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Abstract This is the second of two papers where we study polytopes arising from

affine Coxeter arrangements. Our results include a formula for their volumes, and

also compatible definitions of hypersimplices, descent numbers and major index for

all Weyl groups. We give a q-analogue of Weyl’s formula for the order of the Weyl

group. For An, Cn and D4, we give a Gröbner basis which induces the triangulation

of alcoved polytopes.
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1 Introduction

This is the second of two papers in which we investigate alcoved polytopes aris-

ing from affine Coxeter arrangements. Let Φ ⊂V be an irreducible crystallographic

root system and let W be the corresponding Weyl group. Associated to Φ is an

infinite hyperplane arrangement known as the affine Coxeter arrangement. This hy-

perplane arrangement subdivides V into simplices of the same volume which are
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called alcoves. We define a proper alcoved polytope to be a convex polytope P

which is the closure of a union of alcoves.

In [API], we studied these polytopes in the special situation of the root system

Φ = An. Two motivating examples for us were the hypersimplices and the alcoved

matroid polytopes. Alcoved polytopes arising from other root systems have also

been studied. Payne [Pay] showed that alcoved polytopes with vertices lying in the

coweight lattice are normal and Koszul in classical types. Werner and Yu [WY]

studied generating sets of alcoved polytopes. Fomin and Zelevinsky’s generalized

associahedra [FZ] are examples of polytopes which can be realized as alcoved poly-

topes.

We prove that the volume of an alcoved polytope P is given by

Vol(P) = ∑
w̄∈W/C

I(Pw̄),

where W/C are certain cosets of the Weyl group, Pw̄ are certain alcoved polytopes

and I(P) denotes the number of integral coweights lying in P. The group C ⊂W was

studied previously by Verma [Ver]. The order of the group C is equal to the index of

connection of Φ . For the case Φ = An−1, the group C is the cyclic group generated

by the long cycle (123 · · ·n), written in cycle notation.

Recall that the usual hypersimplex ∆k,n has volume equal to the Eulerian number

Ak,n−1. We define generalized hypersimplices ∆ Φ
k to be certain alcoved polytopes

which generalize this property of ∆k,n for each root system Φ . To this end we intro-

duce the circular descent number cdes : W →Z, so that the volume of ∆ Φ
k counts the

number of elements of W with a fixed circular descent number. We also introduce a

circular major map cmaj : W →C that interacts in an interesting way with cdes. In

particular {w ∈W | cmaj(w) = id} gives a set of coset representatives for W/C. In

type An−1, the circular major map generalizes the major index of Sn, taken modulo

n.

Weyl’s formula for the order of the Weyl group W states that

|W |= f · r! ·a1a2 · · ·ar,

where f is the index of connection, r is the rank of Φ and ai are the coefficients of

the simple roots in the highest root of Φ . We prove, using the geometry of alcoved

polytopes, that

∑
w∈W

qcdes(w) ecmaj(w) =

(

∑
x∈C

ex

)

·Ar(q) · [a1]q · · · [ar]q,

where Ar(q) is the usual Eulerian polynomial, and [n]q denotes the usual q-analogue.

Here, ex ∈ Z[C] lies in the group algebra of C.

Finally, in analogy with Sturmfels’ triangulation of the hypersimplex in type

A [Stu], we study the toric ideals IP associated with an alcoved polytope P. When

Φ is one of the root systems An,Cn,D4, we give a Gröbner basis GP for IP which

induces the triangulation of P into alcoves.
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2 Root system notation

We recall standard terminology related to root systems, see [Hum] for more details.

Let V be a real Euclidean space of rank r with nondegenerate symmetric inner prod-

uct (λ ,µ). Let Φ ⊂V be an irreducible crystallographic root system with choice of

basis of simple roots α1, . . . ,αr. Let Φ+ ⊂ Φ be the corresponding set of positive

roots and let Φ− = −Φ+ be the set of negative roots. Then Φ is the disjoint union

of Φ+ and Φ−. We will write α > 0, for α ∈ Φ+; and α < 0, for α ∈ Φ−. The col-

lection of coroots α∨ = 2α/(α,α) ∈V , for α ∈ Φ , forms the dual root system Φ∨.

The Weyl group W ⊂ Aut(V ) is generated by the reflections sα : λ 7→ λ − (λ ,α∨)α
with respect to roots α ∈ Φ . The Weyl group W is actually generated by simple

reflections si = sαi
subject to the Coxeter relations. The length ℓ(w) of an element

w ∈W is the length of a shortest decomposition for w in terms of simple reflections.

There is a unique element w◦ ∈W of maximal possible length.

The root lattice L = L(Φ) ⊂V is the integer lattice spanned by the roots α ∈ Φ .

It is generated by the simple roots αi. The weight lattice is defined by Λ =Λ(Φ) =
{λ ∈V | (λ ,α∨) ∈ Z, for all α ∈ Φ}. The weight lattice Λ contains the root lattice

L as a subgroup of finite index f . The quotient group Λ/L is isomorphic to the center

of the universal simply-connected Lie group G∨ associated with the root system Φ∨.

The index f = |Λ/L| is called the index of connection.

The coroot lattice is the integer lattice L∨ = L∨(Φ) spanned by the coroots

α∨
i . The coweight lattice Λ∨ is the integer lattice defined by Λ∨ = Λ∨(Φ) =

{λ ∈V | (λ ,α) ∈ Z, for all α ∈ Φ}. Let ω1, . . . ,ωr ⊂V be the basis dual to the ba-

sis of simple roots α1, . . . ,αr, i.e., (ωi,α j) = δi j. The ωi are called the fundamental

coweights. They generate the coweight lattice Λ∨.

Let ρ = ω1 + · · ·+ωr. The height of a root α is the number (ρ ,α) of simple

roots that add up to α . Since we assumed that Φ is irreducible, there exists a unique

highest root θ ∈ Φ+ of maximal possible height. For convenience we set α0 =−θ .

Let a0 = 1 and a1, . . . ,ar be the positive integers given by ai = (ωi,θ ). In other

words, θ = a1α1 + · · ·+ arαr or, equivalently, a0α0 + a1α1 + · · ·+ arαr = 0. The

Coxeter number is defined as h = (ρ ,θ )+ 1 = a0 + a1 + · · ·+ ar.

Lemma 2.1. Let λ ∈ Λ∨ be an integral coweight and let w ∈ W be a Weyl group

element. Then

w(λ )−λ ∈ L∨.

Proof. Since L∨ ⊂ Λ∨ it suffices to check this for a simple reflection sα . We com-

pute sα(λ )−λ = (λ ,α)α∨ ∈ L∨. ⊓⊔

3 The affine Weyl group and alcoved polytopes

The affine Weyl group Waff associated with the root system Φ is generated by the

reflections sα ,k : V →V , α ∈ Φ , k ∈ Z, with respect to the affine hyperplanes
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Hα ,k = {λ ∈V | (λ ,α) = k}.

The coweight lattice Λ∨ and coroot lattice L∨ act on the space V by translations.

We will identify Λ∨ and L∨ with these groups of translations. The Weyl group W

normalizes these groups.

Lemma 3.1. [Hum] The affine Weyl group Waff is the semidirect product W ⋉L∨ of

the usual Weyl group W and the coroot lattice L∨.

The connected components of the complement to these hyperplanes V \⋃Hα ,k

are called alcoves. Let A be the set of all alcoves. A closed alcove is the closure of

an alcove. Each alcove A has the following form:

A = {λ ∈V | mα < (λ ,α) < mα + 1, for α ∈ Φ+},

where mα = mα(A) is a collection of integers associated with the alcove A.

Lemma 3.2. [Hum] The affine Weyl group Waff acts simply transitively on the col-

lection A of all alcoves.

The fundamental alcove is the simplex given by

A◦ = {λ ∈V | 0 < (λ ,α)< 1, for α ∈ Φ+}

= {λ ∈V | (λ ,αi)> 0, for i = 1, . . . ,r; and (λ ,θ )< 0}

= {x1ω1 + · · ·+ xrωr | x1, . . . ,xr > 0 and a1x1 + · · ·+ arxr < 1}

= Convex Hull of the points 0, ω1/a1, . . . , ωr/ar.

(1)

Lemma 3.2 implies that all alcoves are obtained from A◦ by the action of Waff. In

particular, all closed alcoves are simplices with the same volume. The closure of the

fundamental alcove A◦ is a fundamental domain of Waff. Let F ⊃ A be the set of

all faces of alcoves of all dimensions. We will think of elements of F as relatively

open sets, so that the space V is the disjoint union of elements of F .

Our main object is defined as follows.

Definition 3.3. An alcoved polytope P is a convex polytope in the space V such

that P is a union of finitely many elements of F . A proper alcoved polytope is an

alcoved polytope of top dimension.

By the definition, each proper alcoved polytope comes equipped with a triangu-

lation into closed alcoves. The following lemma is immediate from the definitions.

Lemma 3.4. A bounded subset P ⊂ V is an alcoved polytope if and only if P is the

intersection of several half-spaces of the form {λ ∈V | (λ ,α)≥ k}, for α ∈ Φ and

k ∈ Z.

Let (W,S) be a Coxeter group and u,v ∈ W . A path from u to v is a sequence

u = w0 → w1 → w2 → ··· → ws = v such that wi+1 = wis for some simple reflection

s∈ S. A subset K ⊂W is called convex if for every u,v∈K, we have that any shortest

path from u to v lies in K.
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Proposition 3.5. Let P ⊂V be a bounded subset which is a union of closed alcoves.

Then P is a convex polytope if and only if one of the following conditions hold:

(1) For any two alcoves A,B ⊂ P, any shortest path A = A0 → A1 → A2 → ··· →
As = B lies in P. Here Ai ∈ A are alcoves and A′ → A′′ means that the closures

of the two alcoves A′ and A′′ share a facet.

(2) The subset WP = {w ∈Waff | w(A◦)⊂ P} of the affine Weyl group is a convex

subset.

Proof. Suppose P is a polytope and A = A0 →A1 → A2 → ···→As = B is a shortest

path with A,B ∈ P. Suppose that Ai lies in P but Ai+1 lies outside of P. Then the

hyperplane Hα ,k which separates Ai and Ai+1 must be a facet of P, so eventually the

shortest path must cross Hα ,k again. Suppose that A j lies on the same side of Hα ,k

as Ai+1 and A j+1 lies on the other side. Then reflecting the path Ai+1 → Ai+2 →
··· → A j in the hyperplane Hα ,k, we get another path from A to B which is shorter.

Conversely, suppose condition (1) holds but P is not convex. This implies that there

are alcoves A,B ∈ P and points a ∈ A, b ∈ B such that the straight line ab does

not lie in P. Since P is compact we may assume a and b lie in the interior of A

and B respectively. Thus without loss of generality, we may assume that the line ab

does not intersect any face of F of codimension more than one. The sequence of

alcoves obtained by travelling along ab must be a shortest path. This is clear as every

hyperplane Hα ,k that ab intersects separates A from B and so must be a separating

hyperplane between some two alcoves Ai and Ai+1 in any path from A to B.

Condition 2 follows immediately from translating the action of the simple gen-

erators of Waff on alcoves. ⊓⊔

Thus each alcoved polytope is of the form

P = {λ ∈V | kα ≤ (λ ,α)≤ Kα , for α ∈ Φ+},

where kα = kα(P) and Kα = Kα(P) are two collections of integers indexed by pos-

itive roots α ∈ Φ+.

Let Λ∨/h = {λ/h | λ ∈ Λ∨} be the coweight lattice Λ∨ shrunk h times. Recall

that h denotes the Coxeter number.

We are grateful to Bertram Kostant for many helpful coversations over the years.

We appreciate his attention to combinatorial aspects of representation theory. One

little thing that we learned from him is that the center of mass of an alcove is the

only point of the lattice Λ∨/h in the interior of this alcove.

Lemma 3.6. [Kos], see also [LP, Section 14] For every alcove A ∈ A , there is

exactly one point of the lattice Λ∨/h in the interior of A. For the fundamental alcove

A◦, we have A◦∩ (Λ∨/h) = {ρ/h}.

Proof. Since the affine Weyl group acts simply transitively on A and preserves

the lattice Λ∨/h, it is enough to prove the claim for the fundamental alcove A◦. In

the basis of fundamental coweights ω1, . . . ,ωr, the fundamental alcove A◦ is given

by the inequalities x1, . . . ,xr > 0 and a1x1 + · · ·+ arxr < 1; and the lattice Λ∨/h is
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given by x1, . . . ,xr ∈ Z/h. Recall that h = a0 + a1 + · · ·+ ar. Then the intersection

A◦ ∩ (Λ∨/h) consists of a single point with coordinates (1/h, . . . ,1/h). In other

words, this intersection point is (ω1 + · · ·+ωr)/h = ρ/h. ⊓⊔

For A ∈ A , we call the single element of (Λ∨/h)∩A the central point of the

alcove A. Let Z = (Λ∨/h)\⋃Hα ,k be the set of central points of all alcoves; equiv-

alently,

Z = {λ ∈V | h · (α,λ )≡ 1, . . . ,h− 1 (modh), for α ∈ Φ+}.

The set Z of central points is in one-to-one correspondence with the set A of al-

coves.

4 Weyl’s formula for the order of the Weyl group

Let Vol be the volume form on the space V normalized by Vol(A◦) = 1. Then the

volume of any alcove is 1 and the volume Vol(P) of an alcoved polytope P is the

number of alcoves in P. Equivalently, Vol(P) = |P∩Z|.
Let Π be the alcoved polytope given by

Π = {λ ∈V | 0 ≤ (λ ,αi)≤ 1, for i = 1, . . . ,r}
= {x1ω1 + · · ·+ xrωr | 0 ≤ xi ≤ 1, for i = 1, . . . ,r},

i.e., Π is the parallelepiped generated by the fundamental coweights ω1, . . . ,ωr.

This polytope is a fundamental domain of the coweight lattice Λ∨. Since A◦ is the

simplex with the vertices 0,ω1/a1, . . . ,ωr/ar, we have

Vol(Π) = Vol(Π)/Vol(A◦) = r!a1 · · ·ar.

Thus the parallelepiped Π consists of r!a1 · · ·ar alcoves.

Let H be the alcoved polytope given by

H = {λ ∈V | −1 ≤ (λ ,α)≤ 1, for α ∈ Φ+}.

The polytope H consists of all alcoves adjacent to the origin 0, i.e., it consists of the

|W | alcoves of the form w(A◦), for w ∈W . In particular, its volume is the order of the

Weyl group: Vol(H) = |W |. Lemma 3.1 implies that the polytope H is a fundamental

domain of the coroot lattice L∨. Thus Vol(H)/Vol(Π) = |Λ∨/L∨| = f is the index

of connection. This implies the well-known formula for the order of the Weyl group,

see [Hum, 4.9]:

|W |= f · r! ·a1 · · ·ar. (2)
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5 The group C

For an integral coweight λ ∈ Λ∨, the affine translation A + λ of an alcove A is

an alcove; and the affine translation P+λ of an alcoved polytope P is an alcoved

polytope.

Let us define the equivalence relation “∼” on the affine Weyl group Waff by

u ∼ w if and only if u(A◦) = w(A◦)+λ , for some λ ∈ Λ∨,

where u,w ∈ Waff. The relation “∼” is invariant with respect to the left action of

the affine Weyl group. According to Lemma 3.6, this equivalence relation can be

defined in terms of central points of alcoves as

u ∼ w if and only if u(ρ/h)−w(ρ/h)∈ Λ∨.

Let C be the subset of the usual Weyl group W given by

C = {w ∈W | w ∼ 1}= {w ∈W | w(ρ)−ρ ∈ hΛ∨}.

Also let Caff = {w ∈ Waff | w ∼ 1}. Actually, C is a subgroup in W and Caff is a

subgroup in Waff. Indeed, u ∼ 1 and w ∼ 1 imply that uw ∼ u ∼ 1.

The coroot lattice L∨ is a normal subgroup in Caff. The group Caff is the semidirect

product C⋉L∨ and, thus, C ≃Caff/L∨.

Equivalence classes of elements of the Weyl group (respectively, the affine Weyl

group) with respect to the relation “∼” are exactly cosets in W/C (respectively,

Waff/Caff). Since Π is a fundamental domain of the coweight lattice Λ∨ and, for

an alcove A ∈ A , there is a translation A+λ such that A+λ = w(A◦), for some

w ∈ W , we deduce that there are natural one-to-one correspondences between the

followings sets:

W/C ≃Waff/Caff ≃ A /Λ∨ ≃ {alcoves in Π}.

In particular, the number of cosets |W/C| equals Vol(Π) = |W |/ f and, thus, the

order of the group C is |C|= f .

There is a natural bijection b : Λ∨ →Caff given by b(λ ) = w whenever w(A◦) =
A◦+λ . Notice that b may not be a homomorphism of groups. However the map b̄ :

Λ∨ →C given by the composition of b with the natural projection Caff →Caff/L∨ ≃
C is a homomorphism. Indeed, let b̄(λ ) = u and b̄(µ) = w. Then u,w ∈W are given

by u(A◦) ≡ A◦+λ modL∨ and w(A◦) ≡ A◦+ µ modL∨. Then uw(A◦) ≡ A◦+λ +
u(µ)≡ A◦+λ +µ modL∨. The last equation follows from Lemma 2.1. The kernel

of the map b̄ is L∨. Thus b̄ induces the natural isomorphism of groups:

Λ∨/L∨ ≃C.
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The group C is the cyclic group Z/(n+1)Z in type An, a group of order 2 for types

Bn, Cn and E7, a group of order 4 for type Dn, a group of order 3 for type E6, and

trivial for E8, F4, and G2.

6 The statistic cdes

Let us say that a root α ∈ Φ is an inversion of Weyl group element w ∈W if w(α)<
0. Equivalently, a positive root α in an inversion of w if and only if ℓ(wsα)< ℓ(w).
Let us define

invα(w) =

{

0 if w(α)> 0,
1 if w(α)< 0.

Lemma 6.1. We have invα(w) =−mα(w
−1(A◦)).

Proof. Indeed, α is an inversion of w if and only if (w(α),ρ) = (α,w−1(ρ)) < 0,

that is, −1 < (λ ,α)< 0, for any λ ∈ w−1(A◦). ⊓⊔

Let di(w) = invαi
(w), for i = 0, . . . ,r. If di(w) = 1, we say that w has a descent

at i.

Definition 6.2. Let w ∈W . The circular descent number cdes(w) is defined by

cdes(w) =
r

∑
i=0

ai di(w).

Note that cdes(w) is always positive. Indeed if di(w) = 0 for i ∈ [1,r], then we

have w = 1 and d0(w) = 1.

Define δw ∈ L∨ for w ∈W by

δw =
r

∑
i=0

di(w) ·ωi

where for convenience we let ω0 = 0.

Lemma 6.3. The coweight δw is the unique integral coweight such that w−1(A◦)+
δw ∈ Π .

Proof. Let i ∈ [1,r]. Then by Lemma 6.1, −di(w)< (w−1(ρ/h),αi)< 1−di(w), so

that λ = w−1(A◦)+ δw satisfies 0 ≤ (λ ,αi) ≤ 1. The coweight δw must be unique

since adding or subtracting any fundamental coweight ωi will cause λ to violate the

inequality 0 < (λ ,αi)< 1. ⊓⊔

We set S = {α0, . . . ,αr} and Si =
{

α j ∈ S | a j = i
}

. For convenience we set J =
{

j ∈ [0,r] | a j = 1
}

.
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Proposition 6.4. We have the following equivalent descriptions of the group C ⊂W.

C = {w ∈W | cdes(w) = 1} (3)

= {w ∈W | w(S) = S} (4)

= {w ∈W | w(Sk) = Sk for all k } . (5)

For any j ∈ J there exist a unique Weyl group element w( j) ∈C such that w(αi)> 0,

for i 6= j and w(α j)< 0.

Proof. Let c ∈ C. By Lemma 6.3 and the definition of C, we see that c−1(A◦) +
δc = A◦. By Lemma 3.6, this implies that c−1(ρ/h) + δc = ρ/h. It is clear that

(δc,θ ) = cdes(c)− d0(c). We compute, using Lemma 6.1, that

d0(c)− 1 ≤ (c−1(ρ/h),θ )≤ d0(c).

So summing, we have

cdes(c)− 1 ≤ (ρ/h,θ )≤ cdes(c)

which immediately implies that cdes(c) = 1 since (ρ/h,θ ) = 1−1/h. The converse

follows in the same manner. This establishes the equality in (3).

Now suppose c ∈ C. We establish (4). By definition, c(α j) < 0 for some j ∈ J

and c(αi) > 0 for i 6= j. Let S 6= j = {αi ∈ S|i 6= j}. We have c−1(A◦) +ω j = A◦,

and in particular, the set {0,ω1/a1, . . . ,ωr/ar} is sent to itself under the map λ 7→
c−1(λ )+ω j. Substituting this fact into (c(αi),ωk/ak) = (αi,c

−1(ωk/ak)) and not-

ing that {ω1, . . . ,ωn} are a dual basis to {α1, . . . ,αn}, we deduce that c(S 6= j) = S 6=0,

and c(α j) = α0. Thus (4) holds.

We get (5) from (4) by noting that up to scalar multiplication, the relation

∑i aiαi = 0 is the only linear dependence among the roots in S.

Conversely, (5) clearly implies (3) by the definition of cdes. The last statement

of the proposition also follows from this discussion. ⊓⊔

By property (3), we have f = |C| = #{i ∈ [0,r] | ai = 1}. These i’s correspond

to minuscule coweights ωi. Recall that a minuscule weight is one whose weight

polytope has no internal weights.

We remark that the group C was previously studied by Verma [Ver] but not in the

current context of the statistic cdes. The group C is related to the statistic cdes on

the whole of W in an intimate way.

Theorem 6.5. The statistic cdes is constant on the double cosets C\W/C.

Proof. Let w ∈ W and c ∈ C so that c(α j) = α0 for j ∈ J. We need to prove that

cdes(cw) = cdes(w) = cdes(wc). The latter equality is immediate from condition

(5) of Proposition 6.4.

Let α ∈ S and let β = w(α) = b1α1 + · · ·+brαr. The bi are either all positive or

all negative. The element w has a descent at α if and only if β < 0. Now
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cw(α) = c(β ) = b1c(α1)+ · · ·+ brc(αr). (6)

If b j = 0, then clearly dα(w) = dα(cw). If b j 6= 0, then we have a term of the form

b jc(α j) = b jα0 =−b j(a1α1 + · · ·+ arαr) (7)

in equation (6). Since −α0 is the longest root, we have |ak| ≥ |bk|. Thus substi-

tuting (7) into (6), we see that b j 6= 0 implies that dα(w) = 1− dα(cw). Indeed

b j ∈ {0,1,−1}, and we have dα(w)− dα(cw) = b j.

Now we have

0 = a0w(α0)+ · · ·+ arw(αr),

and so expressing both sides in terms of the simple roots α1, . . . ,αr, we see that the

coefficient of α j is 0. Write b j(α) for the coefficient b j in the proof earlier, obtaining

the equality

0 =
r

∑
i=0

aib j(αi) =
r

∑
i=0

(di(cw)− di(w)) = cdes(cw)− cdes(w). ⊓⊔

7 The map cmaj

Define the circular major map cmaj : W →C by

cmaj(w) = b̄(δw)

where b̄ is the isomorphism from Section 5.

Lemma 7.1. The map cmaj satisfies cmaj(c) = c for c ∈C.

Proof. By Lemma 6.3, we have c(A◦) = A◦ + c(δc). But by Lemma 2.1, c(δc) =
δc modL∨, so that by definition b̄(δc) = c. ⊓⊔

Theorem 7.2. The map cmaj satisfies

cmaj(c1wc2) = c1wc
cdes(w)
2

for ci ∈C and w ∈W.

Proof. Let w ∈W and c = w( j) ∈C, so that c−1(α0) = α j . Thus c(α j)< 0, so that

cmaj(c) = ω j. We first consider wc. We have

w−1(ρ/h)+ δw = µ/h

for some µ ∈ Λ satisfying 0 < (µ ,αi)< h for i ∈ [1,r]. Applying c−1 on the left to

both sides, we obtain

c−1w−1(ρ/h)+ c−1(δw) = c−1(µ/h).
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Now 0 < (c−1(µ/h),c−1(αi))< 1 and as i varies, we obtain every simple root in the

form c−1(αi) apart from c(α0) = α j for some j ∈ J. But −cdes(w) < (µ/h,α0) <
1− cdes(w), so we have 0 < (c−1(µ/h)+ cdes(w) .ω j ,α j)< 1.

Thus

δwc = c(δw)+ cdes(w) .ω j

cmaj(wc)≡ cmaj(w)+ cdes(w) .ω j modL∨.

Hence cmaj(wc) = cmaj(w)ccdes(w). We have used Lemma 2.1.

Similarly,

c−1(ρ/h)+ δc = ρ/h

gives

w−1c−1(ρ/h)+w−1(ω j) = w−1(ρ/h)

w−1c−1(ρ/h)+w−1(ω j)+ δw = w−1(ρ/h)+ δw = ρ/h.

This implies that

δcw = w−1(ω j)+ δw

cmaj(cw) = cmaj(w)+ω j modL∨.

Hence cmaj(cw) = c · cmaj(w). ⊓⊔

Theorem 7.2 shows that the map cmaj allows us to pick representatives for the

right cosets W/C. For example {w | cmaj(w) = id} is a set of right coset repre-

sentatives. In type A, cmaj; has an explicit representation theoretic meaning, see

Theorem 11.1.

8 Relation between volumes and numbers of lattice points

Let P be an alcoved polytope, and let A ∈ A be an alcove. Let kα = kα(P), Kα =
Kα(P), and mα = mα(A), for α ∈ Φ+ as in Section 3. Let us define the alcoved

polytope P(A) as

P(A) = {λ ∈V | kα −mα ≤ (λ ,α)≤ Kα −mα − 1, for all α ∈ Φ+}.

The following claim follows directly from the definitions.

Lemma 8.1. For P and A as above, the set P(A) ∩Λ∨ of lattice points in P(A) is

exactly the set of integral coweights λ ∈ Λ∨ such that A+λ is an alcove in P.

The lemma says that lattice points in P(A) are in one-to-one correspondence with

alcoves in P that are obtained by affine translations of A.

For w ∈W , the definition of the polytope P(w) = P(w(A◦)) can be rewritten as
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P(w) = {λ ∈V | kα + dα(w
−1)≤ (λ ,α) ≤ Kα + dα(w

−1)− 1, for all α ∈ Φ+}.

We have used Lemma 6.1.

Notice that P(A+λ ) = P(A) − λ . Thus the polytopes P(A) ≡ P(B) are equivalent

modulo affine translations by elements of Λ∨, whenever A ≡ B mod Λ∨. This im-

plies that the polytope P(w̄) = P(w) is correctly defined modulo affine translations by

coweights λ ∈ Λ , where w ∈W is any representative of a coset w̄ ∈W/C.

Let I(P) = |P∩Λ | be the number of lattice points in P. The following statement

establishes a relation between the volume of an alcoved polytope and the numbers

of lattice points in smaller alcoved polytopes.

Theorem 8.2. Let P be an alcoved polytope. Then

Vol(P) = ∑
w̄∈W/C

I(P(w̄)).

Proof. According to Lemma 8.1, the total number of alcoves in P equals the sum

of I(P(A)) over representatives A of cosets A /L∨. This is exactly the claim of the

theorem. ⊓⊔

9 Generalized hypersimplices

For k = 1, . . . ,h−1, let us define the k-th generalized hypersimplex ∆ Φ
k as the alcove

polytope given by

∆ Φ
k = {λ ∈V | 0 ≤ (λ ,αi)≤ 1, for i = 1, . . . ,r; and k− 1 ≤ (λ ,θ )≤ k}.

In other words, the generalized hypersimplices are the slices of the parallelepiped Π
by the parallel hyperplanes of the form Hθ ,k, for k ∈ Z. Clearly, the first generalized

hypersimplex is the fundamental alcove: ∆ Φ
1 = A◦. Also the last generalized hyper-

simplex is the alcove given by ∆ Φ
h−1 = w◦(A◦)+ ρ , where w◦ ∈ W is the longest

element in W .

Lemma 9.1. Let w ∈W. The polytope (∆ Φ
k )(w) consists of a single point λ ∈ Λ∨, if

cdes(w−1) = k, and (∆ Φ
k )(w) is empty, if cdes(w−1) 6= k.

Proof. By definition, the polytope (∆ Φ
k )(w) is given by

(∆ Φ
k )(w) = {λ ∈ Λ | di(w

−1) = (λ ,αi), for i = 1, . . . ,r; k− d0(w
−1) = (λ ,θ )}.

The first r equations di(w
−1) = (λ ,αi) have a single solution λ = ∑i∈D ωi = δw−1 ,

where D = {i | dαi
(w−1) = 1}. The last equation k−d0(w

−1) = (λ ,θ∨) for the point

λ = ∑i∈D ωi says that cdes(w) = k. ⊓⊔
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Corollary 9.2. All representatives w of a coset w̄ ∈W/C have the same generalized

descent numbers cdes(w−1).

Proof. The polytopes (∆ Φ
k )(u) ≡ (∆ Φ

k )(w) are equivalent modulo affine translations,

whenever ū = w̄ in W/C. ⊓⊔

Define cdes(w̄−1) = cdes(w−1), where w ∈W is any representative of a coset w̄.

Theorem 8.2 implies the following statement.

Theorem 9.3. The volume Vol(∆ Φ
k ) of k-th generalized hypersimplex ∆ Φ

k equals

the number of cosets w̄ ∈ W/C such that cdes(w̄−1) = k. Equivalently, f ·Vol(∆ Φ
k )

equals the number of elements w ∈W such that cdes(w−1) = k.

Let H (b1, . . . ,br;k,K) be the thick hypersimplex given by

{λ ∈V | 0 ≤ (λ ,αi)≤ bi, for i = 1, . . . ,r; and k ≤ (λ ,θ )≤ K}.

Proposition 9.4. We have

Vol(H (b1, . . . ,br;k,K) = ∑
l

Vol(∆ Φ
l ) · I(H (b1 − 1, . . . ,br − 1; l−K + 1, l− k)).

Proof. Let λ ∈ Λ∨ be in the interior of ∆ Φ
l and µ ∈ Λ∨. Then 0 < (λ ,αi) < 1 for

i ∈ [1,r] and l − 1 < (λ ,θ ) ≤ l. Thus λ + µ ∈ H (b1, . . . ,br;k,K) if and only if

we have 0 ≤ (µ ,αi) ≤ bi − 1 and l −K + 1 ≤ (µ ,θ ) ≤ l − k. We conclude that for

any alcove A ∈ ∆ Φ
l , we have H (b1, . . . ,br;k,K)(A) = H (b1 −1, . . . ,br −1; l−K+

1, l − k) mod Λ∨. As l varies, we obtain a translate of H (b1, . . . ,br;k,K)(w̄) for

each coset w̄ exactly once in this form. ⊓⊔

10 A q-analogue of Weyl’s formula

Recall that for a permutation w = w1 . . .wn in the symmetric group Sn, a descent is

an index i∈ {1, . . . ,n−1} such that wi >wi+1. Let des(w) be the number of descents

of w ∈ Sn. The n-th Eulerian polynomial An(q) is defined as

An(q) = ∑
w∈Sn

qdes(w)+1,

for n ≥ 1, and A0(q) = 1. These polynomials can also be expressed as An(q) = (1−
q)n+1 ·∑k≥0 kn qk. Let [n]q = (1− qn)/(1− q) denote the q-analogue of an integer

n ∈ Z.

The group algebra Z[Λ∨/L∨] has a Z-basis of formal exponents ex, for x ∈
Λ∨/L∨, with multiplication ex · ey = ex+y. Let Z[q][Λ∨/L∨] = Z[q]⊗Z[Λ∨/L∨].
The following theorem generalizes Weyl’s formula (2) for the order of the Weyl

group.
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Theorem 10.1. The following identity holds in the group algebra Z[q][Λ∨/L∨]:

∑
w∈W

qcdes(w) ecmaj(w) =

(

∑
x∈Λ∨/L∨

ex

)

·Ar(q) · [a1]q · · · [ar]q.

In particular, we have the following identity for polynomials in Z[q]:

∑
w∈W

qcdes(w) = f ·Ar(q) · [a1]q · · · [ar]q.

We first establish the following generating function for the volumes of general-

ized hypersimplices.

Proposition 10.2. The generating function for the volumes of generalized hyper-

simplices is given by

h−1

∑
k=1

Vol(∆ Φ
k )qk = Ar(q) · [a1]q · · · [ar]q.

Proof. The union of the generalized hypersimplices ∆ Φ
k for k = 1,2, . . . ,h−1 is the

fundamental parallelpiped Π . For a bounded polytope P ⊂V , define the generating

function

gP(q) = ∑
k

Vol(P∩{λ ∈V | k− 1 ≤ (λ ,θ )≤ k})qk ∈ R[q±1].

Then gΠ (q) = ∑h−1
k=1 Vol(∆ Φ

k )qk. We note that if (λ ,θ ) = a ∈ Z, then gP+λ (q) =
qa gP(q). Now set Ξ to be the parallelpiped spanned by the vectors ω1/a1, . . . ,ωr/ar.

Then Π is a union of translates of Ξ by integral linear combinations of the vectors

ωi/ai, and we deduce that

gΠ (q) = gΞ (q) · [a1]q · · · [ar]q.

Since we are normalizing the fundamental alcove A◦ with vertices ω1/a1, . . . ,ωr/ar

to have Vol(A◦) = 1, it follows that gΞ (q) is equal to the generating function of the

normalized volumes of the usual hypersimplices:

gΞ (q) =
r

∑
k=1

Vol([0,1]r ∩{(x1, . . . ,xr) ∈ Rr | k− 1 ≤ x1 + · · ·+ xr ≤ k})qk

which is well known to be equal to the Eulerian polynomial Ar(q). This also follows

from Theorem 9.3 (see Section 11) and is studied in detail in [API]. ⊓⊔

Proof of Theorem 10.1. Using Theorem 7.2, we let W ′ = {w ∈ W | cmaj(w) = id}
be a set of left coset representatives for C\W . Then (W ′)−1 is a set of right coset

representatives for W/C. We calculate
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∑
w∈W

qcdes(w) ecmaj(w)

= ∑
w∈W ′

qcdes(w) ∑
c∈C

ecmaj(c) by Theorems 6.5 and 7.2,

= ∑
w∈(W ′)−1

qcdes(w−1) ·
(

∑
x∈Λ∨/L∨

ex

)

=

(

h−1

∑
k=1

Vol(∆ Φ
k )qk

)

·
(

∑
x∈Λ∨/L∨

ex

)

by Theorem 9.3,

=

(

∑
x∈Λ∨/L∨

ex

)

·Ar(q) · [a1]q · · · [ar]q by Proposition 10.2.

⊓⊔

Remark 10.3. We have

∑
w∈W

qcdes(w) ecmaj(w) = ∑
w∈W

qcdes(w) ecmaj(w−1).

This follows from the fact (Theorem 6.5) that cdes is constant on C\W/C double

cosets. Each double coset is a disjoint union of left (resp. right) cosets C\W (resp.

W/C) for which ecmaj(w) (resp. ecmaj(w−1)) takes the values
(

∑x∈Λ∨/L∨ ex
)

.

Remark 10.4. It would be interesting to compare Theorem 10.1 with Stembridge

and Waugh’s Weyl group identity [SW].

The following question seems interesting.

Question 10.5. What is ∑w∈W xcmaj(w)ycmaj(w−1) in Z[Λ∨/L∨]⊗Z[Λ∨/L∨]?

11 Example: type A

Let Φ = An−1 ⊂ Rn/R(1,1, . . . ,1) throughout this section. The simple roots are

αi = ei − ei+1 where ei are the coordinate basis vectors of Rn. The longest root

is θ = e1 − en and we have ai = 1 for i ∈ [0,n]. The Weyl group W = Sn is the

symmetric group on n letters and cdes(w) is equal to the usual number of descents

of w plus a descent at n if wn > w1. This is the reason for calling cdes the circular

descent number. The group C = 〈c = (123 · · ·(n− 1)n)〉 is generated by the long

cycle. The fundamental coweights are given by ωi = e1 + e2 + · · ·+ ei and one can

check that δci = ωi. Thus cmaj(w) = c−maj(w)modn where maj(w) denotes the usual

major index of w. We can verify Proposition 7.2 directly: left multiplication by

the long cycle c maps w1w2 · · ·wn to (w1 + 1)(w2 + 1) · · ·(wn + 1) where ‘n+ 1′ is

identified with ‘1′. Right multiplication by c maps w1w2 · · ·wn to w2w3 · · ·wnw1.
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The following theorem ([KW] and [EC2, Ex. 7.88]) suggests that the map cmaj

may have an explicit representation theoretic interpretation. Let χλ denote the irre-

ducible character of the symmetric group Sn labeled by a partition λ .

Theorem 11.1. Let Cn ⊂ Sn be a cyclic subgroup of order n. Let ρ = ind
Sn

Cn
e2π

√
−1 j/n

be an induced character of Sn. Then we have

〈

ρ ,χλ
〉

= #{SYT(T ) | sh(T ) = λ and maj(T )≡ j modn}.

Here a descent of a standard young tableau (SYT ) T is an index i such that the box

containing i+ 1 is to the southwest of the box containing i in T . The index maj(T )
is defined to be the sum of all the descents of T .

It is not hard to see that the polytopes ∆
An−1

k are affinely equivalent to the usual

hypersimplices defined as the convex hull of the points εI where εI = ∑i∈I ei and I

varies over all k-subsets of [n]. The alcoved triangulation here is identical to the one

studied in [API].

12 Example: Type C

Let Φ =Cn with 2n long roots ±2ei for 1 ≤ i ≤ n and 2n(n−1) short roots ±ei±e j

for 1 ≤ i 6= j ≤ n. A system of simple roots is given by α1 = e1 − e2,α2 = e2 −
e3, . . . ,αn−1 = en−1 − en,αn = 2en. Then θ = 2e1 = 2α1 + 2α2 + · · ·+ 2αn−1 +αn,

so that a0 = an = 1 and ai = 2 for 1 ≤ i ≤ n− 1. The fundamental coweights are

given by ω1 = e1, ω2 = e1+e2, . . ., ωn−1 = e1 + · · ·+en−1, ωn = 1/2(e1+ · · ·+en).
We identify the Weyl group W of type Cn with the group of signed permutations

w1w2 · · ·wn in the usual way: wi ∈ ±{1,2, . . . ,n} and |w1||w2| · · · |wn| is a usual

permutation in Sn. For i ∈ [1,n− 1], a signed permutation w = w1w2 · · ·wn has a

descent at i if wi > wi+1, as usual. We have a descent at 0 if w1 > 0 and a descent

at n if wn < 0. The group C has order two, with unique non-identity element c =
(−n − (n− 1) · · ·− 2 − 1). The map cmaj : W →C is given by

cmaj(w) =

{

id if wn > 0

c if wn < 0.

Theorem 10.1 states in this case that

∑
w∈W

qcdes(w) ecmaj(w) = (eid + ec) ·An(q) · (1+ q)n−1.
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13 Gröbner bases

In this section we will regularly refer to the results of the first paper in this se-

ries [API], in particular Appendix 19.

Let Φ ⊂ V be a fixed irreducible root system and P a proper alcoved polytope.

We first note that the triangulations of alcoved polytopes are coherent.

Lemma 13.1. Any polytopal subdivision arising from a hyperplane arrangement is

coherent.

Proof. As only finitely many hyperplanes will be involved in a triangulation or sub-

division of a polytope, we may assume the set S of hyperplanes is finite.

Pick a linear functional φH for each hyperplane H ∈ S such that H is given by

the vanishing of φH . Then define the piecewise linear convex function h : V →R by

h(v) = ∑
H∈S

|φH(v)|.

It is clear that h(v) is convex, since it is a sum of convex functions. The domains of

linearity are exactly the regions determined by the hyperplane arrangement. Thus

the subdivision of a polytope induced by a hyperplane arrangement is coherent. ⊓⊔

We denote by N the set of vertices of the affine Coxeter arrangement. By [API,

Theorem 19.1] the triangulation of P can be described by some appropriate term

order on the polynomial ring

k[P] = k[xa|a ∈ N ∩P].

Let us fix coordinates on V , so that all points in N have integer coordinates. Identify

a vertex a = (a1, . . . ,an) ∈ N with the coordinates (a,1) ∈V ⊕R. Thus the triangu-

lation is also equivalent to the reduced Gröbner basis GP of the toric ideal IP := IP∩N

in the notation of [API, Appendix 19]. By our choice of coordinates this toric ideal

is homogeneous.

In general, the Gröbner basis GP appears to be quite complicated, but many sim-

plifications occur when N is a lattice. One can check directly that this is the case for

the root systems An, Cn and D4.

We assume that Φ is one of these root systems from now on. Set ci =
ωi
ai

. Then N

is spanned by the ci. In this case, an alcove has normalized volume 1 with respect to

N. Thus by [API, Proposition 19.2], GP has an initial ideal generated by square-free

monomials.

Example 13.2. With the notation as in Section 12, the vertices N of the affine Cox-

eter arrangement of type Cn are exactly the points with all coordinates,

either integers or half-integers. One can check that the lattice N is spanned by the

vectors ci.
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Lemma 13.3. Let a,b ∈ N. The midpoint (a+ b)/2 is either a vertex or it lies on

a unique edge, such that it is the midpoint of the two closest vertices lying on that

edge.

Proof. Suppose c = (a+ b)/2 is not in N. The closed fundamental alcove A◦ is

the convex hull of the points ci and 0. Thus there is a (affine) Weyl group element

σ which takes the midpoint c = (a+ b)/2 into A◦. Since σ(a) and σ(b) are both

integral linear combinations of the ci, it is clear that σ(c) must have the form
ci+c j

2
or

ci
2

. In the first case, σ(c) lies on the edge given by the intersection of the hyperplanes

Hαk,0 for k 6= i, j satisfying k ∈ [1,r] and Hθ ,1. In the second case the edge is given

by the hyperplanes Hαk,0 for k 6= i. Thus c is the midpoint of σ−1(ci) and σ−1(c j),
or the midpoint of σ−1(ci) and σ−1(0). ⊓⊔

In the first case of Lemma 13.3, we set u(a,b)= v(a,b)= (a+b)/2. In the second

case we set u(a,b) and v(a,b) to be the two closest vertices on the edge containing

(a+ b)/2.

Example 13.4. For type An−1, we can describe the vertices u(a,b) and v(a,b) in

the following explicit manner ([API]). Let I,J be two k-element multi-subsets of

[n]. Let a1 ≤ a2 ≤ ·· · ≤ a2k be the increasing rearrangement of I ∪ J. We define

two k-element multi-subsets U(I,J) and V (I,J) by U(I,J) = {a1,a3, . . . ,a2k−1} and

V (I,J) = {a2,a4, . . . ,a2k}. For a k-element multi-subset I, we let aI ∈ Rn be the

(integer) vector with j-th coordinate (aI) j equal to the number of occurrences of

{1,2, . . . , j} in I. Then one can check that u(aI,aJ) and v(aI,aJ) are exactly aU(I,J)

and aV(I,J).

Lemma 13.5. Suppose a,b ∈ P are vertices of the affine Coxeter arrangement,

where P is a proper alcoved polytope. Then the vertices u(a,b) and v(a,b) are also

in P.

Proof. As P is convex, c = (a+ b)/2 ∈ P. Assume now that c is not a vertex and

suppose u(a,b) /∈ P. Then there exists some root α and some integer k, so that Hα ,k

separates u(a,b) and c. Here we pick Hα ,k so that it may go through c but not through

u(a,b). The intersection of Hα ,k and the edge segment joining u(a,b) to v(a,b) is a

vertex of the affine Coxeter arrangement. But this is impossible, since there are no

vertices lying between v(a,b) and u(a,b). ⊓⊔

Define a marked set GP of elements which lie in IP as follows:

GP = {xaxb − xu(a,b)xv(a,b)}, (8)

where a,b range over pairs of unequal vertices in P. The main result of this section

is the following theorem.

Theorem 13.6. Let Φ be one of the root systems An, Cn or D4 and P a proper al-

coved polytope. Then there exists a term order ≺P such that the quadratic binomials

GP form a (reduced) Gröbner basis of the toric ideal IP with respect to ≺P, such that

the underlined monomial is the leading term.
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Proof. By Lemma 13.5, the binomials in GP do indeed make sense and since a+b=
u(a,b)+ v(a,b), they lie within IP.

By Lemma 13.1, the triangulation is coherent and is given by the domains of

linearity of the piecewise-linear function h. The same function h gives a weight

vector ω as described in [API, Appendix]. By [API, Theorem A.1] the weight vector

ω induces a term order ≺P such that ∆≺P
(IP) = ∆ω (we have also used the fact that

the triangulation is unimodular, and [API, Proposition A.2]).

Now let a,b∈ P be vertices of the affine arrangement. If xaxb 6= xu(a,b)xv(a,b), then

clearly a and b do not belong to the same simplex of the triangulation of P. Thus

xaxb belongs to the Stanley-Reisner ideal of the alcoved triangulation of P while

xu(a,b)xv(a,b) does not. This implies that under ≺P, the underlined terms in the basis

above are exactly the leading terms. In other words, the set GP is marked coherently.

Finally we check that GP is indeed a Gröbner basis of IP under ≺. Since GP

is marked coherently, it follows that the reduction of any polynomial modulo GP

is Noetherian (that is, it terminates). It is clear that a monomial xp1
. . .xpk

cannot

be reduced further under Gp if any only if all the pi belong to the simplex of the

triangulation. Thus every monomial can be reduced via GP to a standard monomial

and hence in≺(GP) generates in≺(IP).
The fact that this Gröbner basis is reduced is clear. ⊓⊔

Corollary 13.7. Let Φ be one of the root systems An, Cn or D4 and P ⊂ V be a

convex polytope with vertices among the vertices of the affine Coxeter arrangement.

Then P is alcoved if and only if the conclusion of Lemma 13.5 holds.

Proof. “Only if” is the content of Lemma 13.5. For the other direction, we note that

the quadratic binomials GP can be defined by (8). There is some large alcoved poly-

tope Q which contains P and since GP ⊂ GQ, this allows us to conclude that GP is

marked coherently. And so there is a term order ≺P which selects the marked mono-

mial as the leading monomial in GP. It is easy to check that GP is the Groöbner basis

of IP with respect to ≺P, and the standard monomials are exactly given by mono-

mials corresponding to faces of alcoves. Thus we obtain an alcoved triangulation of

P. ⊓⊔

Naturally associated to the ideal IP is the projective algebraic variety YP defined

as

YP = Proj(k[xa|a ∈ P]/IP) .

This is the projective toric variety associated to the polytope P. The following corol-

lary is immediate from Theorem 13.6 and [API, Proposition A.2].

Corollary 13.8. Let Φ be one of the root systems An, Cn or D4 and P a proper

alcoved polytope. Let YP be the projective toric variety defined by IP. Then YP is

projectively normal and its Hilbert polynomial is equal to the Erhart polynomial of

P (with respect to N).

This should be compared with the work of Payne [Pay], who showed, in types

A, B, C, and D that alcoved polytopes whose vertices lie in the coweight lattice are

normal with respect to the coweight lattice.
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[KW] W. KRAŚKIEWICZ AND J. WEYMAN, Algebra of coinvariants and the action of the Cox-

eter element, Bayreuth. Math. Schr. 63, (2001), 265–284.

[API] T. LAM AND A. POSTNIKOV, Alcoved Polytopes I, Discrete Comput. Geom. 38 (2007),

no. 3, 453–478.

[LP] C. LENART AND A. POSTNIKOV, Affine Weyl groups in K-theory and representation

theory, Int. Math. Res. Not. 2007, no. 12, Art. ID rnm038, 65 pp.

[Pay] S. PAYNE, Lattice polytopes cut out by root systems and the Koszul property, Adv. Math.

220 (2009), no. 3, 926–935.

[EC2] R. STANLEY, Enumerative Combinatorics, Vol 2, Cambridge, 1999.

[SW] J. STEMBRIDGE AND D. WAUGH, A Weyl group generating function that ought to be

better known, Indagationes Mathematicae 9 (1998), 451–457.
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