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Abstract This is the second of two papers where we study polytopes arising from
affine Coxeter arrangements. Our results include a formula for their volumes, and
also compatible definitions of hypersimplices, descent numbers and major index for
all Weyl groups. We give a g-analogue of Weyl’s formula for the order of the Weyl
group. For A,,, C, and D4, we give a Grobner basis which induces the triangulation
of alcoved polytopes.

Keywords: Convex polytopes e affine Weyl group e hypersimplex

Mathematics Subject Classification (2010): Primary 52B, Secondary 05A05,
20F55

1 Introduction

This is the second of two papers in which we investigate alcoved polytopes aris-
ing from affine Coxeter arrangements. Let @ C V be an irreducible crystallographic
root system and let W be the corresponding Weyl group. Associated to @ is an
infinite hyperplane arrangement known as the affine Coxeter arrangement. This hy-
perplane arrangement subdivides V into simplices of the same volume which are
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called alcoves. We define a proper alcoved polytope to be a convex polytope P
which is the closure of a union of alcoves.

In [API], we studied these polytopes in the special situation of the root system
& = A,,. Two motivating examples for us were the hypersimplices and the alcoved
matroid polytopes. Alcoved polytopes arising from other root systems have also
been studied. Payne [Pay] showed that alcoved polytopes with vertices lying in the
coweight lattice are normal and Koszul in classical types. Werner and Yu [WY]
studied generating sets of alcoved polytopes. Fomin and Zelevinsky’s generalized
associahedra [FZ] are examples of polytopes which can be realized as alcoved poly-
topes.

We prove that the volume of an alcoved polytope P is given by

Vol(P)= ) I(Py),

wew /C

where W /C are certain cosets of the Weyl group, Py are certain alcoved polytopes
and /(P) denotes the number of integral coweights lying in P. The group C C W was
studied previously by Verma [Ver]. The order of the group C is equal to the index of
connection of @. For the case & = A,,_1, the group C is the cyclic group generated
by the long cycle (123---n), written in cycle notation.

Recall that the usual hypersimplex Ay , has volume equal to the Eulerian number
Ay n—1. We define generalized hypersimplices A,? to be certain alcoved polytopes
which generalize this property of A ,, for each root system @. To this end we intro-
duce the circular descent number cdes : W — 7, so that the volume of A,f5 counts the
number of elements of W with a fixed circular descent number. We also introduce a
circular major map cmaj : W — C that interacts in an interesting way with cdes. In
particular {w € W | cmaj(w) = id} gives a set of coset representatives for W /C. In
type A,_1, the circular major map generalizes the major index of S, taken modulo
n.

Weyl’s formula for the order of the Weyl group W states that

‘W‘:f'r!'alaz'“ah

where f is the index of connection, r is the rank of @ and a; are the coefficients of
the simple roots in the highest root of @. We prove, using the geometry of alcoved
polytopes, that

Z ches(w) M) — (Z ex) -Ar(q)- [al]q T [ar}qy
wew xeC

where A,(g) is the usual Eulerian polynomial, and 1], denotes the usual g-analogue.
Here, ¢* € Z|[C] lies in the group algebra of C.

Finally, in analogy with Sturmfels’ triangulation of the hypersimplex in type
A [Stu], we study the toric ideals Ip associated with an alcoved polytope P. When
@ is one of the root systems A,,C,, Dy, we give a Grobner basis ¥p for Ip which
induces the triangulation of P into alcoves.
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2 Root system notation

We recall standard terminology related to root systems, see [Hum] for more details.
Let V be a real Euclidean space of rank r with nondegenerate symmetric inner prod-
uct (A, ). Let @ C V be an irreducible crystallographic root system with choice of
basis of simple roots a, ..., . Let @ C @ be the corresponding set of positive
roots and let @~ = — @™ be the set of negative roots. Then @ is the disjoint union
of @ and ®~. We will write o > 0, for & € @*; and @ < 0, for o € &~ . The col-
lection of coroots o =20/ (o, ) € V, for o € P, forms the dual root system P .
The Weyl group W C Aut(V) is generated by the reflections s¢ : A — A — (1, 0") &
with respect to roots & € ¢. The Weyl group W is actually generated by simple
reflections s; = 54, subject to the Coxeter relations. The length £(w) of an element
w € W is the length of a shortest decomposition for w in terms of simple reflections.
There is a unique element w, € W of maximal possible length.

The root lattice L= L(®) C V is the integer lattice spanned by the roots o € P.
It is generated by the simple roots ¢;. The weight lattice is defined by A = A(P) =
{LeV|(d,a")€Z, forall @ € ®}. The weight lattice A contains the root lattice
L as a subgroup of finite index f. The quotient group A /L is isomorphic to the center
of the universal simply-connected Lie group G associated with the root system @V,
The index f = |A/L| is called the index of connection.

The coroot lattice is the integer lattice LY = LY (®) spanned by the coroots
a;’. The coweight lattice AV is the integer lattice defined by AY = AY(®P) =
{AeV|(A,a) €Z, forall o € ®}. Let @y,...,®, CV be the basis dual to the ba-
sis of simple roots o, ..., 0, i.e., (@;, ;) = &;j. The w; are called the fundamental
coweights. They generate the coweight lattice A",

Let p = @) + - + @. The height of a root « is the number (p, ) of simple
roots that add up to . Since we assumed that @ is irreducible, there exists a unique
highest root @ € & of maximal possible height. For convenience we set 0y = —6.
Let ap = 1 and ay,...,a, be the positive integers given by a; = (®;,0). In other
words, 6 = a0y + - - - + a,Q, or, equivalently, apoy + a1 + - - + a0 = 0. The
Coxeter number is defined as h = (p,0)+ 1 =ap+a;+--- +a,.

Lemma 2.1. Let A € AV be an integral coweight and let w € W be a Weyl group
element. Then

wd)—AeL’.

Proof. Since LY C AV it suffices to check this for a simple reflection s. We com-
pute s (1) —A = (A, )t € LY. O
3 The affine Weyl group and alcoved polytopes

The affine Weyl group Wy associated with the root system @ is generated by the
reflections s 4 : V =V, a € @, k € Z, with respect to the affine hyperplanes



256 Thomas Lam and Alexander Postnikov
Hop={A€V|(A,a)=k}

The coweight lattice AV and coroot lattice LY act on the space V by translations.
We will identify A" and L with these groups of translations. The Weyl group W
normalizes these groups.

Lemma 3.1. [Hum] The affine Weyl group Wy is the semidirect product W x LV of
the usual Weyl group W and the coroot lattice LV .

The connected components of the complement to these hyperplanes V \ |JHg «
are called alcoves. Let <7 be the set of all alcoves. A closed alcove is the closure of
an alcove. Each alcove A has the following form:

A={A€V |my<(A,@) <mg+1, foro € T},

where mg = mq(A) is a collection of integers associated with the alcove A.

Lemma 3.2. [Hum] The affine Weyl group Wyt acts simply transitively on the col-
lection </ of all alcoves.

The fundamental alcove is the simplex given by
Ac={AeV|0<(Ad,a)<1,foraec P}

={AeV]|A,a4)>0, fori=1,...,r; and (1,0) < 0}

(D
={xo+ - +x0 |x,...., 5, >0and a;x; + -+ ax, < 1}

= Convex Hull of the points 0, w; /ay, ... , ®/ay.

Lemma 3.2 implies that all alcoves are obtained from A, by the action of Wyg. In
particular, all closed alcoves are simplices with the same volume. The closure of the
fundamental alcove A, is a fundamental domain of Wys. Let .# D &7 be the set of
all faces of alcoves of all dimensions. We will think of elements of .% as relatively
open sets, so that the space V is the disjoint union of elements of .%.

Our main object is defined as follows.

Definition 3.3. An alcoved polytope P is a convex polytope in the space V such
that P is a union of finitely many elements of .%. A proper alcoved polytope is an
alcoved polytope of top dimension.

By the definition, each proper alcoved polytope comes equipped with a triangu-
lation into closed alcoves. The following lemma is immediate from the definitions.

Lemma 3.4. A bounded subset P C V is an alcoved polytope if and only if P is the
intersection of several half-spaces of the form {1 € V | (A, a) >k}, for a € ® and
ke Z.

Let (W,S) be a Coxeter group and u,v € W. A path from u to v is a sequence
u=wy—wy —wy —--- — wy =vsuch that w;y | = w;s for some simple reflection
s € S. Asubset K C W is called convex if for every u,v € K, we have that any shortest
path from u to v lies in K.
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Proposition 3.5. Let P CV be a bounded subset which is a union of closed alcoves.
Then P is a convex polytope if and only if one of the following conditions hold:

(1) For any two alcoves A,B C P, any shortest path A = Ay — A — Ay — -+ —
Ay =B lies in P. Here A; € of are alcoves and A’ — A" means that the closures
of the two alcoves A’ and A” share a facet.

(2) The subset Wp = {w € Wair | w(As) C P} of the affine Weyl group is a convex
subset.

Proof. Suppose P is a polytope and A =A¢g —+A| - Ay — --- — Ay = Bis a shortest
path with A, B € P. Suppose that A; lies in P but A;1; lies outside of P. Then the
hyperplane Hy, ;. which separates A; and A; | must be a facet of P, so eventually the
shortest path must cross Hy ; again. Suppose that A; lies on the same side of Hy x
as A;j;1 and A lies on the other side. Then reflecting the path A;;1 — A1 —
--- — Aj in the hyperplane Hy ;, we get another path from A to B which is shorter.
Conversely, suppose condition (1) holds but P is not convex. This implies that there
are alcoves A,B € P and points a € A, b € B such that the straight line ab does
not lie in P. Since P is compact we may assume a and b lie in the interior of A
and B respectively. Thus without loss of generality, we may assume that the line ab
does not intersect any face of .% of codimension more than one. The sequence of
alcoves obtained by travelling along ab must be a shortest path. This is clear as every
hyperplane H, ;. that ab intersects separates A from B and so must be a separating
hyperplane between some two alcoves A; and Ay in any path from A to B.
Condition 2 follows immediately from translating the action of the simple gen-
erators of W,g on alcoves. O

Thus each alcoved polytope is of the form
P={A€V |ky <(A,0) <Kg, forac d},

where ko = ko (P) and Ko = K (P) are two collections of integers indexed by pos-
itive roots & € D

Let AY/h={A/h| A € AV} be the coweight lattice A" shrunk & times. Recall
that / denotes the Coxeter number.

We are grateful to Bertram Kostant for many helpful coversations over the years.
We appreciate his attention to combinatorial aspects of representation theory. One
little thing that we learned from him is that the center of mass of an alcove is the
only point of the lattice A" /A in the interior of this alcove.

Lemma 3.6. [Kos], see also [LP, Section 14] For every alcove A € <7, there is
exactly one point of the lattice AV [ in the interior of A. For the fundamental alcove
Ao, we have Ao N (AY /h) = {p/h}.

Proof. Since the affine Weyl group acts simply transitively on .« and preserves
the lattice AV /h, it is enough to prove the claim for the fundamental alcove A,. In
the basis of fundamental coweights y, ..., ®,, the fundamental alcove A, is given
by the inequalities x1,...,x, > 0 and a;x; + - -+ a,x, < 1; and the lattice A" /h is
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given by x1,...,x, € Z/h. Recall that h = ap+ a; + - - - + a,. Then the intersection
Ao N (AY/h) consists of a single point with coordinates (1/h,...,1/h). In other
words, this intersection point is (@; + - -+ ;) /h = p/h. O

For A € </, we call the single element of (AY/h) NA the central point of the
alcove A. Let Z = (AY /h) \ UHq x be the set of central points of all alcoves; equiv-
alently,

Z={AeV|h-(,A)=1,...,h—1 (modh), for x € ®"}.

The set Z of central points is in one-to-one correspondence with the set <7 of al-
coves.

4 Weyl’s formula for the order of the Weyl group

Let Vol be the volume form on the space V normalized by Vol(A.) = 1. Then the
volume of any alcove is 1 and the volume Vol(P) of an alcoved polytope P is the
number of alcoves in P. Equivalently, Vol(P) = |[PNZ]|.

Let IT be the alcoved polytope given by

N={AeV|0<(A,04) <1, fori=1,...,r}
={xo+--+x0 |0<x; <1, fori=1,...,r},

i.e., IT is the parallelepiped generated by the fundamental coweights y, ..., ®,.
This polytope is a fundamental domain of the coweight lattice AV. Since A, is the
simplex with the vertices 0, ®, /ay, ..., ®,/a,, we have

Vol(IT) = Vol(IT) /Vol(A,) = rlay - - ay.

Thus the parallelepiped IT consists of rlaj - - - a, alcoves.
Let H be the alcoved polytope given by

H={AecV|-1<(Aa)<1, foraxc®d}.

The polytope H consists of all alcoves adjacent to the origin 0, i.e., it consists of the
|W | alcoves of the form w(As ), forw € W. In particular, its volume is the order of the
Weyl group: Vol(H) = |W|. Lemma 3.1 implies that the polytope H is a fundamental
domain of the coroot lattice L". Thus Vol(H)/Vol(IT) = |AY/LY| = f is the index
of connection. This implies the well-known formula for the order of the Weyl group,
see [Hum, 4.9]:

W|=f-rla-a,. 2)
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S The group C

For an integral coweight A € AV, the affine translation A + A of an alcove A is
an alcove; and the affine translation P+ A of an alcoved polytope P is an alcoved

polytope.
Let us define the equivalence relation “~” on the affine Weyl group Wy by

u ~ wif and only if u(A;) = w(Ao) + A, forsome A € AV,

where u,w € Wy. The relation “~” is invariant with respect to the left action of
the affine Weyl group. According to Lemma 3.6, this equivalence relation can be
defined in terms of central points of alcoves as

u~wif and only if u(p/h) —w(p/h) € A".
Let C be the subset of the usual Weyl group W given by
C={weW|w~1}={weW|w(p)—pchA’}.

Also let Coir = {w € Wyt | w ~ 1}. Actually, C is a subgroup in W and Cy is a
subgroup in Wyg. Indeed, u ~ 1 and w ~ 1 imply that uw ~ u ~ 1.

The coroot lattice LY is a normal subgroup in Cygr. The group Cygr is the semidirect
product C x LY and, thus, C =~ Cy/L".

Equivalence classes of elements of the Weyl group (respectively, the affine Weyl
group) with respect to the relation “~” are exactly cosets in W/C (respectively,
Wage/Cage). Since IT is a fundamental domain of the coweight lattice AV and, for
an alcove A € &7, there is a translation A + A such that A + A = w(A,), for some
w € W, we deduce that there are natural one-to-one correspondences between the
followings sets:

W /C =~ Wyt /Cagr =~ o7 /A" ~ {alcoves in IT}.

In particular, the number of cosets |W /C| equals Vol(IT) = |W|/f and, thus, the
order of the group C'is |C| = f.

There is a natural bijection b : AV — Cy given by b(A) = w whenever w(A,) =
Ao+ A. Notice that b may not be a homomorphism of groups. However the map b :
AV — C given by the composition of b with the natural projection Cyt — Cygr/L" ~
C is a homomorphism. Indeed, let 5(A) = u and b(u) = w. Then u,w € W are given
by u(As) = Ao+ A modLY and w(A,) = Ao+ mod LY. Then uw(Ao) = Ao+ A +
u(i) = Ao+ A+ modL". The last equation follows from Lemma 2.1. The kernel
of the map b is L". Thus b induces the natural isomorphism of groups:

AY/LY ~C.
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The group C is the cyclic group Z/(n+ 1)Z in type A,, a group of order 2 for types
B,, C, and E7, a group of order 4 for type D,, a group of order 3 for type Eg, and
trivial for Eg, Fy, and G5.

6 The statistic cdes

Let us say that a root @ € @ is an inversion of Weyl group element w € W if w(o) <
0. Equivalently, a positive root ¢ in an inversion of w if and only if £(wsq) < £(w).
Let us define

vy — { 01T w(@) >0.
W= 1ifw(a) <0.
Lemma 6.1. We have invg(w) = —mg(w™ ' (Ao)).

Proof. Indeed, & is an inversion of w if and only if (w(c),p) = (o, w™(p)) <0,
thatis, —1 < (A, 0) <0, forany A € w™!(A,). O

Let di(w) = invg,(w), for i = 0,...,r. If d;(w) = 1, we say that w has a descent
ati.

Definition 6.2. Let w € W. The circular descent number cdes(w) is defined by
r
cdes(w) = Y a;di(w).
i=0

Note that cdes(w) is always positive. Indeed if d;(w) = 0 for i € [1,r], then we
have w = 1 and dp(w) = 1.
Define 8, € LY forw € W by

where for convenience we let @y = 0.

Lemma 6.3. The coweight §,, is the unique integral coweight such that w™' (A, ) +
oy € IT.

Proof. Leti € [1,r]. Then by Lemma 6.1, —d;(w) < (w~!(p/h),a;) < 1 —d;(w), so
that A = w™!(A,) + §,, satisfies 0 < (A, ¢;) < 1. The coweight §, must be unique
since adding or subtracting any fundamental coweight ; will cause A to violate the
inequality 0 < (A4, ) < 1. o

We set S = {0,...,0,} and S; = {@; € S | a; = i}. For convenience we set J =
{ielo,r]a;=1}.
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Proposition 6.4. We have the following equivalent descriptions of the group C CW.

C={weW]|cdes(w) =1} 3)
={weW|w(S)=S} “)
={weW|w(S) =S forallk}. 5)

For any j € J there exist a unique Weyl group element wli) € C such that w(oy) >0,
fori# jand w(aj) <O0.

Proof. Let ¢ € C. By Lemma 6.3 and the definition of C, we see that ¢~ ' (A,) +
8. = A.. By Lemma 3.6, this implies that ¢~ !(p/h) + 8. = p/h. It is clear that
(8¢,0) = cdes(c) — dp(c). We compute, using Lemma 6.1, that

do(c) = 1< (™ (p/h),0) < do(c).
So summing, we have
cdes(c) — 1 < (p/h,0) < cdes(c)

which immediately implies that cdes(c) = 1 since (p /h,0) =1 —1/h. The converse
follows in the same manner. This establishes the equality in (3).

Now suppose ¢ € C. We establish (4). By definition, c(e;) < 0 for some j € J
and c(0;) > 0 for i # j. Let Sz; = {@; € S|i # j}. We have ¢! (A.) + @; = Ao,
and in particular, the set {0, ®; /aj,...,®,/a,} is sent to itself under the map A —
¢ 1(A) + o;. Substituting this fact into (c(a;), o /ay) = (e, ¢ (@ /ax)) and not-
ing that {®;, ..., ®,} are a dual basis to {o1,..., @, }, we deduce that ¢(S;) = S,
and c(o;) = op. Thus (4) holds.

We get (5) from (4) by noting that up to scalar multiplication, the relation
Y.:a;0; = 0 is the only linear dependence among the roots in S.

Conversely, (5) clearly implies (3) by the definition of cdes. The last statement
of the proposition also follows from this discussion. O

By property (3), we have f = |C| = #{i € [0,7r] | a; = 1}. These i’s correspond
to minuscule coweights ;. Recall that a minuscule weight is one whose weight
polytope has no internal weights.

We remark that the group C was previously studied by Verma [Ver] but not in the
current context of the statistic cdes. The group C is related to the statistic cdes on
the whole of W in an intimate way.

Theorem 6.5. The statistic cdes is constant on the double cosets C\W /C.

Proof. Let w € W and ¢ € C so that c(a;) = o for j € J. We need to prove that
cdes(cw) = cdes(w) = cdes(wc). The latter equality is immediate from condition
(5) of Proposition 6.4.

Leta € Sandlet B =w(a) =biay + -+ b, . The b; are either all positive or
all negative. The element w has a descent at « if and only if § < 0. Now
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ew(o) =c¢(B) =bic(oy) + -+ bre(ay). (6)
If b; = 0, then clearly do (w) = dg(cw). If b; # 0, then we have a term of the form
bic(aj)=bjog = —bj(ar1a1+---+a,0) @)

in equation (6). Since —ot is the longest root, we have |ag| > |bg|. Thus substi-
tuting (7) into (6), we see that b; # 0 implies that do(w) = 1 — dg(cw). Indeed
b;j €{0,1,—1}, and we have do(w) —da(cw) = b;.
Now we have
0=apw(ag)+---+aw(oy),

and so expressing both sides in terms of the simple roots ¢, ..., o, we see that the
coefficient of ¢ is 0. Write b; () for the coefficient b; in the proof earlier, obtaining
the equality

0= Zab o) :i (di(cw) — d;(w)) = cdes(cw) — cdes(w). O
i=0

7 The map cmaj

Define the circular major map cmaj : W — C by
cmaj(w) = b(5,)
where b is the isomorphism from Section 5.
Lemma 7.1. The map cmaj satisfies cmaj(c) = c for ¢ € C.

Proof. By Lemma 6.3, we have c(A ) Ao +¢(6;). But by Lemma 2.1, ¢(6,)

8. modL", so that by definition b(§,) ]
Theorem 7.2. The map cmaj satisfies

cdes(w)
cmaj(ciwey) = ciwe,

forcie CandweW.

Proof. Letw € W and ¢ = wl/) € C, so that ¢! (ap) = ;. Thus ¢(a;) < 0, so that
cmaj(c) = ;. We first consider wc. We have

“p/h)+ 8= p/h

for some p € A satisfying 0 < (u,0;) < h fori € [1,7]. Applying ¢! on the left to
both sides, we obtain

ctwil(p/h)+c1(8y) = ¢ (u/h).
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Now 0 < (¢! (1t/h),c () < 1 and as i varies, we obtain every simple root in the
form ¢~ !(q;) apart from c(ot) = o for some j € J. But —cdes(w) < (1/h, o) <
1 —cdes(w), so we have 0 < (¢~ (i /h) +cdes(w) . @;, ;) < 1.
Thus
Owe = c(8y) +cdes(w) . m;
cmaj(we) = cmaj(w) + cdes(w) . @; modL".

Hence cmaj(wc) = cmaj(w)c®%0"), We have used Lemma 2.1.
Similarly,

c(p/h)+8=p/h

gives
wolcT (p/h)+w (@) =w (p/h)
wle (p/h) 4w (@) + 8, = w ' (p /) + 8, = p/h.

This implies that

Ocw = Wﬁl(wj) + &

cmaj(cw) = cmaj(w) + ®; modL".

Hence cmaj(cw) = ¢ - cmaj(w). O

Theorem 7.2 shows that the map cmaj allows us to pick representatives for the
right cosets W /C. For example {w | cmaj(w) =id} is a set of right coset repre-
sentatives. In type A, cmaj; has an explicit representation theoretic meaning, see
Theorem 11.1.

8 Relation between volumes and numbers of lattice points

Let P be an alcoved polytope, and let A € o7 be an alcove. Let kg = ko (P), Ko =
Ko (P), and mg = mg(A), for @ € @7 as in Section 3. Let us define the alcoved
polytope P4) as

Pyy={A eV kg—mg < (A, ) <Ky —mg—1, foralla € dT}.

The following claim follows directly from the definitions.

Lemma 8.1. For P and A as above, the set Fy) NAY of lattice points in Py is
exactly the set of integral coweights A € AV such that A+ ) is an alcove in P.

The lemma says that lattice points in P(4) are in one-to-one correspondence with
alcoves in P that are obtained by affine translations of A.
For w € W, the definition of the polytope F(,,y = F(,,(4,)) can be rewritten as
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Pyy={A €V |ka +de(w) < (A, @) < Kg+dg(w™') =1, forall o € &T}.

We have used Lemma 6.1.

Notice that Py p) = Pa) — A. Thus the polytopes Py = Pp) are equivalent
modulo affine translations by elements of AV, whenever A = B mod AV. This im-
plies that the polytope P() = P, is correctly defined modulo affine translations by
coweights A € A, where w € W is any representative of a coset w € W/C.

Let I(P) = |PN A| be the number of lattice points in P. The following statement
establishes a relation between the volume of an alcoved polytope and the numbers
of lattice points in smaller alcoved polytopes.

Theorem 8.2. Let P be an alcoved polytope. Then

Vol(P) = Y I(P).
wew /C

Proof. According to Lemma 8.1, the total number of alcoves in P equals the sum
of I(P4)) over representatives A of cosets <7 /L". This is exactly the claim of the
theorem. O

9 Generalized hypersimplices

Fork=1,...,h—1,let us define the k-th generalized hypersimplex A,fb as the alcove
polytope given by

AP ={AeV]|0< (A, ) <1, fori=1,...,r; and k—1< (A,0) <k}.

In other words, the generalized hypersimplices are the slices of the parallelepiped IT
by the parallel hyperplanes of the form Hg 4, for k € Z. Clearly, the first generalized
hypersimplex is the fundamental alcove: Af’ = A,. Also the last generalized hyper-
simplex is the alcove given by A® | = wo(As) + p, where wo € W is the longest
element in W.

Lemma 9.1. Let w € W. The polytope (A,?)(M consists of a single point & € A, if
cdes(w™ ') =k, and (A%) ) is empty, if cdes(w™ ') # k.

Proof. By definition, the polytope (A2 )(w) is given by
(A)o = (A €A [di(w™") = (A, @), fori=1,....r; k—do(w™!) = (1,0)}.
The first r equations d;(w~') = (1, &) have a single solution A = ¥;cp @; = 3,1,

where D = {i | dg;(w™!) = 1}. The last equation k —do(w~') = (1,6") for the point
A = Yicp @ says that cdes(w) = k. a
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Corollary 9.2. All representatives w of a coset w € W /C have the same generalized
descent numbers cdes(w™").

Proof. The polytopes (A Yw) = (Ag )(w) are equivalent modulo affine translations,
whenever i = w in W/C. O

Define cdes(w™!) = cdes(w™!), where w € W is any representative of a coset 1.
Theorem 8.2 implies the following statement.

Theorem 9.3. The volume Vol(AZ) of k-th generalized hypersimplex AE equals
the number of cosets w € W /C such that cdes(w™') = k. Equivalently, f - Vol(A®)
equals the number of elements w € W such that cdes(w™') = k.

Let 57 (by,...,b,;k,K) be the thick hypersimplex given by
{AeV]|0< (A, o) <b;, fori=1,....r; and k< (1,0) < K}.
Proposition 9.4. We have

Vol(H(by,...,brik,K) = Y Vol(AP) - 1(A(by —1,... by — 151 — K+ 1,1—k)).
I

Proof. Let A € AV be in the interior of A and 4 € AY. Then 0 < (A, ;) < 1 for
ie[l,rjand I —1 < (A,0) <I. Thus A +u € 5€(by,...,bs;k,K) if and only if
we have 0 < (U, 0;) <b;—landl— K+ 1< (u,0) <I— k. We conclude that for
any alcove A € Afp, we have (by,...,brik,K) gy = H (b1 —1,....b, — 151 - K+
1,l —k) mod AV. As [ varies, we obtain a translate of H(by,...,brk,K) ) for
each coset w exactly once in this form. O

10 A g-analogue of Weyl’s formula

Recall that for a permutation w = wj ... w, in the symmetric group S, a descent is
anindex i€ {1,...,n— 1} such that w; > w; . Let des(w) be the number of descents
of w € S,,. The n-th Eulerian polynomial A,,(q) is defined as

An(q): Z qdes(w)Jrl’

weS,

forn > 1, and Ap(g) = 1. These polynomials can also be expressed as A,(q) = (1 —
q)" Ym0k g Let [n], = (1 —¢")/(1 — g) denote the g-analogue of an integer
neZ.

The group algebra Z[AY/L"] has a Z-basis of formal exponents e*, for x €
AY/LY, with multiplication e* - &’ = "™ Let Z[g][AY/LY] = Z[g] ® Z[A" /L"].
The following theorem generalizes Weyl’s formula (2) for the order of the Weyl
group.
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Theorem 10.1. The following identity holds in the group algebra Z[q][A" /LV]:

Z ches(w) eCmaj(w) _ ( Z eX) A(q) - [ar]y - [arly-
xeAV /LY

wew

In particular, we have the following identity for polynomials in Z[q):

Y M = £ Adq) )y [ar,-

wew

We first establish the following generating function for the volumes of general-
ized hypersimplices.

Proposition 10.2. The generating function for the volumes of generalized hyper-
simplices is given by

h—1

Y Vol(A8)g" = Ar(q) - [ar]q -+ [aly.
k=1

Proof. The union of the generalized hypersimplices A,f’ fork=1,2,...,h—1is the
fundamental parallelpiped I1. For a bounded polytope P C V, define the generating
function

gr(q) =Y Vol(PN{A €V [k—1<(A,0) <k})q" € Rlg*"].
k

Then grr(q) = X0~ Vol(AZ)q*. We note that if (1,0) = a € Z, then gp,;(q) =
q* gr(q). Now set E to be the parallelpiped spanned by the vectors @, /ay, ..., ®;/a,.
Then IT is a union of translates of = by integral linear combinations of the vectors
®;/a;, and we deduce that

gn(q) = gz(q) - [ailg- -~ [ar]y-

Since we are normalizing the fundamental alcove A, with vertices @; /ay, ..., ®,/a,
to have Vol(A,) = 1, it follows that gz (g) is equal to the generating function of the
normalized volumes of the usual hypersimplices:

,
g2(q) = Y Vol([0,1) N {(x1,. %) € R [ k=1 x1 + -+, < k}) ¢
k=1

which is well known to be equal to the Eulerian polynomial A,(g). This also follows
from Theorem 9.3 (see Section 11) and is studied in detail in [API]. O

Proof of Theorem 10.1. Using Theorem 7.2, we let W' = {w € W | cmaj(w) = id}
be a set of left coset representatives for C\W. Then (W’)~! is a set of right coset
representatives for W /C. We calculate
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cdes(w) £CMay
Z q j(w)

weWw

= Z gedest Z eemai(c) by Theorems 6.5 and 7.2,
weWw’ ceC

— Z ches(w’l) . < Z ex)
we(W/)~1 xeAV /LY

h=1
= (Z Vol(A,?)qk> : ( Z ex> by Theorem 9.3,
k=1 XEAY /LY

= ( ) ex> -Ar(q) - lailg---larq by Proposition 10.2.
xeAV /LY

Remark 10.3. We have

cdes(w cma cdes(w cma -1
Z godesw) gemai(w Z g j(w)

weWw wew

This follows from the fact (Theorem 6.5) that cdes is constant on C\W /C double
cosets. Each double coset is a disjoint union of left (resp. right) cosets C \W (resp.
W /C) for which e“™ (w) (resp. e (w ")) takes the values (¥ cpv/zv €¥)

Remark 10.4. It would be interesting to compare Theorem 10.1 with Stembridge
and Waugh’s Weyl group identity [SW].

The following question seems interesting.

Question 10.5. What is ¥,y ™) yemaiv™) in Z[AV /LV] @ ZIAY /LV]?

11 Example: type A

Let & =A,_; C R"/R(1,1,...,1) throughout this section. The simple roots are
a; = e; — ej+1 where e; are the coordinate basis vectors of R”. The longest root
is 8 = e —e, and we have a; = 1 for i € [0,n]. The Weyl group W =S, is the
symmetric group on n letters and cdes(w) is equal to the usual number of descents
of w plus a descent at n if w, > w;. This is the reason for calling cdes the circular
descent number. The group C = (¢ = (123---(n— 1)n)) is generated by the long
cycle. The fundamental coweights are given by w; = e; + e, + - - +¢; and one can
check that 8, = @;. Thus cmaj(w) = ¢~ ™a(")mod" where maj(w) denotes the usual
major index of w. We can verify Proposition 7.2 directly: left multiplication by
the long cycle ¢ maps wiwy -+ wy, to (wy +1)(wp+1) -+ (wy, + 1) where ‘n+ 1" is
identified with ‘1’. Right multiplication by ¢ maps wiws - - - Wy, t0 Waws3 - - - w,wy.
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The following theorem ([KW] and [EC2, Ex. 7.88]) suggests that the map cmaj
may have an explicit representation theoretic interpretation. Let y* denote the irre-
ducible character of the symmetric group S, labeled by a partition A.

Theorem 11.1. Let C,, C S, be a cyclic subgroup of order n. Let p = indg”n 2TV~ 1i/n
be an induced character of S,,. Then we have

<p, xl> — #{SYT(T) | sh(T) = A and maj(T) = j modn}.

Here a descent of a standard young tableau (SYT) T is an index i such that the box
containing i + 1 is to the southwest of the box containing i in T. The index maj(T)
is defined to be the sum of all the descents of T.

It is not hard to see that the polytopes A,’?"" are affinely equivalent to the usual
hypersimplices defined as the convex hull of the points & where & = Y ;c;e; and 1
varies over all k-subsets of [n]. The alcoved triangulation here is identical to the one
studied in [API].

12 Example: Type C

Let @ = C, with 2n long roots +2¢; for 1 <i <nand 2n(n — 1) short roots +e; +¢;
for 1 <i# j <n. A system of simple roots is given by @) = e; —e2,0p = ey —
€3,...,0,_ 1 =e¢e,_ 1 —ey, 0 =2e,. Then 0 =2¢; =201 +200+ -+ 20,1 + Oy,
so that ag = a, = 1 and a; = 2 for 1 <i < n— 1. The fundamental coweights are
givenby 0 =ej,p =e1+ep, ..., 01 =€+ -+e,—1, Oy = 1/2(€1+'-'+€n).
We identify the Weyl group W of type C, with the group of signed permutations
wiwy -+ wy in the usual way: w; € £{1,2,...,n} and |w;||wz|---|w,]| is a usual
permutation in S,. For i € [1,n— 1], a signed permutation w = wyw;---wj, has a
descent at i if w; > w;;1, as usual. We have a descent at 0 if w; > 0 and a descent
at n if w, < 0. The group C has order two, with unique non-identity element ¢ =
(-n—=(n—1)---—2 —1). The map cmaj : W — C is given by

. id ifw,>0
cmaj(w) = c ifw,<0

Theorem 10.1 states in this case that

Z ches(w) ecmaj(w) _ (eid +ec> _An(q) . (1 _i_q)n—l.
wew
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13 Grobner bases

In this section we will regularly refer to the results of the first paper in this se-
ries [API], in particular Appendix 19.

Let @ C V be a fixed irreducible root system and P a proper alcoved polytope.
We first note that the triangulations of alcoved polytopes are coherent.

Lemma 13.1. Any polytopal subdivision arising from a hyperplane arrangement is
coherent.

Proof. As only finitely many hyperplanes will be involved in a triangulation or sub-
division of a polytope, we may assume the set .#” of hyperplanes is finite.

Pick a linear functional ¢y for each hyperplane H € .# such that H is given by
the vanishing of ¢g. Then define the piecewise linear convex function 4 : V — R by

h(v) =Y [én(v)l-

Hey

It is clear that h(v) is convex, since it is a sum of convex functions. The domains of
linearity are exactly the regions determined by the hyperplane arrangement. Thus
the subdivision of a polytope induced by a hyperplane arrangement is coherent. O

We denote by N the set of vertices of the affine Coxeter arrangement. By [API,
Theorem 19.1] the triangulation of P can be described by some appropriate term
order on the polynomial ring

k[P] = klxsla € NN P].

Let us fix coordinates on V, so that all points in N have integer coordinates. Identify
avertex a = (ay,...,a,) € N with the coordinates (a,1) € V @ R. Thus the triangu-
lation is also equivalent to the reduced Grobner basis ¢p of the toric ideal Ip := Ipny
in the notation of [API, Appendix 19]. By our choice of coordinates this toric ideal
is homogeneous.

In general, the Grobner basis ¢p appears to be quite complicated, but many sim-
plifications occur when N is a lattice. One can check directly that this is the case for
the root systems A, C, and Dy.

We assume that & is one of these root systems from now on. Set ¢; = Z’f' . Then N
is spanned by the c;. In this case, an alcove has normalized volume 1 with lrespect to
N. Thus by [APIL, Proposition 19.2], 4p has an initial ideal generated by square-free
monomials.

Example 13.2. With the notation as in Section 12, the vertices N of the affine Cox-
eter arrangement of type C, are exactly the points with all coordinates,
either integers or half-integers. One can check that the lattice N is spanned by the
vectors ¢;.
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Lemma 13.3. Let a,b € N. The midpoint (a+ b)/2 is either a vertex or it lies on
a unique edge, such that it is the midpoint of the two closest vertices lying on that
edge.

Proof. Suppose ¢ = (a+b)/2 is not in N. The closed fundamental alcove A, is
the convex hull of the points ¢; and 0. Thus there is a (affine) Weyl group element
o which takes the midpoint ¢ = (a + b)/2 into A,. Since ¢(a) and o (b) are both
integral linear combinations of the ¢;, it is clear that o(c¢) must have the form Cizcj or
o In the first case, o (c) lies on the edge given by the intersection of the hyperplanes
Hg, o for k # i, j satisfying k € [1,r] and Hg ;. In the second case the edge is given
by the hyperplanes Hg, o for k # i. Thus c is the midpoint of 6~!(c;) and 6~ (c;),
or the midpoint of 6~ !(¢;) and 671(0). O

In the first case of Lemma 13.3, we set u(a,b) = v(a,b) = (a+b) /2. In the second
case we set u(a,b) and v(a,b) to be the two closest vertices on the edge containing
(a+D)/2.

Example 13.4. For type A,_;, we can describe the vertices u(a,b) and v(a,b) in
the following explicit manner ([API]). Let /,J be two k-element multi-subsets of
[n]. Let a; < ay < --- < ay be the increasing rearrangement of 7 UJ. We define
two k-element multi-subsets U (1,J) and V(I,J) by U(1,J) = {ay,as,...,ax—1 } and
V(I,J) = {a2,a4,...,as}. For a k-element multi-subset I, we let a; € R" be the
(integer) vector with j-th coordinate (a;); equal to the number of occurrences of
{1,2,...,j} in I. Then one can check that u(as,a;) and v(az,a;) are exactly ay ;)
and aV(I,J) .

Lemma 13.5. Suppose a,b € P are vertices of the affine Coxeter arrangement,
where P is a proper alcoved polytope. Then the vertices u(a,b) and v(a,b) are also
inP.

Proof. As P is convex, ¢ = (a+b)/2 € P. Assume now that ¢ is not a vertex and
suppose u(a,b) ¢ P. Then there exists some root & and some integer k, so that Hy, x
separates u(a,b) and c. Here we pick Hy, x so that it may go through ¢ but not through
u(a,b). The intersection of Hy  and the edge segment joining u(a,b) to v(a,b) is a
vertex of the affine Coxeter arrangement. But this is impossible, since there are no
vertices lying between v(a,b) and u(a,b). O

Define a marked set %p of elements which lie in Ip as follows:
Gp = {xﬂxh - xu(u,h)xv(u,h)}7 (8)

where a, b range over pairs of unequal vertices in P. The main result of this section
is the following theorem.

Theorem 13.6. Let @ be one of the root systems A,, C, or D4 and P a proper al-
coved polytope. Then there exists a term order <p such that the quadratic binomials
Yp form a (reduced) Grobner basis of the toric ideal Ip with respect to <p, such that
the underlined monomial is the leading term.
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Proof. By Lemma 13.5, the binomials in %p do indeed make sense and since a+b =
u(a,b)+v(a,b), they lie within Ip.

By Lemma 13.1, the triangulation is coherent and is given by the domains of
linearity of the piecewise-linear function h. The same function & gives a weight
vector @ as described in [API, Appendix]. By [API, Theorem A.1] the weight vector
o induces a term order <p such that A, (Ip) = A, (we have also used the fact that
the triangulation is unimodular, and [API, Proposition A.2]).

Now leta, b € P be vertices of the affine arrangement. If XaXp 7 X, (4,5)%y(a,5)» then
clearly a and b do not belong to the same simplex of the triangulation of P. Thus
xqxp belongs to the Stanley-Reisner ideal of the alcoved triangulation of P while
Xu(a,b)*v(a,) does not. This implies that under <p, the underlined terms in the basis
above are exactly the leading terms. In other words, the set ¥p is marked coherently.

Finally we check that ¥%p is indeed a Grobner basis of Ip under <. Since ¥p
is marked coherently, it follows that the reduction of any polynomial modulo ¥p
is Noetherian (that is, it terminates). It is clear that a monomial x,, ...x;,, cannot
be reduced further under %, if any only if all the p; belong to the simplex of the
triangulation. Thus every monomial can be reduced via ¢p to a standard monomial
and hence in.(%p) generates in~(Ip).

The fact that this Grobner basis is reduced is clear. O

Corollary 13.7. Let @ be one of the root systems Ay, C, or Dy and P C'V be a
convex polytope with vertices among the vertices of the affine Coxeter arrangement.
Then P is alcoved if and only if the conclusion of Lemma 13.5 holds.

Proof. “Only if” is the content of Lemma 13.5. For the other direction, we note that
the quadratic binomials ¥p can be defined by (8). There is some large alcoved poly-
tope Q which contains P and since ¥p C ¥, this allows us to conclude that ¥p is
marked coherently. And so there is a term order <p which selects the marked mono-
mial as the leading monomial in &p. It is easy to check that ¥p is the Grodbner basis
of Ip with respect to <p, and the standard monomials are exactly given by mono-
mials corresponding to faces of alcoves. Thus we obtain an alcoved triangulation of
P. O

Naturally associated to the ideal Ip is the projective algebraic variety Yp defined
as
Yp= Proj (k[xa|a S @]/IP) .

This is the projective toric variety associated to the polytope P. The following corol-
lary is immediate from Theorem 13.6 and [API, Proposition A.2].

Corollary 13.8. Let @ be one of the root systems A,, C, or Dy and P a proper
alcoved polytope. Let Yp be the projective toric variety defined by Ip. Then Yp is
projectively normal and its Hilbert polynomial is equal to the Erhart polynomial of
P (with respect to N).

This should be compared with the work of Payne [Pay], who showed, in types
A, B, C, and D that alcoved polytopes whose vertices lie in the coweight lattice are
normal with respect to the coweight lattice.
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