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ABSTRACT

Since of its introduction in 1980s, laser speckle imaging has become a powerful tool in flow
imaging. Its high performance and low cost made it one of the preferable imaging methods.
Initially, speckle contrast measurements were the main algorithm for analyzing laser speckle
images in biological flows. Speckle contrast measurements, also referred as Laser Speckle
Contrast Imaging (LSCI), uses statistical properties of speckle patterns to create mapped image
of the blood vessels. In this communication, a new method named Laser Speckle Optical Flow
Imaging (LSOFI) is introduced. This method uses the optical flow algorithms to calculate the
apparent motion of laser speckle patterns. The differences in the apparent motion of speckle
patterns are used to identify the blood vessels from surrounding tissue. LSOFI has better spatial
and temporal resolution compared to LSCI. This higher spatial resolution enables LSOFI to be used
for autonomous blood vessels detection. Furthermore, Graphics Processing Unit (GPU) based
LSOFI can be used for quasi real time imaging.
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1. INTRODUCTION

Because of the importance of accurate blood flow visualization, various techniques for flow
imaging have been proposed in medical fields such as ophthalmology, dermatology, endoscopy,
and internal medicine (Stern et al., 1979). Some of these techniques are non -invasive and include
methods such as Orthogonal Polarization Spectral (OPS) imaging (Groner et al., 1999), side
Stream Dark Field (SDF) imaging (Goedhart et al., 2007), Laser Doppler Perfusion Imaging (LDPI)
(Wardell et al., 1993)and laser speckle methods(Basak et al., 2016), such as Laser Speckle
Contrast Imaging (LSCI). Among all these methods, LSCl is gaining interest because of its simplicity
and ease of use.

Laser speckle effect occurs when a coherent light, such as a laser beam, illuminates a rough
diffuse surface, thereby producing random interference effects. This effect is visualized by a
granular pattern consisting of dark and bright spots (Rigden and Gordon, 1962). When the
speckle pattern is generated on a moving object such as blood vessels, the blood flow causes
fluctuations in the speckle pattern on the detector. In fluid mechanics, the phenomenon where
an optical wave propagating through a medium experience irradiance (intensity) fluctuations, is
referred to as optical turbulence. In LSCI, blood flow causes blurriness of image pixels, which



leads to scintillation of the intensity. Here we define scintillation index as:
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where [ denotes intensity of the optical wave, and < > denotes ensembled average or a long
time average. Over the years various algorithms and methods have been developed to calculate
both temporal and spatial fluctuations of speckle patterns (Draijer et al., 2009; Vaz et al., 2016).
These methods measure the blurriness of image pixels, which is generally centered around
speckle contrast defined as:

o V<2 > —< ] >2
TS T <I>

Obviously, the speckle contrast, k, is the same as the square root of the scintillation index defined
in equation 1. When there is little or no movement in the speckle patterns, “fully developed”
patterns will cause the speckle contrast (equation 2) to be equal to unity (Goodman, 1975). When
there is movement in the object, the speckle pattern blurs, and the standard deviation of the
intensity will be smaller than the mean intensity, thereby reducing speckle contrast. Assuming
that the motion of the scattering areas of the flow is random and these random motions will
decorrelate in time, the speckle contrast could be correlated to blood flow velocity. The speckle
contrast is furthermore related to normalized electric field autocorrelation function g, (7, )
(Bandyopadhyay et al., 2005) as
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where [ is a constant which account for different optical modes in measurement. Here 7 is time
and T is the averaging period. Typically, g, is hard to measure and therefore the intensity
correlation function g,(t) is measured instead. Functions g,(t) and g,(t) are correlated
through Siegert relation (Bandyopadhyay et al., 2005) as g,(7) = 1 + B|g;|%. Fercher and Briers
(1981) assumed that f = 1 and the measured intensity of speckles is integrated over time. Doing
so, they came up with the first speckle model described as
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where 7, is the decorrelation time and is linked to decorrelation velocity v, defined as
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where A is the laser wavelength. Equation 4 is one of the early attempts to correlate the speckle
decorrelation time to speckle contrast k. The speckle contrast, x, can be used to create a mapped
image. In this image values of speckle contrast, k, are different for the blood flow and
surrounding tissue. This difference enables identifying the blood vessels in the image. Equation
4 has been evolving over the years. The developments have been in various methods for
measurement of k and decorrelation time 7. (Basak et al., 2012; Draijer et al., 2009). The newer



methodologies take into account various aspects of laser speckle patterns such as the presence
of static layer on top of the blood vessels (Parthasarathy et al., 2008). Theoretical efforts were
established to quantify the impact of speckle size and sampling windows on the statistics of laser
speckle (Duncan et al., 2008b; Kirkpatrick et al., 2008). Moreover, studies have been done to
improve laser speckle imaging algorithms. These improvements enable real-time blood flow
visualization (Ansari et al., 2017, 2016a, 2016b; Humeau-Heurtier et al., 2015; Liu et al., 2008;
Tom et al., 2008).

Since the normalized electric field autocorrelation function g, () is related to the mean square
displacement < |Ar?| > of the speckle patterns (Parthasarathy et al., 2008); it can be assumed
that in the blood vessels, < |Ar?| > is caused by the flow. Therefore, instead of using statistical
behavior of laser speckle patterns, a physics based model of the blood flow can be deployed for
flow visualization. In the most general form, Cauchy momentum equation can be used to describe
the blood flow. However, since in many physiological conditions blood is assumed to be a
Newtonian fluid (Zamir, 2016a), The Navier-Stokes equation can be used to describe the motion
of the flow. The blood flow is considered pulsatile viscous flow. Assuming vessels as rigid tubes,
simplified Navier-Stokes can be solved in different forms (Womersley, 1955; Zamir, 2016b)
including:
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where u(r, t)is the radial component of the flow, W = R - \/pw/u is non-dimensional frequency
parameter also known as the Womersley number. The angular frequency is represented by w.
Viscosity and density of the fluid is represented by u and p. The radius of the vessel is R, the
pressure gradient magnitude is P;. Bessel function of first kind and order zero is shown as J,,, and
i represents the imaginary unit.

However, the blood vessels are not rigid and the Navier-Stokes equation can be solved for
pulsatile flow in an elastic tube to give (Morgan and Kiely, 1954; Womersley, 1955; Zamir, 2016b):
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Here c is the wave speed and G is a group parameter function of Poisson’s ratio, Young’s modulus,
diameter of tube and wall thickness of the tube. Although in some physiological conditions the
assumption of Newtonian fluid is not valid; the blood flow is still governed by the Cauchy
momentum equation.
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In fluid mechanics, optical methods of flow visualization such as Particle Image Velocimetry, Laser
Speckle Velocimetry and Background Oriented Schlieren are used to obtain better understanding
of the flow field. These methodologies are based on comparing two snapshots of the flow field
in different times. For example, in laser speckle velocimetry, two snapshots of the speckle
patterns are taken, rather than using a single blurred image, and the displacement vectors of the



speckle pattern between the two frames are calculated. Finding displacement vectors from a pair
of images is commonly referred as optical flow estimation which could be defined as the apparent
motion of 2D projection of images between time steps. Cross-correlation methods are the most
common methods used in computing displacement between a pair of images. In cross-correlation
the whole image is divided into small windows for analysis over which the velocity can be
assumed to be constant. Cross-correlation is a conventional method that is used in various
applications including particle image velocimetry and laser speckle velocimetry (Dabiri, 2006).
However, cross-correlation algorithms cause the analysis of speckle patterns to become much
more complicated compared to speckle contrast techniques, in which speckle contrast is
measured over a single image. Moreover, cross-correlation methods reduce the spatial
resolution of the image as well. Because of these disadvantages, speckle contrast imaging has
been more popular. With the recent developments in the computer vision especially in fields of
optical flow estimation over the past two decades, more advanced and more accurate method
has been developed. Atcheson et al. (2009) compared optical flow algorithms with cross-
correlation algorithm using a synthetic dataset of noise backgrounds. They found that optical
flow algorithms significantly increase the resolution of displacement calculations.

In this communication, a fluid mechanic approach is taken to visualize blood flow. Thus, different
physical behavior of the blood flow, such as the pulsatile behavior as shown in equations 6 and
7, is used to visualize the blood flow. This was achieved by calculating apparent displacement of
laser speckle patterns. As discussed earlier, when calculating displacement between a pair of
images, optical flow algorithms have better resolution. Hence, optical flow algorithms were
deployed to calculate the apparent displacement of image pixels. The differences in optical
displacement were used to map the blood vessels. This methodology, hereafter referred to as
the Laser Speckle Optical Flow Imaging (LSOFI), is similar to the laser speckle velocimetry and
background oriented schlieren. In the next section the optical flow algorithms are reviewed in
sufficient details followed by the section on the image acquisition. Sample results are given in
section 4 followed by conclusions in section 5.

2. OPTICAL FLOW ALGORITHMS

The early concept of optical flow algorithms arises from James J. Gibson’s (1966) work on visual
stimulus provided to animals. Having two images I (x, y, t,) and I(x, y, t;) optical flow is defined
as the 2D vector field describing the apparent motion of each pixel. The apparent motion
computation is based on the assumption of brightness conservation, which states that the pixel
intensity of the same physical point is identical in both images,

I(x,y,t) = I(x + 6x,y + 8y,t + 6t) (8)

As previously mentioned, when the speckle pattern is generated blood vessels, the flow causes
fluctuations, which cause the intensity of the corresponding pixel in the image to change. Based
on the assumption of brightness conservation (equation 8), the change of such intensities in a
pair of images leads to an apparent motion of pixels. Conservation of brightness principal could
be restated such as if a pixel in the picture frame is selected and the pixel is followed between
the pair of images, the intensity of the pixel does not change. The material derivative can be used
to describe the brightness conservation, caused by the flow, as:
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Equation 9 states that the apparent motion of pixel is dependent on both spatial and temporal
gradient of pixel intensities. For each pixel in equation 9, there are two unknowns u and v.

Therefore, solving equation 9 requires additional constraints, which are discussed next.
2.1. Horn-Schunck method

In order to solve equation 9, Horn-Schunck (1980) introduced another set of constraint known as
the smoothness constraint. Based on Horn-Schunck’s approach, for slow movements, the
displacement is considered smooth when the square of the gradient of velocities is minimum.
Their methodology is based on the idea to minimize:
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where () represent the image domain and «a is a factor which weights in the smoothness
constraint. After basic transformations, it is shown that minimization of equation (10) is
equivalent to minimization of

f(g—i)z + a ((V.U)? + |V x U|*)dxdy (11)
Q

where U =u-1+v-j is the velocity vector. Minimization of divergence of velocity (V.U)
corresponds to the fact that the flow is incompressible, and minimization of V X U signifies that
the vorticity, corresponding to the blood flow field between a pair of images, is minimized.

2.2. Lucas-Kanade method

Lucas-Kanade method assumes that the motion between the two frames is slow and the
displacement is constant in each small blocks of the image. Therefore, equation 9 can be assumed
to hold for all pixel of a window (Lucas and Kanade, 1981). Using the weighted least— square fit
and assuming a window function, W, to emphasize the constraint at the center of each window,
the Lucas-Kanade method has the following form of solution for velocity components u and v:
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2.3. Farneback method
The Gunner Farneback (2003) method does not solve equation 9. Instead it approximates a
neighborhood of both frames at a time t; and t, using a polynomial function. For the case of
guadratic polynomial, the intensity can be written as:

I, (x) = xTA;x 4+ b{x + ;. (13)



New signal can be constructed using a global displacement (d) as
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I,(x) = xTA;x + bjx + ¢ (15)
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Since I, (x — d) = I, (x), equating the coefficient in the quadratic polynomial yields to b, =
b, — 2A,d . From b, = by — 2A,d the transition value d could be solved if A; is non-singular. In
principle, equation 14 and 15 can be equated at every pixel and the solution may be obtained
iteratively. Farneback (2003) noted that the pointwise solution is too noisy. Instead, the
displacement may be assumed to be slow-varying and satisfies a neighborhood of values of x.
The Farneback algorithm, combines the polynomial approximation with multi scale resolution to
produce optical flow results for each pixel of the image

3. IMAGE ACQUISITION

In order to produce dataset for analysis of LSOFI, Laser speckle patterns were applied to the
cranial bone of the mouse. The animal preparation and experimental setup have been explained
in detail by Davoodzadeh et al. (2018). The images were obtained by a 12-bit CMOS camera with
a rolling shutter (Thorlabs DCC1545) The camera system was attached to a microscope with 10X
magnification with focus plane of 0.3mm below the surface. Laser speckle patterns were
generated using a continuous wave laser of 632.8 nm wavelength coupled with beam expanders
and diffusers. The resulting image had 1024 x 1280 pixel resolution acquired with a frame rate
of 14.5 Hz. For the purpose of this study, images with the exposure time of 12.5 ms were used.
The result of applying LSOFI to the sample dataset are presented next.

4. RESULTS AND DISCUSSIONS

First, the spatial resolution of LSOFI was compared to LSCI methods. This section is followed by
evaluating effect of sampling time and temporal resolution on LSOFI and LSCI. Thereafter, various
filters were applied to the resulting dataset to increase the temporal and spatial resolution and
help to identify the blood flow. At last, quantitative values calculated for LSOFI are presented.

4.1. Qualitative visualization of blood flow using optical flow algorithms
To present the visualization results, a new variable M is introduced as :

T
M= %j Ju(®)? +v(t)2dt (16)
0

where u(t) and v(t) are horizontal and vertical motions calculated for each pixel in pair of
frames and T is averaging time over series of image frames. The frames are averaged primarily
to increase the signal to noise ratio.

Figure 1 is visualization of M when calculated using Horn-Schunck, Lucas-Kanade and Farneback
optical flow algorithms. Figure 1 also shows the results of applying LSCI to the image datasets.
Laser Speckle Imaging method (LSI) (Cheng et al., 2003) and Spatially Derived Contrast Using
Temporal Frame Averaging (sLASCA) (Le et al., 2007) were deployed to the dataset to calculate
the Laser speckle contrast k. LS| method determines k over T number of frames (LS| image in



Figure 1 uses T=190 frames). sLASCA method determines k by averaging T number of Laser
Speckle Contrast Analysis (LASCA) images (David Briers and Webster, 1996). In LASCA, k is
measured in 1 image over a pixel window (sLASCA image in Figure 1 uses T=190 frames and
window size of 5x5).

RAW Image

Farmeb

Figure 1 First row is a snapshot of the raw image obtained. The second row is the result of mapping x using LSI and
sLASCA algorithms. The third row demonstrates the mapped value of "M" using Horn-Schunck, Lucas Kanade and
Farneback optical flow algorithms. It can be seen that SLASCA has very low spatial resolution compared to LSI
method. This could be the artifacts of using a rolling shutter camera. The LSOFI algorithms produce higher resolution
images compared to LSCI imaging methods

Figure 1, clearly demonstrates that at the same temporal resolution, Horn-Schunck, Lucas-
Kanade, and Farneback optical flow algorithms have higher resolution than LSCI methods. Thus,
optical flow algorithms make it easier to identify and visualize the blood vessels. In the LSCI
methods, sLASCA has very low spatial resolution compared to the LSI method. Therefore LSI
method is compared to optical flow algorithm for this work. Among the optical flow algorithms,
Horn-Schunck is more sensitive to smaller displacements. This results in more noise as compared
to the Farneback algorithm, which is sensitive to all scales of motion.



As shown in equation 16, to increase the signal to noise ratio of the resulting images, T number
of frames were selected and averaged. When using LSI imaging method, T is the number of
frames used for calculation of k. When using sLASCA, T is the number of frames used for
averaging the results.

To investigate the effect of averaging over the dataset, the number of frames were reduced to
20 images which corresponds to 1.37 seconds. Because of higher spatial resolution, Farneback’s
algorithm was chosen as the representative of the optical flow algorithms, and LSI method was
chosen to represent LSCI methods. The results of applying Farneback algorithm and LSI algorithm
over 20 raw images are shown in figure 2.

Farneback OF

Figure 2. Image processing results of applying LSI and Farneback optical flow algorithm over 20 frames of raw-
images. It can be seen that Farneback optical flow algorithm requires less images to produce a meaningful result.

Figure 2 shows that for smaller averaging, Farneback optical flow algorithm has higher resolution
compared to LSI. In other words, Farneback optical flow algorithm requires a smaller number of
images to produce a reasonable flow visualization as compared to the LSI method. This
specification is very helpful towards quasi-real time visualization of blood vessels. Comparing
Farneback’s results from figures 1 and 2, that the results show that as the averaging time
increases, the amount of noise in the image decreases; which leads to clearer blood vessel
visualization. Figure 3 demonstrates the effect of averaging time on the output of the Farneback’s
optical flow algorithm.



Figure 3. Image processing results using Farneback’s optical flow algorithm with different averaging times. The
number on the top left corner represents the number of pair of images used to process the image. As the number of
data frames increases, the resolution of resulting image increases as well. It can be seen that for higher spatial
resolution image, more images are required.

It can be seen from figure 3 that when the number of image pairs used for temporal averaging
increases, the resolution of the output image increases. One of the optical flow algorithms
advantages over LS| is that the optical flow analysis will output resulting image gradually as
images are captured. LSI, which use the temporal properties of speckle patterns, require all the
inputs at once to produce the resulting image.

4.2. . Post data processing

4.2.1. Noise reduction of the images.

As shown in the previous section, optical flow algorithms, have higher resolution compared to
Laser Speckle Contrast Imaging algorithms (LSCI). Moreover, it has been shown that as the
number of data samples increases, the resulting image will have less noise and therefore higher
resolution. However, it is not always practical to increase the number of data points to reduce
the image noise. Hence noise reduction algorithms and filters could be applied to enhance the
resolution. Figure 4 demonstrates the effects of the Gaussian filter and median filter to the
outcomes of the optical flow algorithms. Figure 4 illustrates the result of applying filters and
image noise reduction algorithms. For each of the optical flow algorithms, 10 images were used.
Applying filters reduces the need for longer averaging time. It can be seen that when applying a
filter, Horn-Schunck algorithm produces a higher spatial resolution image. Even though the
Farneback’s algorithm produces higher spatial resolution image without a filter.
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Figure 4. Result of applying a Gaussian and median filter on the optical flow result of 10 pair of images. The row
indicates the optical flow algorithm used, and the columns indicate the filter applied. It can be seen that applying
Gaussian and median filters to the raw results of Horn-Schunck and Lucas-Kanade optical flow algorithms lead to
images with higher resolution.

4.2.2. Image segmentation and identification of blood vessels
Optical flow’s high spatial resolution results make it possible to identify and segment the blood
vessels in the image. via image segmentation algorithms. In computer vision, Image
segmentation is used to partition a digital image into different regions. By partitioning digital
images into different regions, the overall analysis becomes less computationally expensive.
Frangi et al.’s (1998) “multiscale vessel enhancement filter,” is one of the standard image
segmentation algorithms, used to identify the blood vessels in a digital image. To identify the
blood vessels, Frangi’s filter was applied to the results of the optical flow algorithms. The results



are shown in figure 5.

Horn-Schunck OF Lucas-Kanade OF Farneback OF
with Median Filter with Gaussian filter with Gaussian filter
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Figure 5. Results of applying a Frangi filter to the output of optical flow algorithms. The intensity of each pixel
shows the vesselness calculated by Frangi filter. It can be seen for a small number of frames; the Horn-Schunck
algorithm visualizes the blood vein better than other optical flow algorithms. However, the results of Farneback
optical flow has less noise.

Figure 5 demonstrates that the combination of Frangi and Gaussian filtering lead to better
identification of blood vessels. The intensity of the image correlates to the amount of vesselness
calculated using the Frangi filter. This can later be implemented for automatic blood vessel
detection using LSOFI.

4.3. Quantitative analysis of Laser Speckle Optical Flow Imaging

The previous sections demonstrated Laser Speckle Optical Flow imaging advantages over LSCI
methods qualitatively. It also has been shown that the better resolution of LSOFI can help in
developing an autonomous blood vessel detection system. However, like many LSCI methods,
the correlation of quantitative value of each representing pixel with the blood velocity profile is
uncertain. The quantitative unitless value of k is often assumed to have a correlation with the
decorrelation time as explained in equations 2-5. However, this assumption has numerous issues
that prevents LSCI method for becoming a quantitative measurement methodology (Duncan et
al., 2008a).

In contrast to the LSCI methods, the hypothesis of the LSOFI, introduced in this paper, is physically
based on the Cauchy momentum equation. Figure 6 presents the apparent displacement,M, for
different calculation methods. The first column shows the 2D mapped displacement of the
apparent motion. The second column represents the apparent motion calculated at the solid line
shown in the first column. The third column represents the apparent motion calculated at the
dashed line shown in the first column. The vertical dotted line in the second and third column
show the approximate boundary of the vessel at the location of calculation. For the second and
third column, the values of averaged displacement over 190 frames were calculated along with
averaged displacement over 10 frames filtered using Gaussian and median filters. Each row



represents the optical flow algorithm used for calculation. It can be interpreted from figure 6 that
when Gaussian and median filters are applied to the LSOFI results of 10 frames of images (T=10
in equation 16) have the same spatial resolution as when 190 frames of LSOFI results are
averaged (T=190 in equation 16) with no filters. In simpler words, Gaussian and median filter
reduce the need for additional frames. Figure 6 shows that although the magnitudes calculated
by the optical flow algorithms differ, the different LSOFI algorithm produce almost the same
profiles.
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Figure 6. Quantitative analysis of displacement values. The first column presents 2D mapped values of M. Second
and third column represent the calculated apparent motion,M , at the solid and dashed lines marked in the first
column, respectively. The vertical dotted line in the second and third column show the approximate boundary of the
vessel at the location of the solid and dashed lines. For the second and third column, the value of averaged
displacement is calculated over 190 frames (T=190 in equation 16) along with averaged displacement calculated
over 10 frames (T=10 in equation 16) using Gaussian and median filters. Each row represents the optical flow
algorithm used for calculating speckle displacement.

5. CONCLUSIONS

Laser speckle contrast imaging is known as a convenient method for visualizing flow in vessels.
Common LSCI methods mapped the values of speckle contrast “k” to produce a resulting image.
In this work, a new approach of laser speckle imaging, dubbed Laser Speckle Optical Flow Imaging



(LSOFI) was introduced. In contrast with LSCI methods which uses the statistical properties of
speckle patterns for flow visualization, LSOFI maps the values of the apparent displacement of
laser speckle patterns. Strictly speaking, the noise caused by the blood flow is governed by
Cauchy momentum equation and in some cases Navier-Stokes equation. This is in contrast with
the noise displacement in the surrounding tissue which has different governing equation. LSOFI
captures the speckle displacement caused by different physical behavior and creates a mapped
image. It has been shown that LSOFI has advantages over LSCI methods both in temporal and
spatial resolution. In other words, LSOFI can be used to produce higher resolution images
compared with LSCl method using less frames. Moreover, the architecture of the LSOFI is optimal
for Graphics Processing Unit (GPU) computing platforms such as Nvidia’s CUDA platform(Marzat
et al., 2009). Since the GPU computation increases the speed of LSOFI, the GPU enabled LSOFI
could be deployed to the embedded systems such as Nvidia’s JETSON to create a fast and fully
functional quasi-real time blood flow imaging system.

Like LSCI methods, the substantial challenge remains if LSOFI could be used as a quantitative tool
for assessing blood flow in vessels. Although the LSOFI results have the same order of magnitude
as some reported values for blood flow in mouse’s brain vessels, further experiments using
precise velocity measurements like LDF is required to validate LSOFI as a quantitative tool for
flowmetry. Nonetheless, LSOFI could be used as a valid qualitative tool for blood flow
visualization
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