
Future Generation Computer Systems 93 (2019) 188–197

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Unicorn: Unified resource orchestration for multi-domain,
geo-distributed data analytics

Qiao Xiang a,b,∗, X. Tony Wang a,b, J. Jensen Zhang a, Harvey Newman c, Y. Richard Yang a,b,∗,
Y. Jace Liu a

a Tongji University, China
b Yale University, United States
c California Institute of Technology, United States

h i g h l i g h t s

• First unified resource orchestration framework for multi-domain data analytics.

• Resource state abstraction for accurate, minimal resource information discovery.

• Prototype evaluation and full demonstration at SuperComputing 2017.

a r t i c l e i n f o

Article history:

Received 31 January 2018

Received in revised form 25 June 2018

Accepted 19 September 2018

Available online 1 November 2018

a b s t r a c t

As the data volume increases exponentially over time, data-intensive analytics benefits substantially from

multi-organizational, geographically-distributed, collaborative computing, where different organizations

contribute various yet scarce resources, e.g., computation, storage and networking resources, to collabo-

ratively collect, share and analyze extremely large amounts of data. By analyzing the data analytics trace

from the Compact Muon Solenoid (CMS) experiment, one of the largest scientific experiments in the

world, and systematically examining the design of existing resourcemanagement systems for clusters, we

show that the multi-domain, geo-distributed, resource-disaggregated nature of this new paradigm calls for

a framework to manage a large set of distributively-owned, heterogeneous resources, with the objective

of efficient resource utilization, following the autonomy and privacy of different domains, and that the

fundamental challenge for designing such a framework is: how to accurately discover and represent resource

availability of a large set of distributively-owned, heterogeneous resources across different domains with

minimal information exposure from each domain? Existing resource management systems are designed

for single-domain clusters and cannot address this challenge. In this paper, we design Unicorn, the first

unified resource orchestration framework for multi-domain, geo-distributed data analytics. In Unicorn,

we encode the resource availability for each domain into resource state abstraction, a variant of the

network view abstraction extended to accurately represent the availability of multiple resources with

minimal information exposure using a set of linear inequalities. We then design a novel, efficient cross-

domain query algorithm and a privacy-preserving resource information integration protocol to discover

and integrate the accurate, minimal resource availability information for a set of data analytics jobs across

different domains. In addition, Unicorn also contains a global resource orchestrator that computes optimal

resource allocation decisions for data analytics jobs. We implement a prototype of Unicorn and present

preliminary evaluation results to demonstrate its efficiency and efficacy.We also give a full demonstration

of the Unicorn system at SuperComputing 2017.

© 2018 Elsevier B.V. All rights reserved.

∗ Corresponding author at: Department of Computer Science, YaleUniversity, 51

Prospect Street, New Haven, CT, 06511, United States.

E-mail addresses: qiao.xiang@cs.yale.edu (Q. Xiang),

13xinwang@tongji.edu.cn (X. Tony Wang), jingxuan.zhang@tongji.edu.cn

(J. Jensen Zhang), newman@hep.caltech.edu (H. Newman), yry@cs.yale.edu

(Y. Richard Yang), yang.jace.liu@linux.com (Y. Jace Liu).

1. Introduction

As the data volume increases exponentially over time, data-
intensive analytics benefits substantially from multi-
organizational, geographically-distributed, collaborative comput-
ing, where different organizations (also called domains) contribute
various yet disaggregated resources, e.g., computation, storage and
networking resources, to collaboratively collect, share and analyze

https://doi.org/10.1016/j.future.2018.09.048

0167-739X/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.future.2018.09.048
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2018.09.048&domain=pdf
mailto:qiao.xiang@cs.yale.edu
mailto:13xinwang@tongji.edu.cn
mailto:jingxuan.zhang@tongji.edu.cn
mailto:newman@hep.caltech.edu
mailto:yry@cs.yale.edu
mailto:yang.jace.liu@linux.com
https://doi.org/10.1016/j.future.2018.09.048


Q. Xiang, X. Tony Wang, J. Jensen Zhang et al. / Future Generation Computer Systems 93 (2019) 188–197 189

extremely large amounts of data. One important example of this
paradigm is the Compact Muon Solenoid (CMS) experiment at
CERN [1], one of the largest scientific experiments in the world.
The CMS data analytics system is composed of over 150 partici-
pating organizations, including national laboratories, universities
and other research institutes. By analyzing the data analytics trace
from the Compact Muon Solenoid (CMS) experiment over a 7-
day period and systematically examining the design of existing
resource management systems for clusters, we show that the
multi-domain, geo-distributed, resource-disaggregated nature of this
new paradigm calls for a framework to manage a large set of
distributively-owned, heterogeneous resources, with the objective
of efficient resource utilization, following the autonomy and privacy
of different domains.

In particular, our trace analysis shows that (1) over 35% of data
analytics jobs are remote jobs, i.e., jobs that require different types
of resources from different domains for execution; (2) the 90%
quantile of the job execution time of remote jobs is approximately
38.9% longer than that of local jobs, i.e., jobs that only require
resources from a single domain for execution; and (3) the data
transfer traffic is saturating the CMS network, leaving limited
networking resources (i.e., less than 15%) for data analytics traffic.
These observations show that resources in multi-domain, geo-
distributed analytics are highly disaggregated, i.e., unbalanced dis-
tributed across domains. Although there is much related work on
resourcemanagement for clusters and data centers, such as [2–12],
they aremostly designed formanaging resources in single-domain
clusters, and cannot accomplish the aforementioned goal formulti-
domain, geo-distributed data analytics. In particular, these systems
typically adopt a graph-based abstraction to represent the resource
availability in clusters. In this abstraction, each node in the graph
is a physical node representing computation or storage resources
and each edge between a pair of nodes denotes the networking
resource connecting two physical nodes. This abstraction is inade-
quate for multi-domain, geo-distributed data analytics systems for
two reasons. First, it compromises the privacy of different domains by
revealing all the details of resources in each domain. Secondly, the
overhead to keep the resource availability graph up to date is too ex-
pensive due to the heterogeneity and dynamicity of resources from
different domains. Some systems such as HTCondor [2] adopts a
simpler abstraction that only represents computation and storage
resources inmulti-domain clusters. This approach, however, leaves
the orchestration of networking resources completely to the trans-
mission control protocol (TCP), which has long been known to be-
have poorly in networks with high bandwidth-delay products in-
cludingmulti-domain, geo-distributed data analytics systems, and
hence is inefficient. Through trace analysis and relatedwork study,
we identify the fundamental design challenge for designing an
orchestration framework for multi-domain, geo-distributed data
analytics is the accurate discovery and representation of resources
across different domains with minimal information exposure.

In this paper, we design Unicorn, the first unified resource
orchestration framework for multi-domain, geo distributed data
analytics. In Unicorn, the resource availability of each domain is
abstracted into resource state abstraction, a variant of the net-
work view abstraction [13] extended to accurately represent the
availability of multiple resources with minimal information ex-
posure using a set of linear inequalities. With this intra-domain
abstraction, Unicorn uses a novel, efficient cross-domain resource
discovery component to find the accurate resource availability
information for a set of data analytics jobs across different domains
with minimal information exposure, while allowing each domain
tomake andpractice their own resourcemanagement strategies. In
addition, Unicorn also contains a global resource orchestrator that
computes optimal resource allocation decisions for data analytics
jobs.

Themain contributions of this paper are as follows:

• we study the novel problem of resource orchestration for

multi-domain, geo-distributed data analytics and identify the

cross-domain resource discovery challenge as the fundamental

design challenge for this problem through systematic trace-

analysis and vigorously related work investigation;

• we design Unicorn, the first unified resource orchestration

framework for multi-domain, geo-distributed data analytics.

Unicorn provides the resource state abstraction for each do-

main to accurately represent its resource availability with

minimal information exposure in the form of a set of linear

equalities, a novel, efficient cross-domain resource discovery

component to provide the accurate, minimal resource avail-

ability information across different domains, and a global re-

source orchestrator to compute optimal resource allocations

for data analytics jobs;

• we implement a prototype of Unicorn and perform prelim-

inary evaluations to demonstrate its efficiency and efficacy.

We also present a full demonstration of Unicorn at Super-

Computing 2017.

The rest of the paper is organized as follows. We analyze the

data analytics trace of the CMS experiment, discuss the inadequacy

of existing resource management systems and identify the key

design challenge for multi-domain, geo-distributed data analytics

systems in Section 2. We introduce the system setting and give

an overview of the Unicorn framework in Section 3. We then

present the details of two key components of Unicorn, cross-

domain resource discovery and representation and global resource

orchestration, in Section 4 and 5, respectively. We discuss the

implementation details in Section 6 and evaluate the performance

of Unicorn in Section 7.We conclude the paper and discuss the next

steps of Unicorn in Section 8.

2. Motivation and challenge

Analytics trace from the CMS experiment. We collect the trace

of approximately 479 thousand data analytics jobs from the CMS

experiment, one of the largest scientific experiments in the world,

over a period of 7 days. From this trace,we find that over 35%of jobs

consumes resources across different domains, i.e., these jobs use

the computation node and the storage node located at different do-

mains which are connected by networking resources across mul-

tiple domains. We call these jobs remote jobs, compared with local

jobswhich only use resourceswithin one single domain. This result

indicates the resource disaggregation in the CMS network, i.e., the

unbalanced distribution of storage and computation resources.We

also plot the cumulative distribution function of job execution time

for this set of traces as shown in Fig. 1. We observe that the 90%

quantile of job execution time for remote jobs has an extra 38.9%

higher latency than local jobs. In addition, we observe that the

cross-domain networking resources available for data analytics are

very limited because the CMS data transfer traffic is saturating the

limited networking resources, e.g., the cross-domain data transfer

network traffic of the same7-day period has a total amount of 8785

terabyteswhile the cross-domain data analytics traffic is only 1404

terabytes. This observation indicates the scarcity of networking

resources available for data analytics in the CMS network. All these

results demonstrate that in order to support low-latency, multi-

domain, geo-distributed data analytics, it is not only necessary, but

crucial to design a multi-domain resource orchestration system.

Related work. There exists a rich literature in the field of resource

management of clusters [2–12]. YARN [4] is the core resourceman-

agement framework of Hadoop. Mesos [3] is a platform designed

to share resources amongmultiple cluster computing frameworks,

e.g., MapReduce [14], Spark [15], MPI and etc. Google designs a

system called Borg [5] to orchestrate the cluster resources for its



190 Q. Xiang, X. Tony Wang, J. Jensen Zhang et al. / Future Generation Computer Systems 93 (2019) 188–197

Fig. 1. The CDF of job latency local and remote jobs.

proprietary data analytics frameworks. Microsoft (i.e., Apollo [6])

and Facebook (i.e., Corona [7]) also develop similar systems tailored

to their data analytics needs. These systems are all designed for

managing resources in single-domain clusters and adopt a graph-

based abstraction to represent the resource availability in clusters.

In this abstraction, each node in the graph is a physical node repre-

senting computation or storage resources and each edge between

a pair of nodes denotes the networking resource connecting two

physical nodes. This abstraction is inadequate for multi-domain,

geo-distributed data analytics systems for because (1) it compro-

mises the privacy of different domains by revealing all the details

of resources in each domain; and (2) the overhead to keep the

resource availability graph up to date is too expensive due to the

heterogeneity anddynamicity of resources fromdifferent domains.

There are also some efforts towards resource management for

multi-domain clusters. HTCondor [2] proposes a ClassAds pro-

gramming model, which allows different resource owners to ad-

vertise their resource supply and the job owners to advertise

the resource demand. The CMS [1] experiment currently uses

HTCondor and glideinWMS [8] to manage a set of distributively

owned computing resources in a globally distributed system. These

systems only focus on managing storage and computing resources

in clusters, while the recent study shows that computation, storage

and networking resources have approximately the same probabil-

ity to become the bottleneck affecting the performance of data-

intensive analytics jobs [16]. By leaving the orchestration of net-

working resources completely to TCP, which has been known to

behave poorly in networks with high bandwidth-delay products

including multi-domain, geo-distributed data analytics systems,

the abstraction adopted by these systems is also inefficient.

Another line of work called geo-distributed data analytics is

also related. Solutions in this field include (1) moving the input

dataset to a single data center before the computation [17,18] and

(2) placing different amounts of tasks at different sites depending

on dataset availability to achieve a better parallelization and hence

a lower latency [9–12]. The main focus of these solutions is to

optimize the usage of a set of dedicated networking resources.

The design of these systems cannot be applied to multi-domain,

geo-distributed data analytics where different types of resources

owned by different owners need to be orchestrated.

Design challenge. The discussion above shows the urgent need

for an efficient resource orchestration framework to supportmulti-

domain, geo-distributed data analytics systems such as CMS. And

by investigating the limitations of existing resource management

Fig. 2. An example of multi-domain, geo-distributed data analytics system. Do-

mains A, B, E and F are leaf domains. Domains C and D are transmission domains.

systems,we identify the key design challenge for such a framework
is how to achieve resource discovery and representation across
different domains with minimal information exposure. To this
end, we design the Unicorn framework to manage a large set of
distributively-owned, heterogeneous resources for multi-domain,
geo-distributed data analytics systems. Unicorn achieves efficient
resource utilization while allowing the autonomy and privacy of
different domains through a novel resource state abstraction, an
efficient cross-domain discovery and representation component
and a global resource orchestration component, which will be
discussed in the next few sections.

3. Overview

In this section, we introduce the system setting for multi-
domain, geo-distributed data analytics and give an overview of the
Unicorn framework and its workflow.

System settings. We consider a data analytics system composed
of multiple organizations (domains). Each domain contributes a
certain amount of computation, storage and networking resources
for all the users in the system to store, transfer and analyze large-
volume datasets. The storage and computation resources are typ-
ically physical servers, virtual machines or containers. The net-
working resources are typically switches and links. Domains that
only contribute networking resources are called transmission do-
mains and domains that also contribute computation and storage
resources are called leaf domains. Fig. 2 gives an example of such a
system. In this example, domain A, B, E and F are all leaf domains
while domain C and D are transmission domains.

A data analytics task is typically decomposed into a set of jobs J
whose precedence relation is specified by a directed acyclic graph
(DAG). A task is finished if and only if the last job in the decom-
posed DAG is finished. Each job j has requirements on storage and
computation resources, e.g., number of CPUs, size ofmemory, input
dataset and etc. We use (stg, comp) to denote a pair of candidate
storage and computation resources satisfying the requirement of j.
The orchestration system is in charge of selecting one (stg, comp)
pair for each job j and allocating the selected storage and computa-
tion resources and the networking resources connecting them for
executing j.

Unicorn architecture. We present the architecture of Unicorn in
Fig. 3. On top of all the domains, Unicorn provides a logically cen-
tralized controller to orchestrate resources for data analytics jobs.
This controller includes a cross-domain resource representation
anddiscovery component and a global resource orchestration com-
ponent. Residing in each domain are a domain resource manager
and a set of job execution agents.

Unicorn provides a novel abstraction called resource state ab-
straction, a variant of network view abstraction [13]. This abstrac-
tion uses a set of linear inequalities to accurately represent the



Q. Xiang, X. Tony Wang, J. Jensen Zhang et al. / Future Generation Computer Systems 93 (2019) 188–197 191

Fig. 3. The architecture of Unicorn.

availability of different resources in each domain with minimal

information exposure. When a set of data analytics jobs J are

submitted to the Unicorn controller, the cross-domain resource

discovery and integration component issues discovery queries,

i.e., path queries and resource queries, to the domain resource

manager at each domain to retrieve the intra-domain resource

view of each domain encoded in the resource state abstraction.

It then assembles and compresses the responses into an accurate,

minimal cross-domain resource view. This view, together with the

resource requirements of j, is then used by the global orchestration

component to make global, optimal resource allocation decisions

and send to the job execution agents at corresponding domains.

The execution agents enforce the received decisions, e.g., start-

ing the corresponding program, rate limiting the data accessing

bandwidth and etc., and send the job execution status back to the

Unicorn controller as feedback. In the next few sections,wepresent

the design details of key components of Unicorn.

4. Cross-domain resource discovery and representation

In this section, we present our design to address the funda-

mental challenge of accurately discovering and representing a

large set of distributively-owned, heterogeneously resources with

minimal information exposure of resource owners. In particular,

we introduce a novel abstraction to represent intra-domain re-

source availability and design an efficient discovery mechanism to

discovery resource availability across different domains.

4.1. Intra-domain resource state abstraction

Basic idea. Unicorn framework provides an abstraction called

resource state abstraction to accurately represent the availability

of multiple resources for a set of data analytics jobs using a set of

linear inequalities. This is a variant of the network view abstrac-

tion [13]. In particular, we consider a set of data analytic jobs J that

wants to consume a set of physical resources R (i.e., computation,

storage and networking) based on a set of pre-defined policies P .

If a resource attribute attr is capacity-bounded, i.e., a resource r

can only provide this attribute with a certain capacity (denoted as

C r,attr ) and each job j consuming r can only get a portion of this

attribute (denoted as cr.attrj ), the resource availability of R for J on

this attribute can be expressed as:
∑

j∈J(P,r)

c
r,attr
j ≤ C r,attr

,∀r ∈ R, (1a)

Fig. 4. An example to illustrate the resource state abstraction.

c
R,attr
j = f (P, attr, c

r,attr
j ),∀(j, r ∈ R), (1b)

c
r,attr
j = g(P, attr, c

r ′,attr
j ),∀(j, r ∈ R, r ′ ∈ R {r}). (1c)

In this representation. Eq. (1a) indicates that the total amount

of attr of resource r consumed by all the jobs cannot exceed the

supply capacity of r on attr , where J(P, r) is the set of jobs that are

allowed to consume j based on the policy set P . Eq. (1b) represents

the total capacity of attr that j can get from the whole set of

resources R (denoted as c
R,attr
j ) by a pre-defined linear function

of c
r,attr
j , whose form depends on attr and P . Eq. (1c) represents

the relation between the amount of attr a job j can get from two

resources r and r ′ by a pre-defined linear function, whose form

depends on attr and P . One of themost common capacity-bounded

resource attributes is bandwidth.

If a resource attribute attr is capacity-free, i.e., each j consuming

r who provides this attributes can get the same capacity C r,attr at

the same time, the resource availability of R for J on this attribute

can be expressed as:

c
R,attr
j = h(P, R, attr, j),∀j ∈ J, (2)

where the value of c
R,attr
j is computed by a pre-defined function

h(P, R, attr, j) whose form depends on attr and P . Note that this

function does not need to be linear because the value of the right-

hand side can be directly computed in this availability represen-

tation. Examples of such capacity-free resource attributes include

propagation delay, hop-count, and etc.

Example. We use the physical topology in Fig. 4 to illustrate how

resource state abstraction works. Suppose two jobs j1 and j2 need

to read data from storage node eh1 to computation node eh3 and

from eh2 to eh4, respectively. The routing policy for the data flow of

each job is also shown in the figure. For simplicity, we only focus on

the bandwidth attribute for each resource, i.e., end host, switch and

link. Following the definition in Eq. (1), the resource availability of

this topology for j1 and j2 can be expressed as:

c
li
j1
≤ 100 Mbps, i = {1, 3},

c
li
j2
≤ 100 Mbps, i = {4, 5},

c
li
j1
+ c

li
j2
≤ 100 Mbps, i = {2},

c
swk

j1
+ c

swk

j2
≤ 10 Gbps, k = {1, 2},

c
ehm
j1
≤ 10 Gbps, m = {1, 3},

c
ehm
j2
≤ 10 Gbps, m = {2, 4},

cRj1
= c

li
j1
= c

swk

j1
= c

ehm
j1

, i = {1, 2, 3},∀k,m = {1, 3},

cRj2
= c

li
j2
= c

swk

j2
= c

ehm
j2

, i = {2, 4, 5},∀k,m = {2, 4},

c
li
j1
= c

ehm
j1
= 0, i = {4, 5},m = {2, 4},

c
li
j2
= c

ehm
j2
= 0, i = {1, 3},m = {1, 3},

(3)

Computingminimal, equivalent resource state abstraction. The

representation of resource availability defined in Eqs. (1)(2) is

accurate and complete, but may result in a large set of linear

inequalities with redundant information. In a simple topology in

our illustration example, there are already over 20 inequalities. Di-

rectly sharing themwith a centralized controller or other domains

would introduce a large communication overhead and expose

unnecessary private information about each domain, e.g., domain

topology and policies. We define a metric called compression ratio



192 Q. Xiang, X. Tony Wang, J. Jensen Zhang et al. / Future Generation Computer Systems 93 (2019) 188–197

to measure the exposure of private information of resource state

abstraction.

Definition 1 (Compression Ratio). Given an original resource state

abstraction with M linear inequalities, a compressed, equivalent

resource state abstractionwithN linear inequalities, which has the

same feasible region as the original resource state abstraction, has

a compression ratio of N
M
.

In Unicorn, the domain resource manager adopts a lightweight,

optimal algorithm that compresses the original resource state ab-

straction into an equivalent resource state abstraction with the

minimal compression ratio. The basis of this compression algo-

rithm is simple: given an original set of linear inequalities C : Ax ≤

b, we iteratively select one constraint c ∈ C : aTx ≤ b and calculate

the optimal solution of problem y← max aTx, subject to, C −{c}.

If b is smaller than the resulting y, c is an indispensable constraint

in determining the feasible region andwill be put into theminimal,

equivalent constraint set C ′. Otherwise, c is a redundant constraint.

We propose the following proposition for this compression algo-

rithm.

Proposition 1. Given an original resource state abstraction, the

proposed compression algorithm computes an equivalent resource

state abstraction with the minimal compression ratio.

This proposition can be proved via contradiction. Applying this

algorithm to the example above, we may find that the minimal,

equivalent set of linear inequalities has only one inequality: cRj1
+

cRj2
≤ 100 Mbps. In other words, our compression algorithm

achieves the minimal compression ratio of 1
31
.

4.2. Cross-domain resource discovery

The resource state abstraction allows each domain to represent

the accurate resource availability for a set of data analytics jobs us-

ing a set of linear inequalities with minimal information exposure,

but it still requires the knowledge of all available computation,

storage and networking resources, i.e., the domain topology, and

the domain policy to construct the original abstraction. As a result,

it is non-trivial to extend it for resource discovery cross-domains,

when a job needs to consume resources located in different do-

mains, e.g., the storage node and computation node assigned to

the same job may be located in two different domains and are

connected by network links across multiple domains. This is be-

cause information such as domain topology and policy is usually

private to each domain itself and is not allowed to be passed

arounddifferent domains. In this subsection,wepresent the details

of our design to tackle this challenge and extend resource state

abstraction for cross-domain resource discovery.

Basic idea. The key insight of our design is simple yet powerful: if

we can partition the networking resources connecting a (str, comp)

candidate pair for job j based on the domains they belong to, as

shown in Fig. 5, we can then ask the domain resource manager of

each domain to compute and represent the resource availability for

j in each domain independently.

With this insight, we design the cross-domain resource dis-

covery process of Unicorn whose workflow is shown in Fig. 6. In

particular, Unicorn performs cross-domain resource discovery for

a set of candidate (stg, comp) pairs for a set of job J in four key

steps. The first step is the path query process, in which the Unicorn

controller issues path queries to the domain resource manager to

recursively get a domain path in the form of

(dom1, srcIP, egress)→ (dom2, ingress, egress)

→ . . . , (domN , ingress, dstIP), (4)

Fig. 5. Partition the networking resources by domain.

Fig. 6. Workflow of cross-domain resource discovery.

for each candidate (storage, computation) node pair. The path query
can be executed either recursively or iteratively. The second step
is the partition process, which transforms the domain paths for
all the (stg, comp) candidate pairs, into a set of segments, i.e., the
partition results, with the form of

(domi, Fi, Fi.ingress, Fi.egress), (5)

for each domain, where Fi denotes the set of all (stg, comp) can-
didate pairs whose connection use the network resource in do-
main i. Thirdly, the Unicorn controller sends each partitioned seg-
ment to the corresponding domain resource manager to issue
one resource query for each segment, which asks each domain
to compute the minimal, equivalent single-domain resource state
abstraction. Fourthly, a privacy-preserving resource information
integration protocol will be executed between all the domains
to compute the accurate, minimal cross-domain resource view
representing the cross-domain resource availability for a set of
candidate (stg, comp) pairs for a set of job J .

Path query. We present the pseudocode of the path query process
in Algorithm 1. The path query is a recursive query process. In
particular, the path query algorithm requires the input of domain,
which domain the query should be sent to, F , a set of (stg, comp)
candidate pairs whose connection use the network resource in
domain, and Ingress, the set of ingress points each candidate pair is
entering domain from. It starts from the Unicorn controller group
the whole set of F into multiple disjoint subsets based on where
the storage resources for this subset of pairs are located, and send
one path query for each subset to each corresponding domain.
When a domain resource manager receives such a query, it first
computes the egress point, the next domain, and the ingress point
of next domain for each candidate pair f (Line 3–4). Then the set F
is grouped into several disjoint subsets based on the next domain
of each pair f (Line 5). For each subset Fi whose next domain is
not null, the current resource manager adds the current domain
into the domain path for Fi and issues another path query to the
domain resource manager at Fi.nextDom to get the remaining part
of the whole domain path (Line 8–12). If the next domain of Fi is



Q. Xiang, X. Tony Wang, J. Jensen Zhang et al. / Future Generation Computer Systems 93 (2019) 188–197 193

null, it means that the computation resources of these (stg, comp)

pairs are in the current domain, i.e., the domain path reaches the

destination, and the domain manager simply returns such infor-

mation to the querying party. During the path query process, each

domain only provides the egress points, the next domains and the

ingress points for (stg, comp) candidate pairswithout revealing any

topology or policy information.

Algorithm 1: The algorithm of path query.

1 Function domPathQuery(domain, F , Ingress)

2 domPathResponse← ∅;

3 foreach f ∈ F do

4 (f .egress, f .nextDom, f .nextDomIngress)← getNextDomain(f );

5 {F1, F2, . . . , } ← F .groupBy(f .nextDom);

6 foreach Fi do

7 if Fi.nextDom! = null then

8 domPathResponse←

9 domPathResponse∪

10 (domain, Fi.egress)⊕

11 {domPathQuery(Fi.nextDom, Fi,

12 Fi.nextDomIngress)};

13 else

14 domPathResponse←

15 domPathResponse ∪ {(Fi, null)};

16 return domPathResponse;

Resource query. For the sake of integrity, we present the pseu-

docode of partition and resource query together in Algorithm 2.

In particular, when the Unicorn controller receives the domain

path for each (stg, comp) candidate pair, it can use this information

to partition each path by domains and get the partition results

in Eq. (5) (Line 5–12). Then the Unicorn controller can perform

efficient resource queries to ask each domain to compute the intra-

domain resource view (Line 13–14).

This resource query process is efficient due to the following

proposition:

Proposition 2. Given a set of candidate (storage, computation) node

pairs for a job set of J , Unicorn achieves the minimal number of

resource queries at each domain.

Proof. With the domain path for each (str, comp) candidate pair,

the partition process yields a set of segments defined in Eq. (5), one

segment for each domain. Hence the Unicorn controller only needs

to generate one resource query for each domain if the correspond-

ing Fi is not empty, which completes our proof.

Algorithm 2: The algorithm of partition and resource query

and.

1 Function resourceQuery(F , F .domainPath)

2 resourceView← ∅;

3 foreach domain do

4 domain.F ← ∅;

5 foreach f ∈ F do

6 hIdx← 0;

7 dom← getDom(f .domainPath, hIdx);

8 do

9 dom.F ← dom.F ∪ {f };

10 hIdx← hIdx+ 1;

11 dom← getDom(f .domainPath, hIdx);

12 while dom ̸= null;

13 foreach domain do

14 resourceQueryByDomain(domain, F)

Privacy-preserving resource information integration. During

the resource query phase, each domain d computes the equivalent

resource state abstraction that is only minimal to d itself. When

the controller collects the resource state abstraction from every

domain, a linear inequality that was from domain d1 may be a re-

dundant one due to the existence of another linear inequality from

domain d2. For instance, d1 may return f1+f2 ≤ 10 to the controller

while d2 may return f1 + f2 ≤ 5. It is easy to see that the cross-

domainminimal, equivalent resource state abstraction would only

contain f1 + f2 ≤ 5, not f1 + f2 ≤ 10. A strawman approach

to compute the cross-domain minimal, equivalent resource state

abstraction is to have the controller run the MECS algorithm with

all the resource state abstraction from every domain as input. This

approach, however, would force each domain to expose unneces-

sary resource information, i.e., the redundant linear inequality, to

the controller, leading to unnecessary privacy leaks.

In Unicorn, we design a privacy-preserving resource informa-

tion integration protocol that allows every domain to discover

linear inequalities in its own domain that are redundant to the

minimal cross-domain resource state abstraction. This protocol

involves two steps. In the first step, each domain d uses the classic

pivoting algorithm [19] to compute all the vertices of the convex

polyhedron defined by all the linear inequalities of its own single-

domain resource state abstraction. In the second step, each domain

d peers with every other domain d′ ∈ D, and uses a customized

secure two-party computational geometry protocol to decide if all

the vertices computed by d are on the same halfspace defined by

a given linear inequality c in the resource state abstraction of d′.

If this is true, then c is a redundant inequality in the final cross-

domain resource state abstraction, hence will not be sent from

domain d′ to the controller. The privacy-preserving property of this

protocol is summarized in the following proposition.

Proposition 3. Given two domains d and d′, the proposed protocol

ensures that d knows which linear inequalities in its own single-

domain resource state abstraction are redundant to the single-domain

resource state abstraction of d′ without knowing what the resource

state abstraction of d′ has, and vice versa.

We leave the details of this protocol in [20] due to the space

limit.

Schedulability. The cross-domain resource discovery process in

Unicorn provides an accurate view of resource availability across

domains with minimal exposure of private information. One im-

portant question left, however, is whether this view provides a full

schedulability of resources for a logically centralized orchestrator.

We answer this question with the following theorem.

Theorem 1. When all the resources represented in the final resource

state abstraction queried from the cross-domain discovery process

in Unicorn can be fully controlled on the edge, i.e., all the attributes

of each resource can be controlled by end host, the resource view

provided by resource state abstraction provides a full schedulability

of resources to a centralized resource orchestrator.

We omit the proof of this theorem due to the space limit.

5. Global resource orchestration

With the accurate, minimal cross-domain resource view, Uni-

corn performs global resource orchestration to compute optimal

resource allocation decisions for a given set of jobs J . The mod-

ular design of Unicorn allows different allocation algorithms to

be deployed. For simplicity, we consider a set of jobs J with no

precedence from the same task, i.e., all the jobs can be executed in

parallel. We leave a more generic problem formulation as future

work. We assume that each computation resource has infinite

computation power, i.e., the data accessing delay reading data

from storage resources over networking resources to computation

resources is the only bottleneck determining the delay for each



194 Q. Xiang, X. Tony Wang, J. Jensen Zhang et al. / Future Generation Computer Systems 93 (2019) 188–197

workflow. For each job j ∈ J , let Stgj denote the set of storage
resources storing a copy of the input dataset of j, Compj denote
the set of computation resources that can execute j, vj denote
the volume of input dataset of j, and tj denote the data accessing
delay of j. We also use bmn

j to denote the data access bandwidth
for job j from storage resource m to computation resource n, and
a binary variable Imn

j to denote if j is assigned storage resource
m and computation resource n simultaneously or not. Note that
the global resource orchestration component relies heavily on
the cross-domain resource discovery component in Section 4. To
illustrate this argument, we first give a formulation of the global
optimal resource allocation problemwithout cross-domain resource
discovery as follows:

minimize maxj∈J{tj} (6)

subject to
∑

{j∈J|n∈Compj}

∑

m∈Stgj

Imn
j ≤ 1, ∀n ∈ N, (7a)

∑

m∈Stgj

∑

n∈Compj

Imn
j = 1, ∀j ∈ J, (7b)

vj∑
m∈Stgj

∑
n∈Compj

bmn
j Imn

j

= tj, ∀j ∈ J, (7c)

A1(BI) ≤ C1. (7d)

A2(BI) ≤ C2. (7e)

. . . (7f)

AK (BI) ≤ CK . (7g)

In this formulation, Eq. (6) indicates that the global resource
allocation problem aims to minimize the data accessing delay for
the whole set of jobs F . Eq. (7a) ensures that for each computation
resource, atmost one job can be assigned. Eq. (7b) ensures that only
one computation resource and one storage resource are assigned
for each job j. Eq. (7c) calculates the data accessing delay for each
job j. These constraints, i.e., Eqs.(7a)–(7c) are job-specific, i.e., they
express the requirements of data analytics jobs and can be changed
accordingly based on different job requirements. The constraints
in Eqs. (7d)–(7g) are resource-specific, which depends not only on
jobs’ resource requirements, but also on the attributes provided by
resources from each domain.

Though this formulation is accurate itself, its key limitation
is that without a cross-domain resource discovery process, it is
infeasible to find the resource-specific constraints in Eqs. (7d)–
(7g). On the contrary, the cross-domain resource discovery in Uni-
corn copes with this issue by providing the following constraint to
accurately represent the resource availability for a given set of jobs
with minimal information exposure.

A(BI) ≤ C . (8)

With this formulation, the global optimal resource allocation
problem with cross-domain resource discovery can be precisely de-
fined as:

minimize maxj∈J{tj} (9)

subject to

Eqs. (7a)(7b)(7c)(8). (10a)

Solution. The multi-domain resource allocation problem defined
above is complex in that it involves binary decisions, non-linear
constraints and a complex objective function. To solve this prob-
lem,we first linearize the binary decision variables, thenuse a stan-
dard optimization solver to find the solution to the relaxed non-
linear optimization problem, and then round-up the linearized

Table 1

Unicorn resource discovery protocol.

Service Path Query Resource Query

HTTP Method POST POST

Media Type application application

Accept Subtype alto-flowfilter+json alto-flowfilter+json

Content Subtype alto-nextas+json alto-pathvector+json

Function Implement

getNextDomain() in

Algorithm 1.

Implement

resourceQueryByDomain()

in Algorithm 2.

decision variables back to the {0, 1} feasible space to get the final

resource allocation decisions. Because the cross-domain resource

discovery process in Unicorn provides the resource view across do-

mains with a minimal set of linear inequalities, the time overhead

to solve the relaxed non-linear optimization problem is typically

reasonable. We leave the task of finding a more efficient algorithm

for this problem as future work.

6. Implementation

In this section, we discuss the implementation details of the

Unicorn framework. The system implementation includes the fol-

lowing components:

Resource discovery protocol. We design and develop a query-

based resource discovery protocol by extending the Application-

Layer Traffic Optimization (ALTO) protocol [21], to deliver the

resource state abstraction from each domain to the Unicorn con-

troller. The protocol provides twomajor services: path query service

and resource query service. The former is used for delivering next

hop information to from domain resource managers the Unicorn

controller. The latter is used for executing intra-domain resource

queries. Table 1 summarizes the basic view of the two services.

Domain resourcemanager. We build the prototype implementa-

tion of the domain resource manager on top of the OpenDaylight

SDN controller [22]. From the view of the Unicorn controller, the

domain resource manager works as a web service which provides

the resource discovery protocol. From the view of the OpenDay-

light controller, the resource manager is a consumer to re-process

the topology, the traffic statistics, the intra-domain resource infor-

mation and the inter-domain routing information.

The implementation includes two sub components: An Open-

Daylight application running in the Karaf container; and a Python-

based web service to provide the resource discovery protocol. The

OpenDaylight application uses the API provided by Model-Driven

SAL framework to read the real-time network information from

the OpenDaylight DataStore. The two sub components commu-

nicate via RPC with each other. So the web service component is

decoupled with the OpenDaylight and can be adapted to any other

network management platform.

To implement the resource query service, we use the Python

web service to look up the raw resource state for the given flow

set from the OpenDaylight back end. Our native OpenDaylight

application collects the topology and forwarding rules from the

network-topology and opendaylight-inventory model of

the DataStore, and computes the intra-domain resource state from

these information. In our Python web service, we use GLPK as

the underlying LP solver to calculate the minimal equivalent re-

source state abstraction described in Section 4.1. The solver API is

wrapped by PuLP so that we could switch to other LP solvers like

CPLEX and Gurobi without many modifications.

We implement the path query service as a BGP compatible ser-

vice. The domain resourcemanager reads the inter-domain routing

information from the OpenDaylight DataStore and converts it to

the BGP RIB (Routing Information Base) format to respond the



Q. Xiang, X. Tony Wang, J. Jensen Zhang et al. / Future Generation Computer Systems 93 (2019) 188–197 195

path query. The native OpenDaylight could support multiple inter-

domain routing protocols by implementing their adaptors. In this

prototype, we only implement the BGP adaptor which feeds the

next-hop information of the inter-domain routing from the bgp-

ribmodel.

Cross-domain resource discovery. The cross-domain resource

discovery implements the two algorithms, path query (Algorithm

1) and resource query (Algorithm 2) and aggregate resource state

abstraction from multiple domains to provide a aggregated re-

source state abstraction to the Global Resource Orchestration. It

provides a high-level API getGlobalResourceView which ac-

cepts a set of node pairs (srcIP, dstIP) as the queried flow set,

and returns a set of linear inequalities as the global resource

view. In addition, it also provides some low-level APIs including:

getDomainPath that implements the Algorithm 1 and returns

the domain path; and getDomainResource that retrieves the

intra-domain resource view from a domain via resource discovery

protocol.

Global resource orchestration. We implement the global re-

source orchestrator to subscribe to the analytics job management

database. Once new jobs are inserted into the database, the orches-

trator fetches them, performs cross-domain resource discovery

and thenmake resource allocation decisions. It provides numerous

Python APIs for developing new resource allocation algorithms.

Therefore it is flexible for administrators to update the resource al-

location policy. Our current orchestratormakes resource allocation

decisions by solving the optimization problem defined in Section

5.

7. Performance evaluation

We evaluate the performance of Unicorn through trace-based

simulations. In particular, we focus on the efficiency of Unicorn in

(1) discovering and represent a cross-domain resource view with

minimal information exposure; and (2) performing global resource

allocation decisions for data analytics jobs. All the simulations are

conducted on a laptop with two 1.6 GHz Intel i5 Cores and a 4 GB

memory.

7.1. Methodology

We emulate three multi-domain data analytics networks with

different number of domains and topologies. For each setting, we

first randomly select one topology from Topology Zoo [23] and

let that topology be the domain-level topology with each node

represent a single domain. And we also generate the intra-domain

topology, i.e., switches and the intra-domain links, for eachdomain.

The emulated multi-domain topologies are labeled as Arpanet

(composed of 4 domains), Aarnet (composed of 19 domains) and

Chinanet (composed of 42 domains). The scale of these multi-

domain topologies reflects the scenario of high-energy physics

researchprograms.We leave the evaluation of largermulti-domain

topologies (e.g., hundreds or thousands of domains from the CAIDA

datasets) as future work. We set the available link bandwidth

within each domain to be 0.2–1 Gbps and the available link band-

width between domains to be 2–4 Gbps. And we assume the I/O

bandwidth of storage and computation resources are way larger

than the bandwidths of links. We assume each domain’s intra-

domain and inter-domain routing policies both use the typical

routing policies, i.e., the shortest path routing, except that the

former is on the router level and the latter is on the domain level.

We vary the number of data analytics jobs J from the same task to

be from 5 to 30, each of which requires reading 1000 GB of data.

Fig. 7. Compression ratio of intra-domain resource view and cross-domain re-

source view with varying numbers of jobs.

Fig. 8. Compression ratio of intra-domain resource view and cross-domain re-

source view with different topologies.

7.2. Results

Cross-domain resource discovery and representation. We first

present the compression ratio of the Unicorn in discovering and

representing the accurate, minimal intra- / cross-domain resource

views. This result is computed based on Definition 1 in Section 4.1.

Fig. 7 shows this compression ratio in a 19-domain data analytics

network derived from the Aarnet topology [23] with different

number of data analytics jobs, and Fig. 8 shows this ratio under

different number of domains when fixing the number of jobs to be

20. From these results we observe that the average compression

ratio of intra-domain resource view is only around 60%–70% while

that of the cross-domain resource view is around 25%–45%. These

show thatUnicornprovides a highly compact viewof cross-domain

resource availability for data analytics jobs. The higher compres-

sion ratio in the cross-domain view is because amulti-domain data

analytics network provides more resources for data analytics jobs,

i.e., there are fewer jobs sharing the same set of resources. On the

other hand, the fact that the highest cross-domain compression

ratio is still 45% shows that evenwithmore resources, jobs sharing

the same set of resources is still a common situation, indicating

the necessity and importance for discovering the accurate,minimal

resource availability across domains.

We also plot the number of linear inequalities in the intra-

/cross-domain view discovered by Unicorn in Figs. 9 and 10. We

see that as the number of domains and the number of jobs grow,

the number of linear inequalities in the accurate, minimal resource

view computed by Unicorn increases at a very slow rate, which

demonstrates the scalability of Unicorn.

Global resource orchestration. We next demonstrate the effi-

ciency of Unicorn in performing global resource orchestration for

data analytics jobs. In particular, we focus on the latency of a



196 Q. Xiang, X. Tony Wang, J. Jensen Zhang et al. / Future Generation Computer Systems 93 (2019) 188–197

Fig. 9. Number of linear inequalities in intra-domain resource view and cross-

domain resource view with varying numbers of jobs.

Fig. 10. Number of linear inequalities in intra-domain resource view and cross-

domain resource view with different topologies.

Table 2

The reduction of task latency of Unicorn over the domain-path allocation scheme

with max–min fairness..

Topology #Jobs

5 10 20 30

Arpanet 31% 24% 27% 65%

Aarnet 27% 46% 55% 10%

task composed of a job set J , which is computed as the longest

execution time of all jobs. In our evaluation, we assume all the

computation nodes have the same computation power, hence we

only need to focus onminimizing themaximal data accessing delay

among all jobs, as defined in Eq. (6). We compare the task latency

provided by Unicorn with that provided by a domain-path based

resource allocation scheme,which allocates computation and stor-

age resources for a job based on the shortest AS path and use the

classic max-in fairness mechanism to allocate bandwidth among

data accessing flows of analytics jobs. We summarize the results

under the combinations of different multi-domain topologies and

different numbers of jobs in Table 2. We see that Unicorn provides

an up to 65% task latency reduction in all cases. This shows that

Unicorn provides a significant latency reduction for multi-domain

data analytics.

8. Conclusion and future work

Summary. In this paper, we identify the objective and the fun-

damental challenge for designing a resource orchestration system

for multi-domain, geo-distributed data analytics system through

analyzing the data analytics trace from one of the largest scientific

experiments in the world and examining the design of existing

resource management systems for single-domain clusters. We de-

sign Unicorn, the first unified resource orchestration framework

for multi-domain, geo-distributed data analytics systems. Unicorn

realizes the accurate, cross-domain resource availability discovery

with minimal information exposure of each domain through the

resource state abstraction and a novel, efficient cross-domain re-

source availability query algorithm. Unicorn also provides a global

resource orchestrator to compute optimal resource allocation de-

cisions for data analytics tasks. We present the implementation

details and the preliminary evaluation results of Unicorn.

Prototype and full demonstration at SuperComputing 2017.

The source code and more comprehensive evaluation results of

Unicorn will be open-sourced at [24]. A full demonstration of the

Unicorn prototype has been given at SuperComputing 2017. In

this demonstration, we demonstrate the efficiency and efficacy of

Unicorn on cross-domain resource discovery and global resource

allocation in amulti-domain, geo-distributeddata analytics system

involving the Caltech booth, the USC booth and the UNESP booth

at the conference exhibition, the SCinent network, and the Caltech

testbed at Pasadena.

Acknowledgments

We thank Shenshen Chen, Shiwei Chen, Haizhou Du, and Kai

Gao for helpful discussion during thework. The Tongji team is sup-

ported in part by NSFC #61702373, #61672385 and #61701347;

and China Postdoctoral Science Foundation #2017-M611618. The

Yale team is supported in part by NSF grant #1440745, CC*IIE In-

tegration: Dynamically Optimizing Research Data Workflow with

a Software Defined Science Network; Google Research Award, SDN

Programming Using Just Minimal Abstractions. The Yale team is

also sponsored by the U.S. Army Research Laboratory and the

U.K. Ministry of Defence under Agreement Number W911NF-16-

3-0001. The views and conclusions contained in this document

are those of the authors and should not be interpreted as rep-

resenting the official policies, either expressed or implied, of the

U.S. Army Research Laboratory, the U.S. Government, the U.K.

Ministry of Defence or the U.K. Government. The U.S. and U.K.

Governments are authorized to reproduce and distribute reprints

for Government purposes notwithstanding any copyright notation

hereon. The Caltech team is supported in part by DOE/ASCR project

#000219898, SDN NGenIA; DOE award #DE-AC02-07CH11359,

SENSE, FNAL PO#626507; NSF award #1246133, ANSE; NSF award

#1341024, CHOPIN, NSF award #1120138, US CMS Tier2; NSF

award #1659403, SANDIE.

References

[1] The CMS Collaboration, The CMS experiment at the CERN LHC, J. Instrum. 3

(08) (2008) http://dx.doi.org/10.1088/1748-0221/3/08/S08004.

[2] D. Thain, T. Tannenbaum, M. Livny, Distributed computing in practice: the

Condor experience, Concurr. Comput. Pract. Exp. 17 (2–4) (2005) 323–356.

[3] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A.D. Joseph, R.H. Katz, S.

Shenker, I. Stoica, Mesos: A platform for fine-grained resource sharing in the

data center, in: NSDI, 2011.

[4] V.K. Vavilapalli, A.C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans, T.

Graves, J. Lowe, H. Shah, S. Seth, et al., Apache Hadoop YARN: Yet another

resource negotiator, in: SoCC, ACM, 2013, p. 5.

[5] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, J. Wilkes, Large-

scale cluster management at Google with Borg, in: EuroSys, ACM, 2015, p. 18.

[6] E. Boutin, J. Ekanayake, W. Lin, B. Shi, J. Zhou, Z. Qian, M. Wu, L. Zhou, Apollo:

Scalable and coordinated scheduling for cloud-scale computing, in: OSDI,

2014, pp. 285–300.

[7] Under the hood: Scheduling MapReduce jobs more efficiently with Corona,

http://on.fb.me/TxUsYN. [Online; accessed: 09-May-2017].

[8] I. Sfiligoi, D.C. Bradley, B. Holzman, P. Mhashilkar, S. Padhi, F. Wurthwein, The

pilot way to grid resources using glideinWMS, in: CSIE, IEEE, 2009, pp. 428–

432.

[9] A. Vulimiri, C. Curino, B. Godfrey, K. Karanasos, G. Varghese, WANalytics:

Analytics for a geo-distributed data-intensive world, in: CIDR, 2015.

http://dx.doi.org/10.1088/1748-0221/3/08/S08004
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb2
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb2
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb2
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb4
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb4
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb4
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb4
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb4
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb5
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb5
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb5
http://on.fb.me/TxUsYN
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb8
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb8
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb8
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb8
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb8


Q. Xiang, X. Tony Wang, J. Jensen Zhang et al. / Future Generation Computer Systems 93 (2019) 188–197 197

[10] Q. Pu, G. Ananthanarayanan, P. Bodik, S. Kandula, A. Akella, P. Bahl, I. Stoica,

Low latency geo-distributed data analytics, in: SIGCOMM, ACM, 2015, pp.

421–434, http://dx.doi.org/10.475/123.

[11] C.-C. Hung, L. Golubchik, M. Yu, Scheduling jobs across geo-distributed data-

centers, in: SoCC, ACM, 2015, pp. 111–124.

[12] Y. Zhao, K. Chen,W. Bai,M. Yu, C. Tian, Y. Geng, Y. Zhang, D. Li, S.Wang, Rapier:

Integrating routing and scheduling for coflow-aware data center networks,

in: INFOCOM, 2015.

[13] K. Gao, Q. Xiang, X. Wang, Y.R. Yang, J. Bi, NOVA: Towards on-demand

equivalent network view abstraction for network optimization, in: IWQoS

2017, 2017.

[14] D. Jeffrey, G. Sanjay, MapReduce: simplified data processing on large clusters,

Commun. ACM (2008).

[15] M. Zaharia, M. Chowdhury, M.J. Franklin, S. Shenker, I. Stoica, Spark: Cluster

computing with working sets, in: HotCloud’10.

[16] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, B.G. Chun, V. ICSI, Making

sense of performance in data analytics frameworks, in: NSDI, 2015, pp. 293–

307.

[17] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata, J.

Wanderer, J. Zhou, M. Zhu, et al., B4: Experience with a globally-deployed

software defined WAN, in: SIGCOMM’13.

[18] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri, R. Watten-

hofer, Achieving high utilization with software-driven WAN, in: SIGCOMM,

ACM, 2013.

[19] D. Avis, K. Fukuda, A pivoting algorithm for convex hulls and vertex enumer-

ation of arrangements and polyhedra, Discrete Comput. Geom. 8 (3) (1992)

295–313.

[20] Privacy-preserving resource information integration: Details, https://www.

dropbox.com/sh/6tq5t896etxbvso/AACkQJq_3lMdtOvzhJ0P-6j8a?dl=0.

[21] R. Alimi, Y. Yang, R. Penno, RFC 7285, Application-layer Traffic Optimization

(ALTO) Protocol, IETF ALTO, 2014.

[22] J. Medved, R. Varga, A. Tkacik, K. Gray, Opendaylight: Towards amodel-driven

SDN controller architecture, in: IEEE WoWMoM, 2014.

[23] S. Knight, H.X. Nguyen, N. Falkner, R. Bowden, M. Roughan, The Internet

Topology Zoo, 29(9) 1765–1775.

[24] Public Repository of Unicorn, https://github.com/snlab/Unicorn.

Qiao Xiang is an associate research scientist in the De-

partment of Computer Science at Yale University. His

research interests include software defined networking,

resource discovery and orchestration in collaborative

data sciences, interdomain routing, and wireless cyber-

physical systems. From 2014 to 2015, he was a postdoc-

toral fellow in the School of Computer Science at McGill

University. He received his master and Ph.D. degrees in

computer science at Wayne State University in 2012 and

2014, respectively, and a bachelor degree in information

security and a bachelor degree in economics fromNankai

University in 2007.

X. Tony Wang is a Ph.D. candidate in the Department of

Computer Science and Engineering at Tongji University.

His research interests include software defined network-

ing, interdomain routing and distributed computing. He

received a bachelor degree in engineering from the De-

partment of Computer Science and Engineering at Tongji

University in 2014.

J. Jensen Zhang is a Ph.D. candidate in the Department

of Computer Science and Engineering at Tongji Univer-

sity. His research focuses on network resource discovery,

abstraction and programming consistency for large-scale

data analytics systems. He is also an active member of

the IETF ALTOworking group and the OpenDaylight open

source community. He received a bachelor degree in en-

gineering from the Department of Computer Science and

Engineering at Tongji University in 2015.

Harvey Newman (Sc. D, MIT 1974) is the Marvin L.

Goldberger Professor of Physics at Caltech, and a faculty

member since 1982. In 1973–4 he co-led the team that

discovered fourth quark flavor known as ‘‘charm’’. He co-

led the MARK J Collaboration that discovered the gluon,

the carrier of the strong force in 1979. Since 1994 he

has been a member of CMS that discovered the Higgs

boson at LHC in 2012. Newman has had a leading role

in originating, developing and operating state of the art

international networks and collaborative systems serving

the high energy and nuclear physics communities since

1982. He served on the IETF and the Technical AdvisoryGroup that led to theNSFNet

in 1985–6, originated theworldwide LHC ComputingModel in 1996, and has led the

science and network engineering teams defining the state of the art in long distance

data transfers since 2002.

Dr. Y. Richard Yang is a Professor of Computer Science

and Electrical Engineering at Yale University. Dr. Yang’s

research is supported by both US government funding

agencies and leading industrial corporations, and spans

areas including computer networks, mobile computing,

wireless networking, and network security. His work has

been implemented/adopted in products/systems of ma-

jor companies (e.g., AT&T, Alcatel-Lucent, Cisco, Google,

Microsoft, Youku), and featured in mainstreammedia in-

cluding Economist, Forbes, Guardian, Chronicle of Higher

Education, Information Week, MIT Technology Review,

Science Daily, USA Today, Washington Post, and Wired, among others. His awards

include a CAREER Award from the National Science Foundation and a Google

Faculty Research Award. Dr. Yang’s received his B.E. degree in Computer Science

and Technology from Tsinghua University (1993), and his M.S. and Ph.D. degrees in

Computer Science from the University of Texas at Austin (1998 and 2001).

Y. Jace Liu is a research assistant in the Department of

Computer Science and Engineering at Tongji University,

China. His research interests include software defined

networking, large-scale data analytics systems and high-

performance computing. He received a bachelor degree

in engineering from the Department of Computer Science

and Engineering at Tongji University in 2017.

http://dx.doi.org/10.475/123
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb11
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb11
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb11
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb14
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb14
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb14
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb18
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb18
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb18
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb18
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb18
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb19
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb19
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb19
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb19
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb19
https://www.dropbox.com/sh/6tq5t896etxbvso/AACkQJq_3lMdtOvzhJ0P-6j8a?dl=0
https://www.dropbox.com/sh/6tq5t896etxbvso/AACkQJq_3lMdtOvzhJ0P-6j8a?dl=0
https://www.dropbox.com/sh/6tq5t896etxbvso/AACkQJq_3lMdtOvzhJ0P-6j8a?dl=0
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb21
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb21
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb21
https://github.com/snlab/Unicorn

	Unicorn: Unified resource orchestration for multi-domain, geo-distributed data analytics
	Introduction
	Motivation and Challenge
	Overview
	Cross-Domain Resource Discovery and Representation
	Intra-Domain Resource State Abstraction
	Cross-Domain Resource Discovery

	Global Resource Orchestration
	Implementation
	Performance Evaluation
	Methodology
	Results

	Conclusion and Future Work
	Acknowledgments
	References


