumption A2 is applicable to simple models, such as the DINA and the DINO models. Regarding
Assumption A1, itis necessary for a test to have at least one set of items / thatis able to differentiate
among all latent classes; otherwise, it is always possible to merge some latent classes and reduce
the model to satisfy the condition. Following the idea of repeated measurements (Vonesh and
Chinchilli 1997), Assumption A1 requires three such sets of items. It is often satisfied for many
tests in practice. Corollary 1 of Theorem 1 presents easy-to-check conditions for DCMs. Theorem 2
extends 1 to the polytomous response case.

Theorem 1 is close to Theorem 1 in Xu (2017) where Xu develops results for restricted
latent class model (RLCM) that has binary attributes and binary responses. Xu’s results require
similar but weaker conditions as Condition Al. The difference lies in that Xu’s model requires
that the item response probabilities admit the same partial order as that of the attribute profiles.
Theorems 1 and 3 in our paper are for general latent class models (DCMs) and do not require
partial order structure of the response probabilities. When additional constraints on parameters
are assumed, the sufficient conditions could be reduced accordingly. There are several results
developed for specific models and under various conditions. For instance, Xu and Zhang (2016)
develop results for the DINA model and a follow-up work by Gu and Xu (2018) develops sufficient
and necessary conditions for the parameter identifiability of the DINA model. Their results are
developed by assuming that the Q-matrix is correctly specified in the model estimation. Other
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core DCM model like DINO is mathematically equivalent to DINA model, and the same reduced
sufficient condition will guarantee its identifiability.

In the statements of all four theorems, there is a similar condition that requires three distinct
subsets of items to identify each attribute. This is one of the key sufficient conditions. It can
be relaxed with additional parametric assumptions, for instance, the sufficient and necessary
conditions in Gu and Xu (2018) for the DINA model with a correctly specified Q-matrix. To
gain intuition, we provide identifiable and nonidentifiable examples for the binary attribute case.
A DCM with binary attribute is identifiable if it admits a Q-matrix that contains at least three
identity submatrices, that is,

I

7
1 _ A
Q - IA )

*

where 74 is the A x A identity matrix and “*x” denotes any entry. Such a Q-matrix ensures the
existence of three subsets of items identifying each attributes. If we reduce the number of identity
submatrices to two, for instance,

10
10
2=141 1|

01

we are able to construct two sets of parameters leading to the same response distribution. To
simplify notation, we write a1 = (1, 1), @ = (1,0), @3 = (0,1), and a4 = (0,0) and
Ty, = (MTle.s T2a,» T3a,, Ta.). The first set of parameters is n‘(xll) = (0.7,0.7,1/2,1/2),
x$ = (0.7,0.7,1/6,1/6), m§) = (0.3,03,1/2,1/2), n&) = (0.3,0.3,1/6,1/6), and
v = (1/12,5/12,1/12,5/12). The second set of parameters is w5 = (0.7,0.7,1/3,1/3),
) = (0.7,0.7,1/12,1/12), x§) = (0.3,0.3,1/3,1/3), &) = (0.3,0.3,1/12,1/12), and
v® = (5/18,4/18,5/18,4/18). It is easy to check that these two sets of parameters give the
same response distribution.

The conditions in Theorem 3 are mild, but they are sometimes difficult to verify. This is
due to the fact that the T-matrix is computationally costly to construct. For instance, consider a
subset of 20 items having binary responses and its 7-matrix has 220 — 1,048, 576 rows. Thus,
construction of 7-matrix for reasonably large-scale studies is impossible. Theorem 4 requires
stronger conditions, but they are much easier to check since we only need to consider constructions
of much smaller 7-matrices. In particular, the construction of T}, , often contains very few items
and the matrix only contains d, columns. Generally speaking, we need to include a sufficient
number of items in each /; , so that their responses contain information to differentiate different
latent classes defined by Attribute a. Theorem 4 seemingly requires many single-attribute items,
that is, three distinct sets of items for each attribute. However, it is reasonable. Notice that matrix
Ty, , for the reduced single-attribute model contains d,, columns. In the case of binary attribute, it
is sufficient to include one single-attribute item in each I; ,; see the proof of Theorem 2. In other
words, we only need three single items totally for each attribute in binary attribute model, which
is not that many. Besides, it still remains possibly sufficient to include a single-attribute items in
each 1 , if the response to the item also takes more than two possible values.

The identifiability results in the paper are all subject to a latent class permutation; that is,
the class label cannot be identified based on the data. In practice, the model estimation is usually
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subject to additional constraints. For instance, Xu (2017), Rupp et al. (2010) impose monotonicity
constraints on the item response functions. Under such constraints, the class labels are no longer
exchangeable and furthermore stronger identifiability results can be developed.

3.2. Identifiability of Partial Information Structure

The previous section provides identifiability results of item parameters and the attribute
distribution. We now proceed to the discussion of Q-matrix and partial information structure. The
Q-matrix specifies the relationship between the items and attributes. The specific form of the item
response function depends on the model parameterization. As the aim of this study is to provide
results applicable to general DCMs, we take a slightly different viewpoint and consider the partial
information structure that is a mathematically more general concept than the Q-matrix. Distinct
Q-matrices could lead to the same partial information structure under different DCMs. Studying
the partial information structure allows to perform analysis without specifying the particular
DCM.

To proceed, we start with a description of the item partial information in the context of
a general latent class model. Let « € M = {1,..., C} denote the latent class membership.
The partial information of item i characterizes the latent classes it is capable of differentiating.

Mathematically, we define an item-specific equivalence relation on M, denoted by “=.” For
ap, o €M,

o) =ay if ni"al = nixaz forallx =1,..., k.
It is not hard to verify that “=" is an equivalence relation. We define the quotient set M/ = as

the partial information of item i and use [a]; to denote the corresponding equivalence class that
latent class o belongs to. The map [ - ]; is known as the canonical projection which leads to a
partition of M. Two latent classes are mapped to the same equivalence class, [a1]; = [a2]; if

o] = a7, and in this case, item i does not provide information to differentiate o1 and «.

From the modeling point of view, the Q-matrix along with a particular loading parame-
terization determines the partial information of each item. Consider a particular item i whose
corresponding row vector in Q has the first / entries being one and others being zero. Then, the
conditional response distribution is reduced to

PX' =xla) = P(X' =x'|a!, ..., ab).

Consider two attribute profiles ¢ and a». If their first / components are identical, then [a1]; =
[a2];. The following theorem presents identifiability of the partial information structure, whose
proof is in Appendix.

Theorem 5. Under each set of conditions of Theorems 1, 2, 3, or 4, the partial information of
each item can be consistently estimated up to a permutation of the latent class label. That is,
letting “( - ); ” be the estimated canonical projection of item i, there exists a permutation of latent
class labels A such that

P((Ma))i =[a])) > 1 foralli,

as the sample size R — oo, o € M.
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4. Estimation via a Latent Class Model with Dirichlet Allocation

DCM with a Q-matrix structure can be utilized to facilitate computation; see Chen et al.
(2015a) and Chen et al. (2018). In the absence of such a structure (i.e., general latent class model),
we need to explore alternative approaches to estimating model parameters. In this section, we
develop an estimation method for the partial information structure by making use of the Dirichlet
allocation (Dunson and Xing 2009). We adopt the general setup of the latent class models in
Sect. 2.1. The Dirichlet allocation approach does not require the upper bound on the number of
latent classes which is typically the case of exploratory analysis. Without loss of generality, we
assume that the latent classes are labeled by natural numbers M = {1, 2, ..., }. The marginal
distribution of the responses in (1) becomes

PX' =2l x =D =Y v [ 3)

where m and v are unknown parameters. This is an infinite mixture model, which is overly
parameterized. We adopt a Bayesian model and a proper prior distribution to regularize this
overparameterization. Specifically, we assume the item response probabilities follow a Dirichlet
prior distribution

Tiq = () :x =1,..., ki) ~ Dirichlet(1,...,1). “)

We assume the class probability functions (ve, @ = 1,2, .. .) follow a stick-breaking prior (Sethu-
raman 1994). Specifically,

ve = Vo [ (1 = V), )

I<a

where {V; :i = 1,2, ...} is a sequence of i.i.d. random variables following the Beta distribution
Beta(l, B). It is easy to verify that v, under the above construction is a well-defined probability
mass function. This is known as the stick-breaking representation originated from the Dirichlet
process. We borrow this representation mostly due to its technical convenience for modeling a
discrete distribution. The likelihood function (3) and the prior distributions (4) and (5) completely
specify a Bayesian model.

We adopt this model for several reasons. First, it does not require to specify the number of
latent classes. The stick-breaking representation penalizes the “tail” latent classes. In addition,
the posterior distribution of this model can be obtained through a sliced sampler that is a Gibbs
sampler via a data augmentation scheme without truncating the model to a finite mixture (Walker
2007). The posterior simulation scheme is presented in the supplementary.

Once posterior distribution is obtained, we can calculate the posterior mean as the point
estimator, that is,

(T, 0) = E{(x,v)[Xq, ..., Xg}.

The item-wise partial information structure is estimated by clustering the item response
probabilities. For each item i and latent attribute profile «, let ;4 = (frila, ...,ﬁl.lz) be the
response probability. We treat 7;1, 2, 7;3, ...as (infinitely many) samples, each of which is a k;
dimensional vector, and apply the K -means clustering algorithm to group these samples. Although

there are seemingly infinitely many samples, 7 ;,’s are almost same as the prior mean for large
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«. This is because there will be no respondents assigned to those large « labels in computation
which implies the posterior mean is equal to the prior mean. Finally, we select the largest C such
that

Ay <RV a=C+1,C+2,....

That is, we treat latent classes of very small proportion (O(ﬁ)) as practically nonexistent. In
applying the K-means algorithm, we truncate 7;o, @ = 1, ... into finite samples 7;1, Z;2, ...,

#t;c. Then, the estimated partial information structure is given by o = a3 if io; and 7T, are
in the same cluster.

Notice that different items could have different partial information structures; that is, the
number of clusters may vary from item to item. To determine the number of clusters for each
item, we use the following criterion. We apply K -means method to data points ;1 ... T;c with
number of clusters starting from 2 up to C. We pooled the estimates for each cluster, that is,
Tip = Zaech VaTie/ Zaec,, ve Where Cj, is the set of classes belonging to cluster 7. We then
compute the information criterion IC; (n;) = —2I;(n;) + const x log(R) x n;. Here, l; (n;) is
the log-likelihood computed under (%, ) in which 7 is same as & except that 7; is replaced
by pooled estimates with the number of clusters for i-th item being n;. Then, the optimal ] is
argmin,, IC; (n;).

In the following paragraph, we provide two examples showing how to reconstruct a Q-matrix
based on partial information structure when we have additional information.

Example 3. Suppose we have the following partial information structure results under the setting
of DINA model with 1 — s; > g;.

Item o o) o3 oy
1-2 o o ° °
Partial information = 54 © ® © ¢
5—6 o o o °

Here, we use symbol o and e to denote level 1 (low probability) and level 2 (high probability),
respectively. Therefore, we could parameterize a1 as (0, 0), a2 as (0, 1), #3 as (1,0), a4 as (1, 1)
after ordering of attributes. Then, the Q-matrix can be constructed as follows:

Item o! a?
1-2 1 0
0= 3—4 0 1
5—6 1 1

Example 4. Under the setting of the reduced noncompensatory reparameterized unified model
(reduced NC-RUM, Hartz 2002), the response probability takes form

A
*(1—ay)g;
7Ti¢x — n,i* 1_[ ria( a)qla'
a=1
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7" is the probability of a correct response when all measured attributes have been mastered. 77,
is the item- and attribute-specific penalty for not having attribute a. Parameters 7 and r;, are
between 0 and 1.

Suppose we have the following estimated partial information structure:

Item o o) o3 oy
1-3 o o ° °

Partial information = 4—0 °© ° ° b
° ° T

where symbols o, e and T are used to denote level 1 (lowest probability) to level 3 (highest
probability), respectively. Then, we can also parameterize each latent class and reconstruct the
Q-matrix. That is, after an attribute ordering,

Item ol o?

1-3 1 0

0= 4—6 0 1
7 1 1

To end this section, we point out that the posterior consistency was proved in Theorem 2
of Dunson and Xing (2009), where they showed that the posterior distribution will fall into e-
neighborhood of underlying true distribution in terms of L distance almost surely. Thanks to the
identifiability results, we have the following consistency result:
Theorem 6. Let N (P°) = {P|||P — P°||; < €} denote a Ly neighborhood around an arbitrary
distribution P° and let N.(8°) = {0116 — 6°|1 < €} denote a L neighborhood around an
arbitrary parameter 6. Denote Sy, = {m;| Zi‘zl Jtik =1, 7tik > 0} and Soo = (V|Y_vp =
1,v, > 0}. Let 0* denote true parameter and P* is true response distribution. Assume the
following conditions:

a Q(,)'(./\[E(I?)) > 0 for any € > 0 and nl.o € S, i =1,...,1. Here, Q; is the prior for
;.

b Qy(Ne (vo)) > 0 forany e > 0 and v0 € Sy such that v?l = 0forh > C. Here, Qy is
the prior for v°.

Then, under each set of conditions of Theorems 1, 2, 3, or 4,
PO € O \NOHX)—0 P*—a.s.

for any compact set ®. such that v, = 0 for h > C.

5. Simulation Study

In this section, simulation studies are conducted to assess the performance of the proposed
approach. We consider three models for the data generation: LCDM model, polytomous response
model, and a third model containing nonidentifiable parameters. The results are presented assum-
ing all the model parameters, including Q-matrix, attribute distribution, and item response prob-
abilities, are unknown.
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TABLE 1.
Q-matrix and item parameters of the first simulation setting. For notation simplicity, we omit subscript i in table.

Item Q-matrix Parameters
A
1 1 0 0 0 0 Ay =4r=-2
2 1 0 0 0 0 ALy =4r=-2
3 1 0 0 0 0 Ay =4r=-2
4 0 1 0 0 0 A2 =4 r=-2
5 0 1 0 0 0 A, =41 =-2
6 0 1 0 0 0 A, =41 =-2
7 0 0 1 0 0 A3 =4r=-2
8 0 0 1 0 0 A3 =4 r=-2
9 0 0 1 0 0 rM,3) =4r=-2
10 0 0 0 1 0 Ay =4r=-2
11 0 0 0 1 0 AM,a =4 r=-2
12 0 0 0 1 0 A4 =41 =-2
13 0 0 0 0 1 A5y =4 i =2
14 0 0 0 0 1 A5 =4 Ao =2
15 0 0 0 0 1 A5 =4 rp=-2
16 1 1 0 0 0 )\.1’(1) =2,K1’(2) =2, )‘2,(12) =0,1=-2
17 0 1 1 0 0 ALR) =2,241,3) =2,42,23) =0,20 = -2
18 0 0 1 1 0 M,3) =2, 21,4 =2,22,34) = 0,40 = -2
19 0 0 0 1 1 )»1’(4) =2,K1’(5) :2,)\.2’(45) =0,1=-2
20 1 0 0 0 1 A1) =2, 21,5 = 2,242,115 = 0,20 = =2
5.1. LCDM

We consider a five-binary-attribute LCDM model in the first simulation setting. The Q-matrix
and parameters are listed in Table 1. The following sample sizes are considered, R = 500, 1000,
2000, and 4000. The latent attribute profile is generated as the following mechanisms under two
situations.

1. For each respondent, we generate & = (61, ..., 65) that follows a multivariate normal
distribution N (0, ), where the covariance matrix

1 0.999 0 0 0

0.999 1 0 0 0

Y= 0 0 1 0.999 0

0 0 0.999 1 0

0 0 0 0 1
Then, the latent attribute profile o is given as (o', ..., &) with ok = 16 > 0) for
k = 1,...,5. In this situation, Attributes 1 and 2, Attributes 3 and 4 are strongly

correlated. It means respondents tend to have these attributes pairwisely.
2. For each respondent, we generate 6 = (01, ..., 05) which follows another multivariate
normal distribution N (0, X;), where the covariance matrix



32 PSYCHOMETRIKA

TABLE 2.
RMSE for item parameters under different sample sizes for the LCDM simulation setting.

RMSE for A
Case 1 Case 2

n 500 1000 2000 4000 500 1000 2000 4000
Intercept 0.40 0.38 0.12 0.09 0.23 0.17 0.12 0.08
Main 0.60 0.38 0.17 0.13 0.33 0.23 0.17 0.12
Interaction 0.64 0.48 0.25 0.18 0.47 0.33 0.25 0.17

1 —,0.999 0 0 0

—0.999 1 0 0 0

= 0 0 1 —0.999 0

0 0 —0.999 1 0

0 0 0 0 1
Then, the latent attribute profile « is given as (!, ..., &%) with of = 1(6; > 0) for
k=1,...,5. Attributes 1 and 2, Attributes 3 and 4 have strong negative correlations.
It means the attributes in each pair are not easily obtained by respondents at the same

time.

Under both cases, we can see that there are eight main classes that have large positive class
probabilities among all 2° = 32 possible latent attribute profiles and the others are relatively
close to zero. That is to say, the true underlying model can be viewed as a eight-class model and
it satisfies the identifiability condition of Theorem 1.

We fit the model in Sect. 4. The eight latent classes are successfully identified—the estimated
probabilities of the remaining classes are very small (less than 5e-3). The root-mean-squared
errors (RMSEs) of item parameters are listed in Table 2. The RMSEs decrease to zero as sample
size increases, indicating the consistency of the Bayesian estimator. Moreover, we provide the
attribute classification accuracy in Table 3.

Further, we define C P to be the proportion of items whose partial information structures are
estimated correctly,

_ #Hilla)i = [a]i, 0 € M}
= 7 .

CP (6)

The results of recovering item partial information structures under various sample sizes are listed
in Table 3. In addition, Q-matrix recovery rate is also provided in Table 3 if we assume the LCDM
is a restricted latent class model (Xu 2017). These show that the proposed method can recover
latent structure very well.

5.2. Polytomous Response Model

Now we consider simulation for a polytomous response DCM model with I = 15 items
and A = 3 attributes. There are C = 8 latent classes, &1 = (1,0,0),ay = (0,1,0), a3 =
©0,0,),a4 = (1,1,0),a5 = (1,0,1), 6 = (0,1, 1), x7 = (0,0,0), and g = (1, 1, 1). The
response for each item has three categories. The attributes are generated independently from
Bernoulli(0.5). The Q-matrix and item response probabilities for each class are specified in
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TABLE 3.

33

Table contains the proportion of correct attribute classification and the proportion of items with correctly estimated item
partial information structures and Q-matrix recovery rate under different sample sizes for the first simulation setting.

Attribute classification accuracy

n =500 n = 1000 n = 2000 n = 4000
Case 1 ol 95.8% 95.7% 97.5% 97.6%
o? 95.9% 95.7% 97.5% 97.6%
a3 96.5% 96.5% 97.5% 97.7%
at 96.5% 96.5% 97.5% 97.7%
ad 93.0% 93.4% 93.7% 93.9%
Case 2 ol 98.2% 98.3% 98.3% 98.4%
o? 98.3% 98.3% 98.3% 98.4%
a3 98.4% 98.4% 98.3% 98.4%
at 98.3% 98.4% 98.4% 98.4%
ad 94.0% 93.7% 93.9% 93.9%
Partial information recovery
n =500 n = 1000 n = 2000 n = 4000
Case 1 CP 98.5% 99.1% 99.8% 100%
Q recovery 82% 90% 98% 100%
Case 2 CP 99.2% 99.8% 100% 100%
Q recovery 94% 98% 100% 100%
TABLE 4.
Q-matrix and item parameters of the second simulation setting.
Item Q-matrix Parameters
Probability vectors
1 1 0 0 P1. P2
2 1 0 0 P1. P2
3 1 0 0 P1. P2
4 0 1 0 P1. P2
5 0 1 0 P1, P2
6 0 1 0 P1, P2
7 0 0 1 P1, P2
8 0 0 1 P1, P2
9 0 0 1 P1. P2
10 1 1 0 P1. P2, P3
11 1 1 0 P1. P2, P3
12 1 0 1 P1. P2, P3
13 1 0 1 P1, P2, P3
14 0 1 1 P1. P2, P3
15 0 1 1 P1. P2, P3

Here, p; = (0.8,0.1,0.1), pp = (0.1,0.1, 0.8), and p3 = (0.4, 0.3, 0.3). If the subject has all required
attributes of that item, then the response follows py. If the subject has none of the required attributes of that
item, then the response follows p;. If the subject possesses partial required attribute of that item, then the
response follows p3.

Table 4. This model setup satisfies the identifiability condition of Theorem 4. We consider sample
sizes R = 500, 1000, 2000 and 4000.
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TABLE 5.
RMSE of item response probability, correct proportion of attribute classification and proportions of items with correctly
estimated item partial information structures under different sample sizes for the second simulation setting.

RMSE of py, p2 and p3

Item n =500 n = 1000 n = 2000 n = 4000
P1 Se—2 3e—2 2e—2 2e—2
P2 6e—2 4e—2 2e—2 2e—2
P3 Te—2 Se—2 3e—2 2e—2
Attribute classification accuracy

n = 500 n = 1000 n = 2000 n = 4000
ol 94.9% 97.0% 97.3% 97.4%
o? 94.7% 97.2% 97.3% 97.4%
o3 94.8% 97.0% 97.3% 97.4%

Partial information structure recovery

n = 500 n = 1000 n = 2000 n = 4000

Cp 96.9% 98.3% 99.8% 100%

We fit the model in Sect. 4 which turns out to identify all latent classes well, and the estimated
probabilities beyond the eight largest classes are very small (below 5e-3). The RMSEs of response
probabilities are listed in Table 5. The RMSEs decrease as sample size goes large. It indicates that
the proposed estimator is consistent in this setting. Table 5 also provides attribute classification
accuracy and item partial information structure recovery results.

5.3. A Nonidentifiable Example

In the third simulation setting, we consider a binary attribute DCM which does not satisfy the
identifiability condition. Specifically, we let I = 6 and A = 2. The first three items measure the
first attribute. The fourth item measures the second. The last two items measure both attributes. The
specific item parameters and parameterization of latent classes are given in Table 6, and latent class
probabilities for four classes are setas v = (1/12,5/12,1/12,5/12). Then, we cannot find three
sets of items to meet the conditions of Theorem 3. Moreover, it can be checked that there exists
the infinite number of sets of parameters leading to the same marginal distribution. For example,
we can replace 0.5 and 1/6 by p, and pj, respectively, in Table 6 and set v to be (w/2, (1 —

_ _ _pH2 _ _ _1H2
w)/2, w/2, (1 — w)/2) as long as p, = 2=y wd-wd@=b) ), _ bUZwtywdZn@=h) 4ng

w
(d—b%/d <w < (1 —0b)2/d—b*>+ (1 —b)?) withb =2/9,d = 7/108.

We still let sample size vary from 500 to 4000 and generate datasets for 50 replications from
the above setting. We observe that none of these estimates is close to the true parameters. The
RMSEs of parameters are provided in Table 7. We can see the errors do not decrease even if
sample size increases. This suggests the current setting is nonidentifiable.

6. Real Data Analysis

‘We apply the proposed method to a subset of the National Epidemiological Survey on Alcohol
and Related Conditions (NESARC) (Grant et al. 2003). We extract the subset of items concerning
social phobia. There are in total 13 diagnostic questions of binary responses presented in Table 8.
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This subset contains 728 white male respondents aged from 25 through 50. These 13 questions
are designed according to the Diagnostic and Statistical Manual of Mental Disorders, Fourth
Edition (American Psychiatric Association, 1994). We fit the latent Dirichlet allocation model and
estimate the partial information structure via the procedure in Sect. 4. The results are summarized
as follows.

To obtain meaningful and stable estimates, we consider large latent classes whose probabilities

are over —— ~ 3.7%. According to the fitted model, there are five such latent classes. The

V728
estimated posterior probability of each class is v = 0.37, v = 0.18, v3 = 0.14, v4 = 0.12, and

TABLE 6.
Q-matrix and item parameters of the third simulation setting. The parameterization for latent class is set as: o] = (1, 1),
a2 = (1,0), 23 = (0, 1) and a4 = (0, 0).

Item Q-matrix Probability for each latent class

1-3 1 0 p(¥ =1l =1)=0.88 p(¥ =1l =0)=0.12

4 0 1 p¥=1l2=1)=05 p¥ =1a?2=0)=1/6

5 1 1 p¥ =1la! =0,62=0)=1/6 p¥ =1la! =1,02=0)=0.88
p(¥ =1le! =0,02=1)=05 p¥ =1lla! =1,02 =1)=0.88

6 1 1 p(¥ =1a' =0,62=0)=0.12 p¥ =1la! =1,02=0)=1/6

p(¥ =1l =0,62=1)=0.12 p¥ =1lal =1,a2=1)=05

TABLE 7.
Table provides RMSEs of p; and p; under various sample sizes in Simulation 3.

RMSE:s in simulation 3
n =500 n = 1000 n = 2000 n = 4000
Pl 0.07 0.06 0.06 0.07
D2 0.17 0.25 0.27 0.28

Here, parameters p; and pp denote p(Ys = 1|oz1 =0,a2=0), p(Ys = l|0!1 =0,a2=1), respectively
TABLE 8.
Content of 13 items for the social anxiety disorder data.

ID Have you ever had a strong fear or avoidance of
1 Speaking in front of other people?

2 Taking part or speaking in class?

3 Taking part or speaking at a meeting?

4 Performing in front of other people?

5 Being interviewed?

6 Writing when someone watches?

7 Taking an important exam?

8 Speaking to an authority figure?

9 Eating or drinking in front of other people?

10 Having conversations with people you don’t know well?
11 Going to parties and social gatherings?

12 Dating?

13 Being in a small group situation?
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TABLE 9.
Estimated probability matrix based on latent Dirichlet allocation model for the social anxiety disorder data. Each row
corresponding to the item response probability for each class.

Item o o) o3 oy o5
1 0.92 0.23 0.98 0.90 0.95
2 0.76 0.07 0.97 0.92 0.73
3 0.54 0.02 0.96 0.79 0.62
4 0.56 0.11 0.95 0.82 0.81
5 0.14 0.02 0.71 0.71 0.37
6 0.06 0.06 0.41 0.22 0.10
7 0.18 0.12 0.76 0.69 0.43
8 0.18 0.05 0.77 0.58 0.47
9 0.01 0.02 0.41 0.03 0.08
10 0.17 0.11 0.98 0.42 0.85
11 0.07 0.13 0.90 0.26 0.85
12 0.07 0.03 0.62 0.34 0.39
13 0.01 0.01 0.45 0.08 0.13
TABLE 10.

Estimated cluster matrix based on estimated posterior probability matrix by using k-means method.
Item (1,0,0) (0,0,0) (1,1,1) (1,1,0) (1,0,1) Q-matrix
1 ° o ° ° ° 1 0 0
2 ° o t T ° 1 1 0
3 ° o T T ° 1 1 0
4 ° o T T T 1 1 1
5 o o ° ° o 0 1 0
6 ) o ° ° o 0 1 0
7 o o ° ° o 0 1 0
8 o o ° ° ° 0 1 1
9 o o ° o o 1 1 1
10 ) o ° o ° 0 0 1
11 o o ° o ° 0 0 1
12 o o ° ° ° 0 1 1
13 o o + ° ° 0 1 1

Here, we use symbols o, e, and | to represent levels 1, 2, and 3, respectively. Level 1 represents the lowest
probability level, and level 3 represents the highest probability level. The estimated Q-matrix based on the
three-dimensional LCDM model is in the last three columns.

vs = 0.11. They add up to 92% of the population. The estimated item response probabilities are
presented in Table 9.

We apply the K-means method to the item response probabilities of each item to select the
number of clusters. The partial information is then obtained via this cluster analysis. The results
are summarized in Table 10. We can see that 13 items may be divided into three groups according
to their functioning. Items 1-4 can differentiate between Classes 1, 3, 4, 5 and Class 2. Items 5-8
differentiate Classes 1, 2 and Classes 3,4. Items 9, 10, 11, 13 differentiate Class 3 and Classes 1,
2, 4. Furthermore, we can see that Items 2, 3, 4, 13 differentiate multiple groups, indicating that
these items are more informative.
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TABLE 11.
Table of parameters for the three-dimensional LCDM model for the social anxiety disorder data.

Item Estimated parameters (SD)

1 Ao : —1.18(0.28) Ay ) : 3.80(0.35)

2 Aot —2.64(0.54) Ay :3.76(0.57) Ay :1.72(0.43)

3 Ao —3.95(1.38)  Ar1):4.17(1.40) Ay (2 : 1.80(0.35)

4 ro: —2.10 (031) )\,]Y(l) 12.33 (035) )\.]'(2) 1 1.65 (056) }\17(3) 1 1.65 (048) )u2'(2‘3) 1 —1.65 (088)
5 Aot =176 (0.17) Ay, : 2.65(0.28)

6 Ao 0 —2.57(0.17) Ay 2) : 1.82(0.28)

7 )»() :—1.35 (013) )\.],(2) 12.32 (026)

8 Aot —1.87(0.17) Ay, :2.36(0.38)  Ay,3):2.36(0.38) Az (2,3) : —2.36 (0.60)

9 p:—3.70(0.36) A3(1.23) :3.30(0.43)
10 Ap:—1.41(0.14) A;):3.87(0.57)
11 Ao 1 —2.00(0.16)  Aq,3):3.97 (0.44)
12 Ap:—277(024) An) :2.61(043) A3 :2.61(041) Ay : —2.61(0.62)
13 )»() . —4.87 (054) )\.],(2) :2.70 (080) }\.1,(3) :2.70 (075) )»2,(2,3) 1 —0.74 (100)

We further construct a parameterization of the item response function based on the estimated
partial information structure through using LCDM with K = 3 attributes. The estimated partial
information structure indicates that we could parameterize each class when the number of attributes
equals three, specifically, «; = (1,0,0), 2z = (0,0,0), 3 = (1,1, 1), @4 = (1,1,0), and
as = (1,0, 1). Then, an estimated Q-matrix and item parameters under this parameterization are
provided in Tables 10 and 11, respectively. The identifiability conditions of Theorem 3 hold. In
particular, for C = 5, we identify I} = (1,5,9), L = (2,6, 10), Iz = (3,7, 11) and their T-
matrices are of full rank. We also perform a model goodness-of-fit test and consider the maximized
log-likelihood as the test statistic that has a p value equal to 0.432. It suggests that the model fits
the data reasonably well.

By comparing the results from Iza et al. (2014), Attribute 1 appears to be associated with
“public performance," Attribute 2 with “close scrutiny," and Attribute 3 with “interaction". Further,
we calculate the attribute mastery proportions. There are around 79% of people who have the first
attribute. Around 28% of people who have the second attribute. About 27% of people who possess
the third attribute. Based on latent class parameterization, we can see that most people are afraid of
public performances. People who are fear of close scrutiny or interaction also suffer from public
performance, which indicates the evidence of hierarchical structure of these three attributes.

Table 9 presents posterior mean of the response probability for each item under each class.
Based on the loadings in this table, we may interpret these latent classes as follows. Class 1 has
high response probabilities of items 1—4. This shows that it possesses Attribute 1 only, i.e., those
people in this class are afraid of public performance, but not close scrutiny and interaction. Class
2 is loosely associated with all items without any strong signals, indicating it may be connected
to none of attributes. Class 3 is strongly associated with all items. Hence, people from Class 3 are
likely to possess 3 attributes. In other words, Class 3 corresponds to, using a technical term, the
generalized social anxiety disorder subtype (“fears most social situations”). Class 4 is strongly
associated with items 1—4 which are related to public performance and items 5—8 which are related
to close scrutiny. Thus, this group is characterized by strong fear of public performance and close
scrutiny. Finally, Class 5 has relatively high response probabilities of items 1-4 and 9-13 and
relatively low response probability of items 5-8, which means that this class is more likely related
to Attributes 1 and 3. In other words, people from Class 5 may have “fears” of public performance
and interaction with other people.
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7. Discussion

This paper concerns identifiability issues of DCMs. Model identifiability is a fundamental
question that ensures the feasibility of parameter estimation and subsequent statistical inference.
It is also a long-standing question for latent variable models mostly due to the fact that some vari-
ables are not directly observed. In this paper, we establish identifiability results for DCM via four
theorems that cover various model settings including binary response, multi-categorical response,
and multi-category attribute. We provide both general results and easy-to-check conditions that
are applicable to a large class of DCMs including well-known core models, DINA, DINO, LCDM,
etc. Following the model parameter identifiability, we also discuss the partial information struc-
ture implied by the Q-matrix that is another key quantity in the model specification. We show
that item partial information structure can be consistently estimated if the model parameters are
identifiable. We also provide some examples showing the reconstruction of Q-matrix based on
partial information structure when additional information about model is available.

To apply the theories under a specific model framework, we consider a latent class model
with infinitely many latent classes regularized by a Dirichlet process prior and use slice Gibbs
sampler to get nonparametric Bayesian estimates for item parameters. Further, we propose an
estimator of the partial information structure via the K-means method applied to the estimated
item response probabilities.

Simulation results show the proposed method performs well under a variety of settings and
consistently recovers model parameters with reasonable sample sizes. We also show via simu-
lations that the model may not be consistently identified if some of the conditions are violated.
Real data analysis is also provided as an illustration. In this analysis, we start with an exploratory
analysis via the infinite mixture model and reconstructed the partial information structure largely
matching the understanding of the items.

Many works (De La Torre 2011; Xu and Zhang 2016; Chiu et al. 2009) deployed special DCMs
like DINA or reduced NC-RUM for fitting data under a known Q-matrix as a priori information.
However, it suffers the problem that mis-specification of Q-matrix may lead to errors in parameter
estimation and attribute classification. In addition, directly fitting a simple DCM may lead to bad
interpretations. In contrast, our work is featured by exploratory analysis starting from general
latent class model and does not require a pre-specification of the number of latent classes, which
avoids the number of classes strictly being 2. Therefore, the results could be interpreted at a very
general level. Moreover, the induced partial information structure is data driven, which provides a
benchmark for examining the differentiability of each item. This helps test developers to re-check
the expert-specified Q-matrix. Hence, a systematic tool based on the current method for checking
Q-matrix could be developed in the future.

Supplementary Material

Supplementary Material is available online, including the technical proofs for Theorem 1-6 and
details of computation procedure.
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