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Abstract

Motivation: Somatic mutations result from processes related to DNA replication or environmental/

lifestyle exposures. Knowing the activity of mutational processes in a tumor can inform personal-

ized therapies, early detection, and understanding of tumorigenesis. Computational methods have

revealed 30 validated signatures of mutational processes active in human cancers, where each sig-

nature is a pattern of single base substitutions. However, half of these signatures have no known

etiology, and some similar signatures have distinct etiologies, making patterns of mutation signa-

ture activity hard to interpret. Existing mutation signature detection methods do not consider

tumor-level clinical/demographic (e.g. smoking history) or molecular features (e.g. inactivations to

DNA damage repair genes).

Results: To begin to address these challenges, we present the Tumor Covariate Signature Model

(TCSM), the first method to directly model the effect of observed tumor-level covariates on muta-

tion signatures. To this end, our model uses methods from Bayesian topic modeling to change the

prior distribution on signature exposure conditioned on a tumor’s observed covariates. We also

introduce methods for imputing covariates in held-out data and for evaluating the statistical signifi-

cance of signature-covariate associations. On simulated and real data, we find that TCSM outper-

forms both non-negative matrix factorization and topic modeling-based approaches, particularly in

recovering the ground truth exposure to similar signatures. We then use TCSM to discover five mu-

tation signatures in breast cancer and predict homologous recombination repair deficiency in held-

out tumors. We also discover four signatures in a combined melanoma and lung cancer cohort—

using cancer type as a covariate—and provide statistical evidence to support earlier claims that

three lung cancers from The Cancer Genome Atlas are misdiagnosed metastatic melanomas.

Availability and implementation: TCSM is implemented in Python 3 and available at https://github.

com/lrgr/tcsm, along with a data workflow for reproducing the experiments in the paper.

Contact:mdml@cs.umd.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Somatic mutations accumulate over time in normal and cancer cells

as a consequence of multiple mutational processes. Measuring and

understanding the activity of these mutational process within and

across tumors has important applications in modeling tumorigen-

esis, personalized cancer therapy, early detection and prevention.

The large cancer sequencing datasets generated over the past decade

have led to the discovery of signatures of mutational processes pre-

sent in patterns of single base substitutions (Alexandrov et al.,

2013a). Discovering and characterizing these mutation signatures

and their underlying etiology has thus become an important chal-

lenge in the field.

The sources of somatic mutations can be broadly classified as

due to errors in DNA replication or from environmental or lifestyle

exposures (Tomasetti et al., 2017). Errors in DNA replication result

both from processes active in healthy cells (e.g. due to spontaneous

deamination or reactive oxygen species) and from perturbed DNA

damage repair pathways (Tubbs and Nussenzweig, 2017).

Clinicians use measures of DNA damage repair deficiency for mul-

tiple types of cancer therapy, including chemotherapy (Hegi et al.,

2005), synthetic lethal therapy (Farmer et al., 2005), and, more
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recently, checkpoint inhibitor immunotherapy (Le et al., 2017). A

recent study evaluated mutation signatures of homologous recom-

bination (HR) repair deficiency in breast cancer as a predictive bio-

marker, and found that the mutation signature-based approach

would significantly expand the population of patients eligible for

PARP inhibitors (Davies et al., 2017). Mutations also result from en-

vironmental or lifestyle exposures, including UV radiation and to-

bacco smoke (Pfeifer, 2010), as well as many DNA damaging agents

used as chemotherapies (Szikriszt et al., 2016). Mutation signatures

of these exogenous processes have recently been shown to be prog-

nostic in cutaneous melanomas (Trucco et al., 2018), and revealed

pre-cancerous aflatoxin B1 exposure in mice (Chawanthayatham

et al., 2017). More generally, these sources of somatic mutations

can be thought of as tumor-level covariates where for a given covari-

ate (e.g. smoking status), each tumor is annotated with a specific

value (e.g. smoker or non-smoker).

The most widely used methods for discovering mutation signa-

tures are based on non-negative matrix factorization (NMF) of a

mutation count matrix (Alexandrov et al., 2013b). To identify sig-

natures in a cohort of N tumors, single base substitutions are first

grouped into 96 categories (based on the substitution and its sur-

rounding 50 and 30 contexts), yielding an N�96 matrix M of muta-

tion counts. Then, NMF is applied to decompose M into a N�K

exposures matrix E and an K�96 signatures matrix P, and E and P

are rescaled so that the rows of P sum to one. Each entry Eij is inter-

preted as the number of mutations in tumor i generated by signature

j, and Pkj is the probability signature k generates a mutation of cat-

egory j. Alexandrov et al. (2013a) applied this model to >7000

tumors from 30 different cancer types to identify 20 mutation signa-

tures. Alexandrov and colleagues have since expanded the set to in-

clude 30 validated signatures that are widely studied and available

from the Catalogue of Somatic Mutations in Cancer (COSMIC)

(Forbes et al., 2017) (https://cancer.sanger.ac.uk/cosmic/signatures

(8 May 2019, date last accessed)).

Since Alexandrov et al. (2013b) first applied NMF to identify

mutation signatures, researchers have developed additional NMF

algorithms and addressed the problem of inferring exposures in a co-

hort given a set of active signatures. Kasar et al. (2015) introduced

the SignatureAnalyzer method that uses a probabilistic formulation

of NMF and automatically learns its rank K. Fischer et al. (2013)

and Rosales et al. (2017) both introduced algorithms for NMF that

assume that the mutation counts are drawn from a Poisson distribu-

tion parameterized by multiplying factors with the latter algorithm

using a Gamma prior. Rosenthal et al. (2016) introduced several

heuristics for computing the exposure matrix E given a signature

matrix P, and Huang et al. (2017) extended this work to solve the

problem optimally.

A handful of researchers have also considered a second type of

approaches to inferring mutation signatures that leverages lessons

from the natural language processing problem of topic modeling.

Given a corpus of observed documents, each drawn from the same

vocabulary, the goal of topic modeling is to infer latent topics (dis-

tributions over words) and to assign each word in each document to

its underlying topic (Blei, 2012). Most topic modeling approaches

such as the standard latent Dirichlet allocation (LDA) (Blei et al.,

2003) are Bayesian and make the ‘bag-of-words’ assumption that

each word in a document is independent given its underlying topic.

Applying topic modeling to mutation signatures means interpreting

tumors as documents, signatures as topics and mutation categories

as the vocabulary. Shiraishi et al. (2015) introduced the pmsigna-

tures method that generalizes LDA to enable mutation categoriza-

tions that include more than one flanking base. Funnell et al. (2018)

used a multi-modal topic modeling approach to simultaneously ana-

lyze patterns in single base substitutions and structural variations in

breast and ovarian cancers.

Despite this methodological progress, about half of the 30 vali-

dated COSMIC signatures have no known etiology. The most com-

mon approach to mapping signatures to their underlying causes is to

show statistically significant associations between signature expos-

ure and a clinical/demographic features (e.g. a history of smoking

and COSMIC Signature 4; Alexandrov et al., 2016) or molecular

features (e.g. BRCA1 inactivations and COSMIC Signature 3; Polak

et al., 2017).

Furthermore, even for two signatures with known etiologies, it

can be challenging to distinguish their respective exposures with

existing methods if the signatures are similar. For example,

COSMIC Signature 3 and Signature 5 are highly similar (cosine

similarity of 0.83), but Signature 3 is associated with HR repair defi-

ciency (Nik-Zainal et al., 2016; Polak et al., 2017) and Signature 5

is associated with age at diagnosis (Alexandrov et al., 2015) and

genetic mutations in the nucleotide excision repair pathway (Kim

et al., 2016).

We hypothesize that to overcome these challenges, methods for

modeling mutation signatures and tumor-level clinical or molecular

covariates are needed. To begin to address this challenge, we present

the Tumor Covariate Signature Model (TCSM) to learn how

observed tumor-level covariates change signature exposure. We

show on simulated and real mutation datasets that, by modeling

tumor-level covariates, TCSM outperforms existing NMF- and topic

modeling-based approaches that are limited to using only a tumor’s

mutations as input. We find that the largest differences in perform-

ance come when inferring exposures of held-out tumors not used to

infer signatures, and that these differences lead to improved per-

formance in downstream analyses, including predicting DNA dam-

age repair deficiency. TCSM is the first method to model mutation

signatures and their tumor-level covariates in order to automatically

infer signature etiology.

2 Materials and methods

2.1 Tumor-covariate signature model
We present a probabilistic model of mutation signatures and their

covariates that builds off of the well-studied area of topic modeling

(Blei, 2012; Blei et al., 2003), and the previously observed connec-

tion between topic modeling and mutation signatures (Funnell et al.,

2018; Shiraishi et al., 2015). Topic models are generative models for

text data, and usually encode the ‘bag-of-words’ assumption that

words are independent given their underlying topics. The observed

data for topic models are N documents w, where each document

wi consists of ni words from vocabulary V such that

wij 2 V; 1 � j � ni. Topic modeling seeks to uncover (i) K global

latent variables bk called topics, where each topic is a probability

distribution over the vocabulary; and (ii) local latent variables

including the K topic mixing proportions hi per document, and the

assignment zij 2 f1; . . . ;Kg of each observed word wij to a topic.

The most common topic modeling approaches such as LDA (Blei

et al., 2003) are Bayesian, where both bk and hi are multinomial dis-

tributions with Dirichlet priors.

In order to model mutational processes in cancer, we interpret

tumors as documents, mutation categories as the vocabulary, signa-

tures as topics, and signature exposures as topic mixings. Following

earlier work, we categorize mutations into L¼96 mutation catego-

ries based on its base substitution (C: G>A: T, C: G>G: C, C:
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G>T: A, T: A>A: T, T: A>C: G, T: A>G: C) and the 50 and 30

flanking bases (four choices each) in the reference genome.

We present TCSM to allow observed tumor covariates to change

the per tumor distribution hi of signature exposures (Fig. 1). While

there is a rich history of topic modeling using document-level covari-

ates (Mimno and McCallum, 2008; Ramage et al., 2009; Roberts

et al., 2013), to our knowledge, this is the first time this work has

been connected to mutation signatures. Importantly, we do not

model the generative process of the observed covariates, but instead

take a conditional approach where the D observed covariates !xi of

the ith tumor change the prior distribution over the signature expo-

sures hi. For example, an observed covariate could be a binary indi-

cator for biallelic inactivation of a DNA damage repair gene. The

model is flexible enough that the covariates can be any real valued

number. The first element of x
!

is always set to 1 to model the mean

exposure of each signature.

More specifically, we follow the ‘topic prevalence’ approach of

the Structural Topic Model from Roberts et al. (2013, 2016b) that

combines Dirichlet-multinomial regression (Mimno and McCallum,

2008) and the correlated topic model (Blei and Lafferty, 2005), and

describe the model as it relates to mutation signatures. The corre-

lated topic model places a logistic normal prior on h such that signa-

ture exposures can co-vary (correlate), and was previously used to

analyze mutation signatures in breast cancer (Funnell et al., 2018).

The mean of the logistic normal is set for tumor i as xi
!
C, where C is

a D � ðK � 1Þ matrix of exposure–covariate coefficients. The full

generative process for the TCSM for tumor sample i with ni muta-

tions is as follows:

hi � LogisticNormalðx!iC;RÞ; (1)

zij � MultinomialðhiÞ; 1 � j � ni; (2)

wij � Multinomialðbzij
Þ; 1 � j � ni: (3)

We place a hyperprior on the exposure–covariate coefficients

C ¼ ½c1; . . . ; cK�1� where

cd;k � Normalð0;r2
kÞ; 1 � d � D; 1 � k � K � 1; (4)

and a Half-Cauchy (1, 1) prior is placed on rk to weakly enforce

regularization.

2.2 Model training and hyperparameter selection
We train the TCSM to learn the signatures b, signature exposures h

and covariance R, and exposure–covariate coefficients C using the

variational expectation-maximization algorithm from Roberts et al.

(2016b) and their recommended initialization procedure. The latter

is based on a spectral decomposition (via NMF) of the L�L muta-

tion co-occurrence matrix that was shown to lead to quicker conver-

gence of topic models (Roberts et al., 2016a).

The main hyperparameter of TCSM is the number K of signa-

tures. We set K empirically through 5-fold cross-validation, com-

pletely holding out 20% of the tumors in 1-fold. We use the

‘document completion’ approach of Wallach et al. (2009) to com-

pute the likelihood of all of a held-out tumors’s mutations wtest, i.e.

computing Prðwtestjb; �Þ, where � represents hyperparameters. We

choose the K when the likelihood plateaus.

2.2.1 Learning exposures in held-out samples

When the signatures b are given (e.g. from learning on a training co-

hort), we learn the exposures h for additional, held-out samples by

maximum a posteriori probability estimation.

2.3 Imputing binary covariates in held-out samples
One advantage of TCSM is that it enables probabilistic imputation

of held-out (or missing) covariates, including for previously unseen

tumors. For example, for a single binary covariate in tumor xid, we

compute the log-likelihood ratio (LLR) of the tumor’s mutations

under the model with xid ¼1 and xid ¼0:

LLR ¼ log
Prðwjxi1¼1;b;R;C; �Þ
Prðwjxi1¼0;b;R;C; �Þ

; (5)

where � is the hyperparameters of the model. A positive LLR indi-

cates that the tumor’s mutations are better fit when xid ¼1. After

imputing held-out or missing covariates in this way, we then report

the exposures h estimated from the model with higher likelihood for

downstream analysis.

2.4 Statistical significance of covariates on signature

exposure
After applying variational EM to infer the latent variables of TCSM,

we perform a statistical test for the significance of a covariate with

respect to signature exposure. In this work, we only perform the test

for a single binary covariate. For each signature k and binary covari-

ate d, we generate 10 000 random exposures to signature k, half set-

ting xd ¼1 and half setting xd ¼0, according to Equation (1). We

then generate an empirical distribution by repeating these steps for

TCSM trained on data where the covariates are permuted among

samples uniformly at random. We compute a P-value for a

signature-covariate pair by counting how often the mean differences

in exposure of any signature-covariate pairs on the permuted data-

sets are greater than the mean difference of exposures on real data.

We specifically test for an increase in exposure and only report the

cases where the mean exposure when the covariate is present is

greater than the mean exposure without the covariate; the param-

eterization of the Dirichlet (or Logistic Normal approximation) ne-

cessarily means that increasing the exposure of one signature will

decrease the exposure of at least one of the others. We report

Benjamini Hochberg-corrected P-values (Benjamini and Hochberg,

1995).

Fig. 1. Overview of the Tumor Covariate Signature Model (TCSM) with an illus-

trative example of d¼1 covariate and K¼3 signatures. For ease of illustration,

the model shown is a simplified version of TCSM that does not model correla-

tions between signatures. Given the observedmutations in a cohort of patients

(top left), TCSM learns per patient exposures and assignments of each muta-

tion to a signature (top right), and a global set of signatures and covariate–ex-

posure coefficients (bottom right). The associations between covariates and

exposures are then tested for statistical significance (bottom left). Parts of the

design of the figure are inspired by Blei (2012) and Alexandrov et al. (2013b)
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2.5 Benchmarking of mutation signature methods
It is challenging to compare mutation signature methods on real

data because the true signatures and exposures are unknown. For

that reason, we perform comparisons on both simulated and real

data.

2.5.1 Simulated mutation datasets

We generate simulated mutation datasets from a simplified version

of TCSM with known ground truth parameters and hyperpara-

meters based on real cancer datasets and previous mutation signa-

tures studies. The simulation process is simplified in that we do not

allow correlations between signature exposures, so instead sample

each tumor’s exposures h from a Dirichlet (as in Dirichlet-

multinomial regression; Mimno and McCallum, 2008) instead of

the logistic normal. As a case study, we generate data to reflect HR

repair deficiency in breast cancer, using a single binary covariate.

We use four of the validated COSMIC signatures (Forbes et al.,

2017) found to be active in breast cancer (Signatures 1, 2, 3 and 5).

For each sample, we generate a single binary covariate xi, represent-

ing HR deficiency, that increases the prior probability of exposure

to Signature 3 (the COSMIC HR deficiency signature). We then gen-

erate hi of tumor i from a Dirichlet distribution with parameter vec-

tor gik ¼ exp fk0;k þ k1;kxig. We use k0 ¼[–2, –2, –5, –2] and k1 ¼[0,

0, 4, 0]. Thus, simulated tumors with HR deficiency have a much

greater prior probability of high Signature 3 exposure, while the

other signatures prior probabilities remain unchanged. We note that

Signatures 3 and 5 have a high cosine similarity of 0.83 to each

other, making it challenging to distinguish between Signature 3

mutations resulting from HR deficiency and Signature 5 mutations.

2.5.2 Evaluation methods

To quantify the importance of tumor covariates in modeling muta-

tion signatures, we compare the TCSM with and without covariates.

We also compare the models to NMF, using the popular

SomaticSignatures implementation of NMF for mutation signature

analysis (Gehring et al., 2015).

Recovery of ground truth parameters. On simulated data, we

compare the models on their learned signatures (using average co-

sine similarity) and exposures (using mean squared error). Note that

these are in-sample comparisons.

Held-out log-likelihood. We compare TCSM with and without

covariates using average log-likelihood per mutation of held-out

data. Since NMF is non-probabilistic, we cannot compare it to

TCSM using likelihood.

Prediction tasks using estimated exposures. To compare between

probabilistic and non-probabilistic models, we compare the predic-

tion power of the inferred exposures for a target binary covariate

that is known to be associated with mutation signatures. First, we

learn the mutation signature model on the training dataset. Then,

we use the model to estimate the exposures of the test dataset to the

identified signatures. Importantly, while the covariate is used when

training TCSM, we hold it out completely in the testing dataset. For

TCSM, we first impute the covariate in held-out samples before

computing exposures (as described in Section 2.2). For NMF, we es-

timate the exposures in held-out samples using SignatureEstimation

(Huang et al., 2017). Next, a Support Vector Classification (SVC)

model with a linear kernel is trained using the normalized exposures

of the training dataset and the target covariate and evaluated on the

test dataset. When the distribution of the target covariate is unbal-

anced, we set the class weight parameter of the SVC method to

balanced and evaluate the performance using area under the

precision-recall curve (AUPRC).

2.6 Implementation and software
We implemented TCSM in Python 3. We perform model training

and inference using a wrapper of the Structural Topic Models R

package (Roberts et al., 2018). We provide a workflow for repro-

ducing the experiments in the paper using Snakemake (Köster and

Rahmann, 2012). The source code is publicly available at https://

github.com/lrgr/tcsm.

2.7 Data
We analyze mutations in breast cancer exomes processed and stand-

ardized by The Cancer Genome Atlas PanCanAtlas (Hoadley et al.,

2018) and downloaded from the Genomic Data Commons (https://

gdc.cancer.gov/about-data/publications/pancanatlas (8 May 2019,

date last accessed)). To investigate the relationship between breast

cancer and HR repair deficiency, we restrict our analysis to 760

tumors with called biallelic inactivations in 82 HR genes and counts

of large-scale state transitions (LST; a measure of HR deficiency;

Rieunier et al., 2012) from Riaz et al. (2017). We obtain biallelic in-

activation calls for the 82 HR genes by combining epigenetic silenc-

ing calls from Knijnenburg et al. (2018) with germline and somatic

mutation and loss of heterozygosity (LOH) calls from Riaz et al.

(2017).

We also analyze 466 melanoma exomes and 485 lung squamous

cell carcinoma (LUSC) tumors from The Cancer Genome Atlas

PanCanAtlas dataset (Hoadley et al., 2018). We exclude 48 melan-

oma samples that were annotated as either acral melanomas or

metastatic samples with unknown primary tumor origin by Trucco

et al. (2018) (list of excluded samples obtained via personal corres-

pondence). We download CC>TT dinucleotide polymorphism

counts for these samples from both Firehose (https://doi.org/10.

7908/C11G0KM9 (8 May 2019, date last accessed)) and

(Alexandrov et al., 2018). We combine these data sources by taking

the average CC ! TT count for samples that appear in both

sources.

3 Results

3.1 Comparison on simulated data
We first compare the Tumor Covariate Signatures Model (TCSM)

on simulated data with known ground truth to two baseline meth-

ods: NMF and TCSM using no covariates. To better understand

how a single signature with changes in exposure due to tumor cova-

riates affects the performance of TCSM and existing methods, we

perform this comparison using simple simulated datasets with a sin-

gle binary covariate that changes the prior probability of exposure

for a single signature. The remaining parameters are set using previ-

ously discovered mutation signatures or are derived from real muta-

tion datasets.

We randomly generate 50 simulated datasets (see Section 2.5.1),

varying the number of samples from 50 to 250 and sampling with

replacement the number of mutations per sample from real breast

cancer exomes from The Cancer Genome Atlas PanCanAtlas dataset

(Hoadley et al., 2018). We then compare the output of our model to

NMF as implemented by the SomaticSignatures R package (Gehring

et al., 2015). We apply TCSM with and without covariates to direct-

ly quantify the importance of incorporating tumor covariates. We

evaluate the models in terms of the log-likelihood of held-out sam-

ples for K¼2–8. We compute the average held-out log-likelihood
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using Monte Carlo cross-validation with 50 train/test splits, holding

out 20% of the samples. We also report each model’s in-sample ac-

curacy at identifying the hidden signature and exposure parameters.

In terms of model selection (identifying the true K), we find that

TCSM with covariates consistently outperforms TCSM without

covariates and SomaticSignatures. While none of the models are

able to consistently learn the true number of signatures (K¼4) in

datasets with only 50 samples, TCSM identifies the true K more

often than the other methods (7/50 times compared with 2 and 1 for

TCSM without covariates and SomaticSignatures, respectively) (We

used the residual sum-of-squares and explained variances for model

selection for SomaticSignatures, as suggested by the authors

(Gehring et al., 2015)). When we use 250 samples, we find that

TCSM with covariates identifies the true number of signatures

(K¼4) for 35 of the datasets (compared with 3 and 19 for TCSM

without covariates and SomaticSignatures, respectively). We also

find that covariates provide additional signal, as TCSM with covari-

ates achieves higher held-out likelihood than the TCSM without

covariates on the majority of the synthetic datasets when K¼4 for

N¼50 (28/50) and nearly all datasets when N¼250 (49/50). All

models identified the signatures with relatively high accuracy (cosine

similarity >0.90; Fig. 2A) for N>100. However, TCSM with cova-

riates was better able to distinguish between mutations caused by

Signatures 3 and mutations caused by Signature 5, with higher ac-

curacy in identifying the true exposures across all datasets (Fig. 2B).

3.2 HR repair deficiency in breast cancer
After establishing the utility of our model on simulated data, we

turn to test it on real data. As an initial case study, we apply TCSM

to study HR repair deficiency in breast cancer. Understanding HR

deficiency in breast cancer is particularly important because of the

clinical importance of identifying patients who might respond to

PARP inhibitors (Farmer et al., 2005). We use the TCGA BRCA co-

hort and divide the samples stratified by the biallelic HR covariate

(described below) into (i) a training/validation dataset (75%) for

choosing the encoding of the covariate, model selection and bench-

marking TCSM with/without covariates; and (ii) a completely held-

out test dataset (25%) for evaluation with a prediction task.

3.2.1 Covariate selection

The first key challenge in applying TCSM to real data is choosing

the events or measures to use as covariates. Ideally, the covariates

should be associated with changes in signature exposure and be easy

to interpret biologically in order to reveal signature etiology. We

begin by examining traditional markers of HR deficiency, including

the biallelic inactivation of specific genes in the HR pathway (Riaz

et al., 2017) and the number of LST, which are chromosomal break-

ages that generate fragments of at least 10 Mb (Rieunier et al.,

2012).

We first compare TCSM using LST count to TCSM using bilal-

leic inactivations of HR genes as covariates in terms of held-out log-

likelihood for K¼2–10 (Supplementary Fig. S1). We encode the

biallelic inactivations as a single binary covariate where a 1 indicates

the tumor has a biallelic inactivation in one of the seven genes

(ATM, BRCA1, BRCA2, CHEK2, FANCM, FANCF, RAD51C) in

the HR pathway inactivated in at least five samples in our cohort.

We find that LST gives consistently better performance as measured

in held-out log-likelihood, which makes intuitive sense as it is

designed to be a direct readout of the functional status of the HR

pathway. However, even though TCSM can use continuous varia-

bles as covariates, binary covariates—such as whether a gene has a

biallelic inactivation—are more interpretable and easier to analyze

downstream, e.g. when inferring the true value in a previously un-

seen sample. Therefore, we search for a subset of the HR genes

whose biallelic inactivation maximizes the mutual information with

the number of LSTs. More specifically, we use a greedy algorithm

that adds the HR gene whose inactivations increase the mutual in-

formation with LST the most, halting when the mutual information

stops increasing. The genes in the identified set, BRCA1, BRCA2

and RAD51C, exhibit almost perfect mutual exclusivity (1/57

tumors have co-occurring mutations), a pattern expected for genes

in the same pathway (Vandin et al., 2012). Furthermore, TCSM

trained using a single covariate for these three genes achieves super-

ior performance than TCSM trained using a single covariate for all

seven genes and nearly the same performance as TCSM using LST

count as the covariate (Supplementary Fig. S1). In subsequent sec-

tions, we refer to TCSM with a single covariate—the biallelic inacti-

vation of either BRCA1, BRCA2 or RAD51C—as TCSM with the

biallelic HR covariate.

3.2.2 Automated discovery of mutation signatures and etiology

After selecting the covariate to use, we perform model selection over

the range K¼2–10 using the TCSM with the biallelic HR covariate.

We select K¼5 as that is where the held-out log-likelihood plateaus,

and show the resulting signatures in Supplementary Figure S3. All

five signatures have cosine similarity >0.8 to COSMIC signatures

with known etiologies (Alexandrov et al., 2013a) (Supplementary

Fig. S2); specifically, TCSM Signature 1 maps to the APOBEC signa-

tures (COSMIC Signatures 2 and 13), TCSM Signature 2 maps to

the HR deficiency signature (COSMIC Signature 3), TCSM

Signature 3 maps to the polymerase epsilon signature (COSMIC

Signature 10), TCSM Signature 4 maps to the mismatch repair

A B

Fig. 2. Benchmark of TCSM with (red) and without (blue) covariates and NMF-based SomaticSignatures (green) on synthetic data. (A) Cosine similarity of inferred

signatures (b) to hidden Signatures 3 and 5 using the true K¼ 4 averaged across 50 datasets, varying the number of samples. (B) Mean-squared error of the

inferred exposures (h) for the same datasets as in (A)
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(MMR) deficiency signature (COSMIC Signature 6) and TCSM

Signature 5 maps to the aging signature (COSMIC Signature 1).

Reassuringly, our covariate significance test identifies statistically

significant increases in exposure to one TCSM signature, the TCSM

signature that resembles COSMIC Signature 3, in the presence of

the biallelic HR covariate (HR-proficient mean: 0.200, HR-deficient

mean: 0.418, Benjamini Hochberg-corrected P <0.001).

Next, we evaluate the ability of the TCSM to impute a hidden

biallelic covariate value given a held-out tumor’s mutations. We im-

pute each tumor’s biallelic covariate when it is in the test fold during

5-fold cross-validation. The log-likelihood ratio of tumors with

known HR inactivations—including inactivations in the three HR

genes used in training (orange) and four other HR genes (green)—is

significantly greater than the ratio of the samples without known

HR inactivations (blue; Fig. 3C; Wilcoxon rank-sum P¼7e–22).

Moreover, the tumors predicted to be HR deficient (i.e. those with

LLR >0) without known HR inactivations have significantly more

LSTs than the tumors predicted to be HR proficient (Wilcoxon rank

sum P¼8e–10; Fig. 3C), possibly indicating that they may have

some form of HR deficiency due to some other event. Together,

these results demonstrate the use of TCSM for automated discovery

of mutation signatures and their etiology.

3.2.3 Comparison to other methods

We compare the performance of TCSM with the biallelic HR covari-

ate to TCSM without covariates (Fig. 3A) for K¼2–10. We find

that using covariates leads to an increase in held-out log-likelihood

for all K>2.

Next, we add NMF to the comparison. Since NMF is not prob-

abilistic, we compare the estimated exposures of the three methods.

We use the SomaticSignature R package implementation of NMF

(Gehring et al., 2015), using the SomaticSignatures model selection

process. We choose K¼5 because the model selection yields a range

from K¼3–6 (Supplementary Fig. S4) and K¼5 enables the most

fair comparison between the models. The five signatures extracted

by SomaticSignatures map with cosine similarity >0.8 to the same

five COSMIC signatures as TCSM.

We compare how well the estimated exposures of each method

for held-out tumors correspond with standard measures of HR defi-

ciency. We train a linear model to classify tumor HR deficiency

from the tumor’s signature exposures. Davies et al. (2017) recently

demonstrated the potential of a similar approach using NMF-based

exposures to expand treatment with PARP inhibitors to a broader

class of patients. As ground truth HR deficiency, we use biallelic

inactivations in BRCA1, BRCA2 or RAD51C. We then train the

model on exposures from TCSM with the biallelic HR covariate,

TCSM without covariates and SomaticSignatures (see Section 2.5.2

for details). To enable a fair comparison, TCSM is not provided

with the true value for the biallelic HR covariate for the held-out

tumors but instead infers the covariate value before estimating the

exposure (see Section 2.3). We evaluate the models in terms of the

AURPC on held-out cohorts not used when training the classifier.

We first compare within the cross-validation framework used for

model selection. TCSM with the biallelic HR covariate (mean

AUPRC ¼ 0.62 across the 5-fold) outperforms both TCSM without

covariates (mean AUPRC ¼ 0.57) and the NMF approach (mean

AUPRC ¼ 0.56). We then compare on the completely held-out 25%

samples not used for model selection or choosing the encoding for

covariates. Again, we find that TCSM with the biallelic HR covari-

ate (AUPRC ¼ 0.64) outperforms both TCSM without covariates

(AUPRC ¼ 0.59) and the NMF approach (AUPRC ¼ 0.58).

3.3 Simultaneously learning signatures in melanomas

and lung cancers
Next, we investigate mutation signatures in cutaneous melanomas

(SKCM) and lung squamous cell carcinomas (LUSC), two cancer

types where mutational processes relating to environmental or life-

style exposures are predominant. We examine whole-exome sequen-

ces of 418 SKCM and 485 LUSC tumors from TCGA PanCanAtlas

(see Section 2.7 for details). One advantage of TCSM is the ability

to encode cancer type in the model while performing a pan-cancer

analysis. In contrast, previous work searched for a consensus set of

signatures from a pan-cancer run and individual cancer type runs

(Alexandrov et al., 2013a, 2018).

We investigate using multiple covariates for TCSM: cancer type,

smoking history (expected for many lung cancers) and exposure to

UV radiation (expected for many melanomas). For cancer type, we

use one binary covariate for SKCM and one binary covariate for

LUSC. For smoking history, we set to one if the patient has a history

of smoking and zero for never-smokers. Note that smoking history

data are missing for SKCM patients, so we set their history of smok-

ing covariates to zero. For UV radiation, we use the number of

CC > TT mutations in the tumor, which has long been known as a

marker of UV radiation exposure (Miller, 1985). Note that these di-

nucleotide mutations are excluded from the traditional 96 single

base substitution categories analyzed by mutation signature meth-

ods, and are thus not included in the observations.

We first perform model selection using TCSM and compare the

held-out log-likelihood using all four covariates (cancer type, smok-

ing history and UV radiation exposure), using only the cancer type

A B C

Fig. 3. (A) Comparison of the log-likelihood of held-out samples across K¼ 2–10 between TCSM with the biallelic HR covariate (inactivations of BRCA1, BRCA2 or

RAD51C) and TCSM without covariates. (B) The log-likelihood ratio (LLR) of samples with the biallelic HR covariate hidden where LLR>0 indicates the mutations

of a sample are more likely under the biallelic HR covariate inactivation model. (C) After excluding tumors with known biallelic inactivations in BRCA1, BRCA2 or

RAD51C, the plot of a tumor’s LLR against its LST count
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and using no covariates (Fig. 4A). We find that using the cancer type

covariates results in a large improvement in held-out likelihood

across K compared with using no covariates (Fig. 4A). In contrast,

we find that using all four covariates results in a much smaller im-

provement in held-out likelihood across K compared with using

only cancer type. We hypothesize that the additional covariates yield

minimal improvement because they are strongly associated with the

cancer type. To simplify downstream analysis, we remove the smok-

ing status and UV radiation exposure covariates and use only the

cancer type covariate. To further simplify the model, we use a single

cancer type covariate with two possible values (LUSC and SKCM),

instead of using one binary covariate for each cancer type as these

two models have identical held-out likelihood performance

(Supplementary Fig. S5). Using TCSM with the single cancer type

covariate, we select K¼4 as the optimal number of signatures and

show the resulting signatures in Supplementary Figure S7.

The four extracted signatures resemble known COSMIC signa-

tures (Supplementary Fig. S6): the ultraviolet (UV) radiation-

associated signature (Signature 7), the smoking-associated signature

(COSMIC Signature 4), the APOBEC-associated signature

(Signatures 2 and 13) and a signature that resembles both the aging-

associated signature (Signature 1) and the mismatch repair deficient

signature (Signature 6), which is likely a composite of the two

COSMIC signatures that share a high cosine similarity to each other

(cosine similarity ¼ 0.84). Reassuringly, TCSM finds an association

between the SKCM cancer type and an increase in the exposure to

the TCSM signature most similar to COSMIC Signature 7 (LUSC

mean: 0.113, SKCM mean: 0.808, Benjamini Hochberg-corrected

P<0.001). TCSM finds an association between the LUSC cancer

type and an increase in the smoking signature (LUSC mean: 0.448,

SKCM mean: 0.054, Benjamini Hochberg-corrected P<0.001), the

APOBEC signature (LUSC mean: 0.180, SKCM mean: 0.013,

Benjamini Hochberg-corrected P<0.001) and the mismatch repair/

aging signature (LUSC mean: 0.260, SKCM mean: 0.125, Benjamini

Hochberg-corrected P<0.001).

We then investigate imputing a tumor’s cancer type from its

mutations. Campbell et al. (2016) examined 660 lung adenocarcino-

mas (LUAD) and 484 LUSC from TCGA and identified three LUSC

tumors whose molecular profile resembled melanomas. They

hypothesized that these three LUSC tumors might represent metasta-

ses from the skin and noted that one of these patients was previously

diagnosed with basal cell carcinoma. Campbell et al. (2017)

reported a related result in a targeted sequencing dataset, such that

35% of hypermutated lung cancers had high COSMIC Signature 7

exposure. Motivated by these reports, we use TCSM to re-examine

the TCGA LUSC tumors to quantify the probability each primary

tumor was correctly classified as LUSC.

We find that the cancer types imputed by TCSM are the same as

the classified cancer type in the vast majority of cases (Fig. 4B). All

but three LUSC have negative log-likelihood ratios, and the three

outliers all have LLRs >1 (indicating that they strongly resemble

melanomas). Indeed, these three outliers are the same as those

Campbell et al. (2016) identified as having high UV radiation signa-

ture exposure. The number of CC > TT mutations in these tumors

further supports the hypothesis that they are misclassified melano-

mas, as they are the only three tumors in the LUSC cohort with at

least 15 CC > TT mutations (Fig. 4B). This analysis confirms and

expands upon the conclusions of Campbell et al. (2016), and dem-

onstrates the use of TCSM for probabilistically reasoning about can-

cer type classification.

TCSM identifies several SKCM tumors as likely LUSC (LLR>0)

that are less likely to be true misclassifications. One explanation is

that SKCM tumors with LLR<0 have very few mutations and al-

most no CC>TT mutations, especially when compared with SKCM

tumors with LLR>0 (mean number of mutations: 70 versus 1032,

P¼5e–27 Wilcoxon rank sum; mean number of CC>TT mutations:

0 versus 23, P¼1e–27). However, many SKCM tumors with very

few or no CC > TT mutations are still correctly classified as SKCM

tumors, which demonstrates the importance of using the entire mu-

tation spectrum, instead of a single feature.

4 Discussion

We presented the first probabilistic model, TCSM, of mutation sig-

natures and their tumor-level clinical/demographic and molecular

covariates. We found that TCSM outperformed NMF- and topic

modeling-based approaches on both simulated and real mutation

datasets, particularly in distinguishing between exposures of similar

signatures. We then modeled mutation signatures of HR repair defi-

ciency in breast cancers, demonstrating an approach for selecting in-

terpretable covariates and predicting HR deficiency in held-out

tumors. We also modeled mutation signatures in melanomas and

lung cancers simultaneously. By including cancer type as a covariate,

we were able to provide statistical support for earlier claims that

A

B

Fig. 4. (A) The heldout log-likelihood plot used for model selection to obtain

K¼ 4. (B) The log-likelihood ratio (LLR) of the cancer type covariate for tumors

where LLR <0 means the mutations of the tumor are more likely under LUSC

and LLR >0 means the mutations of the tumor are more likely under SKCM
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three lung cancers in our cohort from The Cancer Genome Atlas are

misdiagnosed metastatic melanomas.

The key advantage of TCSM over existing methods is in inferring

exposures, particularly in distinguishing exposures of similar signa-

tures. For example, we found that a linear model trained on expo-

sures from TCSM was better able to predict HR deficiency than

linear models trained on exposures from methods that do not model

covariates. While not the focus of the applications in this study, we

hypothesize that by modeling the effects of tumor covariates on sig-

nature exposures, TCSM may be more sensitive than existing meth-

ods in discovering rare signatures. To do so may require explicit

modeling of the number of mutations per tumor.

While modeling tumor covariates of mutation signatures brings

clear advantages, it also raises the challenge of encoding and select-

ing covariates for the model. Encoding a particular covariate

requires considering its sparseness and interpretability. Consider the

covariate representing HR deficiency. We reasoned that biallelic

inactivations in HR genes are more interpretable than existing HR

indices—even if the HR indices may be a more direct encoding of

the covariate—and that because each HR gene’s inactivations are

sparse and approximately mutually exclusive, they could be com-

bined into a single event. Selecting covariates also brings challenges,

particularly when the mutational processes active in a cohort are not

well understood, there are multiple covariates related to the same

process, there is population structure or batch effects correlated

with exposure, or for discovering new signatures. In this case, it may

be important to add a covariate selection component to the model.

Certain aspects of TCSM are computationally expensive and can

be improved. For example, choosing the value of K, the number of

signatures, requires multiple runs of TCSM for each potential value

of K. One future extension is to model K as a draw from a Dirichlet

Process, a version of which is popular for topic modeling (Teh et al.,

2005). Another computationally expensive step is our statistical test,

which requires sampling 10 000 random exposures from the model

because the mean of the logistic normal distribution is parameter-

ized by a vector of K – 1 coefficients, which does not lend itself to an

easy interpretation of the significance of exposure–covariate associa-

tions. Substituting the Dirichlet distribution for the logistic normal

distribution, such as in Mimno and McCallum (2008), would im-

prove the direct interpretability of the parameters, which would en-

able a fully Bayesian approach for evaluating the significance of the

exposure–covariate associations.

Finally, one direction we plan to explore in future work is mod-

eling the effect of covariates on the signatures themselves, rather

than their exposure. This is analogous to topic models of regional

variation in language usage per topic (Eisenstein et al., 2010, 2011;

Roberts et al., 2016b). There are multiple cases of researchers

reporting multiple different signatures of the same mutational pro-

cess, though it is not always clear what each of the distinct signa-

tures represents. Learning how covariates change the signature

themselves may help uncover these relationships.
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