
TestSage: Regression Test Selection for
Large-scale Web Service Testing

Hua Zhong
Google Inc.

The University of Texas at Austin
Mountain View, California USA

hzhong@utexas.edu

Lingming Zhang
University of Texas at Dallas

Dallas, Texas USA

lingming.zhang@utdallas.edu

Sarfraz Khurshid
The University of Texas at Austin

Austin, Texas USA

khurshid@utexas.edu

Abstract—Regression testing is an important but expensive
activity in software development. Among various types of tests,
web service tests are usually one of the most expensive (due
to network communications) but widely adopted types of tests
in commercial software development. Regression test selection
(RTS) aims to reduce the number of tests which need to
be retested by only running tests that are affected by code
changes. Although a large number of RTS techniques have
been proposed in the past few decades, these techniques have
not been adopted on large-scale web service testing. This is
because most existing RTS techniques either require direct
code dependency between tests and code under test or cannot
be applied on large scale systems with enough efficiency. In
this paper, we present a novel RTS technique, TestSage, that
performs RTS for web service tests on large scale commercial
software. With a small overhead, TestSage is able to collect fine
grained (function level) dependency between test and service
under test that do not directly depend on each other. TestSage
has also been successfully applied to large complex systems with
over a million functions. We conducted experiments of TestSage
on a large scale backend service at Google. Experimental results
show that TestSage reduces 34% of testing time when running
all AEC (Analysis, Execution and Collection) phases, 50% of
testing time while running without collection phase. TestSage
has been integrated with internal testing framework at Google
and runs day-to-day at the company.

Index Terms—Regression Test Selection, Web Service Test-
ing, Regression Testing, System Testing

I. INTRODUCTION

Regression testing [1] plays an important role at software

development life-cycle by running a predefined group of

tests against updated revisions of a project to ensure that

the new changes do not break existing functionalities of the

software. Although crucial, it is very costly to run the full

set of regression tests in practice due to the large number of

tests and software revisions. For example, Google reported

that the company runs over 100 Million tests each day,

consuming a large number of resources [2], [3].

Web service testing is usually adopted by developers to

verify a major component of complex distributed systems.

However, web service testing could be extremely expensive

if the underlying system is enormous and complex. This is

because: (1) building and bringing up various components on

servers is expensive, (2) a test case tends to take more time

and resources to run due to network latency, and (3) different

revisions of components can also create more combinations

to test. In addition, if web service testing is adopted at pre-

submit stage, which means the tests are executed before

submitting a change, it could result in an even larger number

of revisions. At Google, many development teams try to

avoid running large web service tests at pre-submit stage to

reduce testing load, with the compromise of finding certain

bugs at post-submit stage.

Regression Test Selection (RTS) [1], [3]–[11] is a promis-

ing technique to optimize regression testing. RTS runs a

subset of tests by skipping those that are not affected by

code changes, as the skipped tests should produce the same

results with prior runs. A traditional RTS technique collects

dependencies for each test at previous revision and then runs

tests if their dependencies are modified in the new revision.

An RTS technique is safe if it guarantees all tests whose

behaviors are impacted in the newer revision are selected

for execution [12]. An RTS technique is precise if unaffected

tests are not selected.

Many RTS techniques have been proposed in the past few

decades. These techniques differ in the mechanism they use

to collect test dependency (static [13], [14] vs dynamic [4],

[6], [9], [15]–[17]), and the granularity on which they collect

dependencies (basic block level [4], [12], [15], method

level [9], [16], file level [13], [17] and etc.). Recent stud-

ies [17], [18] on real-world programs demonstrate that RTS

collecting dynamic dependencies at the file or mixed file-

method granularity are cost-effective as they make a good

tradeoff between selection precision and runtime overhead,

and thus representing state-of-the-art RTS.

Despite recent progress made in RTS techniques, none

of them can be effectively applied on large-scale web

service testing. This is because: (1) most traditional dynamic

and static RTS techniques require direct code dependency

between test and System Under Test (SUT) to collect test

dependency and use this dependency to select affected tests.

Web service tests, on the other hand, run in a separate

environment from SUT and such dependency cannot be

directly obtained; (2) enormous dependency data produced

by a large test case can create non-trivial overhead for an

RTS technique, thus slowing down or even crashing the tool;

and (3) web service tests and SUT may even have distributed

binaries implemented under different languages.

In this paper, we present TESTSAGE, the first dynamic RTS

approach which collects function granularity test dependency

for large-scale web service tests. TESTSAGE works in its own

environment, separating from tests and SUT, and remotely

instruments SUT and runs tests to collect dependency. Test-

Sage works for web service tests that (1) interact with SUT

through Remote Procedure Calls (RPC); (2) are written in

different languages from SUT; and (3) are built on separate

environments, platforms, and machines, or even in different

GEO locations from SUT. We implemented TESTSAGE as a

430

2019 12th IEEE Conference on Software Testing, Validation and Verification (ICST)

978-1-7281-1736-2/19/$31.00 ©2019 IEEE
DOI 10.1109/ICST.2019.00052

web service to interact with tests and SUT through different

RPCs. In our current implementation, TESTSAGE requires the

SUT to be written in C/C++ as the prototype instrumentation

tool adopted in TESTSAGE is implemented in C++; however,

the basic idea of TESTSAGE applies to other languages.
To evaluate the proposed technique, we applied TESTSAGE

to collect dependency for Google Assistant [19], a major

Google backend system that consists of dozens of self-

contained components. TESTSAGE was enabled for test-

class-level RTS in both pre-submit and post-submit tests

of the SUT since December 2017 and has been serving

continuously at Google. It collects dependency for around

200 changed test classes (the exact number varies from day-

to-day, consisting of about 10,000 test methods) that are

implemented to validate the SUT. We measured executions

of TESTSAGE in a randomly picked 32 day window. In 11028

pre-submit executions and 360 post-submit executions, TEST-

SAGE skipped 55.26% of pre-submit tests and 41.29% of

post-submit tests on average. TESTSAGE also saved 49.96%

and 33.77% execution time for the two types of tests,

respectively. Note that to speed up the pre-submit executions,

we turned down collection phase in pre-submit stage and

used dependency data collected at post-submit stage. This

drastically increased the performance of pre-submit testing

but made the selection potentially unsafe. Interestingly, we

have not discovered any bugs leaked into post-submit stage

due to unsafe selection at the time when we draft this paper.
This paper makes the following contributions:

1) Design and implementation of the first function-level

dynamic RTS technique, TESTSAGE, that is easy to

integrate into large-scale web service tests.

2) Experimental results (11388 executions) of TESTSAGE

on the large-scale Google Assistant backend service,

demonstrating the effectiveness, efficiency and scal-

ability of dynamic RTS on large and complex real-

world software systems.

II. BACKGROUND AND EXAMPLE

This section introduces the real-world web service used in

our experiment, walks through a sample test case, illustrates

the limitations of existing RTS techniques, and presents a

novel RTS technique that is applicable on large scale web

service test, TESTSAGE.

A. System Under Test and Sample Test
System Under Test. The system under test is the back-

end service of Google Assistant [19], the virtual assistant

powered by artificial intelligence and users can interact with

the system through natural voice. The Assistant is able to

search the Internet, answer questions, schedule events and

alarms, adjust hardware settings on the user device, and show

information from the user Google account. The backend

system accepts a RPC request containing user voice input

and returns a voice response to the user. The system contains

multiple individual sub services and connects to other back-

ends services. The system has been widely used in practice,

e.g., it was installed on more than 400 million devices in

2017 [20]. Although the detailed size of the system cannot

be shown due to the Google policy, it is among one of the

largest systems developed in Google.
Sample Test Case. A set of web service tests send RPC calls

with pre-defined voice queries to the system and validate the

Fig. 1: Interactions between Google Assistant service, Test-

Sage and the test client.

responses. The test is categorized into different test classes

based on the type of queries. Consider a sample test class

which verifies knowledge based questions answering of the

system. One test method of the class sends out a question

“How far is the moon?” to the server and verifies the received

response. TESTSAGE computes a dynamic function-level de-

pendency with more than 45,000 functions for this single

test. The size of the dependency data is 9.4 Megabytes.

B. Existing RTS Techniques and TestSage

Existing RTS techniques. Given no direct dependency

between test and SUT, static RTS techniques [13], [14] are

unable to compute dependency for tests. Most of existing

dynamic RTS techniques also require tests to run on the same

platform with SUT. Although dynamic RTS techniques have

been proposed before [10], [21]–[24] for web services, they

require extensive analysis (both dynamic and static) of the

service application and tests to model the application. These

techniques are based on the assumption that the updated

models of web service should be sufficient to highlight

the changes that can cause regression testing. Some of the

proposed techniques are unsafe [21], others incur non-trivial

overhead to model the underlying web services. However, in

a complex system like the one used in our experiment, gen-

erating fine-grained model of the system is non-trivial and

is impractical to adopt. On the other hand, coarse-grained

models on the system are insensitive to small changes and

cannot be used to perform RTS for those changes. We

discuss the details of these techniques in Section VII.

TestSage. TESTSAGE is able to obtain function-level depen-

dencies for tests without the need to modify existing system.

TESTSAGE does this by instrumenting the source code of

the web service with a function call tracing system called

XRAY [25], [26]. XRAY combines compiler-inserted instru-

mentation points and a run-time library that can dynamically

enable and disable the instrumentation on a running service.

XRAY is part of the LLVM compiler infrastructure [26], [27]

and works with all code written in C/C++ and Objective-

C/C++. At runtime, TESTSAGE interacts with XRAY through

RPC calls to enable/disable dependency collection for indi-

vidual tests. It also uses RPC to download the dependency

into its own dependency storage. TESTSAGE works on a

modified version of XRAY which instruments and profiles

web service with minimum overhead and updates test de-

pendency at nearly full speed. Fig. 1 shows the interactions

of TESTSAGE with test client and assistant service. Note that

TESTSAGE is connected with each service component of the

431

v o i d foo () {
p r i n t f ("Hi, XRay!") ;

}
C++ function

. L func beg in0 :
. f i l e 22 "test.cc"
. l o c 22 6 0
. c f i s t a r t p r o c
. p 2 a l i g n 1 , 0 x90

. L x r a y s l e d 0 :
. a s c i i "\353\t"
nopw 512(% rax ,% r a x)

. Ltmp0 :
pushq %rbp

. Ltmp1 :
. c f i d e f c f a o f f s e t 16

. . .

. . .
. Ltmp4 :

. l o c 22 6 48 p r o l o g u e e n d
movb $0 , $ a l
c a l l q p r i n t f
. l o c 22 6 74 i s s t m t 0
movl %eax , −4(%rbp)
addq $16 , %r s p
popq %rbp
. p 2 a l i g n 1 , 0x90

. L x r a y s l e d 1 :
r e t q
nopw %cs :512(% rax ,% r a x)

. Ltmp5 :

. Lfunc end0 :
. . .

Assembler with no-op sleds.

Fig. 2: XRAY instrumentation

system so it can collect dependency of a test case on all

services within the system.

C. XRay
Since XRAY plays a key role in TESTSAGE, before digging

into the overall architecture of TESTSAGE, we first introduce

XRAY instrumentation in this section.
XRAY instrumentation. As mentioned above, XRAY [25],

[26] is a function call tracing system that instruments C/C++

based binaries to debug performance issues. To instrument

the code, XRAY inserts a few bytes of code that do nothing

in function entry/exits at compile time. These inserts are

referred as no-op sleds in the rest of this paper. The

locations of these no-op sleds are encoded and stored in

the object files. XRAY tracing can be disabled/enabled at

runtime. If disabled, the no-op sleds are executed as-is and

introduce minimal execution overhead. On the other hand,

once enabled, the XRAY runtime library overwrites the no-op

sleds with calls to instrumentation code that records function

entry/exit information and stores the information to in-

memory buffers. Additional information like cycle-counter

time stamps are also stored so that XRAY can reconstruct

the program operation at post-processing time.
XRAY works for fully multithreaded programs. When

XRAY tracing is enabled at runtime, it inserts instrumentation

at the right sections of the program code. Disabling tracing

undoes the changes. Program semantics can be kept intact

when XRAY tracing is being turned on. Therefore, it is

not required to force single processor execution or stop

execution of the program while XRAY instrumentation is

being added and enabled. To further reduce the overhead

of the no-op sleds inserted at function entry and exit points,

XRAY employs heuristics to determine which functions to

instrument. XRAY only instruments a function if it has

at least N ”machine” instructions or it has a loop after

performing all optimizations. N is a configurable parameter

that can be set at compile time.
Instrumentation Point Insertion at Compile-time. XRAY

instrumentation can be enabled by passing flag -fxray-

Server Stack

Service under test Test results

Build
system

Test dependency

1

TestSage

Execution

AnalysisCollection

2

LLVM

XRay

3

4

Fig. 3: Design overview of TESTSAGE

instrument to Clang. Upon receiving this flag, Clang emits

LLVM Intermediate Representation (IR) code which signals

the LLVM backend to XRAY instrument functions based

on the heuristic. At link-time, the flag will add additional

dependencies to the XRAY runtime. An example of such

instrumentation point insertion is shown in Fig.2.

In the LLVM back-end compiler, the LLVM IR code is

translated into machine code with the XRAY instrumentation

points and the XRAY instrumentation map. The instrumen-

tation map is generated at the lowest level of the stack

when writing out the instrumentation points for functions

that are XRAY instrumented. The map is loaded as an array

in memory with pointers to the code locations where XRAY

instrumentation points are located. These maps are written

out per object file, and are concatenated by the linker.

Function Tracing at Runtime. The XRAY runtime provides

platform-specific functions for patching and un-patching the

instrumentation points embedded in functions at runtime.

XRAY runtime enables instrumentation before main starts

and it records all function entry and exit events which may

result in a lot of records in the resulting trace. To allow

customized profiling, XRAY runtime also provides interfaces

through which new implementations of the event handling

functionality can be created. TESTSAGE leverages on these

interfaces and implements a “Coverage Mode” bundled with

the default runtime library. This new mode self-registers to

the XRAY runtime, and is installed through a flag.

III. TECHNIQUES AND IMPLEMENTATION

This section illustrates the architecture of TESTSAGE, and

breaks it down into different components. Like most RTS

techniques, TESTSAGE has three main phases: (1) an analysis

phase (A) which selects what tests to run in a given revision;

(2) an execution phase (E) that runs the selected tests;

and (3) a collection phase (C) collects information for the

updated revision.

The overall design of TESTSAGE is shown in Fig. 3. We

integrate TESTSAGE with Blaze, the internal build system

at Google [28] so TESTSAGE can be invoked like regular

tests. In the analysis phase, upon receiving the new program

revision from build system, TESTSAGE first computes the

updated functions in the new revision and retrieves the list

of affected tests from dependency (1). Next, before sending

the affected tests to test runner, TESTSAGE first calls XRAY

to start a trace for each test on the server (2). If multiple

services are included in the SUT, TESTSAGE initiates calls

to all services and handle them in batch process. TESTSAGE

then initiates the execution phase to run the selected tests and

monitors the status of the execution (3). Once a test finishes

running, TESTSAGE reports the result, then calls XRAY to

stop the trace of the test on server(s). Finally, collection

phase starts to download the updated dependency of the test

432

Algorithm 1: Coverage Handler Algorithm

1 Function CoverageHandler(func,
coverage mode):

2 if coverage mode then
// turn off tracing for later calls

3 unpatch function(func)

4 log function call record(func,

EntryType::Enter)

5 else
6 if EntryType::Enter then
7 log function call record(func,

EntryType::Enter)

8 else if EntryType::Exit then
9 log function call record(func,

EntryType::Exit)

10 else
11 unknown(func)

12 end
13 end
14 return

(4). If collection phase is turned off, TESTSAGE serves only

as a filter for the build system to skip unaffected tests.

In rest of this section, we provide more details on each

phase and their integration with the selected testing frame-

work. Since TESTSAGE is integrated with internal systems

built at Google, it relies on a number of infrastructures at

Google to function.

A. TestSage Customization of XRay

TESTSAGE relies on XRAY to obtain test coverage on

underlying SUT. However, the default XRAY runtime library

produces more information than required, at a cost of

undesired latency. For example, the default library stores

both function entry and exit plus additional timestamps to

debug performance issues. It also stores information that can

be used to generate function call graph in post-processing.

These information significantly increase the overhead of

XRAY, and they are not useful to TESTSAGE to understand

test coverage of the program.

1) Coverage Event Handler: To resolve the above issue,

TESTSAGE implements a custom event handler and register

it in Coverage Mode. Upon entering or exiting a function,

the default XRAY handler logs a corresponding entry or

exit record. Multiple entry/exit records are produced if a

function is visited multiple times during a run. In contrast,

the customized coverage handler logs only one entry record

for a function, regardless of the access type of the visit.

Additionally, the coverage handler immediately un-patches

the instrumentation points embedded in the function to dis-

able the instrumentation of the function. All following visits

to the function will be run at full speed and no additional

records are produced. As a result, the coverage handler

still emits enough trace data for TESTSAGE to compute test

coverage while producing a smaller overhead that is almost

un-noticeable. The detailed algorithm of coverage handler is

illustrated in Algorithm 1.

2) Coverage Tracing: The coverage mode can be run

in two ways: (1) collect coverage of program from start

to end; (2) collect coverage over a certain interval in the

middle of execution; TESTSAGE adopts the second option

to gather test coverage data for different test cases. By

executing different tests at different intervals on a running

system, TESTSAGE is able to obtain clean, isolated coverage

data for each individual test. The granularity of a test entity

can also be easily configured by adjusting the group of

tests (i. e. a test class) to run inside a single interval.

TESTSAGE parses the raw XRAY trace data of an interval

and produces lists of functions executed (“live”) and not

executed (“dead”). The control mechanism of the interval

is explained in Section III-E.

B. Change computation

TESTSAGE relies on the Google version control system,

Piper [29], to compute the change information from two

software revisions. Piper offers change information at dif-

ferent granularity (file, function, statement, etc.) and we

are not going to cover the details of the system in this

paper. However, TESTSAGE cannot directly use the change

information provided by Piper to compute affected tests.

Before we can dig into the root cause, we first need to

define a few terms. We follow the work by Chen et al.

[30] to divide a program into program elements called

functional and non-functional code entities. Functional entity
includes directly executable unit of code like a function or

a statement. Non-functional entity includes non-executable

unit of code like a global variable, an instance variable or a

macro. The change information returned by Piper contains

both functional and non-functional code entities. We know

that XRAY only instruments functions and the coverage data

does not include non-functional code entities. To bridge this

coverage gap, we adopt an algorithm similar to the one

proposed in [30] to statically compute the transitive closure

of references to all non-functional entities that are reachable

from functional entities. To illustrate the method, lets say we

have a test case t ∈ T , where T is the test suite. At revision

v, a list of functional entities FE are computed by XRAY for

t. For every entity fe ∈ FE, we perform static analysis to

obtain the set of non-functional entities referenced by the fe
(denoted as NEfe). After iterating through FE, we obtain

all non-functional entities for t (i.e.,
⋃

fe∈FE NEfe), which

together with FE form the complete dependency data for t.
As a matter of fact, Piper pre-computes such information for

some revisions and we can obtain this information for free at

those revisions. Once TESTSAGE obtains change information

from Piper, it moves on to analysis phase to compute the

affected tests.

Note that for web service testing, the change information

of tests needs to be handled separately as it resides in

a different environment. TESTSAGE also computes change

information for tests, but at a coarser granularity. It simply

checks if a test is added, updated or deleted in the new

revision (including all the dependencies of the test).

C. Analysis Phase

As mentioned in Section II-C, TESTSAGE computes the

function dependencies of each test through XRAY tracing.

Once the dependent functional and non-functional code

entities are computed, TESTSAGE stores all entities as keys

in a lookup table. The name of the test is stored as value

to a entity key if it executed the entity in previous revision.

In analysis phase, TESTSAGE first calls Piper to obtain the

updated code entities in the latest revision. The affected tests

433

can be retrieved by simply querying the lookup table with the

entities. However, there is one interesting side note. With the

help of Google infrastructure, we can also derive file-level

dependencies from the lookup table by intersecting the code

entities of a file with entities covered by a test. Google builds

function indices of its code base and TESTSAGE can retrieve

code entities in a source file through internal source code

index service. We consider a test depends on a file if the

intersection between the two is non-empty. We will explore

this direction in our future work.

To build a safe RTS, TESTSAGE also needs to analyze

the change information of a test. A modified test could

have different end-to-end coverage on a new revision, even

when there is no change in its dependency at the revision.

Besides utilizing test dependency to select affected tests like

traditional RTS, TESTSAGE also selects a test if it is added or

modified in the new revision. TESTSAGE skips the test if it is

removed in the new revision. Since TESTSAGE is designed for

web service tests, in which case the SUT and test framework

are in distributed binaries, TESTSAGE operates a RPC service

to serve the analysis logic.

D. Execution Phase

TESTSAGE is integrated with an internal integration test

framework at Google which dispatches gRPC [31] requests

to servers to validate their responses. Before executing any

tests, the test framework first calls the analysis RPC in

TESTSAGE to determine what tests not to run for the new

revision. This reduces unnecessary overhead as loading and

building integration test cases is costly. TESTSAGE requires

change information of both the services and the test to

analyze which tests can be skipped in the new revision.

Unlike traditional RTS techniques, TESTSAGE does not

need to have its own execution component to run tests.

However, to obtain clean XRAY coverage for each test,

TESTSAGE needs to coordinate test executions on servers. We

illustrate this control mechanism in details in Section III-E.

Typical RTS techniques can choose to use one-pass
execution or two-pass execution to run selected tests and

update test dependency. In one-pass system, the selected

tests are executed once, producing test outcomes and up-

dating dependency information of selected tests at same

time. This is usually preferred as it simplifies both execution

phase and collection phase. However, collecting dependency

has extra overhead. Even though XRAY coverage mode

introduces minimum latency when updating test dependency,

the interval mechanism of XRAY limits the number of

tests that can be run in parallel. To enable maximum test

execution parallelization, TESTSAGE uses two-pass in pre-

submit testing. The test framework kicks off two runs of

tests at same time. One runs on a server that is not XRAY

instrumented with maximum parallelization to produce test

outcome as fast as possible, and one runs on a XRAY

instrumented server sequentially to update test dependencies.

In actual production setup the test framework also brings

up dozens of duplicated XRAY instrumented services for

the second run so dependency update can also run tests in

parallel.

E. Collection Phase

The collection phase creates XRAY trace files for the

executed tests. Depending on the number of duplicated

TestSage XRay Assistant
serviceTest case tc1

request

return

request to run

start trace for tc1

environment:
Test client

environment:
TestSage

environment:
AS server stack

environment:
AS server stack

run test

External
dependency

environment:
external

return

request

return

stop/save trace

Fig. 4: Test execution with TESTSAGE

services running in parallel, TESTSAGE divides the number

of selected tests into same number of partitions, and runs

each partition sequentially on a service. Since the system

under test can be loosely coupled and composes of multi-

ple distributed services running on different environments,

TESTSAGE appends a RPC service on every single service

to control XRAY tracing intervals (Fig. 1). Before running a

test, TESTSAGE first calls all services to start tracing intervals.

It then runs and waits for the test on SUT. After the test

finishes running, TESTSAGE dispatches calls to all services

to stop the traces on them. A final batch of RPC calls are

made to those services to download the raw trace files to

cloud storage. Fig. 4 shows the execution sequence of a

sample test case.

After all trace files are downloaded from the services,

TESTSAGE parses the files and extracts test dependencies

to update the lookup table. To illustrate test dependency

extraction for a test case, TESTSAGE first parses the raw

XRay trace files from all services and extracts fully qualified

function names from them, TESTSAGE then iterates through

the functions to compute non-functional code entities for

every function. All entities are then stored into a lookup

table using Bigtable [32]. Bigtable is a distributed storage

system developed at Google. It manages structured data that

is designed to scale to a very large size: petabytes of data

across thousands of commodity servers.

IV. EVALUATION

We implement TESTSAGE with the purpose of saving

resources and testing time by safely skipping unaffected tests

that run on large web service systems. This task cannot be

handled by traditional RTS techniques. To learn the effec-

tiveness of TESTSAGE, we applied the tool on two integration

test suites that validate Google Assistant backend service.

We access the performance of TESTSAGE by answering the

following research questions:

1) RQ1: How many tests do TESTSAGE skip on average?

Given a large web service test case usually executes

an end-to-end scenario and can cover a large portion

of the system, we want to learn if RTS techniques are

still meaningful in the area of integration testing.

2) RQ2: How much time can TESTSAGE save on average?

One key benefit of RTS techniques is reducing testing

time by skipping unaffected test cases. Large web

434

TABLE I: Number/ratio of test classes selected

Date TestPSel[#] TestPAll[#] Diff [#] TestPSel/ TestPAll[%] TestCSel[#] TestCAll[#] Diff [#] TestCSel/ TestCAll[%]

2018-09-02 1381 3168 1787 43.59% 847 2259 1412 37.49%
2018-09-03 8589 18392 9803 46.70% 885 2268 1383 39.02%
2018-09-04 26607 71096 44489 37.42% 1758 2268 510 77.51%
2018-09-05 21613 52118 30505 41.47% 1669 2268 599 73.59%
2018-09-06 30319 58542 28223 51.79% 1345 2268 923 59.30%
2018-09-07 37071 70557 33486 52.54% 1343 2250 907 59.69%
2018-09-08 2643 6100 3457 43.33% 839 2349 1510 35.72%
2018-09-09 3950 8015 4065 49.28% 855 2349 1494 36.40%
2018-09-10 26432 62936 36504 42.00% 1680 2403 723 69.91%
2018-09-11 28505 59904 31399 47.58% 1737 2403 666 72.28%
2018-09-12 25882 57921 32039 44.69% 1545 2403 858 64.29%
2018-09-13 24006 49016 25010 48.98% 1461 2403 942 60.80%
2018-09-14 26260 53253 26993 49.31% 1596 2403 807 66.42%
2018-09-15 1819 3672 1853 49.54% 982 2394 1412 41.02%
2018-09-16 2124 4968 2844 42.75% 924 2394 1470 38.60%
2018-09-17 19054 49468 30414 38.52% 1590 2394 804 66.42%
2018-09-18 27587 64587 37000 42.71% 1599 2394 795 66.79%
2018-09-19 27220 58319 31099 46.67% 1737 2367 630 73.38%
2018-09-20 21396 49054 27658 43.62% 1578 2376 798 66.41%
2018-09-21 19614 52738 33124 37.19% 1631 2367 736 68.91%
2018-09-22 639 1908 1269 33.49% 751 2376 1625 31.61%
2018-09-23 2355 5406 3051 43.56% 798 2376 1578 33.59%
2018-09-24 21963 53867 31904 40.77% 1679 2385 706 70.40%
2018-09-25 22159 48785 26626 45.42% 1743 2385 642 73.08%
2018-09-26 24225 51376 27151 47.15% 1562 2403 841 65.00%
2018-09-27 21551 48151 26600 44.76% 1596 2403 807 66.42%
2018-09-28 21682 43298 21616 50.08% 1778 2403 625 73.99%
2018-09-29 1020 2280 1260 44.74% 912 2394 1482 38.10%
2018-09-30 1726 3990 2264 43.26% 883 2394 1511 36.88%
2018-10-01 19455 42243 22788 46.05% 1781 2394 613 74.39%
2018-10-02 26292 52509 26217 50.07% 1657 2394 737 69.21%
2018-10-03 13029 30523 17494 42.69% 1805 2394 589 75.40%

Max 37071 71096 44489 52.54% 1805 2403 1625 77.51%
Min 639 1908 1260 33.49% 751 2250 510 31.61%
Avg 17443 38693 21250 44.74% 1392 2365 973 58.81%

Fig. 5: Binary-size growth of the studied system in six

months

service test is usually one of the slowest types of tests

to run.

3) RQ3: What is the overhead of TESTSAGE in up-

dating dependencies and what is the trade-off be-

tween the above two metrics and overhead introduced

by TESTSAGE? Since TESTSAGE is a dynamic code-

instrumentation-based RTS technique, the overhead of

TESTSAGE could potentially triumph the benefit we

gain from it.

In the remaining part of this section, we describe the

projects and tests used in the experimental evaluation, the

experimental setup, and report the results of experiment to

answer the above questions.

A. Projects Description
We used the Google Assistant backend system as our main

project. This system performs natural language understand-

Fig. 6: Daily submitted changes to the system

ing, conversational AI support and is tightly integrated with

Google Search systems. It is the back-bone system of Google

Assistant, the virtual assistant powered by artificial intelli-

gence. It is among one of the biggest systems developed at

Google, and is being actively updated. Fig. 5 shows the size

and growth of the system within a 7 month window. Note

that the detailed unit of the size is hidden intentionally due to

the policy of Google. From Fig. 6 we learn that on average

developers submit ~400 changes in a day to the system. Each

submission could invoke regression tests multiple times due

to different reasons (failed submission attempt, local client

sync, etc.). Fig. 7 shows the size of a test suite and its growth

in a month. Note that each test class contains a varies number

of test methods, ranging from 5 to 1000.

We performed our evaluation on two suites of tests that

validate the system: (1) a pre-submit test suite that runs

435

Fig. 7: Growth of test class number in the TestC suite

before every change gets submitted to the code base (TestP);

and (2) a continuous test suite which runs every 2 hours to

validate the latest head version of the code base (TestC).

TESTSAGE was enabled back in December 2017 at Google,

and has been serving the above two test suites ever since. In

this paper, we randomly selected 11028 revisions of TestP

and 360 revisions of TestC (executions in 32 days) to analyze

the performance of the technique.

B. Experimental Setup

Before we begin with the experimental setup, it is worth

mentioning that TESTSAGE executes with different setup in

TestP and TestC. TestP runs much more frequent than TestC

as it is triggered before every submit. Fig. 6 shows there

are around 400 submits every day. Besides, developers often

sync to different revisions before submitting the change and

it is almost impossible to compute test dependency for that

many revisions within a short time. Therefore, to reduce the

pre-submit test time, the analysis phase of TestP uses the

latest test dependency computed in TestC to select tests. We

understand this approach is not safe, thus we only integrate

this configuration with pre-submit tests. Additionally, for

large web service test, it is very unlikely to have two changes

submitted within the 2 hour time window with the former

change introducing unsafe selection for the latter one. As a

matter of fact, we did not notice any occurrences of such

issue during our experiment phase.

The goal is to evaluate how the two types of test suites

behave with TESTSAGE enabled and analyze the overhead of

TESTSAGE dependency update. For every revision in TestP,

we run TESTSAGE with two scenarios: (1) TestPAll executes

all tests in TestP, and (2) TestPSel executes tests in TestP with

TESTSAGE but without dependency update. For revisions in

TestC, we also run TESTSAGE in two scenarios: (1) TestCAll

executes all tests in TestC, and (2) TestCSel executes tests

in TestC with TESTSAGE and also updates dependency data.

The metrics we measure are the number of executed

tests for every setup and its testing time. TestP and TestC

adopt different execution parallelization method and trigger

different number of server stacks (TestP brings up 2 stacks as

it is executed more often; TestC brings up 15 stacks instead).

We report two types of testing time, elapsed time (testing

time) and executor days. Elapsed time is the actual time

taken from the start of the execution to the end. Note that

if different execution parallelization setups are adopted in

two executions, elapsed time could be an unfair comparison

as one execution runs more tests in parallel. In contrast,

executor days sum up the total time of each test executor.

C. Results Analysis

We ran all experiments on Borg [33] – Google’s cluster

management system. For a fair comparison, we requested

same amount of resources for each test stack.

1) RQ1: How many tests do TESTSAGE skip on aver-
age: Table I shows the number of test classes selected

by TESTSAGE, the total number of test classes in TestPAll

and TestCAll, the number of test classes skipped and the

percentage of the selected tests in TestP and TestC. One

concern we had before conducting the experiment was the

performance of RTS techniques on large web service test.

Given that a large web service test case usually covers an

end-to-end scenario, it might not be very effective to perform

RTS on it. However, TESTSAGE skipped a large portion of

tests on average. We believe this is due to the nature of

the Google Assistant system. A “what is the weather in

Mountain View” test and a “navigate to Googleplex” test

could trigger different code paths in the system, thus making

the two tests have relatively distinct function dependencies.

We also noticed that TESTSAGE is less effective for changes

that modify the core logic of the system, which most tests

depend on. Almost all test classes are selected by TESTSAGE

in those changes. In general, we can see that the average

percentage of skipped pre-submit tests across 32 days is

55.26%. Note that this number would be much higher if we

filter out non-binary submits. Since TESTSAGE dependency

can only be computed on source code, we make TESTSAGE

blindly select all tests if non-binary changes are detected in

a submit for sake of safety. If we count only binary submits,

the average percentage of skipped tests is around 90%.

2) RQ2: How much time can TESTSAGE save on average:
In Table II we count the daily average execution time of both

studied test suites (TestP, TestC) in four test configurations

(TestPSel, TestPAll, TestCSel, TestCAll) across 32 days.

Recall that TestP is a pre-submit test suite and TestC is

a continuous test suite. Sel means the suite is executed

with RTS and All means the suite runs all its tests blindly.

Note that even though we report the execution time of

TestP and TestC in one table, they are not comparable with

each other as they use different configurations (execution

parallelization, assigned resources, etc). In the initial setup,

we also noticed that the execution time of same test varies

drastically in different runs. This is due to the internal testing

infrastructure at Google automatically re-run failed test

cases up to a threshold. To eliminate this noise, we ignore

all executions that logged test retries. It is not surprising

that TESTSAGE performs well in TestP as TESTSAGE skips

dependency collection phase in its execution. What is more

interesting is TESTSAGE outperforms existing solution in

TestC where all phases are included and it still reduced

~34% testing time.

Besides testing time analysis, we also measure the average

resource consumption of TestP calculated by Borg. Table III

shows the average resource consumption of pre-submit test-

ing suites (i.e., TestPSel and TestPAll). Note that we did not

present the resource consumption information for continuous

testing suites (i.e., TestCSel and TestCAll), because they

run much less frequently than pre-submit testing and their

436

TABLE II: Average Execution time reduction.

Date TestPSel[s] TestPAll[s] TestPSel/ TestPAll[%] TestCSel[s] TestCAll[s] TestCSel/ TestCAll[%]

2018-09-02 1817 3813 47.65% 2610 3660 71.31%
2018-09-03 2102 3945 53.28% 2673 3696 72.32%
2018-09-04 1775 4008 44.29% 2710 3712 73.01%
2018-09-05 1996 4270 46.74% 2781 3779 73.59%
2018-09-06 1956 4146 47.18% 2716 3861 70.34%
2018-09-07 2238 4061 55.11% 2774 3693 75.12%
2018-09-08 1714 3920 43.72% 2849 3968 71.80%
2018-09-09 2026 3911 51.80% 2810 3939 71.34%
2018-09-10 2116 4006 52.82% 3079 4874 63.17%
2018-09-11 1826 4122 44.30% 3174 4629 68.57%
2018-09-12 1799 3937 45.69% 3057 4740 64.49%
2018-09-13 2207 4038 54.66% 3087 4941 62.48%
2018-09-14 2182 4128 52.86% 3169 4705 67.35%
2018-09-15 1936 3840 50.42% 3018 4565 66.11%
2018-09-16 1964 3983 49.31% 2948 4541 64.92%
2018-09-17 2389 3945 60.56% 3072 4834 63.55%
2018-09-18 2305 4460 51.68% 3228 4910 65.74%
2018-09-19 2080 4272 48.69% 3006 4834 62.18%
2018-09-20 2220 4263 52.08% 2936 4636 63.33%
2018-09-21 1985 4151 47.82% 3008 4694 64.08%
2018-09-22 1955 3900 50.13% 2846 4528 62.85%
2018-09-23 2023 3932 51.45% 2871 4531 63.36%
2018-09-24 2252 4059 55.48% 3138 4846 64.75%
2018-09-25 2264 4153 54.51% 3050 5046 60.44%
2018-09-26 2079 4256 48.85% 3209 4532 70.81%
2018-09-27 2135 4199 50.85% 2846 4595 61.94%
2018-09-28 2329 3931 59.25% 2822 5097 55.37%
2018-09-29 2019 4062 49.70% 2978 4742 62.80%
2018-09-30 1871 3944 47.44% 3095 4598 67.31%
2018-10-01 2205 4001 55.11% 2929 4856 60.32%
2018-10-02 1809 4309 41.98% 3034 4366 69.49%
2018-10-03 1404 3923 35.79% 3104 4768 65.10%

Max 2329 4309 60.56% 3209 5097 75.12%
Min 1404 3813 35.79% 2610 3660 55.37%
Avg 2030.56 4059 50.04% 2957.09 4491.13 66.23%

TABLE III: Resource consumption of TestPAll and TestPSel.

(Units are executor days)

Date TestPSel TestPAll TestPSel/ TestPAll[%]

2018-09-26 1595 3468 45.99%
2018-09-27 2066 5897 35.03%
2018-09-28 5180 7886 65.69%
2018-09-29 5819 6673 87.20%
2018-09-30 4236 6287 67.38%
2018-10-01 4546 7474 60.82%
2018-10-02 4564 6866 66.47%
2018-10-03 4108 7799 52.67%

Max 5819 7886 87.20%
Min 1595 3468 35.03%
Avg 4014.25 6543.75 61.34%

resource consumption is not a main concern for Google.

The units reported in the table is “executor days”, which

is roughly the test wall time plus setup time on a single

executor. One executor day roughly means an executor is

occupied 24 hours by the requesting job. Please note that the

executor day is not proportional to the actual test execution

time as the execution is paralleled and one execution may

occupy hundreds of executors at the same time. Therefore,

the average reduced resource consumption (~39%) is slightly

less than the average reduced execution time(~50%).

3) RQ3: What is the overhead of TESTSAGE dependency
update and what is the trade-off between the above two
metrics and overhead introduced by TESTSAGE: The cost

of TESTSAGE mainly comes from three parts: (1) latency

introduced by querying the dependency lookup table, (2)

the overhead of running tests on XRAY instrumented server,

and (3) dependency update for selected tests. The lookup

table query latency is usually less than 1 second and it is a

one time access for TESTSAGE in a run (Bigtable processes

queries in batch). Comparing to the execution time of an

entire test class (usually between 5 to 10 minutes), this table

query latency is almost negligible. To understand the test ex-

ecution latency caused by XRAY, we randomly picked a test

class and measured its execution time on XRAY instrumented

and non-instrumented servers, respectively. In 1000 runs, we

measured a 2% increase in running time but the data comes

with a high variance. Given that most of the test classes run

in 5 to 10 minutes, TESTSAGE could potentially adds a 10

seconds latency to each test class. In order to collect test

dependency, TESTSAGE needs to issue three RPC calls to

each service under test. The first RPC asks a service to start

a tracing interval, the second RPC asks the service to stop the

tracing interval, and the final RPC downloads the trace data

to client. It also needs to write the updated dependency to the

look-up table. Among the four operations, the second and

third RPCs are most expensive, which cost 5 seconds to run

on average. Therefore, TESTSAGE could potentially introduce

2% increase in testing time. More significantly, TESTSAGE

blindly adds ~10 seconds overhead to collect dependency for

each test entity. This limits the usage of TESTSAGE on short-

running tests as they usually finish within a few seconds.

Applying TESTSAGE on fine-grained tests(test method) is

also limited because of this fixed per test entity overhead.

Therefore, we adopt test-class level RTS in our experiment.

V. DISCUSSION

One-Pass vs. Two-Pass. TESTSAGE can be configured to use

either one-pass or two-pass executions. However, TESTSAGE

collects dependency of a test by running the test exclusively

437

during a XRAY trace interval on a server. This limits the

concurrent executions of tests on a server. Therefore, we

only adopted two-pass executions in practice.

RTS granularity. TESTSAGE collects function-level depen-

dency using XRAY. We can also derive file-level dependency

using code index. Based on the evaluation result, function-

level granularity is still applicable to large-scale projects.

Depending on the tool used to collect test coverage, more

granularity levels can be explored in the future.

RTS techniques can also be categorized based on the

granularity of test entity. A test entity can be a test method, a

test class, or even a test suite. The nature of TESTSAGE makes

it very easy to adjust the granularity of test entity. We can

simply run an entire test class or a test method in a trace

interval to obtain dependency for the class. What is more

interesting is that this feature allows TESTSAGE to choose

different test entity granularity for different test. For exam-

ple, we break down some heavy test classes into multiple

sub-groups in practice, and collect dependency separately for

them. However, choosing a finer granularity of a test entity

in TESTSAGE might not be practical, as starting/stopping

traces come with a fixed amount of overhead (shown in

Section IV-C3).

Safety. TESTSAGE adopts the architecture of classic function-

level dynamic RTS approaches and assumes that XRAY

instrumentation is accurate and correct. The safety of RTS

techniques have been studied and semi-proved by previous

studies. We also discussed the correctness of XRAY in

Section II-C. However, note that TESTSAGE is unsafe in one

of its experiment setup. In TestP setup (pre-submit test) of

our experiment, TESTSAGE selects test using latest computed

dependency from TestC. The change information passed to

TESTSAGE is computed using developer local change and the

code base synced on his/her client. This could potentially

make TESTSAGE select tests on outdated dependency. We

made this compromise due to the large number of revisions

(~400 in a day) and resource/time constraint of pre-submit

testing at Google. We mitigate the issue by narrowing the

time gap of revisions and running TESTSAGE with updated

dependency at post-submit time.

Deployment. Deploying TESTSAGE on an existing web

service test is non-trivial and we highlight the following

two phases that require most of the work. The first phase

is instrumentation. While XRAY instrumentation is straight

forward but the compiled binary size could increase by

20% with XRAY. This might cause issues when building an

enormous binary on a build environment that has constraints

on resources like memory or binary size. The second phase

is the network connectivity between TESTSAGE and SUT.

During test execution time, TESTSAGE requires network

connection with all the service components in SUT as it

needs to interact with them through RPC calls. However, a

real-world system might hide some of its service components

behind a firewall due to privacy and security concerns. Since

the original test client only requires connection with the

main service component, extra work might be required when

deploying TESTSAGE on an existing test.

VI. THREATS TO VALIDITY

Threads to External Validity. The main threat to external

validity is that results measured in our study might not be

generalized to other projects. To mitigate this threat, we

picked a large size web service project consisting of multiple

running binaries at Google. Besides, we selected all project

revisions within a randomly picked 32 days window. To

the best of our knowledge, this is the largest RTS study

on a single project. However, because our implementation

depends on Google internal infrastructure, it is still unclear

if our study can generalize to projects outside of Google.
Threads to Internal Validity. The main threats to internal

validity lies in the implementation of TESTSAGE and XRAY.

To reduce the threat, we conducted a large number of manual

checks for the results. Further more, given the size of the

project, we also collect and analyze developer reported bugs

of the tool continuously at the company. To verify the

correctness of XRAY updates (XRAY is being consistently

updated), we also implemented a simple service and tests to

collect test dependency computed by the updated XRAY. We

compare the result with human generated dependency data

on each updated version of XRAY.
Threads to Construct Validity. The main threat to construct

validity is the methods we used to evaluate the proposed RTS

technique. To mitigate the threat, we measure our study with

the three widely used metrics in RTS, i.e., the selected test

ratio, the offline testing time (i.e., AE time), and the online

testing time (i.e., AEC time).

VII. RELATED WORK

Regression test selection. Regression test selection has been

studied for several decades [1], [3], [5]–[11], [34]. Depend-

ing on the way the dependency is collected, Prior work on

RTS techniques can be categorized into dynamic RTS tech-

niques and static RTS techniques. Rothermel and Harrold [6]

proposed the pioneer dynamic RTS for C programs at the

basic-block granularity. Harrold [4] then reported a study of

basic-block dynamic RTS on Java programs. Orso et al. [15]

presented a novel two-phase RTS approach for large Java

programs. The first phase is called partitioning, in which

the RTS technique identifies affected classes and interfaces

(a partition of the program) using CFG analysis. The second

phase is referred as selection, in which the RTS technique

does more detailed CFG analysis on the partition to select

test cases.
To mitigate the large overhead incurred by finer-grained

analysis, a number of studies have been done at coarser-

granularies. Ren et al. [16] and Zhang et al. [9] proposed

function-level RTS using code analysis. They collect func-

tion/field dependency for tests at old revision and select tests

in the new revision if any of the depended function/field are

updated. Our study builds on top their ideas and introduces

a mechanism to collect function/field test dependency for

distributed binaries. Besides function-level RTS techniques,

even coarser grained RTS have also been explored. Gligoric

et al. [17] proposed file-level RTS for Java programs. Their

technique does fast checksum computation for class files,

and collects test dependency on the encoded class files.

If a file checksums is updated in a new revision, all tests

depend on the file are selected. More recently, Zhang [18]

observed that a hybrid file and method level RTS can be even

more cost-effective. Vasic et al. [35] also compared file-level

RTS with module-level RTS for .NET programs. They found

out that file-level RTS is more cost-effective than module-

level RTS. Celik et al. [36] designed dynamic file-level RTS

438

across JVM boundaries. Note that our work is different from

their work: (1) the system in their RTS technique is still

confined to a single OS kernel; (2) the system in our study is

distributed in nature, loosely coupled, and reside at separate

locations. Despite the smaller overhead, file-level RTS may

be imprecise for web service testing due to the coarse-

grained analysis and end-to-end coverage of test cases. In

our work we find that a significant number of source files

are accessed by all tests and these files are insensitive to

file-level RTS, e.g., an util.cpp file may contain different

utility functions for different tests. Therefore, in our work,

we adopt function-level RTS and prove that it is feasible

to collect dependency for large web service projects at this

granularity.

In addition to dynamic RTS, static RTS techniques using

static analysis have also been proposed to make up for the

shortcoming of dynamic RTS techniques. Kung et al. [14]

proposed the pioneer static RTS for C++ programs based

on class firewall. Their technique aims to find the affected

classes for the new revision of the software using class-level

static analysis. Ryder and Tip [37] studied static RTS at the

function level using static call graphs. Recently, Legunsen

et al. [13], [38] push static RTS techniques forward and

make the testing time of static RTS techniques comparable

state-of-the-art dynamic file-level RTS. But this technique

is unsafe due to reflections. Although static RTS techniques

cannot be directly applied on web service testing, it is still

an interesting direction to explore as it does not require code

instrumentation. Instrumenting a large number of distributed

binaries is challenging and therefore we exclude some de-

pendencies out of our SUT for TESTSAGE.

Regression test selection on web service. RTS technique

for web services test is more challenging than traditional

RTS because the tests and services are inherently distributed

in nature and are loosely-coupled. Besides, web services are

usually composed of other services, making the dependency

collection difficult for RTS. Therefore, RTS for web services

[10], [21]–[24] have not been fully explored in prior studies.

We briefly summarize the prior work as follows.

Xu et al. [21] firstly proposed an RTS technique for web

applications based on slicing [39]. The technique assumes

that changes on a web application can be divided into a

list of basic classes on a static HTML page. An HTML

page in an web application can be a data or a hyperlink

dependency on other pages in the application. The technique

then computes an extended system dependence graph (SDG)

model of the web application using the data dependencies.

RTS selects tests that execute the potentially affected web

elements. Though precise, SDG-based slicing RTS tech-

niques are unsafe [1]. Tarhini et al. [24] proposed a safe

RTS technique for web applications. The technique models a

web application in two hierarchical levels. Given two models

representing two revisions of the web application, the RTS

technique generates two test suites for each revision and

finds the difference between the initial test suite and the new

test suite. The differential set of test cases are selected for

regression testing. This technique is safe because it selects

every test case that produces a different behavior in the

modified system. However, the technique is not applicable

on large and complex web services simply because there

are too many states of the system to model. We cannot

handle the overhead to model the system and to generate

the test cases. Lin et al. [22] proposed a safe RTS technique

for Java web services by merging the client side code and

server side code into a single program. The technique uses

Web Service Description Language (WSDL) specifications

to create local proxy objects that simulate communications

between the client application and the web service on the

server side. It then applies an existing RTS technique [4] on

the transformed program. Ruth et al. [10], [23] proposed

a generalized RTS technique for web services based on

analysis of control flow models. The technique traverses the

global CFGs for the old and the updated services and identify

the nodes of the graph which are changed. The test cases

which execute the control flow edges that can be reached

from the modified nodes are selected. Both of the above

two RTS techniques suffer from the same reason, the non-

trivial overhead to model complex web services. Regardless

whether manual effort is required to model the service

and to generate the test for these techniques, providing

a model for each update of a complex web service is

unsustainable. TESTSAGE differs from the prior work as it

computes the dynamic function-level test dependency. The

granularity of TESTSAGE offers a good trade-off between

selection precision and overhead, making it scalable to large-

scale systems in Google.

VIII. CONCLUSIONS

This paper presents the first dynamic RTS technique

based on function-level dependency collected on web service

test, TESTSAGE. Unlike existing dynamic RTS techniques,

TESTSAGE is able to collect white-box function-level test

dependency for test runs in a different environment from

the code under test. TESTSAGE does this by instrumenting

the server side code with a C/C++ function tracing tool

called XRAY. At runtime, TESTSAGE runs tests with their

own traces on server, and converts the trace data into test

dependency. TESTSAGE stores the dependency data in a

separate storage to select tests in new revision. TESTSAGE

was enabled on Google Assistant backend service, a single

web service project consisting of multiple running binaries

in December 2017, and has been serving continuously at the

company. We gathered TESTSAGE metrics from a randomly

picked 32 days window to evaluate the proposed approach.

For the 11028 revisions of pre-submit testing, TESTSAGE

skips 55% of the available tests on average; for the 360

revisions of post-submit testing, TESTSAGE skips 41% of the

available tests on average. The study shows that fine-grained

analysis is feasible for large-scale web-service testing. Our

work also demonstrate the possibility of integrating dynamic

RTS techniques into large-scale web-service testing.

ACKNOWLEDGMENT

We thank Dean Michael Berris, Eric Anderson and Ning

Wang for their advise and feedback on XRay, Moyang Zhang

and Thanapong Lertpanyavit for their help on implementing

TestSage. The project is partially supported by National

Science Foundation grants CCF-1763906 and CCF-1718903.

439

REFERENCES

[1] S. Yoo and M. Harman, “Regression testing minimization, selection
and prioritization: a survey,” Software Testing, Verification and Reli-
ability, vol. 22, no. 2, pp. 67–120.

[2] “Tools for continuous integration at google scale,” 2011.
https://www.youtube.com/watch?v=b52aXZ2yi08.

[3] “Testing at the speed and scale of google,” 2011. http://google-
engtools.blogspot.com/2011/06/testing-at-speed-and-scale-of-
google.html.

[4] M. J. Harrold, J. A. Jones, T. Li, D. Liang, A. Orso, M. Pennings,
S. Sinha, S. A. Spoon, and A. Gujarathi, “Regression test selection
for java software,” in ACM SIGPLAN Notices, vol. 36, pp. 312–326,
ACM, 2001.

[5] E. Engström, P. Runeson, and M. Skoglund, “A systematic review on
regression test selection techniques,” IST, vol. 52, no. 1, pp. 14–30,
2010.

[6] G. Rothermel and M. J. Harrold, “A safe, efficient regression test
selection technique,” vol. 6, (New York, NY, USA), pp. 173–210,
ACM, Apr. 1997.

[7] E. Engström and P. Runeson, “A qualitative survey of regression
testing practices,” in Product-Focused Software Process Improvement
(M. Ali Babar, M. Vierimaa, and M. Oivo, eds.), (Berlin, Heidelberg),
pp. 3–16, Springer Berlin Heidelberg, 2010.

[8] R. Feldt, J. K. Gorantla, C. White, W. Zhe, and G. Wikstrand,
“Dynamic regression test selection based on a file cachean industrial
evaluation,” in 2009 International Conference on Software Testing
Verification and Validation(ICST), vol. 00, pp. 299–302, 04 2009.

[9] L. Zhang, M. Kim, and S. Khurshid, “Localizing failure-inducing
program edits based on spectrum information,” in ICSM, pp. 23–32,
IEEE, 2011.

[10] M. Ruth, S. Oh, A. Loup, B. Horton, O. Gallet, M. Mata, and S. Tu,
“Towards automatic regression test selection for web services,” in 31st
Annual International Computer Software and Applications Conference
(COMPSAC 2007), vol. 2, pp. 729–736, July 2007.

[11] A. Srivastava and J. Thiagarajan, “Effectively prioritizing tests in de-
velopment environment,” in Proceedings of the 2002 ACM SIGSOFT
International Symposium on Software Testing and Analysis, ISSTA
’02, (New York, NY, USA), pp. 97–106, ACM, 2002.

[12] G. Rothermel and M. J. Harrold, “A safe, efficient regression test
selection technique,” TOSEM, vol. 6, no. 2, pp. 173–210, 1997.

[13] O. Legunsen, F. Hariri, A. Shi, Y. Lu, L. Zhang, and D. Marinov, “An
extensive study of static regression test selection in modern software
evolution,” in FSE, pp. 583–594, ACM, 2016.

[14] D. C. Kung, J. Gao, P. Hsia, J. Lin, and Y. Toyoshima, “Class firewall,
test order, and regression testing of object-oriented programs,” JOOP,
vol. 8, no. 2, pp. 51–65, 1995.

[15] A. Orso, N. Shi, and M. J. Harrold, “Scaling regression testing to large
software systems,” in ACM SIGSOFT Software Engineering Notes,
vol. 29, pp. 241–251, ACM, 2004.

[16] X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. Chesley, “Chianti: a
tool for change impact analysis of java programs,” in ACM Sigplan
Notices, vol. 39, pp. 432–448, ACM, 2004.

[17] M. Gligoric, L. Eloussi, and D. Marinov, “Practical regression test
selection with dynamic file dependencies,” in ISSTA, pp. 211–222,
ACM, 2015.

[18] L. Zhang, “Hybrid regression test selection,” in ICSE, pp. 199–209,
2018.

[19] “Google assistant,” 2016. https://en.wikipedia.org/wiki/Google Assistant.

[20] “Google assistant on more than 400 million devices in 2017,”
2018. https://ppc.land/google-assistant-on-more-than-400-million-
devices-in-2017/.

[21] L. Xu, B. Xu, Z. Chen, J. Jiang, and H. Chen, “Regression testing for
web applications based on slicing,” in Proceedings 27th Annual Inter-
national Computer Software and Applications Conference. COMPAC
2003, pp. 652–656, Nov 2003.

[22] F. Lin, M. Ruth, and S. Tu, “Applying safe regression test selection
techniques to java web services,” in International Conference on Next
Generation Web Services Practices, pp. 133–142, Sept 2006.

[23] S. Tu and M. Ruth, “A safe regression test selection technique for web
services,” in Internet and Web Applications and Services, International
Conference on(ICIW), vol. 00, p. 47, 05 2007.

[24] A. Tarhini, H. Fouchal, and N. Mansour, “Regression testing web
services-based applications,” in IEEE International Conference on
Computer Systems and Applications, 2006., pp. 163–170, March 2006.

[25] D. M. Berris, A. Veitch, N. Heintze, E. Anderson, and N. Wang,
“Xray: A function call tracing system,” tech. rep., 2016. A white
paper on XRay, a function call tracing system developed at Google.

[26] “Llvm xray,” 2016. https://llvm.org/docs/XRay.html.
[27] C. Lattner and V. Adve, “Llvm: a compilation framework for lifelong

program analysis amp; transformation,” in International Symposium
on Code Generation and Optimization, 2004. CGO 2004., pp. 75–86,
March 2004.

[28] F. Henderson, “Software engineering at google,” CoRR,
vol. abs/1702.01715, 2017.

[29] R. Potvin and J. Levenberg, “Why google stores billions of lines of
code in a single repository,” Commun. ACM, vol. 59, pp. 78–87, June
2016.

[30] Y.-F. Chen, D. S. Rosenblum, and K.-P. Vo, “Testtube: A system for
selective regression testing,” in Proceedings of the 16th International
Conference on Software Engineering, ICSE ’94, (Los Alamitos, CA,
USA), pp. 211–220, IEEE Computer Society Press, 1994.

[31] “grpc.” https://en.wikipedia.org/wiki/GRPC.
[32] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,

M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable:
A distributed storage system for structured data,” in 7th USENIX
Symposium on Operating Systems Design and Implementation (OSDI),
pp. 205–218, 2006.

[33] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and
J. Wilkes, “Large-scale cluster management at google with borg,” in
Proceedings of the Tenth European Conference on Computer Systems,
EuroSys ’15, (New York, NY, USA), pp. 18:1–18:17, ACM, 2015.

[34] L. Zhang, M. Kim, and S. Khurshid, “Faulttracer: a spectrum-based
approach to localizing failure-inducing program edits,” Journal of
Software: Evolution and Process, vol. 25, no. 12, pp. 1357–1383,
2013.

[35] M. Vasic, Z. Parvez, A. Milicevic, and M. Gligoric, “File-level vs.
module-level regression test selection for .net,” in Proceedings of the
2017 11th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2017, (New York, NY, USA), pp. 848–853, ACM, 2017.

[36] A. Celik, M. Vasic, A. Milicevic, and M. Gligoric, “Regression test
selection across jvm boundaries,” in Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineering, ESEC/FSE
2017, (New York, NY, USA), pp. 809–820, ACM, 2017.

[37] B. G. Ryder and F. Tip, “Change impact analysis for object-oriented
programs,” in Proceedings of the 2001 ACM SIGPLAN-SIGSOFT
workshop on Program analysis for software tools and engineering,
pp. 46–53, ACM, 2001.

[38] O. Legunsen, A. Shi, and D. Marinov, “Starts: Static regression test
selection,” in 2017 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE), pp. 949–954, Oct 2017.

[39] M. Weiser, “Program slicing,” in Proceedings of the 5th International
Conference on Software Engineering, ICSE ’81, (Piscataway, NJ,
USA), pp. 439–449, IEEE Press, 1981.

440

