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Abstract
Time-driven and access-driven attacks are two dominant
types of the timing-based cache side-channel attacks. Despite
access-driven attacks are popular in recent years, investigating
the time-driven attacks is still worth the effort. It is because,
in contrast to the access-driven attacks, time-driven attacks
are independent of the attackers’ cache access privilege.

Although cache configurations can impact the time-driven
attacks’ performance, it is unclear how different cache parame-
ters influence the attacks’ success rates. This question remains
open because it is extremely difficult to conduct comparative
measurements. The difficulty comes from the unavailability
of the configurable caches in existing CPU products.
In this paper, we utilize the GEM5 platform to measure

the impacts of different cache parameters, including Private
Cache Size and Associativity, Shared Cache Size and Asso-
ciativity, Cacheline Size, Replacement Policy, and Clusivity.
In order to make the time-driven attacks comparable, we de-
fine the equivalent key length (EKL) to describe the attacks’
success rates. Key findings from the measurement results in-
clude (i) private cache has a key effect on the attacks’ success
rates; (ii) changing shared cache has a trivial effect on the
success rates, but adding neighbor processes can make the
effect significant; (iii) the Random replacement policy leads
to the highest success rates while the LRU/LFU are the other
way around; (iv) the exclusive policy makes the attacks harder
to succeed compared to the inclusive policy. We finally lever-
age these findings to provide suggestions to the attackers and
defenders as well as the future system designers.

1 Introduction
Timing-based cache side-channel attacks have been compre-
hensively studied since its debut in 1996 [17]. The time side-
channel of cache leaks secret information, specifically through
the time differences of cache hits and misses. Time-driven at-
tacks are the primary type in the early age of the timing-based
side-channel attacks. They observe the total execution time of
the cryptographic operations and crack the keys by analyzing
the observations.

In the last decade, access-driven attacks, for example, the
notorious meltdown attack [18], have gained popularity. They
manipulate specific cache-lines and observe the access behav-
iors of cryptographic operations on these cache-lines. They
require fewer observations than the time-driven attacks due to
the higher resolutions and lower noises. Fine-grained vari-
ants of the access-driven attacks have been proposed, in-
cluding PRIME+PROBE [20], FLUSH+RELOAD [29], and
FLUSH+FLUSH [14]. However, all access-driven attacks re-
quire that the attacker’s process have access to specific cache
addresses that shared by the victim’s process.

Recently, some proposals leverage new hardware technolo-
gies to defend the access-driven attacks. For example, the
CATalyst [19] exploits Intel’s Cache Allocation Technology
(CAT) (CAT isolates shared cache space for victim’s pro-
cess) to physically revoke the accessibility of attacker’s pro-
cess. Given the attackers’ access privilege is not an assurance,
studying time-driven attacks are still worthwhile since they
demand no adversary’s intervention during the observations.
Researchers have been speculating that cache configura-

tions can impact the performances of time-driven side-channel
attacks [4, 8, 9]. For example, intuitively, a bigger cache size
would make the attacks on AES more difficult, as it can hold
a larger portion of the precomputed S-box lookup table in
the cache. However, we are not aware of any previous work
that provides experimental data to demonstrate how cache
configuration parameters influence time-driven attacks. It is
extremely challenging to conduct performance comparisons
under the same system with different cache configurations,
as none of the existing CPU products provide configurable
caches. This challenge prevents the experimental study about
the impact of cache parameters on time-driven attacks.
In this work, we overcome the aforementioned difficulty

and conduct a comprehensive study on how cache configu-
rations impact the success rates of time-driven attacks. We
leverage a modular platform – GEM5 [6] to measure the per-
formances of time-driven attacks under various cache configu-
rations. GEM5 is one of the most popular cycle-accurate full-
system emulators in the computer-system architecture com-



munity [1, 30]. We leverage GEM5 to emulate the X86_64
system with a configurable cache.
In our work, we measure the performance of Bernstein’s

cache timing attack on AES [4]. Bernstein’s attack is one
of the most classic time-driven attacks and still feasible on
model processors [2, 10]. To make its performance compara-
ble, we propose a new metric to quantify the its success rate.
In the measurement, we run Bernstein’s attacks on GEM5
instances with different cache configurations and provide sys-
tematic experimental data to describe the correlation of cache
parameters and the attack’s performance. Our contribution
can be summarized as follows:
• We use the GEM5 platform to investigate the cache con-
figurations’ impacts on time-driven cache side-channel
attacks. We configure the GEM5’s cache through seven
parameters: Private Cache Sizes, Private Cache Associa-
tivity, Shared Cache Sizes, Shared Cache Associativity,
Cacheline Sizes, Replacement Policy, and Clusivity.

• We extend the traditional success-fail binary metric to
make the cache timing side-channel attacks’ perfor-
mances comparable. We define the equivalent key length
(EKL) to describe the success rates of the attacks under
a certain cache configuration.

• We systematically measure and analyze each cache pa-
rameter’s influence on the attacks’ success rate. Based
on the measurement results, we find the private cache
is the key to the success rates; the 8KB, 16-way private
cache can achieve the optimal balance between the secu-
rity and the cost. Although the shared cache’s impacts
are trivial, running neighbor processes can significantly
increase the success rates of the attacks. The replace-
ment policies and cache clusivity also have impacts on
the attacks’ performances: Random replacement leads
to the highest success rates while the LFU/LSU leads to
the lowest; the exclusive policy makes the attacks harder
to succeed compared to the inclusive policy. We then use
these findings to enhance both the cache side-channel
attacks and defenses and strengthen future systems.

2 Background
In this section, we provide the knowledge about modern cache
model and the GEM5 platform, and explain how the Bern-
stein’s time-driven attack works.

2.1 CPU Cache Hierarchy
The CPU cache is in between of the CPU cores and the main
memory. It stores copies of the frequently used data in main
memory, aiming to reduce the average latency of data access
from the main memory. Compared to the main memory, the
cache is faster but smaller. Modern multi-core CPUs usually
organize the cache as a hierarchy of multiple cache levels.
Fig. 1 indicates a generic cache hierarchy model. Each CPU
core is bound with a private cache and has this private cache’s
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Figure 1: A generic cache model. It is a two-level hierarchy:
each CPU core has its own private cache; all cores could
access a shared cache through the private cache.
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Figure 2: The workflow of Bernstein’s time-driven attack.
It consists of two online phases: (a) profiling phase and (b)
attacking phase, and two offline phases: (c) correlating phase
and (d) searching phase.

exclusive access permission. The whole CPU chip has one
shared cache (a.k.a Last Level Cache (LLC)) that shared by
all the CPU cores. The shared cache usually is larger but
slower than the private cache. Commodity Intel CPUs follow
this cache model and usually implement the private cache as
two levels (L1 and L2) and split L1 cache into instruction and
data caches. Private cache size typically is in KB scale while
shared cache size is in MB scale.

2.2 Bernstein’s Cache Timing Attack
The Bernstein’s cache timing attack on AES [4] is one of the
most classical time-driven cache attacks. It cracks the AES
keys by measuring and analyzing the encryption time data.
Fig. 2 shows the workflow of Bernstein’s attack. On the

victim server, the attacker performs two online phases. During
the profiling phase (Fig. 2 (a)), she or he encrypts millions
of different plaintexts with a known key, then collects and



profiles each execution time to build the reference time model.
During the attacking phase (Fig. 2 (b)), she or he collects
attacking time data by measuring the execution time of mil-
lions of encryptions with an unknown key. Then two offline
phases postprocess the attacking data to guess the unknown
key. Specifically, during the correlating phase(Fig. 2 (c)),
the attacker mathematically correlates the time model and
attacking data to shrink the key search space by generating
value candidates for each key byte. Finally, in the searching
phase(Fig. 2 (d)), the attacker brute-force searches the reduce
key space to recover the secret key.
Only the two online phases need to be performed on the

victim server. Although the Bernstein’s attack is computa-
tionally expensive (typically needs 222-223 encryptions for
profiling and attacking phases respectively [4]), it does not
require attacker’s intervention during the attack. Thus, con-
ducting this attack does not need much computer architecture
knowledge and the victim system’s access privilege.

2.3 GEM5 Platform
GEM5 is a modular platform for computer-system architec-
ture research [6]. GEM5 is the combination of two influential
projects: M5 [7] and Gems [24]. The former is renowned for
CPU simulation while the latter is for memory system sim-
ulation. Therefore, GEM5 can cycle-accurately emulate the
full X86 system encompassing system-level architecture and
processor microarchitecture. It provides the interfaces to ma-
nipulate the configuration of almost all system components,
including processing units, cache, and main memory. In the
full-system mode, GEM5 runs a real operating system on it
and allows users to interact with the OS. Hence, users can run
any applications on GEM5 as running on real-world hardware.
The downside of GEM5 is that its execution is 1000X slower
than real hardware.

3 Measurement Design
We measure the performances of Bernstein’s attacks running
on different GEM5 instances. We configure these instances’
caches using seven cache parameters, including Private Cache
Size, Private Cache Associativity, Shared Cache Size, Shared
Cache Associativity, Cacheline Size, Replacement Policy, and
Cache Clusivity. We elaborate all the cache parameters in
Section 3.1. GEM5 instances play the role of victim servers;
hence we only need to run two online phases (Fig. 2 (a) and
(b)) on it. Under each cache configuration, in accordance
with the references [2, 4, 10], we conduct 222 encryptions for
profiling and attacking phases respectively. To quantify the
performances of the attacks, we define the success rate of the
time-driven attack in Section 3.2.

3.1 Cache Parameters for Configuration
GEM5 platform gives us the full privilege to configure the
cache. Without loss of generality, we configure the cache
in our measurements to a two-level hierarchy as shown in

Fig. 1. Under such implementation, there are seven control-
lable cache parameters listed below:
1. Private Cache Size (PCS) The total amount of private

cache space. It generally falls in the range from 2KB to
32KB. Intuitively, smaller PCS makes the attacks easier.

2. Private Cache Associativity (PCA) The number of
cache blocks in a private cache set. Its range typically
is between 2-way and 32-way. Intuitively, larger PCA
results in lower success rates of the attacks.

3. Shared Cache Size (SCS) The total amount of shared
cache space. It usually is a value in between 2MB and
32MB. Intuitively, the smaller SCS the easier attacks.

4. Shared Cache Associativity (SCA) The number of
cache blocks in a shared cache set. It commonly is con-
sistent with the PCA and intuitively has similar impacts.

5. Cacheline Size (CLS) The size of the basic unit of cache
storage. The common CLSs are 32Bytes, 64Bytes, and
128Bytes. Intuitively, larger CLS leads to lower success
rates of the attacks.

6. Replacement Policy (RP) The algorithms to manage
the contents stored in the cache. The RP’s impacts are
highly-depend on the application’s memory locality.

7. Cache Clusivity (CC) Clusivity describes whether the
data in one level of cache present also in other levels. It
is either inclusive or exclusive. Intuitively, the exclusive
policy makes the attacks easier.

We reconfigure the cache of GEM5 platform through chang-
ing the above parameters. In the subsequent sections, we elab-
orate these cache parameters and their possible theoretical
impacts on the time-driven attacks.

3.1.1 Private and Shared Cache Size
Both private and shared cache copy a portion of the main
memory that possibly contains the next data that CPU will use.
Apparently, larger PCS and SCS provide broader coverage
and lower cache-miss rate; However, taking into account the
production cost factor, commodity systems usually limit their
PCS in KB scale and SCS in MB scale.
Theoretical expectation of PCS’s impacts. We attack the

AES implemented in OpenSSL library. OpenSSL precom-
putes the results of each AES step and stores them as a 4KB
lookup table [23]. Given the time-driven attacks rely on the
time differences of overall cache hits and misses, theoreti-
cally, a PCS less than 4KB renders higher miss rates and
consequently causes higher success rates of the attacks. After
4KB, the attacks are impossible since the private cache can
hold the entire lookup table.
Theoretical expectation of SCS’s impacts.We discuss the

impacts of SCS in two different scenarios. Theoretically, given
the SCS is in MB scale that is much larger than the 4KB table,
if there are no other processes running on the neighbor CPU
cores, the SCS impacts to the attacks’ success rates could be
negligible. On the other hand, if there are random neighbor



processes running, the SCS’s impacts can be non-trivial. In
the next section, we will experimentally examine whether the
facts align with these theoretical expectations.

3.1.2 Private and Shared Cache Associativity and
Cacheline Size

The basic data copying unit between caches and main mem-
ory is referred to as cacheline. A cacheline contains multiple
bytes. The commodity CPUs usually divide the caches into
multiple sets that each of them contains N cachelines (referred
to as N-way associativity). Each cacheline of the main mem-
ory must go to a particular cache set but can choose one of
the N positions in the set to reside. Either PCA or SCA (i.e.,
the N) is a trade-off between miss-rate and the searching cost.
Theoretical expectation of CLS, PCA, and SCA’s impacts.

The larger CLS leverages more spatial locality hence has
lower miss-rates. The larger PCA leads to lower miss-rates as
well. Lower cache miss-rates result in lower success rates of
the attacks. Similar to SCS, if there are no running neighbor
processes, SCA’s impacts will be trivial. Otherwise, SCA’s
impacts are analogous to PCA’s.

3.1.3 Replacement Policies
When a cache-miss occurs and the cache is full, the cache
should make room for the new entry. Replacement policies are
sophisticated algorithms to choose the existing cache entries
to evict. Since the mission of the cache is storing the data that
CPU is most likely to use next, the RPs speculate about which
existing entries have the least chances to be used in the future.
Given this heuristic is difficult, there is no universal optimal
choice among available RPs.
In our measurement design, we examine four most com-

mon RPs: (i) Least recently used (LRU). It keeps tracking
what cache entries are used and discards the least recently
used entry first. (ii) Least-frequently used (LFU). It counts
how many times each cache entry is used and discards the
least often used entry first. (iii) First in first out (FIFO). Cache
with the FIFO works in the same way as FIFO queue. It al-
ways discards the entry loaded first. (iv) Random replacement
(RANDOM). It randomly chooses the candidate entries and
evicts them when necessary. It doesn’t require tracking any
cache access history.
Theoretical expectation of RP’s impacts. The relations of

the RPs and the miss-rates highly depend on the memory
access patterns of the crypto algorithms. Therefore, without
the measurement data, it is difficult to predict the impacts of
RPs on the time-driven attacks’ success rates. We will use the
measurement results in the next section to illustrate it.

3.1.4 Cache Clusivity
Cache Clusivity describes the data consistency policy between
the private and shared cache. We consider two CCs: inclusive
and exclusive. With the inclusive policy, all entries in the
private cache will also present in the shared cache. Evicting a
shared cache entry results in the eviction of the corresponding
private cache entry. Whereas with the exclusive policy, the

shared cache contains only the entries that do not present in
the private cache. A hit entry in shared cache will be moved to
private cache while an evicted entries from the private cache
will be stored in the shared cache.

Theoretical expectation of CC’s impacts. The inclusive
policy implies less cache-miss penalties but smaller unique
memory capacity. The exclusive policy is the opposite. Given
the AES lookup table is small, cache-miss penalties will dom-
inate the influences on the attacks’ success rates. Hence we
expect the inclusive policy leads to lower success rates com-
pared to the exclusive policy.

3.2 Metric Definition: the Success Rate of an
Attack

Conventionally, the metric for cache side-channel attack per-
formance is a dualism: either success or failure. For any attack,
no matter the difficulty, if it can crack the unknown key using
reasonable computational resources and time, we label it with
success; otherwise, we label it as a failure.
However, this binary metric does not have sufficient gran-

ularity to support performance comparison of the attacks la-
beled with success. To compare two successful attacks or
evaluate a single successful attack running under different
hardware environments, we need to measure the attacking dif-
ficulty i.e., the amount of demanded computational resources
and time. Accordingly, we leverage the classical cryptanalysis
concept [5] and propose the equivalent key length (EKL) to
indicate the success rate of the time-driven cache side-channel
attack. The EKL is formally defined as the following:
Definition 1. The equivalent key length (EKL) is a normal-
ized metric to represent the key search space. The EKL value
2 [0,1] is computed as in Equation 1, where n is the length of
the target key, vk denotes the number of candidate values for
the k-th key byte after the correlating phase and k 2 [0,n�1].

EKL= 1� Ân
k=0 log2 vk

8n
(1)

In our measurement, we use 16-byte keys, i.e. n is 16. EKL
being 0 represents the original search space, i.e. the correlat-
ing phase (Fig. 2 (c)) fails to reduce the number of candidate
values of any key byte. On the other extreme, EKL being 1
represents the single element search space, i.e. the correlating
phase fully reveals the unknown key.
We indicate the success rate of time-driven attacks using

the ratio of EKL to the number of encryptions in attacking
phase. Apparently, with the same amount of attacking encryp-
tions, larger EKL implies a higher success rate. Increasing the
number of encryptions could boost the EKL, however, will
demand more measurement cost. One does not need to make
the EKL achieve 1 at the correlating phase. We only need to
reduce the search space to a reasonable size before entering
the brute-force search phase (Fig. 2 (d)). Practically, an EKL
at 0.8 achieves a good balance of the measurement cost and
the brute-force search cost.



Table 1: Measurement Environment

Host System
CPU Intel(R) Xeon(R) E5-2620
main memory 192 GB RDIMM

GEM5 Platform
CPU core # 2 cores (3 GHz)
main memory 4 GB
CPU cache two-level configurable
operating system Ubuntu 16.04.1 LTS
OpenSSL version 1.0.2 LTS

4 Measurement Results
We perform our measurements on a 10-node cluster. Each
node is equipped with a 24-core Intel(R) Xeon(R) E5-2620
2.4GHz CPU and a 192GB RDIMM main memory. We
launch multiple GEM5 instances. Each instance emulates
the system with two 3GHz CPU cores, 4GB main memory,
and a two-level cache. Different instances have different cache
configuration; each configuration is one combination of seven
cache parameters’ candidate values described in Section 3.1.
In each GEM5 instance, we run a Bernstein’s time-driven
attack to attack the AES implemented in OpenSSL 1.0.2. This
OpenSSL version uses the lookup table and is vulnerable to
cache timing side-channel attacks. The measurement environ-
ment is summarized in Table 1.

We measure the attack’s success rates under every instance
and show them in Fig. 3, then analyze the impacts of each
cache parameter respectively. In a nutshell, the private cache
has a significant effect on the attacks’ success rates; larger pri-
vate cache size and associativity could make the attacks more
difficult. The shared cache parameters have minor impacts on
the attacks without regard to the neighbor processes. The re-
placement policies can significantly affect the success rate of
attacks while the cacheline size’s effect is insignificant. The
clusivity also influences the success rates; using the exclusive
policy makes the attack harder than using the inclusive policy.
We elaborate on the impacts of each cache parameter in the
following sections.

4.1 Private Caches’ Impacts
PCS Fig. 3a shows how the Private Cache Size impacts the
success rates of the attacks. We can observe that the overall
trend of the impact is that the larger PCS leads to a lower
success rate. Moreover, we can see a cliff-like drop in the
success rate when the PCS increases from 4KB to 8KB.
The observed fact, by and large, matches the theoretical

expectation stated in Section 3.1.1. The larger PCS results in
fewer cache-misses (i.e., fewer time differences) and makes
the time-driven attacks more difficult. The cliff drop between
4KB and 8KB is caused by the AES lookup table size (4KB).
When the private cache is larger than 4KB, since there are no
other processes co-located on the same core, the entire lookup
table theoretically can reside in the private cache. It means the

cache-misses will not happen; hence, the time-driven attacks
will not succeed. However, disagreed with the expectation,
the measurement result shows that, although it is much harder,
the attacks still have the chance to succeed with a PCS larger
than 4KB. It implies that the AES computation itself and the
system operations can kick some lookup table entries out of
the private cache.

PCA Fig. 3b indicates the attacks’ success rates influenced by
the Private Cache Associativity. We observe that the success
rates and the PCA are negatively correlated: larger PCA leads
to lower success rates. We also find that there is a sharp
success-rate decrease from 8-way to 16-way. The 16-way and
32-way associativities make the attacks have nearly the same
success rates.

For the most part, the impact of PCA matches the expecta-
tion discussed in Section 3.1.2. A larger PCA results in less
cache misses hence makes the attacks harder to succeed. The
experimental results imply that if a cache set has 16 entries or
more, the loaded entry mostly can find an appropriate place in
the set without flushing the data needed by next cache reads.
Accordingly, from 8-way to 16-way, the cache-misses become
very occasional. It causes that the success rates fall quickly
from 8-way to 16-way, and 16-way and 32-way make similar
success rates.
Above findings suggest that the private cache parameters

have significant influences on the success rates of the time-
driven attacks. The influences mostly comply with the theo-
retical expectations with a few unexpected singular points.

4.2 Shared Caches’ Impacts
SCS We use the stress tool to generate random memory-
intensive workloads and run these workloads as the neighbor
processes. Fig. 3c and 3d show the attacks’ success rates
impacted by Shared Cache Size without and with the neighbor
processes (NP) respectively. As anticipated, without NP, the
SCS has negligible impacts on the success rates. Differing
from the expectation, although running the NP can make the
attacks easier, changing SCS still has no significant impact on
the success rates. The reason is likely to be that the MB-level
shared cache is huge compared to 4KB AES lookup table; so
the table entries always have similar chances to be found in
shared cache no matter it is 4MB or 32MB.

SCA Fig. 3e and 3f are the success rates of attacks impacted
by various Shared Cache Associativity without and with the
NP respectively. SCAwithout the NPmatches the expectation:
it barely affects the success rates. On the contrary, similar to
SCS, despite the NP can increase the attacks’ success rates,
the SCA’s impacts are still trivial.
Our findings in this suction suggest that shared cache pa-

rameters have no significant impact on the attacks’ success
rates with no regards of the NP. As distinct from the theoreti-
cal expectation, although running a memory-intensive NP can
make the attacks easier to succeed, it cannot boost either SCS
or SCA’s impacts on the attacks’ success rates.



(a) Private Cache Size (b) Private Cache Associativity (c) Shared Cache Sizes (w/o NP)

(d) Shared Cache Sizes (w/ NP) (e) Shared Cache Associativity (w/o NP) (f) Shared Cache Associativity (w/ NP)

(g) Cacheline Sizes (h) Replacement Policies (i) Cache Clusivity

Figure 3: The success rates of time-driven attacks impacted by different cache parameters. NP stands for the neighbor processes
running on the neighbor CPU core. The x-axis represents the numbers of encryptions conducted during the attacking phase
(Fig. 2(b)). The y-axis indicates the equivalent key lengths (Section 3.2).

4.3 CLS, RPs, and CCs’s Impacts
CLS We measure the attacks’ success rates affected by dif-
ferent CacheLine Sizes. Disagreeing with the expectation in
Section 3.1.2, Fig. 3g indicates that the impacts of CLS are
subtle and random. There are two possible explanations. One
reason is that the AES computation has good spatial locality
that many next cache-reads are within 32B. The other is that
the AES has bad locality that many next reads are out of the
128B range. Later we will indicate that the former explanation
matches the fact. So changing the CLS will not significantly
change the cache-miss rates.

RPs We also measure the attacks’ success rates under a
variety of Replacement Policies described in Section 3.1.3.
Fig. 3h indicates the RPs have significant impacts on the
success rates. The attacks under RANDOM have the highest
success rates while under FIFO have the runner-up ones. The

LFU and LRU lead to similar success rates that are lower than
the other two RPs.

The measurement results imply that AES computation has
good temporal and spatial localities. It is consistent with the
findings regarding CLS. So the LFU and LRU result in the
least miss-rates, i.e. lowest success rates of the attacks. Since
the RANDOM does not leverage any localities, many cache
misses can occur, makes the attacks easy to succeed. The
FIFO leverages the localities to some extent, makes its success
rates lie between the RANDOM and the LFU/LRU.

CCs We finally measure the Clusivity’s impacts. In contrast
to the expectation described in Section 3.1.4, Fig. 3i shows the
exclusive policy makes the attacks more difficult to succeed.
The reason is that private cache’s cache-misses dominate the
AES computation time. Since the exclusive policy stores all
private cache evicted entries into the shared cache, the private



cache miss rates are low. Conversely, the inclusive policy
removes the private cache entries whenever their copies in the
shared cache are evicted, hence increases the private cache
miss rates and makes the attacks easier.

5 Discussion
1) Takeaways Private cache configuration is the key to the
success rates of the time-driven cache attacks.Although larger
PCS and PCA cannot completely prevent the time-driven
attacks, they can make the attacks much harder to succeed.

Shared cache configuration is trivial to the attacks’ success
rates, but the neighbor processes can have significant impacts
on the success rates. A memory-intensive neighbor process
can make the attacks one order of magnitude easier.

Replacement policies and cache clusivity also can influence
the attacks’ success rates. In this Bernstein’s AES attack
case, the random replacement leads to the easiest attack; the
exclusive policy makes the attack easier compared to the
inclusive policy.

2) Suggestions for the attackers Increasing the eviction
rate of the AES lookup table entries from the private cache can
make the time-driven attacks easier to succeed. A feasible way
is binding a noise process with the same CPU core running
the AES encryptions. It leads to a higher possibility of kicking
the table entries out of the private cache.

3) Suggestions for the defenders A luxury private cache
definitely can reduce the vulnerability to time-driven cache at-
tacks. However, in order to achieve the optimal cost-efficiency
balance, it is better to set the private cache parameters at some
inflection points, for example, 8KB PCS and 32-way PCA for
this AES attack case.
If AES lookup table size can fit into private cache, using

lock-into-cache instruction to ensure the entire table in the
private cache can sharply reduce the attacks’ success rates. Be-
sides, assigning a CPU core exclusive and reserving a shared
cache space for the AES encryptions can also make the cache
less vulnerable to the time-driven attacks.
It is not necessary to keep the replacement policy and clu-

sivity consistent between the private caches and shared cache.
One can use Random replacement and exclusive policy for
one private cache used by AES encryptions, then apply other
replacement policies and clusivity to remaining private caches
and shared cache, to balance the cache-attack resistances and
the system performance efficiency.

6 Limitations
There are a few limitations in our measurement design from
both the attacks and the systems aspects.
It is unclear whether our measurement design is compati-

ble with other cache side-channel attacks. The targeted Bern-
stein’s attack relies on the statistical patterns of the encryp-
tion time rather than any cache-behavior based analytic attack

models. Its advantages include that it is portable between
different systems with rare adaptations, and its performance
is easy to be measured. However, some other time-driven
attacks use the attack models based on particular cache ef-
fects, for example, the cache-collision effect [8]. The current
measurement design may need case-by-case modifications for
investigating these specific time-driven attacks. The current
design also may be not compatible with other crypto algo-
rithms, e.g. DES, RSA and with the access-driven attacks.

Our measurement design does not count the effects of some
modern hardware technologies. The GEM5 platform accu-
rately emulates the cache latency and behaviors, but it does
not implement some advanced hardware techniques, e.g. the
prefetcher. The prefetcher predicts the future cache accesses
and loads the data to the cache before any possible cache-
misses happen. It may significantly change the impacts of
some cache parameters, including cacheline sizes and replace-
ment policies, on the attacks’ success rates. It is difficult to
theoretically model the prefetcher’s effects since it depends
on the prediction accuracy for specific encryption algorithms.

7 Related Work
Time-driven attacks. Bernstein’s attack [4] is one of the most
classical practical implementations of time-driven attacks. It
is elaborated in Section 2.2. Bonneau and Mironov [8] pro-
posed a finer-grained time attack. They observed the time
variations caused by cache-collisions happened during table
lookups of encryption. This attack requires less computational
cost but is more difficult to measure. Tiri et al. [27] proposed
an analytic model for time-driven attacks that can estimate
the strengths of the symmetric key cryptosystems. Brumley
and Hakala [9] proposed a timing template attack. They com-
bined vector quantization and the hidden Markov model to
build a tool to automatically analyze the cache-timing data.
Brumley and Tuveri [10] described the timing attack vulner-
ability in OpenSSL implementation and approved that the
time-driven attack on a remote server is feasible. Wang et
al. [28] proposed CacheD, a software examining technique
that leverages symbolic execution to identify potential cache
time differences at each program point.

Access-driven attacks. Yarom et al. [29] presented FLUSH
+ RELOAD attack. This attack targets LLC and can recover
the keys even if the processes are not co-located in the same
core. Liu et al. [20] implemented the PRIME + PROBE attack
also targeting on the LLC. This attack is cross-core, cross-VM,
and works on multiple versions of GnuPG without relying
on weaknesses of OS or VM. Irazoqui et al. [16] introduced
another variation of PRIME+PROBE attack. Their attack is a
fine-grain cross-core LLC attack. It needs no deduplication
and OS configuration changes hence is quite viable. Gruss et
al. [15] proposed the access-driven template attack on shared
inclusive LLC. It automatically profiles and exploits cache
leakage of any programs without requiring prior knowledge



of specific software and system information. Gras et al. [13]
proposed TLBleed that attacks the page-table caches (TLB)
to bypass the hardware cache side-channel protections.

Implementations’ and systems’ impacts. To our best knowl-
edge, our work is the first systematic and experimental study
of the cache configurations’ impacts on the cache attacks’ per-
formances. The most relevant existing work we are aware of
was done by Mantel et al [23]. Although the crypto algorithms
are strong, careless implementations and misuses can make
the ciphers vulnerable [25, 26]. Mantel et al. systematically
studied how different AES implementations influence the vul-
nerability to cache side-channel attacks. They leveraged the
CacheAudit static analyzer [12] to check the leakage bounds
of different AES implementations. In [23], only one cache
parameter (PCS) was considered. Moreover, its results are
still counted as the theoretical expectations since CacheAudit
is a program-analysis-based tool that calculates the leakage
bounds without any actual executions.

8 Conclusion
In this paper, we systematically studied how cache configu-
rations impact the success rates of time-driven cache attacks.
We addressed the difficulty of conducting apples-to-apples
experimental comparisons and proposed the methodology to
measure the attacks’ performances under different cache con-
figurations. In our measurement design, we made the cache-
attack performances comparable by extending the traditional
success-fail binary metric to the quantifiable success rate met-
ric. We leveraged the GEM5 platform to emulate the X86
system with the configurable cache. We configured the cache
through seven cache parameters, including Private and Shared
Caches’ Size and Associativity, Cacheline Size, Replacement
Policy, and Clusivity. From the measurement results, we found
that the private caches’ impacts on the attacks’ success rates
are significant while the shared caches’ are trivial; the replace-
ment policies and cache clusivity also have clear influences
on the attacks’ performances. We provided suggestions to the
attackers and defenders and implications for the future system
designs according to our measurement findings.
Our measurement work is focused on cache timing based

side channels. It remains an interesting open question of
whether one can similarly characterize other types of more
complex side channels in a systematic fashion.

9 Future Research Directions
We can extend our measurement to answer some other inter-
esting in-depth questions.
Are this measurement’s approach, findings, and conclu-

sions transferable to other cache side-channel attacks? To
answer this question, we should extend our experiment to
measure the performances of other side-channel attacks. How-
ever, as mentioned in Section 6, we might need to modify the

current measurement design to fit other attacks. For exam-
ple, with the purpose of measuring the performance of the
access-driven attacks on GEM5, one needs to run malicious
processes concurrently with the victim crypto process on the
GEM5 platform.
Do the RISC-based embedded systems’ cache configura-

tions have the same impacts? In order to answer it, we plan
to measure the attacks’ performance on the Rocket emula-
tor [3] whose cache also can be configured. Different from the
GEM5 that implements the CISC ISA, the Rocket implements
the RISC-V specification and can emulate the SoC embedded
platforms. This extension will complete our measurement by
covering all scale systems from embedded to server systems.

How accurate is this emulation-based measurement? Can
we apply the conclusions to predict the cache timing attack
vulnerability of unseen systems? Though the GEM5-based
measurement results can largely reflect the real hardware’s
impacts, according to the limitation stated in Section 6, they
might not exactly match the actual performances on modern
commodity CPUs. In the future, we can run the attacks on real
CPUs with corresponding cache configurations to examine
the deviations, and then try to use the statistic approaches to
model these deviations. Moreover, inspired by the works that
model and predict the system performance variability [11, 21,
22], we can build the vulnerability prediction model based on
the measurement and deviation analysis results. The possible
linear and nonlinear statistic tools that we can leverage to build
the model include linear Shepard and Delaunay triangulation.
This model will be useful to predict the success rates of cache
attacks on the unseen systems. The predictions can provide
implications for future system designs to reduce the cache-
attack vulnerability.
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