Combining HPC and Big Data Infrastructures in Large-Scale
Post-Processing of Simulation Data: A Case Study

Yu Li Xiaohong Zhang Ashwin Srinath
School of Computing Chemical and Biomolecular Clemson Computing & Information
Clemson University Engineering Technology
Clemson, SC Clemson University Clemson University
yli25@g.clemson.edu Clemson, SC Clemson, SC
xiaohoz@g.clemson.edu atrikut@g.clemson.edu
Rachel B Getman Linh B Ngo
Chemical and Biomolecular Clemson Computing & Information
Engineering Technology
Clemson University Clemson University
Clemson, SC Clemson, SC

rgetman@clemson.edu

ABSTRACT

Advances in scientific software and computing infrastructure have
enabled researchers across disciplines to simulate and model highly
complex systems. At the same time, these increases in simulation
duration and scale have led to significant growths in the sizes of
output data, which can be as much as hundreds of gigabytes or
more. While there exist solutions to assist with most standard post-
simulation analytics, researchers must develop their own code to
support customized analytical tasks. Given the nature of these out-
put data, most naive in-house sequential codes end up being ineffi-
cient, and in most cases, time-consuming. In this paper, we propose
a solution to this issue by transparently combining the strengths of
a high-performance computing cluster and a big data infrastructure
to support an end-to-end scientific workflow. More specifically, we
present a case study around the design of a research computing
environment at Clemson University where these two computing
systems are integrated and accessible from one another. This en-
vironment allows simulation data to be automatically transferred
across systems and complex analytical tasks on these data to be
developed using the Hadoop/Spark frameworks. Results show that
a hybrid workflow for molecular dynamics simulation can provide
significant performance improvements over a traditional workflow.
Furthermore, code complexity of Hadoop/Spark solutions is shown
to be less than that of a traditional solution.

CCS CONCEPTS

« Computing methodologies — Simulation evaluation;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

PEARC ’18, July 22-26, 2018, Pittsburgh, PA, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6446-1/18/07...$15.00
https://doi.org/10.1145/3219104.3229279

Ingo@clemson.edu

KEYWORDS

HPC, Apache Hadoop, Apache Spark, Big Data, Molecular Dynam-
ics Simulation

ACM Reference Format:

Y. Li, X. Zhang, A. Srinath, R. B. Getman, and L. B. Ngo. 2018. Combining
HPC and Big Data Infrastructures in Large-Scale Post-Processing of Simula-
tion Data: A Case Study. In PEARC ’18: Practice and Experience in Advanced
Research Computing, July 22-26, 2018, Pittsburgh, PA, USA. ACM, New York,
NY, USA, 7 pages. https://doi.org/10.1145/3219104.3229279

1 INTRODUCTION

Since the advent of computers, computational methods have been
used to solve problems across disciplines in science, engineering,
and economics, among others. Such numerical methods can help
researchers better predict the behavior of complex systems using
computer simulations where experiments are not available or diffi-
cult to implement. For example, computational methods can be used
to find new materials or predict the reaction pathways by studying
the chemical reactions [1]. Most of the chemistry simulations can
be performed using open source tools or commercial software, such
as LAMMPS [10] and VASP [6], and are usually simulated through
high-performance computing cluster. Since the simulation data are
stored on network file systems, it is slow to query and post-process.
Methods for these data analysis are done in R, Python, Matlab, etc.,
usually in sequential format. With the improvement of computing
capability, larger data set is generated and the sequential code for
the data analysis is insufficient and inefficient. Therefore, how to
efficiently analyze the large data set is a key problem in speeding
up the research progress.

Apache Hadoop/Spark is a powerful platform for parallel and
distributed computing with a MapReduce programming model that
can be used for intensive data analysis[5]. One challenge in using
Hadoop/Spark for scientific researchers is how to easily integrate
user’s own sequential code with this platform. In this work, we
demonstrate a hybrid workflow that combines a high-performance
computing cluster to generate results from molecular dynamics

https://doi.org/10.1145/3219104.3229279
https://doi.org/10.1145/3219104.3229279

PEARC *18, July 22-26, 2018, Pittsburgh, PA, USA

simulations and a Hadoop/Spark cluster to accelerate the process-
ing of the resulting data. We show how existing, sequential, post-
processing scripts written in Python can be integrated into a big
data framework built using Spark [14]. This enables users to run
queries on and post-process simulation data conveniently using
Jupyter Notebook via the JupyterHub multi-user notebook server
for Clemson University’s Palmetto and Cypress cluster[4]. The
remainder of this paper is structured as follows. In section 2, we
describe the motivating scientific problem. The case study section
starts with a description of Clemson University’s research com-
puting environment in subsection 3.1. The original sequential data
processing code is shown in subsection 3.2. Next, subsection 3.3.1
illustrates an initial attempt to optimize this code using a popular
open-source library. Finally, subsection 3.3.2 goes into details of the
hybrid workflow that enables the integration of compute-intensive
and data-intensive computing environments. The performance eval-
uation is discussed in section 4. Section 5 concludes the paper.

2 PROBLEM DESCRIPTION

The hydrogen bond (HB) is an important phenomenon in many
research areas including chemistry, material science, biology, etc.
It is an intermolecular interaction between two molecules, such as
water-water, water-alcohols and water-protein, or an intramolec-
ular interaction within one molecule. HB is directional and suf-
ficiently strong that can determine the molecular conformation
[12]. The development of computational modeling approach has
attracted many attentions to study this phenomenon using simu-
lation methods. A chemical engineering research lab at Clemson
University has been studying aqueous phase chemical reactions
using molecular dynamics simulation, where HB has been shown
to be very important [3, 15].

The motivating scientific problem for this work studies the inter-
molecular HB between water (H20) and methanol decomposition
intermediate (CH2OH"). Fig.1 shows an example of HB definition
in this scenario. The molecular dynamics simulation was carried
out using an open source tool called Large-scale Atomic/Molecular
Massively Parallel Simulator (LAMMPS) [10]. In this simulation,
water molecules were allowed to move around which might form
HB with the intermediate. After the simulation was finished, a tra-
jectory file was generated. This file includes hundreds of thousands
of frames, and each frame contains the particle coordinates at a
certain time from which the HB criteria is checked (the criteria
includes distance, angle, etc.). We calculated the HB number of each
frame and then obtained the averaged HB (AvgHB) from all of the
frames. A file with size of 30 GB and frame number of 4.5 million
would take about 40 hours to finish using a sequential user code
on one CPU core. It is inefficient and nearly intractable to process
a larger file.

One thing to notice is that the HB calculation in each frame is
independent of other frames, which means that we do not have to
wait for the previous frame results in order to process next frames
(sequential processing). Therefore, it is possible to develop a parallel
method that can process each frame at the same time. In the next
section, we use HB calculation as an example to discuss how the
initial sequential user code has been developed and evolved and

2

Li et al.

€CH,0H*

PRrLe’

Figure 1: An example of HB definition

how this code can be transformed to work with the Hadoop/Spark
infrastructure for large simulation data parallel analysis.

3 CASE STUDY

3.1 Research Computing Environment at
Clemson

Clemson’s computing resources include a high performance com-
puting cluster, known as Palmetto, and a Big Data analytic cluster
running Hadoop, known as Cypress. To promote access to Pal-
metto and Cypress, Clemson University’s CCIT has deployed a
web-based interface that utilizes Python’s Jupyter Server. Through
this interface, users can quickly request computing resources, cre-
ate programming notebooks for languages such as Matlab, Python,
and R, and launch terminal all inside a web browser.

The Palmetto cluster is designed and deployed using a tradi-
tional Beowulf model [2], which include a login component, a com-
puting component consisting of 2021 compute nodes, and several
large-scale storage systems including parallel and distributed file
systems. As Palmetto follows a condominium funding model, the
entire cluster is heterogeneous with multiple node phases, each of
which represents an accumulation of new computing nodes. The
network interconnecting across the cluster also differs, with the
earlier phases using myrinet and 1-gigabit Ethernet connections,
and the later phases using 10-gigabit and infiniband connections.
Since Palmetto’s target applications are traditional CPU-intensive
scientific applications, the hardware configurations of individual
compute nodes overtime emphasize memory and CPU rather than
local storage. As a result, all Palmetto’s phases prior to 2016 have
less than half a terabyte of local disks.

With the gradual maturity of the Hadoop ecosystem for Big
Data analytics [9], researchers at Clemson University have begun
to explore this framework. At the beginning, a dynamic deploy-
ment of Hadoop [7] using Palmetto was used. However, given the
limited local disks on the compute nodes, this deployment model is
limited in term of how much data can be supported. Furthermore,
the movement of data between a dynamic Hadoop Distributed File
System (HDFS) and a traditional Linux-based file system also takes
up valuable scheduling time and network bandwidth, inadvertently
defeat the purpose of Hadoop, which is to promote data locality. As
aresult, in 2015, Clemson University began to invest in Cypress, a
dedicated computing resource to support Big Data analytics using
Hadoop. The Cypress cluster uses the Hortonworks Data Platform

Combining HPC and Big Data

distribution of Hadoop which include components such as MapRe-
duce and Spark to support data intensive computing and analytics.
Cypress consists of 40 worker nodes, each has 256 GB of RAM. Out
of these 40 nodes, 16 nodes have 12 1-terabyte local disks each, and
24 nodes have 24 6-terabyte local disks each. In total, the global
Hadoop Distributed File System (HDFS) has up to 3.64 PB (petabyte)
of storage available for big data analytic tasks.

Between 2015 and 2016, even though Cypress and Palmetto re-
side on the same subnet, each functions independently and only
share the large-scale storage systems. These file systems provide a
common zone for users who want to move data between Cypress
and Palmetto. As a result, Cypress is usable only for a small number
of applications that needs to analyze pre-existing massive amount
of data. For applications running on Palmetto that generate massive
amount of data, users will have to develop a separate workflow to
move these data over to Cypress for post-processing analytic. To
expedite this process, in 2017, the Clemson University’s Cyberin-
frastructure and Technology Integration (CITI) group has managed
to setup shared Hadoop libraries and security on Palmetto. This
enables Palmetto’s compute nodes to interact with Cypress’ HDFS
and YARN scheduler, allowing researchers to design and deploy
complex workflows that mix high performance computing and big
data analytics.

3.2 Original User Code

The original sequential user code to analyze HB was developed
by a chemical engineering Ph.D. student [13] in a research lab at
Clemson University and has been used by the lab in its simulation
workflow since then. It is written in Python, and originally can
only calculate HB of a single frame (illustrated in Fig. 2) file on
disk. To process multi frames file, users have to extract the frames
that are needed from the trajectory file. The original code have
gone through three stages of evolution to address the problem of
involving more frames in the calculation to get better statistical
data.

ITEM: TIMESTEP

TOtaI : NUMBER OF ATOMS
particle
number ITEM: BOX BOUNDS xy xz yz pp pPp PP

1.40265 14.0265 4.20795

Particle
coordinates|

.138889 0.0555555 3.44914e-07
.138889 0.722222 3.44914e-07
.138889 0.388889 3.44914e-07
+472222 0.0555555 3.44914e-07
472222 0.722222 3.44914e-07
.472222 0.388889 3.44914e-07
.916666 0.833333 0.0987543
16666 0.5 0.0987543

16666 0.166666 0.0987543

5 0.833333 0.0987543

5 0.5 0.0987543

5 0.166666 0.0987543

0
0
0
(J
0
0

.9
)
-
i
2!
Figure 2: An example of a single frame from trajectory file

A. Analyzing HB of a few frames: Previous research only studied
HB information from a small number of frames [3]. Thus the origi-
nal Python code was used to analyze 10 separate frames extracted
from the trajectory file. The code was executed 10 times to get the
HB information from each frame and then AvgHB was obtained.

PEARC ’18, July 22-26, 2018, Pittsburgh, PA, USA

Each calculation took only several seconds to finish and the total
execution time was not long. Later on, the research needed better
sampling where the 10 frames sampling was far away from suffi-
cient. If this naive extracting-executing method was used, more
single-frame should be extracted and the code had to be executed
multiple times which was very inefficient.

B. Intense reading/writing from disk: In order to obtain more
samplings and improve the efficiency, the original Python code
was modified in order to avoid extracting each frame explicitly and
executing the code repetitively. At this stage, the code was executed
only once by sequentially writing a temporary single frame file to
the disk for HB analysis. When the analysis on the first frame was
finished, the temporary frame file was deleted and the second frame
was written to the disk and analyzed until the last frame. When
a small trajectory file (3 MB) was tested, it took several minutes
to finish the analysis on all of the frames. But when testing on a
larger trajectory file (4.5 GB), this method was not feasible, since
there were massive amount of I/O operations during the analysis
that was very time-consuming.

C. Reading from memory: In order to solve the intensive I/O
problem, the code was modified again so that each frame was read
into memory at this stage instead of to the disk. A file with size of
10 GB was tested but the memory usage exceeded 120 GB. In this
case, the whole file could not be read into memory at one time and
had to be read iteratively through frame blocks, where each block
contained around 3000 frames. After the analysis on the first block
was finished, the code moved to the second block until all frame
blocks were analyzed.

After the third evolution, the original Python code has reached
a point where it is possible to analyze consecutive frames at scale
in research production [15]. However, the execution time on the 10
GB file still took approximately 12 hours to finish on Phase 12 on
the Palmetto cluster, which includes compute nodes with 24-core
CPU and 128GB of memory where only one CPU core was used by
this sequential user code. A larger file will not be tractable using
this sequential code. Therefore, a better approach for the big data
file analysis is needed.

3.3 Optimizing User Code

To address the I/O issue previously discussed, we examine two
approaches. The first approach uses an existing public framework
written in Python, and the second approach requires the develop-
ment of a post-processing data pipeline that leverages Hadoop and
Spark for big data analytics.

3.3.1 MDTraj Pipeline. MDTraj is a modern, open library for
the analysis of molecular dynamics trajectories [8]. MDTraj comes
with a built-in function that supports efficient loading of LAMMPS
trajectory files into memory. The library also has a number of ex-
isting template functions for HB calculation. In examining MDTraj,
we want to see if this library can be used in our HB calculation and
whether the run time could be faster than our original user code.

Although MDTraj has its own HB calculation functions, it is
developed to be used in a different simulation system (biology sys-
tem). To use this library in our case, we need to build an additional
topology file while loading the trajectory file, which is not required
when using the original user code. Besides, the HB criteria (bond,

3

PEARC *18, July 22-26, 2018, Pittsburgh, PA, USA

angle, etc.) is a little bit different from our case. In MDTraj, the code
studies the intramolecular HB while our research studies the inter-
molecular HB. Thus, we need to modify some functions to meet our
requirements. The calculation function in MDTraj is called Baker-
Hubbard which can identify the intramolecular HB. We modified
this function and several other functions called by Baker-Hubbard
function to make sure that the HB criteria was the same as that in
our case. After a lot of modifications to MDTraj code, we finally
got the same result as the original user code, which provided a
comparable basis for performance evaluation purposes.

For our baseline test data, which is 6.3 megabytes, MDTraj fin-
ished the job in 17 minutes, while the user code can do it in 18 sec-
onds. For another one-gigabyte test data, the user code completed
the job in around 25 minutes but MDTraj finished it in 25 hours.
There are a number of possible reasons to explain why MDTraj is
slower than the original code. Firstly, the way MDTraj calculates
the bond information creates redundant data. The Baker-Hubbard
function computes all possible HB pairs among all particles which
took most of the computation time in the program. In the sequential
user code, only the needed HB pairs are classified and stored in the
calculation which is more efficient than MDTraj program. Secondly,
the way we modified the MDTraj program may affect its original
performance to some extent.

At this point in the investigation process, we have come to a
conclusion that MDTraj is a more general method for the analysis
of molecular dynamics trajectories, and it would take a great effort
to modify and optimize MDTraj code to suit our existing workflow.
By doing so, we also risk making MDTraj code become more similar
to our own code and loosing MDTraj’s existing optimization, which
defeats the purpose of using MDTraj.

3.3.2 Big Data Pipeline. The main reason for our long analytic
time is the single-threaded implementation of the calculations in
both the original code and the MDTraj code. While this implemen-
tation works for small dataset, it has become too slow to process
large-scale simulation results. To parallelize the process of calcu-
lating HB across multiple frames, we have decided to use Apache
Spark, a big data analytic framework [14] that has been proven to
be capable of rapidly processing big data and is faster than Hadoop
MapReduce [11]. The dataset model of Spark, called resilient dis-
tributed datasets (RDDs), is a read-only collection of records and
is partitioned across multiple computing nodes to enable parallel
processing of individual records. This concept lends itself nicely
to the structure of LAMMPS simulation results, where a simula-
tion file consists of multiple segments. Each segment represents a
single simulation frame. On the other hand, in using Spark, there
is a chance that significant efforts are needed as we will need to
develop new code for loading LAMMPS simulation data into Spark
and implementing HB calculation using Spark’s MapReduce-based
operations. The Spark framework is available as a component of
Cypress, the Hadoop cluster. To minimize the learning curve for
the development of the new code, the Python API of Spark is used
instead of the native Scala interface.

At a glance, loading LAMMPS simulation data into Spark seems
to be a daunting task, as we need to separate adjacent frame seg-
ments consisting of multiple lines into individual records of a RDD.
However, due to the structured attributes of the simulation data

4

Li et al.

(each frame has exactly the same structure to describe the bound-
ing box and the positions of the atoms), this turns out to be fairly
straight forward. We find that the first line of each frame can be
a unique seperator to distinguish one frame. Based on this idea,
a default Hadoop library called TextInputFormat can be used to
instruct Spark to automatically extract and store each simulation
frame, which is seperated by the same delimiter, into individual
records of a RDD. In this case, the phrase TTEM: TIMESTEP’, which
appears only once at the beginning of each simulation frame, is
used as the delimiter. The code of loading LAMMPS file is:

read_rdd = sc.newAPIHadoopFile(
indirectory + "/ch2oh.1g.lammpstrj",
'org.apache.hadoop.mapreduce.lib.input.TextInputFormat',
'org.apache.hadoop.io.LongWritable',
'org.apache.hadoop.io.Text",
conf = {'textinputformat.record.delimiter':'ITEM:
TIMESTEP'})

After loading LAMMPS data into Spark, the effort needed for im-
plementing the HB calculation is also fairly minimal. With Spark’s
MapReduce programming model, the sequential implementation
can be reused during the mapping phase. One required modification
is the encapsulation of the calculation code into a function whose
input matches the input format of a record, which contains the
entire collection of text lines for a simulation frame. The function
also returns a Key/Value pair structure containing information re-
garding the results of a frame’s HB calculations. The remaining
modification to the code is the implementation of a reduce function,
which gathers the results from the mapping function and calculate
the final result. The key Python Spark code showing the whole
process is as followings:

frames = read_rdd.values().
filter(lambda x: x != "").
map(parse_data).
cache()

avgHB = frames.
map(lambda x: int(x[11)).
reduce(lambda x,y:x+y)/frames.count()

In the first statement of the above code segment, we first filter
out any RDD record containing no simulation information. Next,
we apply the parse_data function on each individual RDD record.
As each RDD record is a single simulation frame, parse_data is an
almost identical conversion of the original sequential code, which
calculate the HB information on a single simulation frame. A minor
modification is needed to make parse_data returns a complex tuple
with the four elements: time step ID, number of HB appearances,
list of configuration for each HB appearance, and the overall co-
ordinates of all atoms associated with each HB appearance. The
improvements in data processing speed mainly happen during the
execution of this statement as the HB calculation process for the
frames are inherently parallized via Spark’s implementation of the
MapReduce programming paradigm. The second statement of the
above code segment demonstrates a simple post-processing anal-
ysis, in which we calculate the average number of HB appearing
throughout the entire simulation duration. To accomplish this, first

Combining HPC and Big Data

we perform a mapping function which extracts the number of HB
appearances from each frame, then use a reduce function to add all
of these values together. Dividing the results over the total number
of frames, which also represents the simulation time steps, will
give us the final answer. The overall workflow describing the entire
process is shown in Fig.3.

Data
File

AvgHB

Figure 3: Big Data Pipeline

Once the new Spark code to calculate HB has been developed
and tested, the integration of Palmetto and Cypress clusters allows
the creation of a big data pipeline. On Palmetto, a job script is
first developed to manage the LAMMPS simulation process. Once
the simulation is completed, the dump file containing relevant
information is directly moved into the Hadoop Distributed File
System of Cypress rather than to the scratch file systems. Next,
the Spark code is called from Palmetto, which will launch a Spark
cluster inside Cypress to process this dump file. The final results are
stored inside HDFS, and can be moved back to the home directory
of the user.

4 EVALUATION AND DISCUSSION

We carried out two experiments to evaluate the speedup of the
pipeline. In the first case, we tested the same modeling system but
scaling out the number of frames for the trajectory file. In the second
case, we scaled up the computation complexity of the modeling
system but kept the number of frames fixed for the trajectory file.

Experiment 1: Scaling out

Three trajectory files were generated from a same modeling
system, shown in Fig.4, and the frame number for each trajectory
file was varied. The file sizes and frame numbers for each trajectory
file are listed in Table 1. Since the modeling systems are same for
all the trajectory files, the file size is in linear relationship with the
frame number.

Figure 4: Modeling system for scaling out experiment

PEARC ’18, July 22-26, 2018, Pittsburgh, PA, USA

Table 1: File information for scaling out experiment

File index 1 2 3
File size 1GB 10GB 30GB
Frame number 150K 15M 4.5M

Experiment 2: Scaling up

Four trajectory files were generated with different modeling
systems, shown in Fig.5, and the number of frames in each trajectory
file was kept the same. The file sizes and frame numbers for each
trajectory file are listed in Table 2. Since the modeling systems are
different for the trajectory files, the modeling complexity increases
from file a to file d, and the HB calculation time for each frame
should be different for these files.

Figure 5: Modeling systems for scaling up experiment

Table 2: File information for scaling up experiment

File index a b c d
File size 0.5GB 2.4GB 4.8GB 8.6 GB
Frame number 90K 90K 90K 90K

Hardware Configuration:

To evaluate changes in performance of the Spark program, we
first created a baseline measurement by running the sequential
HB analysis on the above experiments using Palmetto compute
nodes from phase 12 or higher. During these runs, we reserved a
complete node, which has 24-core CPU and 128GB of memory. It
should be noted that due to the sequential nature of the original
code, only one core is utilized. For the Spark program, each run
was performed with a cluster configuration consisting of one Spark
driver with 15GB of memory and six executor instances, each has
twelve processing cores and 60GB of memory.

Results

The scaling out experiment results are shown in Fig.6. In this
experiment, the modeling systems are the same and thus the run
time of the HB calculation for each single frame should be the
same for all three trajectory files. The run time of the three HB
calculations are about 25 minutes, 13 hours and 41 hours for the
baseline runs of the original code (orange bar). Based on these
measurements, it seemed that the run time of the sequential code
was dependent on the file size/frame number. However, the run
times also increased nonlinearly with the file size, suggesting that
except for the HB calculation in each frame, extra reading time for
large size file was needed. For the Spark program, the run times
were about 5 minutes, 7 minutes and 16 min, which represented a

5

PEARC *18, July 22-26, 2018, Pittsburgh, PA, USA

significant speedup (purple bar) comparing to the based line. We
also notice that the scaling of the Spark program’s run times were
closer to a linear form, suggesting that it has the potential to scale
linearly as the file size/frame number increases.

Run time
48:00:00
12:46:51
36:00:00
0:25:51

24:00:00 ‘ User code
12:00:00 0:04:59 0:07:14 0:16:22

Ay A Spark

0:00:00
1 2 3
File index

Figure 6: Scaling out experiment speedup

The scaling up experiment results are shown in Fig.7. In this
experiment, even though the frame numbers are same for all of
the trajectory files, the modeling systems are different and thus
the run time of the HB calculation for each single frame should
increase from file a to d, depending on the modeling complexity.
The run time of the four HB calculations are about 21 minutes,
3.5 hours, 13 hours and 37 hours for user code (orange bar). It is
shown that the run time of the user code also depends on the file
size which increases nonlinearly with the file size. The run time
of these calculations are about 5 minutes, 13 minutes, 26 minutes
and 45 minutes for Spark test, which is also a huge speedup (purple
bar). The Spark speedup is approximately in a linear relationship
with the file size, suggesting that Spark work flow depends a lot
on modeling complexity, where in this case complexity is realized
through the file size.

Run time
37:00:01

48:00:00
36:00:00 12:52:14
24:00:00 0:21:07 3:30:11
12:00:00 > User code

0:05:00 0:13:16 0:26:15 0:44:49

4 Ay 4 Spark
0:00:00
a b c d
File index

Figure 7: Scaling up experiment speedup

From the above results, Spark can be 4 to 150 times faster than the
sequential user code, depending on the speedup scheme. It should
be noted that in order to use Spark, we need to move simulation
results from Palmetto to Cypress and also to load and convert these
results into Spark’s RDD. The time of moving the output data from
Palmetto to Cypress is measured to range from 13 seconds for 0.5
GB of data to 7 minutes for 30 GB data. To convert the trajectory
file on Cypress into Spark’RDD format, it takes 3, 7, 14 minutes in
6

Li et al.

scaling out experiment for file 1, 2 and 3, respectively, and 3, 12, 24,
42 minutes in scaling up experiment for file a, b, c, d, respectively.
When we compare this time to the simulation time (Fig. 6 and Fig.
7), we can see that the converting time takes about 90% of the simu-
lation time. As a result, it is reasonable to state that these additional
overheads, which does not exist in sequential implementations, are
acceptable comparing to the achievable speedup shown in these
experiments.

Discussion

In this section, we discuss problems encountered while imple-
menting the big data pipeline and also elaborate on the possible
reasons. One problem is how to tune the parameters of the Spark
job well to get a better performance. Further understanding of the
job configurations on different dataset will help researchers fully
understand the configuration functions and relationship. We did
not put too much effort on tuning the job configuration since it is
time consuming and not the main purpose of this work. However,
we are still able to have the desired results. We hypothesize that
better performance may be obtained if the configurations are fur-
ther optimized. Secondly, Jupyter Notebook is an easy interface to
carry out Spark simulation from Cypress cluster and in our case,
and the simulation time is less than one hour in our tests which is
acceptable using Jupyter Notebook. However, if we are running a
longer simulation, we will need to develop a bash script to run a
Spark job on Cypress.

In general, Spark is easy to use and debug through Jupyter Note-
book. By using cache function, which can cache the data in memory,
the data analysis becomes faster after the first test since it has sev-
eral operations on one RDD. The partitioning function is another
operation that can help speeding up the program. Coalesce function,
a built-in operation of Spark RDD, was used in this work to split the
original data into smaller pieces. One can also choose repartition
function, but it may be slower since it needs shuffle which costs
extra running time.

There are many ways to implement the file readings in Spark
framework. If each frame has the same format and length through-
out one trajectory file, users can choose a built-in library, NLinesIn-
putFormat, from Hadoop in Spark, which reads file N lines by N
lines. Even though this library can be used in this work, we want
to make this workflow suitable for all the cases by considering
potential different kinds of dataset. As a result, the data was read
by blocks, using a self-defined text delimiter in this work. Users
can also override the RecordReader class from Hadoop library in
Spark to achieve the same goal. In this case, the sliding function
of RDD in machine learning library of Spark can be used as well,
which can turn the text into array elements and frames can be
read into elements with a self-defined offset, which is similar to the
NLinesInputFormat method.

5 CONCLUSION

Development of computer hardware/software has facilitated com-
putational study in many research areas. The increase in the sim-
ulation data size and complexity requires more efficient data pro-
cessing method, where the existing method may not be efficient to
customize user code. In this work, we proposed a solution to this
issue by combining a high-performance computing cluster and a big

Combining HPC and Big Data

data infrastructure to support an end-to-end scientific workflow.
Taking molecular dynamics simulation as a case study, we inte-
grated the sequential user code with two computing environment
at Clemson University, Palmetto cluster (HPC) and Cypress cluster
(Hadoop/Spark), and successfully parallelized the big data analysis.
Results show that this hybrid workflow can significantly improve
the data analysis performance compared to a traditional workflow,
and the speedup of the Hadoop/Spark workflow can be as high as
150 times of the sequential user code, suggesting a potential appli-
cation of Spark in similar research fields. This workflow is easy to
use and the user code can be directly used in Spark with slight con-
figurations. Besides, the Jupyter Notebook gives a straightforward
interface for users to debug.

ACKNOWLEDGMENTS

This research was funded by the National Science Foundation under
grant numbers CBET-1554385. Simulations were performed on the
Palmetto Supercomputer Cluster and Cypress Cluster, which are
maintained and supoprted by Clemson University’s CCIT Depart-
ment.

REFERENCES

[1] Paul A Bash, Martin J Field, RC Davenport, Gregory A Petsko, D Ringe, and
Martin Karplus. 1991. Computer simulation and analysis of the reaction pathway
of triosephosphate isomerase. Biochemistry 30, 24 (1991), 5826-5832.

Donald J Becker, Thomas Sterling, Daniel Savarese, John E Dorband, Udaya A
Ranawak, and Charles V Packer. 1995. BEOWULF: A parallel workstation for sci-
entific computation. In Proceedings, International Conference on Parallel Processing,
Vol. 95. 11-14.

Cameron J Bodenschatz, Sapna Sarupria, and Rachel B Getman. 2015. Correction
to “Molecular-Level Details about Liquid H20 Interactions with CO and Sugar
Alcohol Adsorbates on Pt (111) Calculated Using Density Functional Theory
and Molecular Dynamics". The Journal of Physical Chemistry C 120, 1 (2015),
801-801.

ClemsonCiti. 2018. cypress-pyspark-kernel. (2018). Retrieved May 7, 2018 from
https://github.com/clemsonciti/cypress-pyspark-kernel

[5] Max Klein, Rati Sharma, Chris H Bohrer, Cameron M Avelis, and Elijah Roberts.
2017. Biospark: scalable analysis of large numerical datasets from biological
simulations and experiments using Hadoop and Spark. Bioinformatics 33, 2
(2017), 303-305.

[6] G Kresse. 1996. Software vasp, vienna, 1999; g. kresse, j. furthmiiller. Phys. Rev. B
54, 11 (1996), 169.

[7] Sriram Krishnan, Mahidhar Tatineni, and Chaitanya Baru. 2011. myHadoop-
Hadoop-on-Demand on traditional HPC resources. San Diego Supercomputer
Center Technical Report TR-2011-2, University of California, San Diego (2011).

[8] Robert T. McGibbon, Kyle A. Beauchamp, Matthew P. Harrigan, Christoph Klein,
Jason M. Swails, Carlos X. Hernandez, Christian R. Schwantes, Lee-Ping Wang,
Thomas J. Lane, and Vijay S. Pande. 2015. MDTraj: A Modern Open Library for
the Analysis of Molecular Dynamics Trajectories. Biophysical Journal 109, 8
(2015), 1528 — 1532. https://doi.org/10.1016/j.bp;j.2015.08.015

[9] J Yates Monteith, John D McGregor, and John E Ingram. 2013. Hadoop and
its evolving ecosystem. In 5th International Workshop on Software Ecosystems
(IWSECO 2013). 50.

[10] Steve Plimpton. 1995. Fast parallel algorithms for short-range molecular dynamics.

Journal of computational physics 117, 1 (1995), 1-19.

Juwei Shi, Yunjie Qiu, Umar Farooq Minhas, Limei Jiao, Chen Wang, Berthold

Reinwald, and Fatma Ozcan. 2015. Clash of the titans: Mapreduce vs. spark

for large scale data analytics. Proceedings of the VLDB Endowment 8, 13 (2015),

2110-2121.

Thomas Steiner. 2002. The hydrogen bond in the solid state. Angewandte Chemie

International Edition 41, 1 (2002), 48-76.

[13] Tianjun Xie. 2018. hbonds. (2018). Retrieved May 3, 2018 from https://github.

com/tianjunxie/hbonds

Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion

Stoica. 2010. Spark: Cluster computing with working sets. HotCloud 10, 10-10

(2010), 95.

[15] Xiaohong Zhang, Torrie E Sewell, Brittany Glatz, Sapna Sarupria, and Rachel B
Getman. 2017. On the water structure at hydrophobic interfaces and the roles of

[2

(3

=

[4

fla

(11

[12

[14

PEARC ’18, July 22-26, 2018, Pittsburgh, PA, USA

water on transition-metal catalyzed reactions: A short review. Catalysis Today
285 (2017), 57-64.

https://github.com/clemsonciti/cypress-pyspark-kernel
https://doi.org/10.1016/j.bpj.2015.08.015
https://github.com/tianjunxie/hbonds
https://github.com/tianjunxie/hbonds

	Abstract
	1 Introduction
	2 Problem Description
	3 Case Study
	3.1 Research Computing Environment at Clemson
	3.2 Original User Code
	3.3 Optimizing User Code

	4 Evaluation and Discussion
	5 Conclusion
	Acknowledgments
	References

