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ABSTRACT  

Since of its introduction in 1980s, laser speckle imaging has become a powerful tool in flow 
imaging. Its high performance and low cost made it one of the preferable imaging methods. 
Initially, speckle contrast measurements were the main algorithm for analyzing laser speckle 
images in biological flows. Speckle contrast measurements, also referred as Laser Speckle 
Contrast Imaging (LSCI), uses statistical properties of speckle patterns to create mapped image 
of the blood vessels. In this communication, a new method named Laser Speckle Optical Flow 
Imaging (LSOFI) is introduced. This method uses the optical flow algorithms to calculate the 
apparent motion of laser speckle patterns. The differences in the apparent motion of speckle 
patterns are used to identify the blood vessels from surrounding tissue. LSOFI has better spatial 
and temporal resolution compared to LSCI. This higher spatial resolution enables LSOFI to be used 
for autonomous blood vessels detection. Furthermore, Graphics Processing Unit (GPU) based 
LSOFI can be used for quasi real time imaging.  
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1. INTRODUCTION  

Because of the importance of accurate blood flow visualization, various techniques for flow 
imaging have been proposed in medical fields such as ophthalmology, dermatology, endoscopy, 
and internal medicine (Stern et al., 1979). Some of these techniques are non -invasive and include 
methods such as Orthogonal Polarization Spectral (OPS) imaging (Groner et al., 1999), side 
Stream Dark Field (SDF) imaging (Goedhart et al., 2007), Laser Doppler Perfusion Imaging (LDPI) 
(Wardell et al., 1993)and laser speckle methods(Basak et al., 2016), such as Laser Speckle 
Contrast Imaging (LSCI). Among all these methods, LSCI is gaining interest because of its simplicity 
and ease of use.  

Laser speckle effect occurs when a coherent light, such as a laser beam, illuminates a rough 
diffuse surface, thereby producing random interference effects. This effect is visualized by a 
granular pattern consisting of dark and bright spots (Rigden and Gordon, 1962). When the 
speckle pattern is generated on a moving object such as blood vessels, the blood flow causes 
fluctuations in the speckle pattern on the detector. In fluid mechanics, the phenomenon where 
an optical wave propagating through a medium experience irradiance (intensity) fluctuations, is 
referred to as optical turbulence. In LSCI, blood flow causes blurriness of image pixels, which 



leads to scintillation of the intensity. Here we define scintillation index as: 

𝑆 =
< 𝐼2 > −< 𝐼 >2

< 𝐼 >2
 (1) 

where 𝐼 denotes intensity of the optical wave, and < > denotes ensembled average or a long 
time average. Over the years various algorithms and methods have been developed to calculate 
both temporal and spatial fluctuations of speckle patterns (Draijer et al., 2009; Vaz et al., 2016). 
These methods measure the blurriness of image pixels, which is generally centered around 
speckle contrast defined as: 

𝜅 =
𝜎

< 𝐼 >
=

√< 𝐼2 > −< 𝐼 >2

< 𝐼 >
 (2) 

Obviously, the speckle contrast, 𝜅, is the same as the square root of the scintillation index defined 
in equation 1. When there is little or no movement in the speckle patterns, “fully developed” 
patterns will cause the speckle contrast (equation 2) to be equal to unity (Goodman, 1975). When 
there is movement in the object, the speckle pattern blurs, and the standard deviation of the 
intensity will be smaller than the mean intensity, thereby reducing speckle contrast. Assuming 
that the motion of the scattering areas of the flow is random and these random motions will 
decorrelate in time, the speckle contrast could be correlated to blood flow velocity. The speckle 
contrast is furthermore related to normalized electric field autocorrelation function 𝑔1(𝑟, 𝜏) 
(Bandyopadhyay et al., 2005) as 
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2β

T
∫ |𝑔1|
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𝜏

𝑇
) 𝑑𝜏

𝑇

0
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where 𝛽 is a constant which account for different optical modes in measurement. Here 𝜏 is time 
and 𝑇 is the averaging period. Typically, 𝑔1 is hard to measure and therefore the intensity 
correlation function 𝑔2(𝜏) is measured instead. Functions 𝑔2(𝜏) and 𝑔1(𝜏) are correlated 
through Siegert relation (Bandyopadhyay et al., 2005) as 𝑔2(𝜏) = 1 + β|𝑔1|

2. Fercher and Briers 
(1981) assumed that 𝛽 = 1 and the measured intensity of speckles is integrated over time. Doing 
so, they came up with the first speckle model described as  

𝜅 = √
𝜏𝑐

2𝑇
(1 − exp (−

2𝑇

𝜏𝑐
)) (4) 

where 𝜏𝑐 is the decorrelation time and is linked to decorrelation velocity 𝑣𝑐  defined as 

𝑣𝑐 =
𝜆

2𝜋𝜏𝑐
 (5) 

where 𝜆 is the laser wavelength. Equation 4 is one of the early attempts to correlate the speckle 
decorrelation time to speckle contrast 𝜅. The speckle contrast, 𝜅, can be used to create a mapped 
image. In this image values of speckle contrast, 𝜅, are different for the blood flow and 
surrounding tissue. This difference enables identifying the blood vessels in the image. Equation 
4 has been evolving over the years. The developments have been in various methods for 
measurement of 𝜅 and decorrelation time 𝜏𝑐 (Basak et al., 2012; Draijer et al., 2009). The newer 



methodologies take into account various aspects of laser speckle patterns such as the presence 
of static layer on top of the blood vessels (Parthasarathy et al., 2008). Theoretical efforts were 
established to quantify the impact of speckle size and sampling windows on the statistics of laser 
speckle (Duncan et al., 2008b; Kirkpatrick et al., 2008). Moreover, studies have been done to 
improve laser speckle imaging algorithms. These improvements enable real-time blood flow 
visualization (Ansari et al., 2017, 2016a, 2016b; Humeau-Heurtier et al., 2015; Liu et al., 2008; 
Tom et al., 2008). 

Since the normalized electric field autocorrelation function 𝑔1(𝜏) is related to the mean square 
displacement < |Δ𝑟2| > of the speckle patterns (Parthasarathy et al., 2008); it can be assumed 
that in the blood vessels, < |Δ𝑟2| > is caused by the flow. Therefore, instead of using statistical 
behavior of laser speckle patterns, a physics based model of the blood flow can be deployed for 
flow visualization. In the most general form, Cauchy momentum equation can be used to describe 
the blood flow. However, since in many physiological conditions blood is assumed to be a 
Newtonian fluid (Zamir, 2016a), The Navier-Stokes equation can be used to describe the motion 
of the flow. The blood flow is considered pulsatile viscous flow. Assuming vessels as rigid tubes, 
simplified Navier-Stokes can be solved in different forms (Womersley, 1955; Zamir, 2016b) 
including: 
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where 𝑢(𝑟, 𝑡)is the radial component of the flow, 𝑊 = 𝑅 ∙ √𝜌𝜔/𝜇 is non-dimensional frequency 

parameter also known as the Womersley number. The angular frequency is represented by 𝜔. 
Viscosity and density of the fluid is represented by 𝜇 and 𝜌. The radius of the vessel is 𝑅, the 
pressure gradient magnitude is 𝑃𝑠. Bessel function of first kind and order zero is shown as 𝐽0, and 
𝑖 represents the imaginary unit. 

However, the blood vessels are not rigid and the Navier-Stokes equation can be solved for 
pulsatile flow in an elastic tube to give (Morgan and Kiely, 1954; Womersley, 1955; Zamir, 2016b): 
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Here 𝑐 is the wave speed and G is a group parameter function of Poisson’s ratio, Young’s modulus, 
diameter of tube and wall thickness of the tube. Although in some physiological conditions the 
assumption of Newtonian fluid is not valid; the blood flow is still governed by the Cauchy 
momentum equation. 

In fluid mechanics, optical methods of flow visualization such as Particle Image Velocimetry, Laser 
Speckle Velocimetry and Background Oriented Schlieren are used to obtain better understanding 
of the flow field. These methodologies are based on comparing two snapshots of the flow field 
in different times. For example, in laser speckle velocimetry, two snapshots of the speckle 
patterns are taken, rather than using a single blurred image, and the displacement vectors of the 



speckle pattern between the two frames are calculated. Finding displacement vectors from a pair 
of images is commonly referred as optical flow estimation which could be defined as the apparent 
motion of 2D projection of images between time steps. Cross-correlation methods are the most 
common methods used in computing displacement between a pair of images. In cross-correlation 
the whole image is divided into small windows for analysis over which the velocity can be 
assumed to be constant. Cross-correlation is a conventional method that is used in various 
applications including particle image velocimetry and laser speckle velocimetry (Dabiri, 2006). 
However, cross-correlation algorithms cause the analysis of speckle patterns to become much 
more complicated compared to speckle contrast techniques, in which speckle contrast is 
measured over a single image. Moreover, cross-correlation methods reduce the spatial 
resolution of the image as well. Because of these disadvantages, speckle contrast imaging has 
been more popular. With the recent developments in the computer vision especially in fields of 
optical flow estimation over the past two decades, more advanced and more accurate method 
has been developed. Atcheson et al. (2009) compared optical flow algorithms with cross-
correlation algorithm using a synthetic dataset of noise backgrounds. They found that optical 
flow algorithms significantly increase the resolution of displacement calculations.  

In this communication, a fluid mechanic approach is taken to visualize blood flow. Thus, different 
physical behavior of the blood flow, such as the pulsatile behavior as shown in equations 6 and 
7, is used to visualize the blood flow. This was achieved by calculating apparent displacement of 
laser speckle patterns. As discussed earlier, when calculating displacement between a pair of 
images, optical flow algorithms have better resolution. Hence, optical flow algorithms were 
deployed to calculate the apparent displacement of image pixels. The differences in optical 
displacement were used to map the blood vessels. This methodology, hereafter referred to as 
the Laser Speckle Optical Flow Imaging (LSOFI), is similar to the laser speckle velocimetry and 
background oriented schlieren. In the next section the optical flow algorithms are reviewed in 
sufficient details followed by the section on the image acquisition. Sample results are given in 
section 4 followed by conclusions in section 5. 

2. OPTICAL FLOW ALGORITHMS 

The early concept of optical flow algorithms arises from James J. Gibson’s (1966) work on visual 
stimulus provided to animals. Having two images 𝐼(𝑥, 𝑦, 𝑡0) and 𝐼(𝑥, 𝑦, 𝑡1) optical flow is defined 
as the 2D vector field describing the apparent motion of each pixel. The apparent motion 
computation is based on the assumption of brightness conservation, which states that the pixel 
intensity of the same physical point is identical in both images,  

𝐼(𝑥, 𝑦, 𝑡) = 𝐼(𝑥 + 𝛿𝑥, 𝑦 + 𝛿𝑦, 𝑡 + 𝛿𝑡) (8) 

As previously mentioned, when the speckle pattern is generated blood vessels, the flow causes 
fluctuations, which cause the intensity of the corresponding pixel in the image to change. Based 
on the assumption of brightness conservation (equation 8), the change of such intensities in a 
pair of images leads to an apparent motion of pixels. Conservation of brightness principal could 
be restated such as if a pixel in the picture frame is selected and the pixel is followed between 
the pair of images, the intensity of the pixel does not change. The material derivative can be used 
to describe the brightness conservation, caused by the flow, as: 
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Equation 9 states that the apparent motion of pixel is dependent on both spatial and temporal 
gradient of pixel intensities. For each pixel in equation 9, there are two unknowns 𝑢 and 𝑣. 
Therefore, solving equation 9 requires additional constraints, which are discussed next.  

2.1. Horn-Schunck method  

In order to solve equation 9, Horn-Schunck (1980) introduced another set of constraint known as 
the smoothness constraint. Based on Horn-Schunck’s approach, for slow movements, the 
displacement is considered smooth when the square of the gradient of velocities is minimum. 
Their methodology is based on the idea to minimize: 

∫(
𝐷𝐼

𝐷𝑡
)2 + 𝛼

Ω

(|∇𝛿𝑥|2 + |∇𝛿𝑦|2)𝑑𝑥𝑑𝑦 (10) 

where Ω represent the image domain and 𝛼 is a factor which weights in the smoothness 
constraint. After basic transformations, it is shown that minimization of equation (10) is 
equivalent to minimization of  

∫(
𝐷𝐼

𝐷𝑡
)2 + 𝛼

Ω

((∇.𝑈)2 + |∇ × 𝑈|2)𝑑𝑥𝑑𝑦 (11) 

where 𝑈 = 𝑢 ∙ 𝑖̂ + 𝑣 ∙ 𝑗̂ is the velocity vector. Minimization of divergence of velocity (∇.𝑈) 
corresponds to the fact that the flow is incompressible, and minimization of ∇ × 𝑈 signifies that 
the vorticity, corresponding to the blood flow field between a pair of images, is minimized.  

2.2. Lucas-Kanade method  

Lucas-Kanade method assumes that the motion between the two frames is slow and the 
displacement is constant in each small blocks of the image. Therefore, equation 9 can be assumed 
to hold for all pixel of a window (Lucas and Kanade, 1981). Using the weighted least– square fit 
and assuming a window function, 𝑊, to emphasize the constraint at the center of each window, 
the Lucas-Kanade method has the following form of solution for velocity components 𝑢 and 𝑣: 
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2.3. Farneback method  

The Gunner Farneback (2003) method does not solve equation 9. Instead it approximates a 
neighborhood of both frames at a time 𝑡1 and 𝑡2 using a polynomial function. For the case of 
quadratic polynomial, the intensity can be written as: 

𝐼𝑡1(𝑥) = 𝑥𝑇𝐴1𝑥 + 𝑏1
𝑇𝑥 + 𝑐1. (13) 



New signal can be constructed using a global displacement (d) as 

𝐼𝑡1(𝑥 − 𝑑) = (𝑥 − 𝑑)𝑇𝐴1(𝑥 − 𝑑) + 𝑏1
𝑇(𝑥 − 𝑑) + 𝑐1

= 𝑥𝑇𝐴1𝑥 + (𝑏1 − 2𝐴1𝑑)𝑇𝑥 + 𝑑𝑇𝐴1𝑑 − 𝑏1
𝑇𝑑 + 𝑐1 

(14) 

𝐼𝑡2(𝑥) = 𝑥𝑇𝐴2𝑥 + 𝑏2
𝑇𝑥 + 𝑐 (15) 

Since 𝐼𝑡1(𝑥 − 𝑑) = 𝐼𝑡2(𝑥), equating the coefficient in the quadratic polynomial yields to 𝑏2 =

𝑏1 − 2𝐴1𝑑 . From 𝑏2 = 𝑏1 − 2𝐴1𝑑 the transition value 𝑑 could be solved if 𝐴1 is non-singular. In 
principle, equation 14 and 15 can be equated at every pixel and the solution may be obtained 
iteratively. Farneback (2003) noted that the pointwise solution is too noisy. Instead, the 
displacement may be assumed to be slow-varying and satisfies a neighborhood of values of 𝑥. 
The Farneback algorithm, combines the polynomial approximation with multi scale resolution to 
produce optical flow results for each pixel of the image  

3. IMAGE ACQUISITION 

In order to produce dataset for analysis of LSOFI, Laser speckle patterns were applied to the 
cranial bone of the mouse. The animal preparation and experimental setup have been explained 
in detail by Davoodzadeh et al. (2018). The images were obtained by a 12-bit CMOS camera with 
a rolling shutter (Thorlabs DCC1545) The camera system was attached to a microscope with 10X 
magnification with focus plane of 0.3mm below the surface. Laser speckle patterns were 
generated using a continuous wave laser of 632.8 nm wavelength coupled with beam expanders 
and diffusers. The resulting image had 1024 x 1280 pixel resolution acquired with a frame rate 
of 14.5 Hz. For the purpose of this study, images with the exposure time of 12.5 𝑚𝑠 were used. 
The result of applying LSOFI to the sample dataset are presented next. 

4. RESULTS AND DISCUSSIONS  

First, the spatial resolution of LSOFI was compared to LSCI methods. This section is followed by 
evaluating effect of sampling time and temporal resolution on LSOFI and LSCI. Thereafter, various 
filters were applied to the resulting dataset to increase the temporal and spatial resolution and 
help to identify the blood flow. At last, quantitative values calculated for LSOFI are presented. 

4.1. Qualitative visualization of blood flow using optical flow algorithms  

To present the visualization results, a new variable 𝑀 is introduced as : 

𝑀 =
1

𝑇
∫ √𝑢(𝑡)2 + 𝑣(𝑡)2𝑑𝑡

𝑇

0

 (16) 

where 𝑢(𝑡) and 𝑣(𝑡) are horizontal and vertical motions calculated for each pixel in pair of 
frames and 𝑇 is averaging time over series of image frames. The frames are averaged primarily 
to increase the signal to noise ratio. 

Figure 1 is visualization of 𝑀 when calculated using Horn-Schunck, Lucas-Kanade and Farneback 
optical flow algorithms. Figure 1 also shows the results of applying LSCI to the image datasets. 
Laser Speckle Imaging method (LSI) (Cheng et al., 2003) and Spatially Derived Contrast Using 
Temporal Frame Averaging (sLASCA) (Le et al., 2007) were deployed to the dataset to calculate 
the Laser speckle contrast 𝜅. LSI method determines 𝜅 over 𝑇 number of frames (LSI image in 



Figure 1 uses T=190 frames). sLASCA method determines 𝜅 by averaging 𝑇 number of Laser 
Speckle Contrast Analysis (LASCA) images (David Briers and Webster, 1996). In LASCA, 𝜅 is 
measured in 1 image over a pixel window (sLASCA image in Figure 1 uses T=190 frames and 
window size of 5x5). 

 

Figure 1, clearly demonstrates that at the same temporal resolution, Horn-Schunck, Lucas-
Kanade, and Farneback optical flow algorithms have higher resolution than LSCI methods. Thus, 
optical flow algorithms make it easier to identify and visualize the blood vessels. In the LSCI 
methods, sLASCA has very low spatial resolution compared to the LSI method. Therefore LSI 
method is compared to optical flow algorithm for this work. Among the optical flow algorithms, 
Horn-Schunck is more sensitive to smaller displacements. This results in more noise as compared 
to the Farneback algorithm, which is sensitive to all scales of motion. 

Figure 1 First row is a snapshot of the raw image obtained. The second row is the result of mapping 𝜅 using LSI and 

sLASCA algorithms. The third row demonstrates the mapped value of "𝑀" using Horn-Schunck, Lucas Kanade and 

Farneback optical flow algorithms. It can be seen that sLASCA has very low spatial resolution compared to LSI 

method. This could be the artifacts of using a rolling shutter camera. The LSOFI algorithms produce higher resolution 

images compared to LSCI imaging methods 



As shown in equation 16, to increase the signal to noise ratio of the resulting images, 𝑇 number 
of frames were selected and averaged. When using LSI imaging method, 𝑇 is the number of 
frames used for calculation of 𝜅. When using sLASCA, 𝑇  is the number of frames used for 
averaging the results.  

To investigate the effect of averaging over the dataset, the number of frames were reduced to 
20 images which corresponds to 1.37 seconds. Because of higher spatial resolution, Farneback’s 
algorithm was chosen as the representative of the optical flow algorithms, and LSI method was 
chosen to represent LSCI methods. The results of applying Farneback algorithm and LSI algorithm 
over 20 raw images are shown in figure 2. 

 

Figure 2 shows that for smaller averaging, Farneback optical flow algorithm has higher resolution 
compared to LSI. In other words, Farneback optical flow algorithm requires a smaller number of 
images to produce a reasonable flow visualization as compared to the LSI method. This 
specification is very helpful towards quasi-real time visualization of blood vessels. Comparing 
Farneback’s results from figures 1 and 2, that the results show that as the averaging time 
increases, the amount of noise in the image decreases; which leads to clearer blood vessel 
visualization. Figure 3 demonstrates the effect of averaging time on the output of the Farneback’s 
optical flow algorithm.  

Figure 2. Image processing results of applying LSI and Farneback optical flow algorithm over 20 frames of raw-

images. It can be seen that Farneback optical flow algorithm requires less images to produce a meaningful result. 



 

Figure 3. Image processing results using Farneback’s optical flow algorithm with different averaging times. The 

number on the top left corner represents the number of pair of images used to process the image. As the number of 

data frames increases, the resolution of resulting image increases as well. It can be seen that for higher spatial 

resolution image, more images are required. 

It can be seen from figure 3 that when the number of image pairs used for temporal averaging 
increases, the resolution of the output image increases. One of the optical flow algorithms 
advantages over LSI is that the optical flow analysis will output resulting image gradually as 
images are captured. LSI, which use the temporal properties of speckle patterns, require all the 
inputs at once to produce the resulting image. 

4.2. . Post data processing  

4.2.1. Noise reduction of the images.  
As shown in the previous section, optical flow algorithms, have higher resolution compared to 
Laser Speckle Contrast Imaging algorithms (LSCI). Moreover, it has been shown that as the 
number of data samples increases, the resulting image will have less noise and therefore higher 
resolution. However, it is not always practical to increase the number of data points to reduce 
the image noise. Hence noise reduction algorithms and filters could be applied to enhance the 
resolution. Figure 4 demonstrates the effects of the Gaussian filter and median filter to the 
outcomes of the optical flow algorithms. Figure 4 illustrates the result of applying filters and 
image noise reduction algorithms. For each of the optical flow algorithms, 10 images were used.  
Applying filters reduces the need for longer averaging time. It can be seen that when applying a 
filter, Horn-Schunck algorithm produces a higher spatial resolution image. Even though the 
Farneback’s algorithm produces higher spatial resolution image without a filter. 



 

4.2.2. Image segmentation and identification of blood vessels 

Optical flow’s high spatial resolution results make it possible to identify and segment the blood 
vessels in the image. via image segmentation algorithms. In computer vision, Image 
segmentation is used to partition a digital image into different regions. By partitioning digital 
images into different regions, the overall analysis becomes less computationally expensive.   
Frangi et al.’s (1998) “multiscale vessel enhancement filter,” is one of the standard image 
segmentation algorithms, used to identify the blood vessels in a digital image. To identify the 
blood vessels, Frangi’s filter was applied to the results of the optical flow algorithms. The results 

Figure 4. Result of applying a Gaussian and median filter on the optical flow result of 10 pair of images. The row 

indicates the optical flow algorithm used, and the columns indicate the filter applied. It can be seen that applying 

Gaussian and median filters to the raw results of Horn-Schunck and Lucas-Kanade optical flow algorithms lead to 

images with higher resolution. 



are shown in figure 5. 

 

Figure 5 demonstrates that the combination of Frangi and Gaussian filtering lead to better 
identification of blood vessels. The intensity of the image correlates to the amount of vesselness 
calculated using the Frangi filter. This can later be implemented for automatic blood vessel 
detection using LSOFI.  

4.3. Quantitative analysis of Laser Speckle Optical Flow Imaging  

The previous sections demonstrated Laser Speckle Optical Flow imaging advantages over LSCI 
methods qualitatively. It also has been shown that the better resolution of LSOFI can help in 
developing an autonomous blood vessel detection system. However, like many LSCI methods, 
the correlation of quantitative value of each representing pixel with the blood velocity profile is 
uncertain. The quantitative unitless value of 𝜅 is often assumed to have a correlation with the 
decorrelation time as explained in equations 2-5. However, this assumption has numerous issues 
that prevents LSCI method for becoming a quantitative measurement methodology (Duncan et 
al., 2008a). 

In contrast to the LSCI methods, the hypothesis of the LSOFI, introduced in this paper, is physically 
based on the Cauchy momentum equation. Figure 6 presents the apparent displacement,𝑀, for 
different calculation methods. The first column shows the 2D mapped displacement of the 
apparent motion. The second column represents the apparent motion calculated at the solid line 
shown in the first column. The third column represents the apparent motion calculated at the 
dashed line shown in the first column. The vertical dotted line in the second and third column 
show the approximate boundary of the vessel at the location of calculation. For the second and 
third column, the values of averaged displacement over 190 frames were calculated along with 
averaged displacement over 10 frames filtered using Gaussian and median filters. Each row 

Figure 5. Results of applying a Frangi filter to the output of optical flow algorithms. The intensity of each pixel 

shows the vesselness calculated by Frangi filter. It can be seen for a small number of frames; the Horn-Schunck 

algorithm visualizes the blood vein better than other optical flow algorithms. However, the results of Farneback 

optical flow has less noise. 



represents the optical flow algorithm used for calculation. It can be interpreted from figure 6 that 
when Gaussian and median filters are applied to the LSOFI results of 10 frames of images (𝑇=10 
in equation 16) have the same spatial resolution as when 190 frames of LSOFI results are 
averaged (𝑇=190 in equation 16) with no filters. In simpler words, Gaussian and median filter 
reduce the need for additional frames. Figure 6 shows that although the magnitudes calculated 
by the optical flow algorithms differ, the different LSOFI algorithm produce almost the same 
profiles. 

 

5. CONCLUSIONS  

Laser speckle contrast imaging is known as a convenient method for visualizing flow in vessels. 
Common LSCI methods mapped the values of speckle contrast “𝜅” to produce a resulting image. 
In this work, a new approach of laser speckle imaging, dubbed Laser Speckle Optical Flow Imaging 

Figure 6. Quantitative analysis of displacement values. The first column presents 2D mapped values of 𝑀. Second 

and third column represent the calculated apparent motion,𝑀 , at the solid and dashed lines marked in the first 

column, respectively. The vertical dotted line in the second and third column show the approximate boundary of the 

vessel at the location of the solid and dashed lines. For the second and third column, the value of averaged 

displacement is calculated over 190 frames (𝑇=190 in equation 16) along with averaged displacement calculated 

over 10 frames (𝑇=10 in equation 16) using Gaussian and median filters. Each row represents the optical flow 

algorithm used for calculating speckle displacement. 



(LSOFI) was introduced. In contrast with LSCI methods which uses the statistical properties of 
speckle patterns for flow visualization, LSOFI maps the values of the apparent displacement of 
laser speckle patterns. Strictly speaking, the noise caused by the blood flow is governed by 
Cauchy momentum equation and in some cases Navier-Stokes equation. This is in contrast with 
the noise displacement in the surrounding tissue which has different governing equation. LSOFI 
captures the speckle displacement caused by different physical behavior and creates a mapped 
image. It has been shown that LSOFI has advantages over LSCI methods both in temporal and 
spatial resolution. In other words, LSOFI can be used to produce higher resolution images 
compared with LSCI method using less frames. Moreover, the architecture of the LSOFI is optimal 
for Graphics Processing Unit (GPU) computing platforms such as Nvidia’s CUDA platform(Marzat 
et al., 2009). Since the GPU computation increases the speed of LSOFI, the GPU enabled LSOFI 
could be deployed to the embedded systems such as Nvidia’s JETSON to create a fast and fully 
functional quasi-real time blood flow imaging system. 

Like LSCI methods, the substantial challenge remains if LSOFI could be used as a quantitative tool 
for assessing blood flow in vessels. Although the LSOFI results have the same order of magnitude 
as some reported values for blood flow in mouse’s brain vessels, further experiments using 
precise velocity measurements like LDF is required to validate LSOFI as a quantitative tool for 
flowmetry. Nonetheless, LSOFI could be used as a valid qualitative tool for blood flow 
visualization  
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